
1

An Optimal Single-Path Routing Algorithm
in the Datacenter Network DPillar

Alejandro Erickson, Abbas E. Kiasari, Javier Navaridas and Iain A. Stewart

Abstract—DPillar has recently been proposed as a server-centric datacenter network and is combinatorially related to (but distinct

from) the well-known wrapped butterfly network. We explain the relationship between DPillar and the wrapped butterfly network before

proving that the underlying graph of DPillar is a Cayley graph; hence, the datacenter network DPillar is node-symmetric. We use this

symmetry property to establish a single-path routing algorithm for DPillar that computes a shortest path and has time complexity O(k),

where k parameterizes the dimension of DPillar (we refer to the number of ports in its switches as n). Our analysis also enables us to

calculate the diameter of DPillar exactly. Moreover, our algorithm is trivial to implement, being essentially a conditional clause of

numeric tests, and improves significantly upon a routing algorithm earlier employed for DPillar. Furthermore, we provide empirical data

in order to demonstrate this improvement. In particular, we empirically show that our routing algorithm improves the average length of

paths found, the aggregate bottleneck throughput, and the communication latency. A secondary, yet important, effect of our work is that

it emphasises that datacenter networks are amenable to a closer combinatorial scrutiny that can significantly improve their

computational efficiency and performance.

Index Terms—Datacenter networks, routing algorithms, shortest paths, symmetry.

✦

1 INTRODUCTION

Datacenters are assuming an increasingly important role
in the global computational infrastructure. They provide
platforms for a wide range of data-intensive applications
and activities including web search, social networking, on-
line gaming, large-scale scientific deployments and service-
oriented cloud computing. There is an increasing demand
that datacenters incorporate more and more servers, and do
so in a cost-effective fashion, but still so that the resulting
platform is computationally efficient (in various senses of
the term).

A datacenter network (DCN) comprises the physical com-
munication infrastructure underpinning a datacenter. One
of the main aspects of a datacenter network is the topology
by which the servers, switches and other components of
the datacenter are interconnected; the choice of topology
strongly influences the datacenter’s practical performance
(see, e.g., [19]). For simplicity, henceforth by DCN we refer
to the datacenter network topology. Originally, DCNs were
hierarchical with expensive core routers that became bottle-
necks in terms of both performance and cost. They evolved
into tree-like, switch-centric DCNs, built from commodity-
off-the-shelf (COTS) components; that is, so that the servers
are located at the ‘leaves’ of a tree-like structure that is
composed entirely of switches and where the routing in-
telligence resides within the switches. Such DCNs can offer
better load balancing capabilities and so are less prone to

• Abbas Kiasari and Javier Navaridas are with the School of Computer
Science, University of Manchester, Oxford Road, Manchester M13 9PL,
U.K.
E-mail: {abbas.kiasari,javier.navaridas}@manchester. ac.uk

• Alejandro Erickson and Iain Stewart are with the School of Engineering
and Computing Sciences, Durham University, South Road, Durham DH1
3LE, U.K.
E-mail: {alejandro.erickson,i.a.stewart}@durham.ac.uk

bottlenecks but have limited scalability due to (the size of)
routing tables within the switches. Typical examples of such
switch-centric DCNs are ElasticTree [14], Fat-Tree [5], VL2
[10], HyperX [3], Portland [20] and Flattened Butterfly [1].

Alternative architectures have recently emerged and
server-centric DCNs have been proposed whereby the in-
terconnection intelligence resides within the servers as
opposed to the switches. Now, switches only operate as
dumb crossbars (and consequently the need for high-end
switches is diminished as are the infrastructure costs). This
paradigm shift means that more scalable topologies can be
designed and the fact that routing resides within servers,
which are easier to program than are switches, means that
more effective routing algorithms can be adopted. However,
server-centric DCNs are not a panacea as packet latency
can increase, with the need to handle routing providing a
computational overhead on the server. Typical examples of
server-centric DCNs are DCell [12], BCube [13], FiConn [16],
CamCube [2], MCube [23], DPillar [18], HCN and BCN [11]
and SWCube, SWKautz, and SWdBruijn [17]. An additional
positive aspect of some server-centric DCNs is that not only
can commodity switches be used to build the datacenters
but commodity servers can too; the DCNs FiConn, MCube,
DPillar, HCN, BCN, SWCube, SWKautz, and SWdBruijn are
all such that any server only needs two NIC ports (the norm
in commodity servers) in order to incorporate it into the
DCN.

It is with the DCN DPillar that we are concerned here.
DPillar is an established and one of the most promising
benchmark dual-port server-centric DCNs. Moreover, DPil-
lar is one of the even fewer dual-port server-centric DCNs
for which no server-node is adjacent to any other server-
node, the others being SWKautz, SWCube, and SWdBruijn.
DPillar has recently been compared with other dual-port
server-centric DCNs [17]. It was shown that when the di-

2

ameter of the DCN is normalized, DPillar can incorporate
more servers than FiConn and BCN, a similar number of
servers to SWCube, and (usually) less servers than SWKautz
and SWdBruijn. However, DPillar, SWCube, SWKautz, and
SWdBruijn were shown to have similar bisection widths
and all have better bisection widths than FiConn and BCN.
Whilst SWCube, SWKautz, and SWdBruijn were compared
with each other in [17] with regard to aspects of routing
in relation to fault-tolerance and handling congestion, there
was no comparison of these three DCNs with DPillar. Such
an evaluation is currently missing and would obviously
be tied to a particular routing algorithm for DPillar, an
observation that we will return to in a moment.

