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Abstract 17	  

Sediments beneath modern ice sheets exert a key control on their flow, but are largely 18	  

inaccessible except through geophysics or boreholes. In contrast, palaeo-ice sheet beds are 19	  

accessible, and typically characterised by numerous bedforms.  However, the interaction 20	  

between bedforms and ice flow is poorly constrained and it is not clear how bedform sizes 21	  

might reflect ice flow conditions. To better understand this link we present a first exploration 22	  

of a variety of statistical models to explain the size distribution of some common subglacial 23	  

bedforms (i.e., drumlins, ribbed moraine, MSGL). By considering a range of models, 24	  

constructed to reflect key aspects of the physical processes, it is possible to infer that the size 25	  

distributions are most effectively explained when the dynamics of ice-water-sediment 26	  
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interaction associated with bedform growth is fundamentally random. A ‘stochastic 27	  

instability’ (SI) model, which integrates random bedform growth and shrinking through time 28	  

with exponential growth, is preferred and is consistent with other observations of palaeo-29	  

bedforms and geophysical surveys of active ice sheets. Furthermore, we give a proof-of-30	  

concept demonstration that our statistical approach can bridge the gap between 31	  

geomorphological observations and physical models, directly linking measurable size-32	  

frequency parameters to properties of ice sheet flow (e.g., ice velocity). Moreover, statistically 33	  

developing existing models as proposed allows quantitative predictions to be made about 34	  

sizes, making the models testable; a first illustration of this is given for a hypothesised repeat 35	  

geophysical survey of bedforms under active ice. Thus, we further demonstrate the potential 36	  

of size-frequency distributions of subglacial bedforms to assist the elucidation of subglacial 37	  

processes and better constrain ice sheet models. 38	  

 39	  

1. Introduction 40	  

Observations of palaeo-ice sheet beds show sediment that is commonly organized into 41	  

subglacial bedforms (e.g., drumlins), whose shape or occurrence is thought to reflect ice flow 42	  

conditions [1–3]. Concurrently, these bedforms are also thought to modulate ice flow 43	  

characteristics, such as velocity (v) through their effect on subglacial hydrology, basal friction 44	  

and roughness [4–7]. In short, there is likely an association between bedform morphology and 45	  

the behaviour of the ice-sediment-water system that drives their formation.   46	  

Recently, geophysical observations from an Antarctic ice stream have revealed bed 47	  

conditions [8–10] and bedforms that evolve, grow, and shrink on sub-decadal timescales [11–48	  

14]. However, these observations are logistically challenging and so limited to relatively few 49	  

bedforms at one site [13,14]. In contrast, palaeo-bedforms are abundant (i.e., > 100,000s) and 50	  

widespread, but it is more challenging to link them securely to processes at the ice sheet bed. 51	  

Thus, our understanding of the processes occurring beneath contemporary ice sheets is 52	  
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incomplete, with some fundamental questions largely unanswered, e.g., how do bedforms 53	  

grow, evolve their shape (e.g., elongate), regulate sediment flux, and interact with basal 54	  

conditions such as 'sticky spots' [e.g., 15]? 55	  

Size-frequency statistics of observed groups of bedforms thought to be genetically linked 56	  

(Fig. 1), known as ‘flow sets’ [e.g., 16] or ‘fans’ [17], may provide an additional powerful 57	  

constraint on such questions [e.g., 18,19]. However, these statistics are under-exploited, and 58	  

factors such as the shape of the frequency distribution have been given only limited attention. 59	  

Distribution shape has been neglected as a constraint because the current conceptual and 60	  

physics-based models do not predict bedform size-frequency distributions. The potential to 61	  

act as a constraint arises because not all conceptual or physics-based models [e.g., 20,21] 62	  

explaining bedform growth will replicate the observed sizes. Statistical models [19,22], 63	  

however, have the potential to predict bedform sizes as a combined product of key aspects of 64	  

the physical process: antecedent bedform-scale topography, growth rate (e.g., exponential), 65	  

and the timing of growth. Fig. 2 illustrates size distributions produced by a variety of 66	  

statistical models, some of which are consistent with the shape of observed distributions and 67	  

some are not.  68	  

Hillier et al. [19] first proposed a conceptual model to explain subglacial bedforms' size-69	  

distributions, in which ice-sediment-water interaction creating bedforms is fundamentally 70	  

stochastic. Specifically, to explain an exponential tail to the size-distribution, this model 71	  

suggests that bedform growth processes may be a convolution of randomness with simple 72	  

rules about their rate of growth; analogous models of 'self-organized criticality' are used to 73	  

explain power-law distributions [23,24]. The subglacial model draws upon ideas of 74	  

probabilistic sediment transport [i.e., 25] and an analogy to fluvial bedforms whose heavy-75	  

tailed size-distributions are thought to originate through growth in the presence of random 76	  

fluctuations associated with turbulent flow [26–30]. As a concept this is consistent with the 77	  

geophysical observations in Antarctica, but does not necessarily exclude either ice-till [e.g., 78	  

20] or meltwater [e.g., 21] bedform growth models. Fowler et al. [22] formalized a first 79	  
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statistical model of bedform sizes, investigating explanations for the particular case of a log-80	  

normal approximation to the observed size-distribution under the assumption of exponential 81	  

growth without shrinking. This paper, to better understand how bedform sizes might reflect 82	  

ice flow conditions, re-formulates and develops Fowler's statistical model and creates a new 83	  

range of other models. This variety of models is a first exploration of the possibilities and 84	  

allows, by putting each model in context, an assessment of its relative plausibility.  85	  

 86	  
Fig. 1 Size-frequency data and statistical distributions fitted to them. a) to c) 87	  

Normalised histograms of observed drumlin attributes on semi-log plots (black dots), to which 88	  
selected statistical distributions are fitted and plotted as probability density functions (pdfs); 89	  
exponential distribution (solid blue line); gamma distribution (dashed line) (αobs, βobs) [19]; 90	  
log-normal (dotted line) (µobs, σobs) [22]. Fits to obtain the distribution parameters, shown as 91	  
Greek letters, are performed using estimators (e.g., maximum likelihood) as detailed in 92	  
Appendix B. Data source and number of observed bedforms n are indicated on the plots; 93	  
country-wide UK data (Fig. 8 in [16] and Fig. 5 in [31]) (black) and a well-studied sub-set 94	  
(grey) of this [32] are used. d) The typical shape; there are few small bedforms, a modal peak 95	  
above this forming a `roll-over’, and an approximately exponential tail of frequencies 96	  
decreasing towards the largest sizes. 97	  
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	  98	  
Fig. 2 Illustrative size-frequency distributions from statistical growth models. Semi-99	  

log frequency plot illustrating a variety of size-frequency distributions of bedforms predicted 100	  
by different types of statistical growth model. They are each governed by arguably plausible 101	  
glaciological or statistical assumptions (see text for models): Dirac delta function (dot-dash 102	  
line is Model 1, denoted M1); uniform distribution (dotted line e.g., M4); exponential (solid 103	  
line e.g., M8); log-normal (dashed line e.g., M7). The power of this size-frequency data as a 104	  
constraint is that only a sub-set of models produces distributions reasonably approximating 105	  
observed data (e.g., Fig. 1). 106	  

 107	  

The paper begins by describing the size-frequency observations of bedforms (i.e., 108	  

drumlins, ribbed moraine, MSGL), then outlines the terminology and defines a conceptual 109	  

framework necessary for statistically modelling the evolution of sets of such subglacial 110	  

bedforms. It then builds new statistical models, which are evaluated and discussed in light of 111	  

observational evidence, internal consistency, and their implications for theories of bedform 112	  

growth and the ice-water-sediment system under ice sheets. In addition, the models are shown 113	  

to make distinctive predictions that could be tested should a geophysical survey under active 114	  

ice [i.e., 13] be repeated. Because growth in bedform height (H) underlies most physical 115	  

modelling [e.g., 20,33,34] the models are initially developed for height, but with implications 116	  

for width (W) and length (L) also discussed. 117	  

 118	  

2. Size Observations 119	  

Fig. 1 illustrates typical size-frequency statistics of observed groups of subglacial 120	  

bedforms. Distribution shapes are similar across bedform types (i.e., drumlins, MSGL, ribbed 121	  
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moraine), mappers and regions (e.g. UK, Canada, Sweden) [19]. Although a selection of 122	  

statistical distributions could be fitted to bedform size data [e.g., 26], subglacial bedform sizes 123	  

have been found to be reasonably approximated as having a log-normal shape [22,35,36] or as 124	  

being exponential above their mode [19].  Large compilations of bedforms (n > 10,000) [e.g., 125	  

16] more precisely constrain their size distribution than smaller ones as uncertainty in 126	  

sampling is reduced, but almost certainly represent the aggregation of a range of subglacial 127	  

conditions. As such, the size distributions of large compilations may simply represent the 128	  

statistical effects of aggregating samples rather than anything to do with ice flow.  It is 129	  

therefore important to note that the same distribution shape and spread of sizes is still 130	  

apparent within flow-sets comprising 100-200 bedforms (Fig. 1, grey lines) that likely 131	  

represent something about glaciological conditions at a particular location in space and time. 132	  

The parameters listed in Fig. 1 for the best-fitting gamma (α, β) and log-normal (µ, σ) 133	  

distributions are obtained by method of moment and maximum likelihood estimators as 134	  

described in Appendix B. Country-wide UK data in Fig. 1 are, quite deliberately, values 135	  

digitised from plots in the original papers [16,31]. This is done to demonstrate that the 136	  

published archive of size-distributions can be usefully re-assessed in light of statistical 137	  

models. Parameters calculated from digitized values typically differ little from those used to 138	  

construct the original plots (e.g., <3% for µ and σ). Furthermore, the data of Hillier and Smith 139	  

[32] show that parameter values are similar when calculated from either counts within size 140	  

bins or from the individual underlying data (e.g., variations <7% for µ and σ). Importantly, 141	  

patterns in relative values (e.g., σH>σW>σL) are robustly unchanged for all parameters, and 142	  

the differences between their values (e.g., for H vs. W) are always substantially larger than 143	  

uncertainties caused by the method used to derive the parameter values (see Supporting 144	  

