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Abstract To obtain more precise parton distribution func-
tions (PDFs) it is important to include data on inclusive high
transverse energy jet production in the global parton analy-
ses. These data have high statistics and the NNLO terms in
the perturbative QCD (pQCD) description are now available.
Our aim is to reduce the uncertainty in the comparison of the
jet data with pQCD. To ensure the best convergence of the
pQCD series it is important to choose the appropriate fac-
torization scales, μF. We show that it is possible to absorb
and resum in the incoming PDFs and fragmentation function
(D) an essential part of the higher αs-order corrections by
determining the ‘optimal’ values of μF. We emphasize that it
is necessary to optimize different factorization scales for the
various factors in the cross section: indeed, both of the PDFs,
and also the fragmentation function, have their own optimal
scale. We show how the values of these scales can be calcu-
lated for the LO (NLO) part of the pQCD prediction of the
cross section based on the theoretically known NLO (NNLO)
corrections. After these scales are fixed at their optimal val-
ues, the residual factorization scale dependence is much
reduced.

1 Introduction

With the availability of the complete QCD formulation of
jet production to NNLO [1] we are entering the precision
era for extracting parton distribution functions (PDFs) from
including these data [2,3] in the global PDF analyses. How-
ever, we have to address the problem of the optimal choice of
factorization scales. Here there are two problems. The first
concerns the definition of a jet. In particular, the vector sum,
pTjet, of the transverse momenta of particles measured inside
a jet cone �R is not equal to the transverse momentum pT

of the parton. In fact, for large �R we may have pTjet > pT
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when two large pT partons occur in the jet cone, while for
small �R we have pTjet < pT since, due to final parton show-
ering, part of the energy is emitted outside the jet cone. The
second problem is how to choose the factorization scales for
the production of multi-particle systems which minimize the
next fixed-order perturbative QCD (pQCD) correction to this
process.

2 The origin of factorization scales

From a formal point of view, factorization scales are unphys-
ical quantities. The final result should not depend on their
choice. They are introduced into pQCD just for convenience
to separate the part of the cross section described by the hard
matrix element for the partonic subprocess of interest from
the part that can be described by PDFs or fragmentation func-
tions which are universal and do not depend on the particular
subprocess. Depending on the choice of factorization scales,
a larger or smaller part of a fixed-order contribution is placed
in the matrix element. As a rule, it is advantageous to move
a major part of the higher-order corrections into the univer-
sal PDFs and to minimize the remaining contribution in the
matrix element.

2.1 An example

It is useful to illustrate the procedure in terms of a simple
example. Therefore before discussing jet production, let us
first consider open bb̄ production [4].

The cross section for open bb̄ production at LO + NLO
calculated with factorization scale μf may be expressed in
the form1

1 For ease of understanding we omit the parton labels a = g, q on the
quantities in (1) and the following equations. The matrix form of the
equations is implied.
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σ (0)(μf) + σ (1)(μf)

= α2
s [PDF(μf) ⊗ C (0) ⊗ PDF(μf)

+ PDF(μf) ⊗ αsC
(1)(μf) ⊗ PDF(μf)], (1)

where the coefficient function C (0) does not depend on the
factorization scale, while the μf dependence of the NLO
coefficient function arises since we have to subtract from the
NLO diagrams the part already generated by LO evolution.

We are free to evaluate the LO contribution at a different
scale μF, since the resulting effect can be compensated by
changes in the NLO coefficient function, which then also
becomes dependent on μF. In this way Eq. (1) becomes

σ (0)(μf) + σ (1)(μf)

= α2
s [PDF(μF) ⊗ C (0) ⊗ PDF(μF)

+PDF(μf) ⊗ αsC
(1)
rem(μF) ⊗ PDF(μf)]. (2)

Here the first αs correction C (1)
rem(μF) ≡ C (1)(μf = μF) is

now calculated at the scale μF used for the LO term, and
not at the scale μf corresponding to the cross section on
the left-hand side of the formula. Since it is the correction
which remains after the factorization scale in the LO part
is fixed, we denote it by C (1)

rem(μF). Note that, although the
first and second terms on the right-hand side depend on μF,
their sum, however, does not (to O(α4

s )), and it is equal to
the full LO+NLO cross section calculated at the factorization
scale μf .