As we shall see, DPillar is essentially obtained by re-
placing complete bipartite subgraphs Kn

2
,n
2

in a wrapped
butterfly network (see, e.g., [15]) with a switch with n ports.
In [18], basic properties of DPillar are demonstrated and
single-path and multi-path routing algorithms are devel-
oped (along with a forwarding methodology for the latter).
Our focus here is on single-path routing (also known as
single-source deterministic routing). The algorithm in [18]
is appealing in its simplicity but for most source-destination
pairs it does not produce a path of shortest length; indeed,
there is often a significant discrepancy between the lengths
of the path produced by the algorithm in [18] and a shortest
path (as we demonstrate later). We remedy this situation
and develop a single-path routing algorithm that always
outputs a shortest path. Although the proof of correctness of
our algorithm is non-trivial, the actual algorithm itself is a
very simple sequence of numeric tests and has the same time
complexity as the original single path routing algorithm, i.e.,
linear in the number of columns within DPillar.

Furthermore, we undertake an empirical evaluation and
show that according to our experiments, the original single
path routing algorithm for DPillar from [18] fails to provide
a shortest path route for more than 51% and up to 78% of
the server pairs; this translates into our algorithm giving an
improvement in the range of 20-30% in terms of the average
path length derived. Note that a reduction in path length
not only means that the latency of the network traffic will
be reduced (between 20 and 25%, in our experiments), but
also that as less resources are required for transmitting data,
the overall throughput of the network should also increase.
To verify this latter contention, we empirically measure the
aggregate bottleneck throughput (the most widely accepted
datacenter throughput metric) for both algorithms and we
find that our algorithm yields improvements in the range
of 25-120%, with a mean of 65% and a median of 75%.
The substantial improvements in average path length and
throughput, together with the algorithmic simplicity of our
proposal, more than motivates its utilization in production
systems. As by-products of the development of our algo-
rithm, we prove that the DCN DPillar is, in essence, a
Cayley graph, and thus node-symmetric (that is, there is
an automorphism mapping any server to any other server),
and we obtain the diameter of the DCN DPillar exactly.

Let us now return to our earlier remark as regards the
current lack of a comparison in the literature of DPillar
with SWCube, SWKautz, and SWdBruijn with respect to
aspects of routing in relation to fault-tolerance and handling
congestion. Were we to embark on this comparison prior

to the results of our paper then we would be doing a
disservice to DPillar as we would be working with the rout-
ing algorithm from [18] which we prove (and empirically
validate) here to be significantly worse in all respects than
the routing algorithm we develop in this paper. We intend
in future to undertake an extensive evaluation of aspects of
routing for dual-port server-centric DCNs including DPillar,
SWCube, SWKautz, and SWdBruijn but thanks to the results
of this paper, this will now be with respect to our improved
routing algorithm for DPillar (of course, such an evaluation
is beyond the scope of this paper).

In the next sections, we give an explicit definition of
the DCN DPillar, both algebraically and as a derivation
from wrapped butterfly networks, before showing how to
abstract DPillar as a directed graph and proving that the
resulting directed graph is a Cayley graph; an immediate
consequence is that the DCN DPillar is node-symmetric.
In Section 4, and using the newfound property of node-
symmetry, we explain how solving the single-path routing
problem in our abstraction of DPillar can be further ab-
stracted so that it is equivalent to a routing problem in what
we call a marked cycle, and in Section 5 we prove that short-
est paths in this marked cycle must have severe restrictions
on their structure. We use these restrictions to develop our
single-path routing algorithm for DPillar in Section 6 and
establish its correctness and its time complexity. To support
our theoretical analysis, we provide empirical evidence that
the length of the (shortest) path obtained by our single-path
routing algorithm is significantly shorter than the length of
the path obtained by the single-path routing algorithm from
[18] for many source-destination pairs, and we calculate the
diameter of DPillar explicitly. Our conclusions and direc-
tions for further research are given in Section 81.

2 THE DCN DPILLAR

In this section, we explicitly define the DCN DPillar and ex-
plain how the DCN DPillar can be (informally) constructed
from a wrapped butterfly network.

2.1 A definition of DPillar

The DCN DPillar [18] consists of a collection of switches,
each of which has n ports, with n ≥ 2 even, and a collection
of servers, each of which has 2 NIC ports. The names of
the servers are {(c, vk−1vk−2 . . . v0) : 0 ≤ c ≤ k − 1; 0 ≤
vi ≤ n

2
− 1; 0 ≤ i ≤ k − 1} where k ≥ 2 (we refer to k

as the dimension): the first parameter, c, is the column-index
and denotes the column in which the server resides, whilst
the second parameter vk−1vk−2 . . . v0 is the row-index and
denotes the server’s position within a column (from the left,
the bit positions are k− 1, k− 2, . . . , 0; note that we refer to
the values as ‘bits’ and their positions as ‘bit’ positions). We
denote the DCN DPillar with parameters n and k, as above,
by DPillarn,k. Consequently, DPillarn,k has k(n

2
)k servers.