Information).  145	  

Initially, the parameters are simply empirical descriptors of the shape of the size-frequency 146	  

distributions; it is statistical models of bedform growth that potentially allow the parameters 147	  

to be considered in terms of subglacial processes. A conceptual framework is now created, 148	  
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which outlines the elements necessary to formulate statistical models that might explain the 149	  

observed size-frequency distributions. 150	  

 151	  

3. Conceptual Framework 152	  

Firm and direct observational constraints on how glacial bedforms are formed have proved 153	  

challenging to obtain. However, to formalise statistical models, a framework is needed. 154	  

Geophysical surveys [11,13], sediment flux estimates [37], and geometric arguments [38] 155	  

indicate that forms entirely composed of sediment could arise over ~10s-100s years, and 156	  

certainly within one ice flow event [e.g., 39,40]. Thus, modelling can start by considering one 157	  

flow episode. However, substantial elements of the processes at work remain unclear. How do 158	  

bedforms initiate? Do initial sizes determine final ones? Is growth exponential with time, 159	  

characteristic of linear instability? Is growth continuous or discrete, and monotonic or 160	  

fluctuating, over time? Are bedforms in equilibrium with ice flow? It is not practical to model 161	  

all views held on these questions, so these topics are introduced in order to highlight the 162	  

choices made in constructing the statistical models.  163	  

3.1. Bedform initiation: growth and location 164	  

Entirely bedrock bedforms exist, and require an erosional mechanism [e.g., 41]. The 165	  

majority, however, appear to be composed mainly or entirely of glacially-derived sediment 166	  

(i.e., till) [42,43]  requiring a mechanism for an origin from a till sheet [e.g., see 44]; this 167	  

could involve erosion, deposition or redistribution or a combination of any of these processes 168	  

[e.g., 45]. Subglacial bedforms might decrease in height from some set of progenitor forms 169	  

[e.g., 46]. Alternatively, if sculpted from a relatively flat surface, they must (as a net effect 170	  

over a period of time) increase their amplitude or ‘grow’ [e.g., 20]. This paper considers a 171	  

sub-set of statistical models of bedform genesis in which bedforms undergo net growth, 172	  

including models that incorporate periods were bedforms are stable or shrink. The mechanism 173	  

of net growth may be till deformation [e.g., 47,48] but, especially in light of studies into the 174	  
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size distribution of fluvial scours [e.g., 49], the statistical models may also apply to 175	  

conceptual models of the ice-sediment-water system governed by erosion or scour by 176	  

meltwater [e.g., 21,50,51]. 177	  

It is known that bedforms occur more densely in some places than others, creating 178	  

patchiness on a scale of 10-100s of km [e.g., 52,53].  ‘Patches’ defined in this way encompass 179	  

numerous individual bedforms, which are typically 0.1-10 km in horizontal extent.  Thus, 180	  

meso-scale (~10-100s km) ‘patches’ are envisaged for the statistical models (Fig. 3), which 181	  

contain a statistically useful number (i.e., 1,2,3 .... j) of bedforms linked to relatively local 182	  

conditions (black dots) that grow in height (i.e., H). The premise of using patches as defined 183	  

is consistent with the idea of spatio-temporally variable mosaics of stable and deforming bed 184	  

conditions; this is based on observations of exposed till [54,55], but also consistent with 185	  

geophysical studies that have revealed variable bed conditions [9,10]. Spatial variation in 186	  

conditions is also postulated in bedform models that invoke meltwater [56].  187	  

 188	  
Fig. 3 Conceptualisation of how flow-sets of bedforms grow. a) Cross-hatched area is a 189	  

meso-scale flow-set (~10-100 km) or `patch’ of deformable or erodible subglacial material 190	  
subjected to conditions conducive to a flow set of bedforms arising in locations illustrated by 191	  
black dots. Within this, bedforms from 1 to j, where j is any integer, change in amplitude 192	  
through erosion, deposition, or redistribution. b) A potential, illustrative, sequence of growth 193	  
for one bedform (number j) through time (dashed line), accompanied by selected silhouettes 194	  
representing vertical cross-sections; a shrinking rate of zero (i.e., stasis) is valid within the 195	  
illustration.   196	  
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 197	  

3.2. Growth style: deterministic versus probabilistic  198	  

‘Deterministic’ growth is where proto-bedforms of a given size and shape always evolve 199	  

similarly with time to a predictable final morphology; i.e., initial conditions lead uniquely to a 200	  

final configuration. ‘Probabilistic’ growth is where random variability through time (i.e., 201	  

dynamics) causes individual bedforms to evolve unpredictably or ‘stochastically’, but 202	  

combine to produce predictable flow set statistics [e.g., 18,57]. In the non-turbulent conditions 203	  

of ice flow, such variability is likely to arise from time-varying boundary conditions in the 204	  

coupled ice-sediment-water system (e.g., water incursions, floods, basal stick-slip events) 205	  

[58–61] or interactions between bedforms [62] perhaps by ice rheology inducing lateral 206	  

stresses [e.g., 63,64]. Combining this with the observed range of time-scales on which ice 207	  

flow fluctuates (i.e., days to decades) [e.g., 60,65–74], and by analogy with established ideas 208	  

in fluvial and aeolian environments [e.g., 25,28–30,57,62], gives a picture of potentially 209	  

pervasive randomness through time in subglacial sediment transport (i.e., flux)[19]. Either 210	  

deterministic or probabilistic growth can be readily incorporated into statistical models. 211	  

3.3. Growth rate 212	  

Bedform growth predicted by physics-based models proceeds at a rate that has an expected 213	  

characteristic mathematical form. If models relate till flux to the thickness of the till body and 214	  

an unconnected ‘field’ variable, such as basal shear stress (𝜏), that can vary in space [e.g., 215	  

20,75,76], growth of H is initially linear with time at a constant rate (k).  In this regard H is 216	  

governed by the ordinary differential equation (ODE) 217	  

 218	  

Eq. 1 219	  

in conjunction with the initial condition    220	  

 221	  

Eq. 2 222	  

d!
d!
= 𝑘	  	  

𝐻(𝑡i) = 𝐻!.  	  
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Integrating Eq. 1 analytically, considering the initial condition, and for final height denoting 223	  

𝐻 𝑡f = 𝐻f, yields Eq. 3. 224	  

 225	  

Eq. 3 226	  

If, on the other hand, models contain positive linear feedback between bedform and ‘field’ 227	  

(Eq. 4), this results in a physical instability in the sediment-ice system and growth is initially 228	  

exponential with time (Eq. 5) [e.g., 20,33]. Thus, the term ‘instability’ has been adopted to 229	  

describe this class of sediment growth model. Note that the term instability is used in this way 230	  

in this paper and not as strictly defined in the mathematical field of stability theory related to 231	  

dynamics.  232	  

In this regard, where physical processes are thought to be approximated by linear feedback, 233	  

H is governed by the ODE 234	  

 235	  

 Eq. 4 236	  

in conjunction with the initial condition of  Eq. 2. Similarly, as with Eq. 1, integrating analytically 237	  

yields 238	  

 239	  

Eq. 5 240	  

It is entirely plausible that growth does not continue according to either of these simple 241	  

rate laws, perhaps because of ‘shock formation’ as H increases, which is when a subglacial 242	  

bedform is dramatically altered after an ice-free cavity is generated on its lee side [e.g., 243	  

77,78]. The statistical models proposed below focus on the simple rate laws as it is not yet 244	  

even well determined which of these might apply [cf. 79,80,81]. The models are, however, 245	  

presented initially in terms of time spent growing so that they can be readily adapted for other 246	  

rate laws if required in the future. 247	  

3.4. Continuous process versus discrete events 248	  

𝐻f = 𝐻! + 𝑘(𝑡f − 𝑡i)	  

d!
d!
= 𝑘𝐻	  	  	  	  	  	  	  	  	  	  	  	  

𝐻f = 𝐻i𝑒!(!f!!i)	  



HILLIER	  ET	  AL.	   	   STATISTICAL	  BEDFORM	  MODELS	  

	   11	  

If bedform growth is viewed as a continuous property extending over a finite time period 249	  

[e.g., 20,48,79] then at any time, and for finite proportions of it, bedforms either grow or 250	  

shrink. In contrast, and by analogy with other environments [e.g., 82,83], the creation of each 251	  

bedform may occur through discrete sediment flux 'events', each of which might affect several 252	  

proximal bedforms. However, if events affect only sub-areas of a patch and are randomly 253	  

located, their impacts upon each bedform will appear as a series of independent trials through 254	  

time [22], analogous to continuous variability. Thus, and particularly because analogies 255	  

between the continuous and discrete mathematics exist [e.g., 84], either a continuous or 256	  

discrete modelling approach remains valid. 257	  

3.5. Transient versus equilibrium growth 258	  

The length of time over which a flow-set develops is not well constrained. It is therefore 259	  

necessary to introduce into this framework the concept of ‘transient’ flow-set growth within a 260	  

time window, between an initial time (ti) and a final time (tf). Pre-equilibrium or transient 261	  

growth is where the statistics of a flow-set evolve over time, continue to evolve, and would 262	  

have continued to evolve further if the conditions for growth had persisted.  This contrasts to 263	  

stable long-term ‘equilibrium’ behaviour in which the statistical characteristics of a flow set 264	  

stabilise. Equilibrium is actively sought in fluvial experimentation [e.g., 26] and has been 265	  

implicitly invoked to infer ice properties; for example, assumed equilibrium is implicit when 266	  

arguing that bedform elongation is related to ice velocity, rather than duration of flow [e.g., 267	  

3,85].  Bedforms that develop slowly with respect to changes in ice flow conditions at the 268	  

flow-set scale (~10-100 km) will have pre-equilibrium transient statistics, whilst forms 269	  

evolving much more rapidly than patch-scale flow changes could attain equilibrium. Which 270	  

behaviour predominates amongst glacial bedforms is not yet known. Thus, statistical models 271	  

containing both behaviours are permitted and explored here.  272	  

4. Methods 273	  
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To better understand how bedform sizes might reflect formative flow conditions a new 274	  

range of statistical models are developed, including one that extends the model of Fowler et al 275	  