Originally the NLO coefficient functions C (1) are calcu-
lated from Feynman diagrams which are independent of the
factorization scale. How does the μF dependence of C (1)

rem

in (2) actually arise? It occurs because we must subtract from
C (1) the αs term which was already included in the LO contri-
bution. Since the LO contribution was calculated up to some
scale μF the value ofC (1) after the subtraction depends on the
value μF chosen for the LO component. The change of scale
of the LO contribution from μf to μF also means we have had
to change the factorization scale which enters the coefficient
function C (1) from μf to μF. Moreover, we are allowed to
use different scales μf = μ− and μf = μ+ for the left and
right PDFs respectively. The effect of these scale changes is
driven by the LO DGLAP evolution, which is given by

σ (0)(μF)=α2
s PDF(μ−)

⊗
(
C (0) + αs

2π

[
ln

(
μ2

F

μ2−

)
Pleft ⊗ C (0)

+ ln

(
μ2

F

μ2+

)
C (0) ⊗ Pright

])
⊗ PDF(μ+), (3)

where Pleft and Pright denote the DGLAP splitting functions
acting on the PDFs to the left and right, respectively. That
is, by choosing to evaluate σ (0) at scale μF we have moved
the part of the NLO (i.e. αs) correction given by the O(α3

s )

terms of (3) from the NLO to the LO part of the cross sec-
tion. In this way C (1) becomes the remaining μF-dependent
coefficient function C (1)

rem(μF) of (2). The idea for open bb̄
production at low x was to choose a scale μF = μ0 such
that the remaining NLO term does not contain the important
double-logarithmic αsln(μF)ln(1/x) contribution; in fact all
the (αsln(μF)ln(1/x))n are resummed in the PDFs.

In this low x limit, we may neglect the O(x) power cor-
rections and the situation becomes left-right symmetric. Thus
we have μ+ = μ− = μF. However, in general, and in partic-
ular for high-pT forward jet production, the behaviour of the
‘left’ and ‘right’ PDFs are quite different. For example, one
incoming parton may be mainly a gluon and the other may
be a valence quark. That is why we reserve the possibility to
have μ+ �= μ− in (3).

Although the discussion of open bb̄ production has been
carried out to NLO, it is possible to extend this procedure to
higher orders; see for example Eq. (6) of Ref. [4].

2.2 Physical understanding of the example

In principle we may choose arbitrary factorization scales μ−
and μ+ for the incoming PDFs in (3), accounting for the
remaining contribution in the NLO matrix element (coeffi-
cient function). Recall, however, that the logarithmic integra-
tion

∫
dlnk2 over the incoming parton virtuality k2, hidden

in the DGLAP evolution of the PDFs, does not extend up to
infinity. It is limited by the exact form of theoff-shell (k2

T �= 0)

LO matrix element MLO(k2), which ensures that the inte-
gral is convergent. The best choice of the factorization scales
μ± is such that the value of the logarithmic DGLAP integral
up to μ± is equal to the value of the respective convergent
integral∫ ∞

Q2
0

dk2

k2 |MLO(k2)|2

=
∫ μ2±

Q2
0

dk2

k2 |MLO(k2 = 0)|2 = |MLO(k2 = 0)|2 ln
μ2±
Q2

0

.

(4)

It means that we have moved to the LO PDF all the part of
the NLO correction which has the same structure as that of
the DGLAP evolution. This choice of scale is the best that
we can do. Of course, there are completely different NLO
contributions which cannot be reproduced by the evolution.
For instance we cannot move the NLO vertex correction to
the LO PDF as it will not be reproduced by the evolution.