1. Some results from this paper appeared in preliminary form in:
A. Erickson, A. Kiasari, J. Navaridas and I.A. Stewart, An efficient
shortest path routing algorithm in the data centre network DPillar, Proc.
of 9th Ann. Int. Conf. on Combinatorial Optimization and Applications, 2015,
pp. 209–220; some proofs and results were omitted and there was no
experimental evaluation.

3

We term the collections of servers ‘columns’ as we visu-
alize the servers within a column as being stacked vertically
within that column, with the row-indices of the servers,
from top to bottom, being given in increasing lexicographic
order on {0, 1, . . . , n

2
− 1}k; so, if n = 6 and k = 4, for

example, then the ordering is given by 0000 < 0001 <
0002 < 0010 < 0011 < 0012 < 0020 < . . . and so on.
There are (n

2
)k−1 switches located between column i and

column i+1, for i = 0, 1, . . . , k−2, and also between column
k − 1 and column 0; thus, there are k(n

2
)k−1 switches in

DPillarn,k. We think of the switches between two columns
of servers as appearing in a column too, with the names
of the switches in a column being {0, 1, . . . , n

2
− 1}k−1 and

again stacked from top to bottom in increasing lexicographic
order. If a switch lies between server-column c and server-
column c + 1, where c ∈ {0, 1, . . . , k − 1} and addition
is modulo k, then we say that its column is column c
(henceforth, we assume that addition and subtraction on
the names of columns are always modulo k). The columns
of servers and switches for DPillar6,3 can be visualized as in
Fig. 1 (note that the servers in the right-most and left-most
columns are identical but are shown separately to facilitate
visualization).

All links are server-switch links and are from a server
in (server-)column c to a switch in (switch-)column c
or from a server in (server-)column c + 1 to a switch
in (switch-)column c (where c ∈ {0, 1, . . . , k − 1}). Let
(c, vk−1vk−2 . . . v0) be a server in column c. The switch to
which it is connected in column c is the switch named
vk−1 . . . vc+1vc−1 . . . v0. If (c+1, vk−1vk−2 . . . v0) is a server
in column c + 1 then the switch to which it is connected
in column c is the switch named vk−1 . . . vc+1vc−1 . . . v0.
So, for example, the server (c, vk−1 . . . vc+1 ∗ vc−1 . . . v0),
where ∗ denotes that we may substitute in any num-
ber from {0, 1, . . . , n

2
− 1}, is connected to the switch

vk−1 . . . vc+1vc−1 . . . v0 in column c, which in turn is con-
nected to the server (c + 1, vk−1 . . . vc+1 ∗ vc−1 . . . v0). Sim-
ilarly, the server (c, vk−1 . . . vc ∗ vc−2 . . . v0) is connected to
the switch vk−1 . . . vcvc−2 . . . v0 in column c − 1, which in
turn is connected to the server (c−1, vk−1 . . . vc∗vc−2 . . . v0).
The server-switch links for DPillar6,3 can be visualized as in
Fig. 1.

An alternative informal definition of DPillarn,k can be
given. With reference to Fig. 1, we can replace every switch
with a complete bipartite graph Kn

2
,n
2

(the bipartition is the
obvious one). What results is the well-known wrapped butter-
fly network (see, e.g., [15]; this network has been well-studied
within the context of multiprocessor systems). The primary
difference between DPillarn,k and the resulting wrapped
butterfly network is that a switch in DPillarn,k enables direct
server-to-server communication between servers connected
to the same switch and in the same column, whereas such
communication is absent in the wrapped butterfly network.

2.2 Abstracting DPillar

We can abstract DPillarn,k as a digraph as follows: the nodes
of this graph are the servers of DPillarn,k; and there is an
edge from a source-node to a target-node if there is a link
from the corresponding source-server to a switch and a link
from that switch to the corresponding target-server (so, the

edges correspond to server-switch-server paths). There are
4 types of edges in the digraph abstracting DPillarn,k:

(i) clockwise edges (c-edges) which are edges of the form

((c, vk−1 . . . vc+1vcvc−1 . . . v0),

(c+ 1, vk−1 . . . vc+1 ∗ vc−1 . . . v0))

(ii) anti-clockwise edges (a-edges) which are edges of the
form

((c, vk−1 . . . vcvc−1vc−2 . . . v0),

(c− 1, vk−1 . . . vc ∗ vc−2 . . . v0))

(iii) basic static edges (b-edges) which are edges of the form

((c, vk−1 . . . vc+1vcvc−1 . . . v0),

(c, vk−1 . . . vc+1 ∗ vc−1 . . . v0))

(iv) decremented static edges (d-edges) which are edges of
the form

((c, vk−1 . . . vcvc−1vc−2 . . . v0),

(c, vk−1 . . . vc ∗ vc−2 . . . v0)).