[22]. This variety of models allows, by putting each model in context, an assessment of its 276	  

relative plausibility. The initial mode of discrimination is by the shape of the size-frequency 277	  

distribution that each model creates (e.g., Fig. 2) as compared to observations. Specifically, as 278	  

also demonstrated in Fig. 1, the data are reasonably approximated by log-normal[22,35,36] 279	  

and gamma distributions, and by an exponential tail above the mode [19]. Models are 280	  

therefore required to generate at least one of these to be considered as potentially plausible. 281	  

Models are developed analytically so that the form of the size-frequency distributions they 282	  

can produce is known explicitly. 283	  

5. Models 284	  

The models developed here contain a number (i.e., 1,2,3 .... j) of non-overlapping bedforms 285	  

(Fig. 4a, black dots) characterised as growing independently for a time period between ti and 286	  

tf within 'meso-scale’ (~10-100s km) ‘patches’ when an appropriate flow regime prevails. 287	  

Statistical independence between bedforms is assumed as in previous statistical modelling 288	  

[i.e., 22], where it is justified by randomness in the perturbing field (e.g., water influx) (see 289	  

Section 3.4), although it may also be augmented by spatial randomness in rheological 290	  

properties (e.g., viscosity). This is consistent with stochastic sediment flux in aeolian cellular-291	  

automata models that has yielded randomly sized, yet spatially patterned, barchan dunes 292	  

[62,86]. Effective independence is also supported by analogy to extensive work in the fluvial 293	  

environment where the growth of spatially ordered and self-organized bedforms is statistically 294	  

described and modelled as stochastic and random [26,28,30,57,87].  We acknowledge that, 295	  

with limited observational evidence, this set-up may not ultimately turn out to be correct, but 296	  

it forms a useful basis to start an exploration with statistical models. Physically, activity 297	  

within the patches is conceptualised as being based on multiple, rapid (i.e., sub-decadal) and 298	  

random fluctuations in basal conditions that generate flow sets of bedforms.  299	  
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 300	  
Fig. 4 Framework for the statistical models. Cross-hatched area in a) is a meso-scale 301	  

(~10s-100s km) ‘patch’ of deformable or erodible subglacial material subject to conditions 302	  
conducive to a flow set of bedforms arising. b) and c) are barcode style strips for the waiting 303	  
time (WT) [M10] and stochastic instability (SI) [M7] models. The strips represent the size 304	  
evolution through time for one of the bedforms j in a). Specifically, the bands represent 305	  
alternating `local’ (~0.1-1 km) conditions affecting H; grey is growth, and white is shrinking 306	  
or inactivity. k and kH indicate growth rate (i.e., Eq. 1 and Eq. 4). Rapid fluctuations in c) are 307	  
omitted for visual clarity, analogous to a time-series recorded at low temporal resolution. 308	  

 309	  

Models are numbered, so that Model 4 is denoted [M4], for example. Each includes four 310	  

elements, a growth rate 'law' based upon suggestions from physical models[20,33,75,76], 311	  

rules about what initial sizes are and when growth begins, and a growth style that is 312	  

deterministic or uses temporal randomness. Each aspect affects the output size distribution, 313	  

and the characteristics of all models are summarised in Table 1.  The simplest new models 314	  

created, both mathematically and conceptually, are those that do not involve stochasticity in 315	  

growth through time [M1-5]. Some of these (see Table 1) can replicate size-frequency 316	  

observations (Fig. 1), but require substantial ad hoc assumptions to do so; for instance, in M3 317	  

a log-normal antecedent size distribution is needed to create a log-normal distribution of 318	  

observed sizes [i.e., M3a].   So this preliminary exploration is detailed in Appendix A, with 319	  

statistical models incorporating probabilistic growth [M6-11] focussed on below. 320	  

 321	  
Table 1: Attributes of the models. Grey shading indicates the variable changed in each 322	  

group of models. See Section 3 for a discussion of the conceptual framework, which outlines 323	  
the different parts that comprise the models. SI and WT in column 1 refer to the ‘Stochastic 324	  

time
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Instability’ and ‘Waiting Time’ models, respectively. Models 1-5 are in Appendix A. The 325	  
distribution shapes each model can produce are described in sections where they are 326	  
developed, and acceptable approximations to observations are log-normal, gamma or 327	  
exponential above the mode.  328	  
	  329	  

 330	  

	  331	  
If ice-sediment-water interaction leading to bedform growth is fundamentally stochastic, as 332	  

proposed by the conceptual model of Hillier et al. [19], then stochastic mathematical models 333	  

[e.g., 88,89] may be constructed to formalise variants on this idea. Of possible types of time-334	  

series (i.e., temporal) randomness [e.g., 90], the two most standard and well-established 335	  

descriptions [e.g., 91] are selected to create simple stochastic models. Models are therefore 336	  

created based on ‘white noise’ (Brownian motion) [M6 and M7], developing that of Fowler et 337	  

al. [22], and Poisson randomness [M8 to M11] as seen in natural processes such as storms 338	  

impacting land [92]. Particular attention was paid to variants capable of generating 339	  

distributions that have previously been fitted as approximations to the size-frequency 340	  

observations (i.e., exponential, gamma, log-normal [e.g., 19,22]). 341	  

The models employ statistical derivations from texts such as Soong [93], but also use 342	  

elements from stochastic processes and stochastic differential equations [e.g., 88,94].  All 343	  

analytical solutions have been validated with pertinent Monte Carlo simulations utilizing 344	  

10,000 samples compatible with the statistics of the random quantities [e.g., 95]. 345	  

 346	  
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5.1. Brownian motion randomness [M6 and M7] 347	  

Models M6 and M7 incorporate probabilistic growth governed by randomness of a type 348	  

known by a number of names including ‘Brownian motion’, ‘white noise’, or a ‘1D random 349	  

walk’ [e.g., 94]. This latter can be pictured as a drunkard in a long, thin alleyway, who either 350	  

stumbles ‘forward’ or ‘back’ randomly, leading to a distribution of positions that expands 351	  

with time.  If each drunken step takes 1 unit of time, then the net time travelling forward will 352	  

evolve exactly as distance does, starting to differ increasingly with time, spreading out or 353	  

dispersing when plotted with predictable statistics: namely, a mean of µ and standard 354	  

deviation of σ (Fig. 5a). Analogously, if changes to a bedform continuously fluctuate between 355	  

two states (i.e., growth, g, or shrinking, s) in an manner analogous to a random walk (Fig. 4c) 356	  

then net time spent growing (i.e., 𝑡N(𝑡) = 𝑡g − 𝑡s) is a random variable with a ‘diffusive’ 357	  

part caused by random motions that is a Gaussian or ‘normal’ distribution [94,96]. 358	  

Specifically, as the size of steps tend to zero, this is described by a Wiener process denoted 359	  

W(t) [88,94,97,98] and the Gaussian distribution has mean (𝜇) of 0 and variance (𝜎!) of t i.e., 360	  

~𝑁(0, 𝑡). Namely, 𝐸 𝑊(𝑡) = 0 and 𝐸 𝑊!(𝑡) = 𝑡 with the property 361	  

𝑊 𝑡 −𝑊(𝑠)~𝑁(0, 𝑡 − 𝑠) for 𝑡 > 𝑠 ≥ 0.  Statistical ‘drift’ (ξ) where the mean of the 362	  

distribution increases or decreases with time (𝜇 = 𝜉𝑡) can also be accounted for [e.g., 98, 363	  

p462]; this can be driven by growth being more probable, namely the probability of growing 364	  

(p) being greater than 0.5. This would represent a drunkard capable of some ability to travel 365	  

forward. Thus, the distribution of 𝑡!(𝑡) is given by Eq. 6 and illustrated in Fig. 5a as a hump 366	  

that both moves or ‘drifts’ and spreads out or ‘diffuses’. 367	  

Eq. 6 368	  

 369	  
𝑡!(𝑡) = 'drift'  +  'diffusion'   = 𝜉𝑡 +𝑊(𝑡)	  
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 370	  
Fig. 5 Visualisation of the relationship between a random walk, a Wiener process, and 371	  

the evolving log-normal size-frequency distribution expected of bedforms in the SI 372	  
model [M7]. a) Probabilities for the number of discrete steps taken in a random walk (grey 373	  
circles) are distributed binomially. From Wiener’s work whatever small step length is chosen 374	  
these are well approximated by normal distribution (black line) of µ = 0 and σ2 = t i.e., net 375	  
time spent growing is a normally distributed random variable. If 𝐻 ∝ exp 𝑡!  this defines a 376	  
log-normal distribution for H. b) Height distributions evolving through the SI model [M7] as 377	  
time increases for some illustrative constants. 378	  

 379	  

Alternatively, the distribution of 𝑡! created by a Wiener process with drift can be described 380	  

by a stochastic differential equation (SDE) [e.g., 88,99] (Eq. 7), which integrates to Eq. 6 381	  

under the initial condition that growth starts at ti, namely 𝑡! 𝑡! = 0; note that this simple 382	  

case can be integrated directly since the integral of dW(t) is W(t) by definition, and it is not 383	  

necessary to use Itô’s formula. The pdf obtained by either means is more fully expressed by 384	  

writing out the equation of a Gaussian (Eq. 8) with appropriate values of the mean (µ) and 385	  

variance (𝜎!) given by Eq. 9 and Eq. 10. 386	  

Eq. 7 387	  
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Eq. 8 388	  

 389	  

Eq. 9 390	  

Eq. 10 391	  

 392	  

Statistical drift (ξ) caused by varying p is given by 𝜉 = 2𝑝 − 1. This affects the mean of 393	  

𝑡!, giving an expression for 𝜇 as in Eq. 11. Two special cases illustrate this behaviour. 394	  

Without any directional bias, namely if probability of growing and shrinking are equal with 395	  