In order to calculate the value of the scales μ± we need to
know the k2 dependence of the off-shell hard matrix element,
MLO(k2). Formally, it would appear to be best to calculate
M(k2) with one incoming parton off-shell. However, such
a quantity is not gauge invariant. An alternative possibility
is to use the axial gauge which provides a factorized lad-
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der structure of PDF evolution which generates this off-shell
incoming parton. Another possibility is to consider the NLO
subprocess where this parton is produced by a new on-mass-
shell parton. For open bb̄ production from incoming gluons,
we may consider the NLO qg → qbb̄ subprocess, where the
light quark produces the off-shell gluon.

3 Factorization scales for jet production

We now return to inclusive jet production. As seen from the
bb̄ example, the value of the optimal scale, which minimizes
the size of the next αs correction, is driven by the proper-
ties of the previous order αs matrix element. We see from
Eq. (3) that we may choose the scales2 of the LO contri-
bution which provides the most precise LO description of
the process; that is, which have the smallest NLO correc-
tion. In NNLO jet production the aim is to choose scales
which provide the best accuracy of the NLO result. That is
we choose scales which move the largest possible part of the
NNLO correction into the PDFs and fragmentation function.
These corrections (including higher-order αs contributions)
will then be resummed via DGLAP evolution.

3.1 Three scales

For jet production we have to account for the final parton
showering. That is, we have to introduce a fragmentation
function D(z, μD). Again, in general, the factorization scale
μD may be chosen to be different to the other scales. More-
over, we can use different values of μD at each αs order; each
time making the corresponding subtraction in the higher-
order terms, which will now depend on the values of μD.
Thus, in addition to the scales μ±, we have a third scale μD

such that the symbolic structure of the jet cross section is

σjet = PDF(μ−) ⊗ |M(μ−, μ+, μD)|2
⊗ PDF(μ+) ⊗ D(z, μD). (5)

These three scales at LO (and another three at NLO) should
be chosen to minimize the NLO (or NNLO) correction.

Formally, at fixed αs order, the variation of each scale
does not change the result. The advantage of choosing opti-
mal scales is that part of the contribution (for example the
O(α3

s ) term in (3)) is then placed in the PDF where it will be
resummed by DGLAP evolution. In this way we account for
an important part of the higher-order contributions.

The three different scales provide the correct resummation
in each PDF and in the D-function. Furthermore, this allows a
better identification of the jet, and to reduce the probability of

2 For low x bb̄ production we actually have only one scale μ+ = μ− =
μ0. It was found [4] that μ0 � 0.85

√
p2

T + m2
b.

catching two different partons in the same jet cone. To achieve
the latter objective it is better to work with a small jet cone
size, �R. On the other hand, this means that jet fragmentation
should be described by a lower scale μD ∼ pT �R, where
pT is the jet transverse momentum. Simultaneously a rea-
sonable scale in the PDFs is of the order of pT. For example,
for the Mercedes-like 3-jet configuration, corresponding to
point-like production, the optimum expected scale is ∼ MX,
where MX is the mass of the whole jet system (in analogy
to the choice of scale for Z boson production). For back-to-
back kinematics it is more natural to expect a scale ∼ pT.
Moreover, for forward jet production in the ‘left’ direction
we do not have enough phase space for the evolution of the
PDF(μ−). Therefore we expect that a smaller value of μ−
will provide a better description of the process. That is, the
final hierarchy of scales μD < μ− < μ+ should provide the
most convergent pQCD series. In particular it looks reason-
able to have μD ∼ pT �R, μ− ∼ 0.5 pT but decreasing for
more forward jets and μ+ ∼ pT but increasing as the jet is
more forward.

3.2 Optimal choice of three scales at NLO

Let us investigate this hierarchy in more detail, following
the argumentation that led to (4). For simplicity, we work
at NLO, though the procedure extends straightforwardly to
NNLO and higher orders.