So, within our abstraction of DPillarn,k as a digraph,
the nodes are the servers and are located in columns
0, 1, . . . , k − 1 (as before) with all edges joining nodes in
consecutive columns (clockwise and anticlockwise edges) or
nodes in the same column (static edges). In fact, our digraph
(where each node has in- and out-degree 2n − 2) can also
be thought of as an undirected graph (that is regular of
degree 2n−2) as all edges come in oppositely oriented pairs.
Note that the clockwise (resp. anti-clockwise, basic static,
decremented static) edge above corresponds to a server-
switch-server path in the DCN DPillarn,k from a column
c server through a column c (resp. c− 1, c, c− 1) switch and
on to a column c+1 (resp. c− 1, c, c) server. Henceforth, we
denote the digraph abstracting DPillarn,k by DPillarn,k too
(this causes no confusion). The abstraction of DPillar can be
visualized as in Fig. 1 where we show how the switch 00
in column 2 gives rise to a set of edges in the abstraction
of DPillar as a graph. We annotate edges as follows: an
edge annotated ‘a’ is an anti-clockwise edge relative to the
node (0, 000) (the arrow on the edge from (0, 000) denotes
that the label is with respect to (0, 000)); an edge annotated
‘b’ is a basic static edge relative to node (2, 000); an edge
annotated ‘c’ is a clockwise edge relative to node (2, 000);
and an edge annotated ‘d’ is a decremented static edge
relative to node (0, 000) (so, an edge has two labels: one
relative to one incident node; and another relative to the
other incident node). In short, for some node, the adjacent
switch ‘to the right’ gives rise to b-edges and c-edges, and
the one ‘to the left’ gives rise to a-edges and d-edges.

3 DPILLAR IS A CAYLEY GRAPH

In this section, we prove that the digraph DPillarn,k is a
Cayley graph, and consequently node-symmetric (we ex-
ploit this node-symmetry later on in our single-path routing
algorithm and in our experimental work). Recall that a
graph is a Cayley graph if the nodes can be labelled with the
elements of a (algebraic) group G and there is a generating
subset S ⊆ G that is closed under inverses so that every

4

000
001
002
010
011
012
020
021
022
100
101
102
110
111
112
120
121
122
200
201
202
210
211
212
220
221
222

00

01

02

10

11

12

20

21

22

0 0 1 1 2 2 0

column-index

000
001
002
010
011
012
020
021
022
100
101
102
110
111
112
120
121
122
200
201
202
210
211
212
220
221
222

00

01

02

10

11

12

20

21

22

00

01

02

10

11

12

20

21

22

row-indexrow-index

02

...
...

00

edges corresponding to

 an abstracted switch

000 000
c

c

c

a

a

a

100100

200200

b b d d

... ...

Fig. 1. Visualizing DPillar6,3.

directed edge (u, v) is labelled with an element of s ∈ S
if, and only if, us = v (within the group G). We say that
a digraph is node-symmetric if given any 2 distinct nodes
src and dst, there is an automorphism (that is, a one-to-one
mapping ϕ of the node-set onto itself such that if (u, v) is
an edge then (ϕ(u), ϕ(v)) is an edge) mapping src to dst.
It is well-known, and trivial to prove, that every Cayley
graph is node-symmetric. The first paper to establish that
being a Cayley graph is a useful property for an intercon-
nection network is [4] and since then, there has been much
research into representing interconnection networks using
finite groups. Not only do we immediately obtain that any
Cayley graph is node-symmetric (which is a fundamental
property of interconnection networks [7]) but Cayley graphs
have been shown to be relevant to various networks in a
variety of ways; for example, with regard to the design of
interconnection networks by pruning nodes and edges from
tori [24], the design of wireless DCNs [22], and the design of
high-dimensional mesh-based interconnection networks [6].

3.1 DPillar Symmetry

Whilst it was stated in [18] that the DCN DPillar is ‘symmet-
ric’, it was not stated as to what ‘symmetric’ meant (hence,
there was no proof of ‘symmetry’). Our main intention is
to show that DPillar is node-symmetric (defined above) but
we do this by proving that DPillar is a Cayley graph.

Lemma 1. The digraph DPillarn,k is a Cayley graph.

Proof: Our proof is related to the proof in [9] that
the wrapped butterfly network (called the cyclic cube in
[9]) is a Cayley graph. The full proof can be found in the
supplemental material.

We obtain the immediate corollary.

Corollary 1. The digraph DPillarn,k is node-symmetric.

4 ABSTRACTING ROUTING IN DPILLAR

In this section, we abstract the problem of finding a path in
the digraph DPillarn,k from a given source-node to a given
destination-node so that ultimately this problem is equiva-
lent to finding a path from a source-node to a destination-
node in a cycle of length k but where the actual node-to-
node moves are more complicated than in a digraph. We
also explain the single-path routing algorithm from [18].