𝑝 = 0.5, 𝜉 = 0 and no drift occurs. If all steps are in one direction, namely p = 0 or 1, then 396	  

there is no randomness and 𝜉 = ±1 as is appropriate to set growth or shrinkage to a single 397	  

deterministic rate. However, in the limiting case of 𝜉 = ±1 the distribution of 𝑡! cannot 398	  

diffuse and spread into a Gaussian, and so the spread (i.e., variance) of 𝑡! is also 399	  

demonstrably affected by p, especially near its limits of 0 and 1. This effect is described 400	  

through well-established results; the discrete Binomial distribution (n,p) is approximated as a 401	  

Normal distribution (µ,σ2), where 𝜎! = 𝑛𝑝(1− 𝑝) as 𝑛 → ∞ [e.g., 84] (e.g., Fig. 5a).  Thus, 402	  

the variance of 𝑡! in Eq. 8 is given by Eq. 12, where the factor of 4 arises because the step 403	  

size is doubled, namely (-1,+1) in time versus (0,+1) for the Binomial, which is squared in its 404	  

impact upon the variance of a random variable [e.g., 93, p81].  405	  

Eq. 11 406	  

Eq. 12 407	  

 408	  

Now, it is possible to convert back from time to height, choosing whatever growth law is 409	  

desired. Firstly, recognising that (𝑡f − 𝑡i) in Eq. 3 and Eq. 5 is simply a specific case of net 410	  

time spent growing (i.e., 𝑡N = 𝑡g − 𝑡s), equations for linear and exponential growth can 411	  

be re-written as in Eq. 13 and Eq. 14, respectively. Then, 𝑡! generated by Brownian motion 412	  

𝜇 = (2𝑝 − 1)(𝑡f − 𝑡i)	  

𝑓(𝑡!) =
1

𝜎√2𝜋
exp !−

1
2
(𝑡! − 𝜇)!

𝜎! ! ,−(𝑡f − 𝑡i) ≤ 𝑡! ≤ (𝑡f − 𝑡i)	  

𝜇 = 𝜉(𝑡f − 𝑡i)	  

𝜎! = (𝑡f − 𝑡i)	  

𝜎! = 4[𝑝(1 − 𝑝)](𝑡f − 𝑡i)	  
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randomness from Eq. 8 can be applied to the different growth rates by transformations of the 413	  

random variables [e.g., Ch 5 of 93] as in the simpler models in Appendix A (e.g., using Eq. 414	  

29).  415	  

Eq. 13 416	  

Eq. 14 417	  

First, consider growth that is linear with time (Eq. 13). This is denoted as model M6. The 418	  

overall amount of time spent growing (tN) is normally distributed. Since 𝐻f is a simple 419	  

multiple of this, it will also be normally distributed. As above, analytically determining the 420	  

pdf of Hf given the pdf of tN is a relatively straightforward task using the standard 421	  

transformation relationship.  This yields Eq. 15 to Eq. 17, which describe Hf as a Gaussian 422	  

drifting and diffusing as time passes; i.e., not gamma, exponential or log-normal. 423	  

 424	  

       Eq. 15 425	  

	  426	  

 Eq. 16 427	  

Eq. 17 428	  

 429	  

In contrast, model M7 is formulated for growth that is exponential (Eq. 14). Since tN is 430	  

normally distributed, 𝐻f will be log-normally distributed by definition (see Appendix A.3 431	  

‘Variable initiation times’). This is to say that where future increase in a variable is linearly 432	  

dependent on past progress (i.e., instability, Eq. 4 or Eq. 14) a log-normal distribution is 433	  

produced [e.g., 25] (Eq. 18 to Eq. 20). This assertion can be verified by analytically 434	  

determining the pdf of Hf in Eq. 14 given the pdf of tN and by using the transformation 435	  

relationship for random variables. Alternatively, the same result can be reached using 436	  

Stochastic Differential Equations (SDEs). Indeed the form of the result using SDEs is very 437	  

well established and is known as the solution of ‘Geometric Brownian Motion’, which is used 438	  

𝐻f = 𝐻! + 𝑘𝑡! 	  

𝐻f = 𝐻i𝑒!!! 	  

𝑓!!!ℎ!! =
1

𝜎√2𝜋
exp !−

1
2
!ℎ! − 𝜇!

!

𝜎! ! ,𝐻! − 𝑘(𝑡f − 𝑡i) ≤ ℎ! ≤ 𝐻! + 𝑘(𝑡f − 𝑡i)	  

𝜇 = 𝐻! + 𝑘(2𝑝 − 1)(𝑡f − 𝑡i)	  

𝜎! = 𝑘!4[𝑝(1 − 𝑝)](𝑡f − 𝑡i)	  
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for purposes such as predicting stock prices [e.g., 98,100,101]. It is important to note for 439	  

comparisons, however, that common treatments using SDEs do not allow p to vary from 0.5 440	  

and, instead of k, usually use as their growth constant the effective stochastic equivalent 441	  

growth rate which for p = 0.5 is 𝑘 = 𝜉 + 𝑘! 2 [e.g., 101, p546].   442	  

 443	  

Eq. 18 444	  

 445	  

Eq. 19 446	  

Eq. 20 447	  

 448	  

It is now possible to consider another factor that may drive statistical drift of the size 449	  

distribution in these models: differential rates of growth and shrinking, denoted kg and ks, 450	  

respectively. The influence of differential rates of growth upon µ and σ is more readily 451	  

understood if 𝑘g and 𝑘s are re-framed into the drift of the size-frequency distribution and 452	  

oscillations about the centre of the distribution (Fig. 6). The oscillatory component is 453	  

𝑘av = 𝑘g + 𝑘s 2, the average rate with respect to the centre of the distribution, and the drift 454	  

component is 𝑘net = 𝑘g − 𝑘s 2, the imbalance in rates. The oscillations behave exactly as 455	  

they do for a stationary distribution; so k becomes 𝑘av in the equations above. Drift induced 456	  

this way purely displaces the distribution, and so only affects µ, adding a term so as to cause it 457	  

to increase at a constant rate with time. Eq. 21 and Eq. 22 therefore describe a model [M7] 458	  

combining Brownian motion randomness in growth with an exponential growth rate that 459	  

includes the potential for overall growth of the population to be driven by both different 460	  

probabilities and/or rates of growth and shrinkage; we term M7 the ‘stochastic instability’ (SI) 461	  

model. With shrinking forbidden (ks = 0) and conceptualised in terms of discrete events, this 462	  

simplifies to the model of Fowler et al. [22], which dealt with random uni-directional equally 463	  

sized steps at a single rate creating growth.  464	  

𝑓!!!ℎ!! =
1

𝜎ℎ!√2𝜋
exp !−

1
2
!ln(ℎ!) − 𝜇!

!

𝜎! ! ,𝐻!𝑒!!(!f!!i) ≤ ℎ! ≤ 𝐻!𝑒!(!f!!i)	  

𝜇 = ln(𝐻i)+ 𝑘(2𝑝 − 1)(𝑡f − 𝑡i)	  

𝜎! = 𝑘!4[𝑝(1 − 𝑝)](𝑡f − 𝑡i)	  
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 465	  

                                Eq. 21 466	  

Eq. 22 467	  

 468	  
Fig. 6 Illustration of how, conceptually, unequal rates of growth and shrinking may 469	  

be decomposed into components. The components represent: i), oscillation around the centre 470	  
of a distribution of the logarithm of sizes; and ii), drift of the distribution. 471	  

 472	  

 473	  

Values for µ and σ of the SI model [M7] may readily be estimated (see Appendix B) 474	  

directly from mapped bedform sizes (e.g., Fig. 1). Through Eq. 21 and Eq. 22 the SI model 475	  

therefore predicts trajectories of characteristics of the observed size distribution (µobs and σobs) 476	  

through time; specifically µobs is expected to be proportional to the square of σobs.  477	  

It is also possible to make predictions about the size differences (e.g., ∆𝐻) of flow-sets of 478	  

bedforms across an observational window (i.e., at t1 and t2). First, all bedforms should be 479	  

active and change size, and there should be a mixture of shrinking and growing. Secondly, in 480	  

spite of the scatter caused by randomness, ∆𝐻 should relate to H (Eq. 4). Thirdly, by the 481	  

definition of a diffusive Wiener process 𝑡! in any time period is normally distributed, and 482	  

thus the distribution of the differences in height ∆𝐻 should be log-normal. Furthermore, since 483	  

the time difference is known, parameters of the SI [M7] model (i.e., p or knet, kav, total 484	  

duration of growth period) may be uniquely constrained (Table 2). 485	  

oscillation

drift
freq.

ln(H)

kk
rates equal

ks
rates unequal 

kg

𝜇 = ln(𝐻i)+ 𝑡[𝑘net + (2𝑝 − 1)𝑘av]	  

𝜎! = 𝑘av! 4[𝑝(1 − 𝑝)]𝑡	  
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Table 2: Table of testable predictions for the WT [M10] and SI [M7] models. 486	  
 487	  
 Characteristic Expectation: WT 

model [M10] 
Expectation: SI model 
[M7] 

Test/Investigative method 

1 Size-
frequency 
distribution 

Gamma; through 
time or across Δ𝑡. 𝛽 
constant; 𝛼 ∝ 𝑡 

Log-normal through time 
or across Δ𝑡. 𝜇 ∝ 𝜎! ∝ 𝑡 

Repeat survey under active 
ice, or plot palaeo-forms from 
multiple flow sets (e.g., 𝜇obs 
vs 𝜎obs) 

2 Spatial pattern 
of ice flow 
variables or 
conditions 

Poisson fluctuations 
in time, at least at a 
bedform scale 

Constantly fluctuating, at 
least at the spatio-
temporal scale of bedform 
genesis 

Estimate basal ice conditions 
using geophysics or invert for 
them from satellite 
observations of the ice surface 
[e.g., 6] 

3 Fraction 
shrinking vs 
growing 

All active forms 
grow (i.e., Δ𝐻 is 
+ve) 

All active. Δ𝐻 a mixture 
of growing and shrinking; 
fraction p growing. 

Repeat survey under active 
ice; e.g., repeat [13] 

4 Growth rate Constant. With Δ𝑡 
known, Δ𝛼 and Δ𝛽 
are constrained and 
so are 𝜆 and 𝑘 (Eq. 
25, Eq. 26), so 
overall time to 
create flow set also 
deducible. 