Formally to calculate the optimal scales μ+, μ−, μD

we have to consider the hard matrix element with off-mass-
shell partons, and study its dependence on the virtuality of
the incoming partons and outgoing jets. Another possibility
would be to consider the known next-order αs correction.
The corresponding formulae already include the respective
dependences on the internal parton virtualities; that is, the
NLO cross section accounts for the virtuality dependence
of the LO matrix element. The question is what is the best
way to extract the contribution corresponding to the virtuality
dependence of each individual parton from the full NLO cross
section?

Recall that the DGLAP evolution is written in terms of
collinear factorization. Therefore it is most convenient to
order the contributions in terms of angles.

To obtain the best LO description we consider the 2→3
NLO subprocess. In the centre-of-mass frame of the jets we
first calculate the angles θi between the final parton with
the lowest pT and the other four partons participating in the
process.3 DGLAP evolution produces configurations which
are strongly ordered in angle. Therefore it is natural to assign
the contribution with the smallest angle θi to the evolution
of parton i . In other words we have taken the cross section

3 Note that θ is not the polar angle, but is the full angle between a pair
of jets.
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Fig. 1 A configuration of three jet production in which the jet with the
smallest transverse momentum pT aligns more closely with the incom-
ing proton in the ‘−’ direction. For this part of the cross section, σ−, the
NLO emissions can be resummed and transferred to the LO PDF(μ−)

with optimal scale μ−. Similarly, those parts of the cross section where
the smallest pT jet is aligned more closely with the incoming proton
‘+’ direction or with the largest pT jet D can be used to determine the
optimal scales μ+ and μD respectively

for the NLO 2→3 process and divided it into four parts σi
corresponding to the smallest θi ’s with i = +, −, D, 4.
In terms of (4), the factorization scale corresponding to the
evolution of parton i should be chosen to reproduce the value
of σi . Note that in our single jet inclusive cross section we do
not consider the fragmentation of the second highest pT jet,
i = 4. Therefore the part of the cross section with the soft jet
approximately collinear with jet 4 cannot be moved into the
DGLAP evolution by any choice of the factorization scales.

In summary, to determine the three scales for jet produc-
tion at NLO, we divide up the 2→3 cross section σ into four
parts, by measuring the angles to the smallest pT parton (jet),
see Fig. 1. To be more precise, we compute4

σNLO
j=+,−,D,4 = σ �i �= j �(θi − θ j ). (6)

Then we choose scales μ+, μ−, μD such that the LO cross
section calculated with these scales μ j reproduces the corre-
sponding part of σ2→3 (like (4)). To do this it is convenient
to start the calculation from some low dummy scale μ0. In
this way we obtain a set of three equations, each of the form

σNLO
j (μ0) = |MLO(k2 = 0)|2 ⊗ PDFi �= j (μ0)

⊗ Di �= j (μ0) ⊗ PDF j (μ0) ⊗ P real(z) ln
μ2

j

μ2
0

.

(7)

That is, we open the evolution of one of the PDF j ’s (or D)
according to (4). The NLO component of σ j describes the
part of the evolution from μ0 to μ j corresponding to the
last term in (4). Note that since we deal with the 2 → 3
subprocess we use only the component of the splitting func-
tion belonging to real emission. In this way the set of three

4 In the case when the angle θ4 with respect to jet 4 is smaller than
the jet cone size (�R > θ4) and the sum of the transverse momenta
|pT4 + pT5| > pTD we have to consider jet 4 as the largest pT jet D.

equations (7) determine the optimum values of μ j , with
j = +,−, D, for the respective j evolution. Since the loop
corrections in DGLAP evolution are directly connected with
the real emission component of the splitting function, in this
way we also account for an important part of the NLO loop
corrections. We explain how to avoid a possible soft gluon
singularity in the appendix.

To obtain more precise values of these μi we can perform
a few iterations replacing for i �= j the dummy starting scale
μ0 by μi from the previous iteration.