4.1 Fixing bits

It is important to appreciate what might be accomplished
by moving along one of the 4 different types of edge high-
lighted above. Suppose that we are attempting to move from
some source-node src to some destination-node dst within
DPillarn,k and that we are currently at some node in column
c. We can choose a clockwise (resp. anti-clockwise, basic
static, decremented static) edge so as to set the cth (resp.
(c − 1)th, cth, (c − 1)th) bit in the row-index to whatever
value from {0, 1, . . . , n

2
− 1} that we like. Consequently,

by choosing a clockwise (resp. anti-clockwise, basic static,
decremented static) edge along which to move, we can
‘fix’ the cth (resp. (c − 1)th, cth, (c − 1)th) bit of the row-
index so that it matches that of the destination-node. We
say that: a clockwise edge covers the column in which its
source-node lies; an anti-clockwise edge covers the column
in which its target-node lies; a basic static edge covers the
column in which both its source- and target-nodes lie; and
a decremented static edge covers the column that is adjacent
in an anti-clockwise direction to the column in which both
its source- and target-nodes lie. Thus, if we wish to move
along some path from src to dst then we need to ensure
that we move from column to column so as to fix all of
the bits of the row-index that need fixing, but so that we
don’t subsequently ‘unfix’ them, and so that we end up in
the column within which dst resides (with regard to not

5

‘unfixing’ a bit, note that we can always move from a node
in one column to a node in an adjacent column so that
the row-index remains unchanged). This is equivalent to
moving from column to column so that every row-index
bit-position, i.e., column, where the bit values of src and dst
differ is necessarily covered by some edge and so that we
end up in the column within which dst resides. If we are
looking for a shortest path from src to dst then we have
to do this using as few moves as possible. Of course, any
path of length l in our abstraction of DPillarn,k as a digraph
translates to a path consisting of l server-switch-server link-
pairs in the DCN DPillarn,k, and vice versa (for the sake of
uniformity, we measure the length of server-to-server paths
in the DCN DPillar in terms of the number of server-switch-
server link-pairs in the path; this is also common practice in
the DCN community).

As an illustration, suppose we are at (1, 12530) in
DPillar6,5 and wish to get to the destination (4, 54314).
If x denotes any element of {0, 1, 2, 3, 4, 5}, there is: an
anti-clockwise edge taking us to (0, 1253x); a basic static
edge taking us to (1, 125x0); a clockwise edge taking us
to (2, 125x0); and a decremented static edge taking us to
(1, 1253x). Given our destination, when we move we can
choose x accordingly and fix the appropriate bit so that we
move: via an anti-clockwise edge to (0, 12534); via a basic
static edge to (1, 12510); via a clockwise edge to (2, 12510);
or via a decremented static edge to (1, 12534).

4.2 Another abstraction

A crucial observation arising from the above discussion is
that when routing in DPillarn,k, the actual value of some bit
in a row-index of some node is unimportant: what matters
is whether this value is equal to or different from the value
of the corresponding bit in the row-index of the destination-
node (that is, whether the bit needs to be ‘fixed’ or not).
Consequently, in order to solve the problem of finding a
path from src, which lies in column src′, to dst, which lies
in column dst′, in DPillarn,k, we can abstract the problem as
a (more involved) routing problem in the following digraph
Gn,k(src

′, dst′):

• we think of there being one node for each of the
k columns of nodes of DPillarn,k with nodes in
Gn,k(src

′, dst′) that correspond to adjacent columns
being joined by an oppositely oriented pair of edges
(so, we can also think of Gn,k(src

′, dst′) as an undi-
rected cycle of length k)

• we mark every node c, corresponding to some col-
umn c (or, alternatively, some bit-position c in the
row-index of some node of DPillarn,k) that needs to
be covered (because bit c of the row-index of src is
different from bit c of the row-index of dst), with the
set of marked nodes being denoted by B

• we move from node to node in Gn,k(src
′, dst′),

starting at the node src′ so as to end at the node
dst′ and making moves where:

(i) a c-move means we move from node c to node
c+ 1 and such a move covers node c

(ii) an a-move means we move from node c to node
c− 1 and such a move covers node c− 1

(iii) a b-move means we stay at node c and such a
move covers node c

(iv) a d-move means we stay at node c and such a
move covers node c− 1

(note the correspondence between the above moves and the
edge types given in Section 2.2). We call Gn,k(src

′, dst′) a
marked cycle. Note that it might be the case that src′ = dst′

in Gn,k(src
′, dst′) (this would mean that the nodes src and

dst lie in the same column in DPillarn,k).
With regard to our illustration in the previous section,

the edge from (1, 12530): to (0, 12534) results in an a-move
covering node 0 in the marked cycle; to (1, 12510) results in
a b-move covering node 1 in the marked cycle; to (2, 12510)
results in a c-move covering node 1 in the marked cycle;
and to (1, 12534) results in a d-move covering node 0 in the
marked cycle.

It should be clear as to how moves in the marked cycle
Gn,k(src

′, dst′) correspond to moves along corresponding
edges in DPillarn,k (and so to server-switch-server link-
pairs in the DCN DPillarn,k) with the coverage of a node
in Gn,k(src

′, dst′) and a node of DPillarn,k being in direct
correspondence. A path in Gn,k(src

′, dst′) is a sequence of
moves leading from src′ to dst′ and corresponds to a path
in DPillarn,k from node src to node dst (and vice versa) with
the lengths of the two paths being identical. Consequently,
in order to find a shortest path from src to dst in the DCN
DPillarn,k, it suffices to find a shortest path in the marked
cycle Gn,k(src

′, dst′) (from the node src′ to the node dst′)
so that every marked node is covered by a move. Note that
if src′ = dst′ then the empty sequence of moves does not
constitute a legitimate path.