Exponential, i.e., 
proportional to H. If Δ𝑡 
known, Δ𝜇 and Δ𝜎 and so 
p or knet and kav are 
constrained (Eq. 21, Eq. 
22), so overall time to 
create flow set also 
deducible. 

Repeat survey under active 
ice. 

5 Fraction 
unchanged 

>0 for small Δ𝑡 Small; depends on 
definition of change 

Repeat survey under active 
ice. 

 488	  

5.2. Waiting time randomness [M8 to M11] 489	  

In contrast to Brownian motion randomness, there is another well-established type of 490	  

temporal randomness called Poisson randomness [e.g., 94]. This is investigated in models M8 491	  

to M11. 492	  

In ‘Poisson’ randomness, the gaps between events that occur randomly at a given rate (λ, 493	  

number per unit time) are distributed according to the exponential or ‘waiting time’ 494	  

distribution [e.g., 97, p39-40]. This distribution is, for instance, used to model the times 495	  

between shoppers arriving at a supermarket checkout. So, if the arrival or ‘event’ is the 496	  

change in state (i.e., growth to inactivity) of a continuous process [cf. 91] it also describes 497	  

inter-event periods in which bedforms may grow (Fig. 4b). Thus, if only a single episode of 498	  

growth (e.g., the last) is preserved, net time spent growing (𝑡N) is distributed according to an 499	  

exponential distribution (Eq. 23).  500	  

 501	  

𝑓!!(𝑡!) = 𝜆𝑒!!!! , 𝑡! > 0	  
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Eq. 23 502	  

As in Section 5.1, this is formulated in terms of time spent growing so that any desired 503	  

growth rate law can be readily applied to determine distributions for Hf. The distributions of 504	  

Hf that are generated by taking tN as a random variable can be deduced by transformations of 505	  

random variables as above [e.g., Ch 5 of 93].  506	  

Consider first model M8, in which growth is constant with time (Eq. 1). With tN as above, 507	  

an exponential distribution of heights results (Eq. 24). This, however, is not so for exponential 508	  

growth (Eq. 14) in model M9. This produces a distribution that is not exponential, log-normal 509	  

or Gamma. M8 predicts that the exponent of the tail of the observed pdf of final heights (Hf) 510	  

is 𝜆/𝑘 as in Eq. 24, where growth rate (k) is from Eq. 13. This exponent is readily estimated 511	  

from mapped sizes [19], and is not expected to progress with time. It is predicted to be set by, 512	  

vary in equilibrium with, and therefore reflect formative (i.e. ice or water) flow conditions. 513	  

 514	  

Eq. 24 515	  

 516	  

However, instead of being in equilibrium with flow, glacial bedforms may be in a transient 517	  

state with respect to flow. This is incorporated within models M10 and M11. If bedforms are 518	  

created by a number (nb), on average, of building episodes then 𝑡N is the sum of nb 519	  

exponential distributions; this is a two-parameter Gamma distribution denoted 𝑡!  ~  Γ(𝛼,𝛽) 520	  

[84]. The Poisson rate (λ) as defined above is now standardly denoted β and is the ‘rate 521	  

parameter’ of the Gamma distribution. The shape parameter of the Gamma distribution (α) is 522	  

simply equal to nb [e.g., 97, p292]. On average in M10 and M11 the number of building 523	  

episodes is a multiplication of the rate at which they occur and the time that has elapsed, 524	  

namely 𝑛b = 0.5𝜆𝑡, which is illustrated in Fig. 4b. The factor of 0.5 arises because two 525	  

switches (‘on’ and ‘off’) are needed for each growth period. 526	  

The distributions of Hf that are generated in these Poisson multi-event models [M10 and 527	  

M11] can be deduced by taking 𝑡N as a Gamma distributed random variable, using growth 528	  

𝑓!f(ℎf) =
𝜆
𝑘
𝑒!!(

!f!!i
! ), ℎf > 𝐻i	  
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rates in equations Eq. 13 and Eq. 14, and as in previous sections then using transformations of 529	  

random variables (i.e., Eq. 29). M10 has constant growth (Eq. 13), we term it the ‘waiting 530	  

time’ (WT) model, and a Gamma distribution of heights results. This is not so for exponential 531	  

growth (Eq. 14) upon which model M11 is based, which produces size distributions that are 532	  

neither log-normal or Gamma.  533	  

The parameters of the WT [M10] model (i.e., λ, k, and t) may be constrained from the rate 534	  

(β) and shape (α) parameters of the final height distributions (Hf). They are related as in Eq. 535	  

25 and Eq. 26. Observed values are denoted βobs and αobs, are readily estimated (e.g., figure 1 536	  

of [19]), and are predicted to be constant and increase linearly with time respectively. 537	  

Eq. 25 538	  

 539	  

Eq. 26 540	  

It is possible to make predictions about the size differences (e.g., ∆𝐻) expected across a 541	  

time window (i.e., at t1 and t2). First, all bedforms that have changed should have grown, and 542	  

a fraction should not have changed if the number of building events (nb=α) is small. 543	  

Secondly, growth should be at a constant rate and ∆𝐻 should not correlate strongly with H 544	  

(Eq. 1). Thirdly, the ‘memoryless’ nature of the Poisson process dictates that ∆𝐻 should be a 545	  

Gamma distribution. Furthermore, since the time difference is known, the rate constant of 546	  

bedform growth (λ) could then be estimated uniquely through the two observations of α (i.e., 547	  

∆𝛼obs = 𝛼! − 𝛼! = 0.5𝜆∆𝑡). Then, growth rate (k) could be calculated through either 548	  

observation of β (see Table 2).  549	  

6. Results 550	  

The right hand column of Table 1 lists which models produce size-frequency distributions 551	  

that have been argued to reasonably approximate mapped observations (i.e., log-552	  

normal[22,35,36], gamma, or exponential above mode[19]). Fig. 1 shows a direct comparison, 553	  

illustrating how well each of these three alternatives fit the data: solid line is an exponential 554	  

𝛽 = 𝜆/𝑘	  

𝛼 = 𝑛b = 0.5𝜆(𝑡f − 𝑡i)	  
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distribution, generated by model M8; dashed line is a log-normal distribution generated by 555	  

M7, the Stochastic Instability (SI) model; dotted line is a gamma distribution generated by 556	  

M10 the Waiting Time (WT) model.  Other models, however, can fit. By invoking substantial 557	  

ad hoc assumptions (see Appendix A), some models that do not involve stochasticity in 558	  

growth through time [M3a, M4a, M5a] can also replicate size-frequency observations. Fig. 2, 559	  

and Figs 8 to 10 in Appendix A, also show some of the shapes generated by the other models. 560	  

It is important to note that fitting statistical distributions as in Fig. 1 in itself leads to 561	  

parameters (e.g., µ and ρ, or φ and λ) that are only descriptive empirical quantities; it is the 562	  

statistical bedform growth models that relate the parameters to key aspects of the physical 563	  

process: antecedent topography, growth rate (e.g., exponential), and the timing of growth.  564	  

7. Discussion 565	  

To gain additional insight into the plausibility of conceptual models of the growth of 566	  

subglacial bedforms, this paper takes well-established statistical behaviours (e.g., types of 567	  

temporal randomness) and integrates them with plausible growth rate behaviours [e.g., 20] to 568	  

explore which combine to produce reasonable approximations of the observed size-frequency 569	  

distribution of subglacial bedforms (i.e., exponential, Gamma, or log-normal [e.g., 19,22]). 570	  

Exactly as any model (e.g., numerical ice sheet models) these contain approximations and 571	  

assumptions, but are constructed to capture key aspects of the physical processes in order that 572	  

these might be evaluated by comparing modelled outputs to observations. In 7.1, the statistical 573	  

models [M1-M11] are evaluated in terms of their ability to explain i) the size-frequency 574	  

observations whilst invoking the least number of ad hoc or arbitrary assumptions, ii) their 575	  

internal consistency, and iii) their ability to explain all other relevant observations (e.g., 576	  

geophysics). The implications of the favoured model are then discussed (section 7.2), 577	  

followed by some suggestions for future work (section 7.3). 578	  

7.1 Evaluation of the models 579	  
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The simplest models created [M1-5] do not involve stochasticity in growth through time. 580	  

For any of these (see Table 1) to replicate size-frequency observations (Fig. 1) they require 581	  

substantial ad hoc assumptions or special pleading, discussed in Appendix A.   This we 582	  

interpret as making these models, as constructed, less plausible and giving some weight to the 583	  

view that neither ‘classic’ deterministic growth nor antecedent bedform-scale topography are 584	  

sufficient to explain bedform sizes. It should be noted, however, that the failure of one 585	  

particular modelling realisation of an envisaged process rarely excludes that process.  586	  

Models M6 to M11 follow up on the conceptual model of [19] in that they are based on 587	  

variations in growth through time. Constructions M6 and M9 do not match the size-frequency 588	  

observations (Table 1) and they can be ruled out. M8 can reproduce the exponential tail, but 589	  

to allow it to fit the data fully it must either invoke selective post-formational degradation or 590	  

an argument that observational data have missed most small bedforms in order to create the 591	  

roll-over. This is debatable; first, even the ~25% recovery rate affecting small drumlins is 592	  

insufficient to wholly explain the roll-over in the UK data [31,102], and second the very many 593	  

small forms expected of an exponential distribution are mapped in high-resolution data of 594	  

neither previously glaciated [e.g., 103] nor recently uncovered [40] drumlin fields. In contrast 595	  

to M8, both types of temporal randomness, when combined with appropriate growth rates into 596	  

the SI and WT models (i.e., in M7 and M10, but not M6 or M11), fit the widespread palaeo-597	  

bedform size data. Neither Poission nor Brownian Motion randomness in growth have yet 598	  

been specifically identified under active ice, but they have been observed commonly in 599	  

natural processes including bedform evolution [25–28,30,57,80,92,96], and so are supported 600	  

by analogy. This, we argue, makes their introduction significantly less ad hoc than the 601	  

arbitrary assumption of convenient statistical distributions in M3a to M5a. Note, for instance, 602	  

that the temporal variation that distributes tN in the SI model [M7] intrinsically creates the 603	  