As is seen from the example given in (2), after the optimal
scales are fixed, the final μf scale dependence of the predic-
tions comes only from the variation of μf in the remaining
NLO part of the cross section. This provides a much better
factorization scale stability of the result. The same is true for
the more general case of (5).

A similar prescription may be applied to fix the scales
in the NLO part of the cross section. There we select
the NNLO contributions which are approximately collinear
with the incoming partons or to the highest pT jet in the
final state. These contributions can be moved and absorbed
in the NLO PDFs and fragmentation function convoluted
with the remaining NLO matrix element (see Eq. (6)
of [4]).

Note that after the optimal factorization scales are fixed
for the LO (NLO) part of the contribution, the dependence
of the cross section on the universal scale (like μf in (1) and
(2)) is considerably reduced, since it now comes only from
the last term in (2) where the remaining coefficient function
C (1)

rem is small, while for (1) both terms depend on μf .

3.3 Renormalization scale

This paper concerns only the factorization scale dependence
of the jet cross section. Besides this, the pQCD prediction
also depends on the renormalization scale, μR. Indeed, the
NLO and NNLO expressions for jet cross section contain
contributions up to O(α3

s (μR)) and O(α4
s (μR)) respectively.

Recall that the choice of optimal factorization scales will, in
general, reduce the higher αs-order contributions. Therefore
we may expect that the dependence of the pQCD prediction
on the renormalization scale, especially the part correspond-
ing to configurations with three (or four) outgoing partons,
will be reduced as well.

3.4 t t̄ production

It is important to also find the optimal factorization scales for
the t t̄ differential cross sections. This process is dominantly
driven by gg fusion and allows an independent constraint on
the large x gluon PDF. Again data exist (see, for example,
[5–10]) and the NNLO formulation is known [11].
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Exactly the same procedure can be used for the subpro-
cesses gg → t t̄ g and gg → t t̄ gg. One first has to study the
NLO 2→3 (NNLO 2→4) cross sections and to select the
contributions σ j with the outgoing gluons (quarks) approx-
imately collinear to the incoming gluons (quarks) j . These
parts can be moved and resummed in the incoming PDFs
at the previous αs order by choosing scales μ± given by an
equation analogous to (7). As a rule the t t̄ data are presented
in terms of the t quark. Therefore we have no problems with
the fragmentation function5 and only two scales μ± need to
be optimized.

4 The need for a Monte Carlo

Since the jet is not an object that can be directly observed
in a detector, it is usually defined as a group of secondaries
emitted in a cone of size �R. The precise inclusive jet cross
section depends on the particular jet searching algorithm. In
order to compare the experimental results with pQCD the
experimentalists have to use a Monte Carlo event generator
to account for the corrections caused by the detector effi-
ciency, by hadronization, by experimental cuts and the effect
of the underlying events. The problems are, first, that we have
no NNLO Monte Carlo. Next, the present Monte Carlos do
not have options to introduce different factorization scales
in the three different components in (5); that is, in the ‘left’
and ‘right’ PDFs and in the fragmentation function. There-
fore K factors, which reflect the ratio of NNLO/NLO (or
NNLO/LO) pQCD predictions, are used to correct the result
obtained from the NLO (or LO) Monte Carlo. Since the value
of the NNLO remaining correction depends on the choice of
factorization scale at the previous NLO (or LO) level, we
have two possibilities. Either to use the same unified scale as
in the Monte Carlo, or, to obtain better precision, to calcu-
late the NNLO+NLO+LO result using the different scales,
as proposed6 in Sect. 3, but in calculating the NLO (or LO)
denominator we still have to use the same universal scale as
in the Monte Carlo.

There is no reason to expect the K factor to be the same
for different kinematical configurations of the produced jets.
The higher αs-order corrections caused by the emission of
additional jets clearly depend on the phase space available
for one or another emission.

5 For example, in the t → bμν decay the momentum of the b quark jet
is close to that of the B meson due to the strong leading effect. Therefore
the effect of the resummation in the fragmentation function is minimal.
6 This will provide better accuracy in the numerator of the ratio.