4.3 Basic routing in DPillar

Before we continue, let us discuss the single-path routing
algorithm for DPillar as detailed in [18]; we refer to this
algorithm as DPillarSP. The routing algorithm DPillarSP
operates in 2 phases: in the first phase (the so-called ‘helix’
phase), a path in the DCN DPillarn,k is chosen so that move-
ment is always in a clockwise direction (that is, the column-
index is always incremented) or always in an anti-clockwise
direction (that is, the column-index is always decremented)
in order that the row-index is ‘fixed’ so that it is identical
to that of the destination-node; and in the second phase (the
so-called ‘ring’ phase), a path is subsequently chosen so as to
reach the destination-node without amending the row-index
and so that movement is in the same direction as in the first
phase. Although not explicitly mentioned when discussing
their algorithm, it is clear that the time complexity of the
single-path routing algorithm from [18] is O(k) (we have
suppressed the logn component required to represent each
bit-value).

It is stated in [18, Section 3.1] that this single-direction
movement is so that ‘loops’ might be avoided. While this
statement was not explained further, it is probable that what
was meant by ‘loops’ was a loop within a single route for a
source-destination pair. Of course, our shortest-path routing
algorithm means that loops in a single path will never
occur. Alternatively (though unlikely), the rationale for the
decision in [18] to restrict to single-direction movement
might have been to avoid either network-level deadlock

6

or livelock due to dependency loops (see, e.g., [7, Ch. 14]).
Irrespective of the intentions in [18], it is worth commenting
on the potential for deadlocks in DPillar and server-centric
DCNs in general. Given that the topology of DPillar is
basically a sophisticated ring of columns, moving in a single
direction does not completely prevent dependency loops
from appearing. We give an example in Fig. 2 where there
is a (bold) route from (0, 000) to (2, 200) and a (dotted)
route from (1, 200) to (1, 000) so that there is a cyclic
dependency graph, due to the shared switches (0, 00) and
(1, 20), even though we are using single-direction routing.
Nevertheless, there are many reasons to believe that, in the
context of server-centric DCNs based on COTS hardware
and software (i.e., Ethernet hardware and TCP/IP stack),
network level deadlocks should be a minor concern. First,
commodity Ethernet hardware uses packet-switching which
prevents network frames from spreading across many net-
work components; therefore a cyclic dependency between
frames is unlikely to happen. Second, servers have virtually
unlimited memory (and indeed, many orders of magnitude
more than switches); hence we can assume infinite FIFOs
at the servers. Considering that one of the necessary condi-
tions for deadlocks to appear is for FIFOs to become full,
it is, again, very unlikely that we end up in a deadlock
situation. Finally, in the very unlikely situation of a cyclic
dependency appearing and all the FIFOs becoming full, the
packet-dropping mechanism of Ethernet-based hardware
provides seamless deadlock recovery, whereas TCP ensures
data delivery. The upshot is that deadlocks are not a primary
concern in DCNs.

000
001
002
010
011
012
020
021
022
100
101
102
110
111
112
120
121
122
200
201
202
210
211
212
220
221
222

00

01

02

10

11

12

20

21

22

0 0 1 1 2 2 0

column-index

000
001
002
010
011
012
020
021
022
100
101
102
110
111
112
120
121
122
200
201
202
210
211
212
220
221
222

00

01

02

10

11

12

20

21

22

00

01

02

10

11

12

20

21

22

row-indexrow-index

Fig. 2. A dependency loop between two routes with DPillarSP. Server (0,
000) sends to (2, 200) and server (1, 200) sends to (1, 000). The paths
through switches (0, 00) and (1, 20) are conflicted.

It is very easy to see (by looking at some typical source-
destination examples) that the routing algorithm DPillarSP
is by no means optimal and that more often than not much
shorter paths exist (an upper bound of 2k− 1 on the lengths
of paths produced was stated in [18]). For example, if one
chooses to route in a clockwise fashion in DPillarn,k with
the source (0, 00 . . .0) and the destination (1, 10 . . . 0) then
the DPillarSP yields a path of length k+1, and if one routes
in an anti-clockwise fashion then the algorithm also yields a
path of length k − 1; however, a shortest path has length 2

(a d-move followed by a c-move). Our contention is that
by relaxing this insistence on single-direction movement,
we can obtain a much improved routing algorithm; indeed,
as we shall see, we develop an optimal single-path routing
algorithm (where the implementation overheads are negli-
gible and where there are significant practical benefits).

5 ROUTING IN A MARKED CYCLE

We begin by making some initial observations as regards
routing along a shortest path (from src′ to dst′) in a marked
cycle Gn,k(src

′, dst′) before proving that any such shortest
path has a restricted structure.

5.1 Some initial observations

Henceforth, ρ is a shortest path from src′ to dst′ in
Gn,k(src

′, dst′). Consider two consecutive moves in ρ. We
can often rule out consecutive pairs of moves. For example,
suppose that we have within ρ a c-move followed by an a-
move. We can replace this pair within ρ by a b-move so as
to obtain a path with identical coverage to ρ and which is
shorter. This yields a contradiction. Similarly, suppose that
we have an a-move followed by a c-move within ρ. We can
replace this pair within ρ by a d-move so as to again obtain
a contradiction. In Table 1, we detail all pairs of consecutive
moves in ρ that are forbidden by including the substitution
that would result in a shorter path that has equivalent
coverage. In this table, the first move is detailed in the rows
and the second move in the columns. A blank cell means
that the corresponding pair of moves cannot immediately
be ruled out.