Gaussian distribution arbitrarily invoked by M5a.  604	  

Significantly, and in their favour, models M7 (‘stochastic instability’: SI) and M10 605	  

(‘waiting time’: WT) also explain other independent observations of bedforms without any 606	  
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further ad hoc additions. First, probabilistic growth decouples initial and final sizes, allowing 607	  

the intervening physical process to dominate the characteristics of the ultimate size-frequency 608	  

distribution; that is, illustratively, the randomness in growth shown in Fig. 7 dictates the size-609	  

distribution, not the initial size. This offers an explanation for the observation that drumlins 610	  

with their typical size-distribution can originate irrespective of differences in environment 611	  

(e.g., till/bedrock lithology) [42,43]. Secondly, the observed structure (e.g., internal 612	  

stratigraphy [e.g., 12,40]), the variety of composition [e.g., 42,43], and the substantial (e.g., 613	  

±50%) scatter in the sizes and elongations commonly seen for proximal palaeo-forms within a 614	  

flow-set  [e.g., 16,39,45,104], might be expected to result from randomness and fluctuations 615	  

in characteristics of the ice-sediment-water system in space and time. By their design, the WT 616	  

and SI models are also consistent with the geophysical, remotely sensed, and 617	  

sedimentological evidence for spatio-temporal variability in ice flow velocity and the bed 618	  

beneath ice sheets, which was outlined in sections 3.1 and 3.2. Thus, the widespread dataset 619	  

of palaeo-bedform sizes points towards a view where ice-water-sediment dynamics (i.e., 620	  

change through time) likely has a fundamentally random element that physics-based models 621	  

of bedform genesis could usefully incorporate; to date, some models have been seeded with 622	  

initial random height perturbations [48,79], but what if any temporal randomness to emerge 623	  

from this has not been explicitly examined.  Fowler et al. [22] demonstrated that a statistical 624	  

model can reconcile observations with the hypothesis of Hillier et al. [19], but the variety of 625	  

statistical models considered here allows us for the first time to distinguish process dynamics 626	  

(i.e., randomness through time) as the most plausible origin for the necessary variability out of 627	  

the main candidates.  628	  
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 629	  
Fig. 7 Evolution of bedforms including randomness through time. The evolution of 630	  

sizes of ten illustrative bedforms including randomness in their growth through time (grey 631	  
lines). These differ from a deterministic path (black line). For a sufficiently large number of 632	  
bedforms, the average properties (e.g., mean size) of a flow set closely approximate the 633	  
deterministic path. Bedforms are ‘born’, last pass a threshold minimum observable height 634	  
(e.g., 1 unit, dashed line), at different times. 635	  

 636	  

It is possible to argue that one type of bedform-scale dynamics is more likely, i.e., 637	  

differentiate between the SI [M7] and WT [M10] models.  First, by visual inspection the log-638	  

normal shape produced by the SI model arguably fits the size-frequency data than the gamma 639	  

distribution of the WT model, especially for L and W, and for small sizes (see Fig. 1). 640	  

Secondly, it allows bedforms to shrink as seems probable from the geophysical observations 641	  

[11,12], which the WT model does not. Thirdly, the SI and WT models may also be evaluated 642	  

through their internal consistency between observations for the three dimensions H, W, and L.  643	  

Taking the simplest assumption that all dimensions change size together (i.e., t and p are the 644	  

same), Eq. 22 can be used to constrain relative growth rates (e.g., 𝑘!"#/𝑘!"#) for the 645	  

dimensions within the SI model (Eq. 27). Values for σ calculated for mapped UK drumlin 646	  

data given in Fig. 1 then indicate that increasing H is the primary mode in their genesis, 647	  

namely its growth rate constant is greatest (𝑘!"# > 𝑘!"# > 𝑘!"#). This is plausible. In 648	  

contrast, using Eq. 26, α values for the WT model [M10] imply a different number of growth 649	  

episodes for each dimension. This is less easily explicable. Thus, with these factors taken 650	  

together, we choose to favour the SI model over the WT model.   651	  

0

1

2

3

4

5
Si

ze

0.0 0.1 0.2
Time (arbitrary units)



HILLIER	  ET	  AL.	   	   STATISTICAL	  BEDFORM	  MODELS	  

	   28	  

 652	  

Eq. 27 653	  

 654	  

Alternatively, stochasticity in the ice-sediment-water system may differ from the Brownian 655	  

motion of our SI model, but with exponential growth still produce log-normal size-frequency 656	  

distributions because of the central limit theorem (CLT) [22]. Fowler et al. [22] interpret this 657	  

as favouring growth through discrete 'events' of constant size, but the CLT has other 658	  

interpretations [e.g., 105:p88,106:p266], so this is not necessarily required. For instance, if 659	  

growth of each bedform is governed by discrete ‘events’ of random size, selected from any 660	  

frequency distribution, the CLT predicts a log-normal distribution of sizes in a flow set. 661	  

Similarly, if bedforms grow by many growth periods of a random duration selected from any 662	  

frequency distribution, the CLT dictates that effective 𝑡N will be Gaussian as required.  663	  

However, even given this, the SI model is still likely to be a useful empirical approximation. 664	  

If the factors dictating bedform-scale randomness (e.g., supra-glacial lake drainage patterns) 665	  

relate to broader ice-sediment-water conditions then parameters fitted as for the SI model (i.e., 666	  

µ, σ) will still provide a useful statistical link between observations at the flow-set level and 667	  

theory such as in numerical ice flow models (e.g., by plotting spatial distributions).  668	  

7.2 Implications of the SI approximation 669	  

The SI model, if it is to be accepted as most likely, has a number of implications. Bedforms 670	  
are expected to change size randomly through time in a manner approximating Brownian 671	  

𝜎!
𝜎!

=
𝑘!"#
𝑘!"#

,        
𝜎!
𝜎!

=
𝑘!"#
𝑘!"#

,            
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𝜎!

=
𝑘!"#
𝑘!"#
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motion, growing on average exponentially (672	  

 673	  
Fig. 7).  The quantitative, observable corollaries of this are listed in Table 2. A number of 674	  

points, however, need some further explanation. 675	  

First, the SI model implies that it is not necessary to invoke a lower ‘physical threshold’ on 676	  

drumlin length or width [16] or an upper limit for H a quenching (a.k.a. ‘capping’) 677	  

mechanism to limit their upper ‘critical size’ [e.g., 20,77,78,107]. In the SI model very small 678	  

sizes are simply less likely and no lower threshold is needed. As an alternative explanation for 679	  

the absence of extremely large bedforms, the SI model and its simpler variant [i.e., 22] must 680	  

invoke growth that is ‘transient’, namely that it occurs within a time window of limited 681	  

duration. Simply, insufficient time has passed for very large forms to be created. Observations 682	  

of active bedforms do not yet indicate which means of limiting the largest sizes is most 683	  

plausible, but several mechanisms can be imagined that allow growth periods forming flow 684	  

sets to be of limited duration. In a steady-state view, meso-scale patches of bedforms could be 685	  

periodically flattened by conditions adverse to the existence of bedforms.  Alternatively, 686	  

favourable patches may only occur transiently [e.g., 39] or time-transgressively [e.g., 38] as 687	  

ice sheets melt and retreat. However, to explain bedform prevalence, these mechanisms must 688	  

commonly occur. Size-frequency observations give two tentative indications that a time 689	  

limitation (e.g., SI model) affects glacial bedforms rather than a physical cap in an 690	  

equilibrium model [e.g., 78]. The first indication is that fluvial bedforms measured at 691	  
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equilibrium with flow do not have a log-normal distribution, but one that peaks at larger sizes 692	  

[Fig. 6a of 26] as if sizes where tending to bunch below some fuzzy threshold. The second 693	  

indication is that if glacial bedforms were to grow and then to ‘freeze’ [78] at a sharp upper 694	  

limit a peak in frequencies would be expected, but this is not observed in Fig. 1c (i.e., at 34 695	  

m).  696	  

Secondly, assuming all dimensions change size together (i.e., t and p are the same), relative 697	  

growth rates estimated from UK observations (Fig. 1, Eq. 27) (i.e., 𝑘!"# > 𝑘!"#) indicate that 698	  

drumlins elongate as they grow [e.g., 16,31]. Note that no relationship between the 699	  

dimensions was placed into the SI model that might have prescribed this observation. Perhaps 700	  

they continue into mega-scale glacial lineations (MSGL) as part of a genetically-linked 701	  

bedform continuum [cf. 108,109], where H and W are in equilibrium restricted by stochastic 702	  

interactions with ice and neighbouring bedforms whilst elongation continues. 703	  

Thirdly, Fowler et al. [22] put forward an explanation to demonstrate that size observations 704	  

do not necessarily falsify the exponential growth hypothesised in the physically-based till 705	  

‘instability models’ of bedform genesis [e.g., 20]. Here, a variety of different explanations are 706	  

considered, and exponential growth still features in the one that is apparently most plausible. 707	  

Thus, through this comparison, the SI model strengthens the tentative observational support 708	  

for exponential bedform growth (i.e. by linear instability). On the other hand, from two-709	  

parameter fits to observed data collated in a small number of distributions (e.g., Fig. 1) it is 710	  

not possible to distinguish between existing linear instability mechanisms, namely till or heat-711	  

flux [e.g., 20,33]. Future work plotting the spatial distribution of parameters (µ, σ) of mapped 712	  

palaeo-bedforms against numerically modelled predictions of growth rate (k) for each 713	  

mechanism for a past ice sheet could, however, distinguish them. Other possible tests and 714	  

applications of the SI model are considered below.  715	  

7.3 Future Work: Testing and applying the SI model 716	  

The SI model [M7], if correct, suggests tentative analytical links between parameters fitted 717	  

to observed size-frequency distributions and ice sheet properties, such as ice velocity; the SI 718	  