5 Summary

We emphasize the pQCD prediction for the cross section for
inclusive high-pT jet production contains three different fac-
torization scales. The choice of these scales is an uncertainty
in the description of the jet data by pQCD. To improve conver-
gence of the pQCD series we have shown that three different
factorization scales may be used for the LO part (and an addi-
tional three in NLO term and so on). Two scales correspond
to the incoming PDFs and the third to the jet fragmentation
function, D. Indeed, all the factorization scale dependence
of the NLO (NNLO) matrix element (or coefficient function)
comes from the subtraction of the contribution included in the
PDF (or D) jet evolution. This subtraction is needed to avoid
double counting of NLO (NNLO) contribution. We fix the
factorization scale in each PDF (or D function) to minimize
the next αs contribution. Then the part of the contribution
transferred to the PDF (or D) is resummed to all αs orders
by the evolution. This provides a better pQCD description.
We have shown how to determine the optimal value of each
factorization scale at NLO (NNLO) based on the knowledge
of the NLO (NNLO) contribution and on the collinear nature
of DGLAP evolution. Having fixed the optimal scales in the
lower αs-order term, the dependence of the cross section on
the universal factorization scale μf is considerably reduced,
since it now comes from the much smaller remaining higher
αs-order term.

Besides maximizing the convergence of the pQCD series,
the introduction of different optimal scales also allows a bet-
ter jet identification, since the scale used for jet evolution is
causally connected with the jet cone size �R. This allows
the variation of �R without affecting the incoming PDFs.

Finally we note that the proposed procedure can also be
used to calculate the scales for inclusive t t̄ production. In this
case we need to optimize only two factorization scales.
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Appendix: Absence of infrared contributions

Here we explain why infrared contributions do not occur in
the evaluation of σNLO

j of Eq. (7). First note that by starting
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with a small, but non-zero, scale μ0 we automatically avoid
the infrared contribution coming from low parton virtuality,
k2. We are interested in the convergence of integral of (4) at
the upper limit and study only the region of k2 > μ2

0. The low
k2 < μ2

0 domain is regularized in the usual way (appropriate
for the NLO coefficient function and DGLAP evolution).

Another possible problem is the ‘soft’ singularity corre-
sponding to the emission of a very soft gluon. That is, to
the 1/(1 − z) term in the splitting kernel. Theoretically this
singularity is cancelled by the ‘self-energy’ loop contribution
and formally it is usually performed using the ‘plus’ prescrip-
tion.7 In this case we have to use the same ‘plus’ prescription
for the analytical calculations.

However, it is worth mentioning what happens if a Monte
Carlo (MC) were to be used to calculate the partial cross
sections σNLO

j of (7). Then we must deal with the 1/(1 − z)
singularity on right-hand side of (7) in exactly the same man-
ner as that used in the MC. As a rule, in a MC, a cutoff in
gluon transverse momenta, like pT > qcut, is implemented.
In such a case the z → 1 region corresponds to very high
virtuality (or scale) k2 = p2

T/(1 − z) and its contribution
will be suppressed (regularized) by the LO matrix element
|MLO(k2)|2 which decreases with k2. Anyway, just kine-
matically, we have the condition that the soft gluon energy
p0 > pT. This energy p0 ∝ (1 − z)Mj j decreases faster as
z → 1 than the values of pT >

√
(1 − z)μ0 for the process

with scale p2
T/(1−z) > μ2

0. Here Mj j is the dijet mass. This

7 That is, the integral
∫

dz f (z)/(1 − z) is replaced by
∫

dz( f (z) −
f (1))/(1 − z).

will introduce a natural cutoff (1 − z) > (μ0/Mj j )
2. That

is, actually in such MC calculations we will never face the
singularity. However, in order not to sample an additional
contribution from ‘soft’ gluon emission we must take care
to implement on the right-hand side of (7) exactly the same
‘soft cutoff’ as that used on the left-hand side.
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