TABLE 1
Disallowed pairs of moves.

a-move b-move c-move d-move
a-move a-move d-move
b-move b-move c-move
c-move b-move c-move
d-move a-move d-move

For clarity, rather than say, for example, ‘a c-move fol-
lowed by an a-move’, in future we will simply write ca
to denote this circumstance. Consequently, subsequences of
moves within ρ will be written as strings over {a, b, c, d}
(as will ρ itself) and we compress subsequences of the same
symbol, such as aaaa, by using powers, such as a4.

We can say more. If we have a subsequence of moves
bd then this has the same effect as the subsequence db,
and so we may suppose that a subsequence db within ρ
is forbidden. Also, note that if ρ has length at least 3 then
we cannot have a subsequence bd:

• a subsequence bdb can be replaced by bd; a subse-
quence bdc can be replaced by dc; and we cannot
have a subsequence da or dd

• a subsequence cbd can be replaced by cb; a subse-
quence dbd can be replaced by db; and we cannot
have a subsequence ab or bb.

Consequently, if ρ has length at least 3 then:

• if a c-move is not the final move of ρ then it must be
followed by another c-move or a b-move

7

• if an a-move is not the final move of ρ then it must
be followed by another a-move or a d-move

• if a b-move is not the final (resp. first) move of ρ then
it must be followed by an a-move (resp. preceded by
a c-move)

• if a d-move is not the final (resp. first) move of ρ then
it must be followed by a c-move (resp. preceded by
an a-move).

Consequently, if ρ has length at least 3 then it must be of
one of two forms:

(1) possibly a d-move (but maybe not) followed by a
sequence of c-moves followed by a b-move followed
by a sequence of a-moves followed by a d-move
followed by a sequence of c-moves followed by . . .
followed by a sequence of c-moves (resp. a-moves)
possibly followed by a b-move (resp. d-move); that
is,

dǫci1baj1dci2 . . . cimbδ or dǫci1baj1dci2 . . . ajmdδ,

for some m ≥ 1, where i1, i2, . . . , im, j1, j2, . . . , jm ≥
1 and where ǫ, δ ∈ {0, 1}

(2) possibly a b-move followed by a sequence of a-
moves followed by a d-move followed by a sequence
of c-moves followed by a b-move followed by a
sequence of a-moves followed by . . . followed by
a sequence of a-moves (resp. c-moves) possibly fol-
lowed by a d-move (resp. b-move); that is,

bǫai1dcj1bai2 . . . aimdδ or bǫai1dcj1bai2 . . . cjmbδ,

for some m ≥ 1, where i1, i2, . . . , im, j1, j2, . . . , jm ≥
1 and where ǫ, δ ∈ {0, 1}

(when we say ‘sequence’, above, we mean ‘non-empty se-
quence’).

5.2 Restricting the number of turns

If we have a subsequence cba in ρ then we say that an anti-
clockwise turn, or simply an a-turn, occurs at the b-move;
similarly, if we have a subsequence adc then we say that
a clockwise turn, or simply a c-turn, occurs at the d-move.
Note that if we have an a-turn in ρ then the node at which
this turn occurs, i.e., the node that is covered by the d-move,
must be marked in Gn,k(src

′, dst′) as otherwise we could
delete the corresponding d-move from ρ and still have a
sequence from src′ to dst′ covering all the marked nodes,
which would yield a contradiction. Similarly, if we have a c-
turn then the node at which this c-turn occurs, i.e., the node
that is covered by the b-move, must be marked. We will use
these observations later; but now we prove that any shortest
path ρ must contain at most 2 turns.

Suppose that ρ is a shortest path and has at least 3 turns.
What we do now is undertake a case by case analysis of
the different configurations that might arise. These cases
arise from the forms derived at the end of the previous
subsection: the first two cases correspond to form (1) and
the next two cases to form (2). The technique employed in
each case is to modify the path ρ, by replacing sequences
of moves within ρ, so as to obtain a new path that has the
same coverage but is shorter; this yields a contradiction to
our assumption that ρ has at least 3 turns.

0 = src’

...

...

x = dst’

...

...

...

...

...

...

(i)

a-moves

c-moves

c-moves

b-move

d-move

0 = src’

...

...

x = dst’

...

...

...

...

...

...

(ii)

a-moves

a-moves

c-moves

b-move

d-move

Fig. 3. Visualizing paths with 2 turns.

Case (a): Suppose that ρ is of form (1) and has a prefix ρ′ of

the form cibajdclba, where i, j, l ≥ 1.

By this we mean that ρ begins with i c-moves followed by
a b-move followed by j a-moves followed by a d-move
followed by l c-moves followed by a b-move followed by
an a-move.