HILLIER	  ET	  AL.	   	   STATISTICAL	  BEDFORM	  MODELS	  

	   31	  

model links size observations (µ, σ) to growth rate k (Eq. 21 and Eq. 22), which relates to 719	  

physical parameters [e.g., 33]. Eq. 52 of Fowler [110], for instance, related k to (𝐴𝑁/2𝜂)!/! 720	  

within which A is illustratively proportional to ice velocity. Similarly, Shoemaker [56] related 721	  

k to subglacial flood water velocity to a power !"! . Thus, predicted relationships (e.g., 𝑘 ∝ 𝑣) 722	  

can contribute to geomorphological debates such as the interpretation of L in terms of t or v 723	  

[e.g., 3]. Admittedly, the problem is under-constrained since there are three variables (p or 724	  

knet, kav, and t) and two observables (µ, σ). If, however, more can be learnt about one of these 725	  

through direct observation or experimentation (e.g., p) the other two (e.g., t or k) could be 726	  

determined remotely from a single morphometric analysis.  727	  

The SI model makes quantitative predictions that are distinctively different from the WT 728	  

model or deterministic ones, as detailed in Table 2. This makes it testable and falsifiable by 729	  

observations from modern subglacial environments. The predictions are, for example, testable 730	  

by repeating at t2 a past (i.e., at t1) geophysical survey under active ice [i.e., 13]. In addition, 731	  

plots of size-frequency parameters obtained for a number of observed flow sets are diagnostic 732	  

of different models (see Section 5); for instance, in the SI model 𝜇 ∝ 𝜎!, so plots of 𝜇 against 733	  

𝜎! will display linear trends if t varies whilst the other variables are held constant. Plotting 734	  

spatial variations in parameters could also be an additional constraint upon physics-based 735	  

models of bedform genesis. Illustratively, consider a numerical model used to estimate ice 736	  

flow in a past ice sheet [e.g., 111], a physics-based model of bedform genesis[e.g., 33], and a 737	  

hypothesised set of conditions (e.g., based on basal shear stress) for drumlin formation. Then, 738	  

the modelled ice-sheet conditions set t for flow-sets geomorphologically mapped for that ice 739	  

sheet, and in conjunction with the model of bedform genesis they also set a numerical 740	  

prediction for k. Furthermore, since t is constrained in the context of this test, k and p can be 741	  

determined for the mapped flow sets by using a statistical model (see above). Thus, through 742	  

the spatial distribution of k, a way exists to quantitatively compare models and observations. 743	  

Patterns in k could either be of absolute or relative values, and k and p may relate to properties 744	  

of ice flow (e.g., v) or postulated floods depending upon the drumlin formation model 745	  
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selected.  In particular, the ability or not to correctly predict the distribution and properties of 746	  

flow sets may help to further constrain which ice sheet models, or members of an ensemble of 747	  

potential realisations, is most valid. 748	  

Since we do not attempt to develop all possible models here, the wider point is that 749	  

statistical modelling provides a tool to develop and falsify conceptual models of bedform 750	  

growth. The same is true for other bedforms where measurement of key processes is 751	  

challenging (e.g., in-situ on barchan dunes) and where time-series of digital elevation models 752	  

are becoming available but statistical work is limited [e.g., 18]. With respect to fluvial 753	  

environments, developing our analytical work could create statistical distributions reflecting 754	  

underlying mechanics, improving upon existing distributions as descriptors [e.g., 26] and 755	  

allowing more to be extracted from field observations. 756	  

 757	  
6. Conclusions 758	  

The emergence and growth of subglacial bedforms is difficult to observe, significantly 759	  

limiting our ability to accurately parameterise basal processes beneath ice sheets. In this 760	  

paper, a novel approach has been taken, developing new probabilistic growth models and 761	  

comparing their predictions with observed distributions of palaeo-bedform sizes. The variety 762	  

of explanations both permits a number of models to be discounted and the relative plausibility 763	  

of the rest to be assessed for the first time. The ‘stochastic instability’ (SI) model, modified 764	  

from Fowler et al. [22] and extended to encompass bedforms shrinking, is argued to provide 765	  

the best fit to observations. Not only does it fit the size observations [22], but it appears to do 766	  

so with fewest ad hoc assumptions whilst being internally self-consistent between metrics 767	  

(e.g., height and width) and in accord with other observations (e.g., geophysical). Thus, our 768	  

analysis strengthens a view [19,22] where the ice-sediment-water dynamics and sediment flux 769	  

have significant elements of randomness in space and time (i.e., not continuous or monotonic) 770	  

and cause both erosion and deposition. This view is developed to explicitly argue that (i) 771	  

flow-related processes at the ice-bed interface rather than initial bedform-scale topography 772	  



HILLIER	  ET	  AL.	   	   STATISTICAL	  BEDFORM	  MODELS	  

	   33	  

govern bedform sizes and (ii) drumlins elongate with time. Furthermore, parameters of 773	  

mapped size-frequency distributions are explicitly linked with ones related to flow (i.e. ice 774	  

and water) for the first time, accompanied by an illustration of an avenue for how this may be 775	  

used to improve calibration of basal conditions in numerical ice sheet models and achieve a 776	  

better understanding of conditions at the base of ice sheets. Lastly, we demonstrate that it is 777	  

possible to provide testable, distinctive predictions that will allow models to be distinguished 778	  

using a hypothesised repeat geophysical survey of bedforms under active ice.  Note that none 779	  

of the work presented here precludes or conflicts with observations of structured spatial 780	  

patterning in the bedforms. 781	  

  782	  
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Appendix A: Preliminary exploration 783	  

Following the trajectory of work that developed stochastic sub-aerial landscape evolution 784	  

models to explain topography’s typical fractal statistics [112], this appendix formalises 785	  

statistically for the first time simple models representing the prevailing ‘classic’ view that 786	  

bedform growth through time is not random, which has not yet been undertaken for subglacial 787	  

bedforms. In these simpler models, elements of the potential spectrum of randomness within 788	  

the proposed meso-scale patches are, effectively, turned off.  789	  

The first models [M1-3] represent the more plausible realisations of the ‘classical’ view 790	  

where bedform growth through time is not random. M1 considers the simplest, entirely 791	  

deterministic, case. It is possible that the bedform-scale topography prior to bedform creation 792	  

is not planar, so models M2 and M3 include variability in initial bedform height. It has also 793	  

been proposed that bedforms are not ‘born’ at the same time [cf. 11,113], so models M4 and 794	  

M5 assess the possibility that each bedform could start to grow at a different time. The models 795	  

are described then evaluated. 796	  

A.1. Entirely deterministic growth [M1] 797	  

Model M1 considers multiple independent bedforms all of a single initial height (Hi) 798	  

growing according to any given deterministic mechanism; the ‘classical’ view that has yet to 799	  

be explicitly tested. The bedforms will all reach the same final height (Hf) as each other after 800	  

any time has elapsed (i.e., tf - ti), whatever their growth rate (Fig. 8). This model starts with a 801	  

Dirac delta function as the pdf (probability density function) of Hi and produces the same pdf 802	  

of Hf at a later instant in time tf, namely a single vertical spike on plots such as Fig. 2 or Fig. 803	  

8.  804	  
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 805	  
Fig. 8 Probability density functions (pdfs) for the simplest model [M1]. In this model 806	  

drumlins have a single initial height Hi, then grow deterministically through time. 807	  
 808	  

A.2. Variable initial topography [M2 and M3] 809	  

Models M2 and M3 are designed to give insight into whether or not the observed final size-frequency 810	  

distribution may simply arise as a result of an inherited distribution of initial sizes, without recourse to 811	  

stochastic behaviour during growth. These models are stochastic in the initial conditions only; that is, 812	  

the initial condition of Eq. 2 is modelled as a random variable following a prescribed pdf that reflects a 813	  

chosen initial size distribution. 814	  

Proto-bedforms of initial height Hi follow a uniform distribution, that is they are equally 815	  

distributed across a range of heights between a and b (Eq. 28), which is the width of the grey 816	  

boxes on Fig. 9, and grow deterministically.  817	  

 818	  

Eq. 28 819	  
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 821	  
Fig. 9 Pdfs for models with deterministic growth and variable initial topography a) 822	  

linear growth [M2] b) exponential growth [M3]. Initial H distribution Hi (grey, dashed line) 823	  
changes to the final one Hf (black outline) as time progresses. Dotted lines are an arbitrary 824	  
function. Cases shown are where smallest Hi is zero; a = 0. 825	  

 826	  

So defined, Hi is a random variable; thus, since Hf in Eq. 3 and Eq. 5 is a function of Hi, it 827	  

is also a random variable whose distribution can be determined. Determining the pdf of Hf 828	  

given the pdf of Hi is a relatively straightforward task. To this aim, the standard 829	  

transformation relationship	  830	  

 831	  

Eq. 29 832	  

relating random variables y and x is invoked assuming a relationship of the form 𝑦 = 𝑔(𝑥) 833	  

[e.g., Ch 5 of 93]. 834	  

If growth is linear with time (Eq. 1) [M2], the shape of the initial distribution is not altered 835	  

(Eq. 30) and it moves right as illustrated in Fig. 9a. So, if any non-trivial growth (e.g., 4 m) has 836	  

occurred, it is not possible to construct a pdf for Hi that still contains low amplitude bedforms; 837	  

for example, even the smallest initial height of 0 m would have grown to 4 m. For mapped size 838	  

data the mode (𝜙obs) would increase linearly with time, but the exponent of the right-hand tail 839	  

(λobs) [19] would stay constant.  840	  
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 841	  

Eq. 30	  842	  

 843	  

If growth is caused by linear instability [M3] (i.e., is exponential as in Eq. 4) then the 844	  

distribution elongates (Eq. 31, Fig. 9b) but does not alter the relative abundances of different 845	  

bedform sizes (e.g., 5th, 50th and 95th percentiles of H). Indeed, the pdf can be imagined as 846	  

being drawn on a sheet of elastic material so that, even if it is any arbitrary function (dotted 847	  

lines), it will be elongated but not otherwise distorted. Thus, to end up with an approximately 848	  

log-normal distribution as observed for bedforms (e.g., Fig. 1), a landscape must start with a 849	  

log-normal distribution; this ad hoc modification of M3 is denoted M3a. For mapped size data 850	  

M3a would have both 𝜙obs and 1/λobs increasing linearly proportional to each other and with 851	  

the duration of the bedform building episode, and this would happen along a trajectory set by 852	  

the shape of the initial distribution. 853	  

 854	  

Eq. 31 855	  

 856	  

A.3. Variable initiation times [M4 and M5] 857	  

Models M4 and M5 formalise the glaciological hypothesis in which bedforms are not 858	  

‘born’ at the same time and therefore, at any point in time, will have been growing for 859	  

different durations [11,113]. Proto-bedforms of an initial (constant) size Hi start growing at 860	  

times distributed according to a uniform distribution from an earliest time defined as c; i.e., a 861	  

constant number are created per unit time as the building of the flow set progresses. All 862	  

continue growing until a final, constant time (tf). The time at which bedforms’ growth starts, 863	  

ti, is now a random variable (Eq. 32) making final height (Hf) also a random variable since it 864	  

is a function of ti. The pdf of Hf can be determined similarly to the previous section by 865	  

resorting to the transformation relationship of Eq. 29.  866	  

𝑓!f(ℎf) = !
1

(𝑏 − 𝑎)𝑒!(!f!!i)
,              for  𝑎𝑒!(!f!!i) < ℎf < 𝑏𝑒!(!f!!i)

0,                      elsewhere  
  	  

	  

𝑓!f(ℎf) = !
1

𝑏 − 𝑎 ,              for  𝑎 + 𝑘(𝑡f − 𝑡i) < ℎf < 𝑏 + 𝑘(𝑡f − 𝑡i)

0,                                                                                                                  elsewhere  
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 867	  

Eq. 32 868	  

	  869	  

	  870	  

If growth is linear with time (Eq. 1) [M4], then a uniform distribution of final heights is 871	  

produced (  872	  
Fig. 10a, Eq. 33). In general, ad hoc manipulation of the form of the pdf of ti will be 873	  

directly reflected in the output form of Hf. A linearly increasing production rate (number per 874	  

unit time), for instance, would produce a linearly decreasing frequency with increasing Hf 875	  

because the larger number of recently produced forms have not yet had time to grow. Thus, an 876	  

approximately Gamma distribution (e.g., Fig. 1), for instance, could be created by a 877	  

production rate that started slowly, built approximately exponentially to a peak and then died 878	  

rapidly before tf; this variant is denoted M4a. If interrupted at any point before the distribution 879	  

was fully formed, the distribution would have its left side missing as this part would not yet 880	  

have been created. In terms of mapped size data, 𝜙obs would remain at ~0 until the roll-over 881	  
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was created, and 1/λobs would remain constant if the right hand tail were well-approximated 882	  

by an exponential distribution. 883	  

 884	  
Fig. 10 Pdfs for models with deterministic growth where bedforms have constant 885	  

initial heights, but a uniform distribution of initiation times (i.e., initiation rate is 886	  
constant through time) a) linear growth [M4] b) exponential growth [M5]. Initial 887	  
distribution (grey, dashed line) changes to the final one (black outline). 888	  

 889	  

 890	  

Eq. 33 891	  

 892	  

 893	  
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If growth is exponential (Eq. 4) [M5], the frequency of remnant forms is not exponential, 894	  
but is inversely proportional to final height (Eq. 34, 895	  

 896	  
Fig. 10). This is verifiable intuitively since frequency in any height band is less the faster 897	  

bedforms pass through it; specifically, bedform frequency is inversely proportional to their 898	  

growth rate (i.e., 1 𝑘𝐻, Eq. 4).  In order to replicate an approximately log-normal distribution 899	  

of Hf (e.g., Fig. 1) with exponential growth, ti must have a roughly Gaussian (i.e., normal) 900	  

distribution [M5a]; a log-normal distribution is defined as that of a random variable whose 901	  

logarithm is normally distributed, and Eq. 4 can be written to give the logarithm of Hf as 902	  

log(𝐻!) = log(𝐻!)+ 𝑘 𝑡i − 𝑐   where everything on the right hand side is constant here except 903	  

ti which is  a normal distribution. This can be verified by appropriate transformations of the 904	  

random variables [e.g., Ch 5 of 93].  Giving ti a normal distribution would, strictly, allow it to 905	  

take values from −∞ to +∞, and so to apply to a period of bedform creation ranging between c 906	  

and tf only ad hoc Gaussians with small values outside this range could be employed.  For 907	  

mapped size data M5a predicts that 1/λobs would increase linearly with time along a 908	  

trajectory set by the shape of the initial distribution, and 𝜙obs would remain at ~0 until the 909	  

roll-over was created, then increase exponentially. Note that the SI model [M7] gives a 910	  
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mechanistic explanation for a Gaussian distribution of net growth durations rather than an ad 911	  

hoc assumption of this in M5a. 912	  

 913	  

Eq. 34 914	  

 915	  

 916	  

A.4. Evaluation of models M1 to M5 917	  

With no randomness or variation [M1], the observations cannot be replicated. That is, no 918	  

sharply spiked peaks are observed in size frequency distributions (Fig. 1), casting serious 919	  

doubt upon an entirely deterministic model. Thus, M1 is rejected. M2 and M3 are based on 920	  

variations in initial bedform sizes, Hi. Linear deterministic growth with uniformly distributed 921	  

initial heights [M2] does not retain the small forms that are observed. Indeed, as explained 922	  

above, there is no distribution of initial heights that can do so. Similarly, linearly unstable (i.e. 923	  

exponential) deterministic growth  [M3] does not intrinsically create an appropriate, 924	  

exponentially tailed, size-frequency distribution. A progenitor landscape with log-normal Hi 925	  

must be invoked to give the required log-normal Hf [M3a], but this ad hoc modification is 926	  

somewhat questionable in a world where fractals (i.e., power-law distributions) dominate 927	  

topography [e.g., 114]; even when suggesting that earlier progenitor log-normally sized forms 928	  

may exist to be altered, the first set needs explaining. Thus, we provide the first observational 929	  

constraint to indicate that something more appears to be needed than the ‘classic’ 930	  

deterministic view of bedform growth and more obvious variants represented by models M1 931	  

to M3.  932	  

M4 and M5 are based on variations in growth initiation times, ti. Linear deterministic 933	  

growth with a uniform distribution of initiation times [M4] does not match the size-frequency 934	  

distribution. Ad hoc manipulation [M4a] is therefore needed. However, M4a invokes, without 935	  

supporting evidence or analogy, a ‘reflected’ log-normal distribution of frequency that starts 936	  

slowly, builds approximately exponentially to a peak, and dies rapidly before tf.  Exponential 937	  

𝑓!f(ℎf) = !
1

ℎf𝐻i𝑒!(!f!!)
,              for  𝐻i < ℎf < 𝐻i𝑒!(!f!!)

0,                      elsewhere  
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growth, as illustrated by a uniform distribution of initiation times [M5], does not intrinsically 938	  

lead to an approximately Gamma or log-Normal distribution of bedform sizes that is 939	  

observed. A Gaussian distribution (i.e., ti ∼ N(µ,σ)) would explain the observations [M5a], but 940	  

it must be arbitrarily invoked. Thus, if bedforms are ‘born’ at different times [see 11,113], it is 941	  

demonstrated that a very specific pattern of ‘births’ is needed. Arguably, it would be 942	  

preferable to have some process-related explanation for the required distribution of their 943	  

initiation times. 944	  

 945	  

Appendix B: Parameter estimation 946	  

Descriptions of the calculation of the exponent (λ) above a mode (φ) and parameters of a 947	  

gamma distribution (αobs, βobs) are given in Hillier et al. [19], which explicitly includes how 948	  

counts from previously published size-frequency plots can be utilized. Fowler et al. [22] 949	  

relays the standard formulae for a log-normal distribution where individual data are available 950	  

(µobs, σobs), and how this may be done for digitisations of previously published size-frequency 951	  

plots is given below.  Worked examples for all parameters and all the data sets used in this 952	  

paper are provided in EXCEL sheets as Supporting Information. 953	  

Maximum likelihood estimation of log-normal distribution parameters (µ, σ) using binned 954	  

data, such as that digitised in Fig. 1, adapts standard formulae used to calculate µ and σ for 955	  

individual data in various areas of research [e.g., 22,115,116]. The mean, 𝑥, and standard 956	  

deviation, 𝑠!, of the sample are calculated to estimate µ and σ, respectively, using equations 957	  

35 and 36. n is the total number of data with counts, 𝑐!, of bins at 𝑥!. 958	  

 959	  

Eq. 35 960	  

 961	  

Eq. 36   962	  

�̂� = �̅� =
1
𝑛
! 𝑐!ln(𝑥!) 

	  

𝜎! = 𝑠! = ! 1
𝑛 − 1

! 𝑐!!𝑙𝑛(𝑥!) − 𝑙𝑛  (𝑥)!!!!!!!!!! 
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 963	  

Table of Notation 964	  

 965	  

Symbol Quantity Units 
i, f Initial and final, e.g., referring to H or t. n/a 
H, W, L Height, width and length. Strictly, H is bedform 

amplitude. 
m 

t Time; t1 and t2 are earlier and later times respectively s 
𝑡! Net time spent growing s 
𝑡g, 𝑡s Time growing, shrinking s 
a, b, c Constants m, m, s 
α, β Parameters of the Gamma distribution – WT model 

[M10]; αobs, βobs are values of metrics estimated from 
observed size-frequency data.  

no units, s-1 

µ, σ Parameters of the log-normal distribution – SI model 
[M7]; µobs, σobs are values of metrics estimated from 
observed size-frequency data. 

no units 

λ Rate parameter for Poisson processes. s-1 

λobs, φobs Exponent and mode of size-frequency data, as 
approximated in Hillier et al. (2013). 

m-1, m 

k Growth rate constant ms-1 or s-1 

n Number of bedform observations. no units 
𝑘g, 𝑘s Growth rates of growth and shrinking, when 

differentiated; see text for relation to 𝑘av, 𝑘net. 
s-1 

nb Number of growth episodes – WT model [M10]. no units 
j Number of bedforms in a patch no units 
p Probability of growth no units 
𝜉 Statistical drift – SI model [M7]  
v Ice velocity ms-1 
τ Basal shear stress Nm-2 
 966	  
  967	  

968	  
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