If j < i then we can replace the prefix cibajdc in ρ′ with
cibaj−1 and still obtain the same coverage; this contradicts
that ρ is a shortest path (note that we have actually only
assumed so far that ρ has 2 turns). If j = i then we can
replace the prefix cibaidc in ρ′ with dcibai−1 so as to obtain
a contradiction (we have still actually only assumed that ρ
has 2 turns). Hence, we must have that j > i. Suppose that
j ≥ l > j − i. We can replace the prefix cibajdcl in ρ′ with
aj−idcjbaj−l so as to obtain a contradiction (we have still
actually only assumed that ρ has 2 turns). Hence, j > i and
either l ≤ j − i or l > j.

Suppose that l > j. We can replace the prefix cibajdcl in
ρ′ with aj−idcl so as to obtain a contradiction (we have still
actually only assumed that ρ has 2 turns). Hence, we must
have that j > i and l ≤ j− i. However, if we replace ρ′ with
cibajdcl−1 then we obtain a contradiction (here we do use
the fact that ρ has at least 3 turns). So, ρ has at most 2 turns
and if it has 2 turns then ρ is of the form cibajdcl where
j > i and l ≤ j − i.

We can say more if ρ has 2 turns. Suppose that j ≥
k − 1. The b-move can be deleted from ρ′ and we obtain a
contradiction. Hence, if ρ has 2 turns then ρ is of the form
cibajdcl where k − 1 > j > i ≥ 1 and 1 ≤ l ≤ j − i. We can
visualize ρ as in Fig. 3(i). The marked cycle Gn,k(src

′, dst′)
is shown as a cycle where a black node denotes a node of
B; that is, a node that needs to be covered by some path in
Gn,k(src

′, dst′) (from src′ to dst′, with 0 = src′ 6= dst′ = x
in this illustration). The path ρ is depicted as a dotted line
partitioned into composite moves.

Case (b): Suppose that ρ is of form (1) and has a prefix ρ′ of

the form dcibajdclba, where i, j, l ≥ 1.

If j ≤ i then we can replace the prefix dcibajdc in ρ′ with
dcibajc so as to obtain a contradiction, and if j > i then we
can delete the first d-move from ρ to obtain a contradiction.
Hence, if ρ starts with a d-move then it has at most 1 turn.

Case (c): Suppose that ρ is of form (2) and has a prefix ρ′ of

the form aidcjbaldc, where i, j, l ≥ 1.

If j < i then we can replace the prefix aidcjba in ρ′ with
aidcj−1 so as to obtain a contradiction. If i = j then we can

8

replace the prefix aidciba in ρ′ with baidci−1 so as to obtain
a contradiction. Hence, j > i.

Suppose that j ≥ l > j − i. We can replace the
prefix aidcjbal in ρ with cj−ibajdcj−l so as to obtain a
contradiction. Suppose that l > j. We can delete the first
occurrence of a d-move in ρ so as to obtain a contradiction.
Hence, l ≤ j − i. Note that if ρ has 2 turns then ρ is of the
form aidcjbal where j > i and l ≤ j − i. Alternatively,
suppose that ρ has at least 3 turns. We can replace the
prefix aidcjbaldc in ρ with aidcjbcl−1 so as to obtain a
contradiction. Hence, ρ has at most 2 turns.

We can say more if ρ has 2 turns. Suppose that j ≥
k − 1. The d-move can be deleted from ρ′ and we obtain a
contradiction. Hence, if ρ has 2 turns then ρ is of the form
aidcjbdl where k− 1 > j > i ≥ 1 and 1 ≤ l ≤ j − i. We can
visualize ρ as in Fig. 3(ii).

Case (d): Suppose that ρ is of form (2) and has a prefix ρ′ of

the form baidcjbaldc, where i, j, l ≥ 1.

If j ≤ i then we can replace the prefix baidcjba with baidcja
so as to obtain a contradiction, and if j > i then we can
delete the first b-move from ρ to obtain a contradiction.
Hence, if ρ starts with a b-move then it has at most 1 turn.

So, we have proven the following lemma.

Lemma 2. If ρ is a shortest path (from src′ to dst′) in
Gn,k(src

′, dst′) then ρ has at most 2 turns, and if ρ has
2 turns then it must be of the form cibajdcl or aidcjbal,
where k − 1 > j > i ≥ 1 and 1 ≤ l ≤ j − i.

With reference to Fig. 3, the numerical constraints in
Lemma 2 mean that there is no interaction or overlap
involving the 2 turns in ρ.

6 AN OPTIMAL ROUTING ALGORITHM FOR DPIL-

LAR

We now develop an optimal single-path routing algorithm
for DPillar, based around Lemma 2. We do this by finding a
small set Π of paths (from src′ to dst′) in Gn,k(src

′, dst′) so
that at least one of these paths is a shortest path (and conse-
quently we obtain a shortest path in the DCN DPillarn,k).
By Lemma 1, we may assume that src = (0, 00 . . .0)
and dst = (x, vk−1vk−2 . . . v0), and by Lemma 2, we may
assume that any shortest path has at most 2 turns.

Our technique is as follows. Essentially, we want to
make the set Π as small as possible; that is, we want our
resulting algorithm to have to consider as few paths as
possible (when looking for the shortest). Lemma 2 precisely
describes the set of paths we need to consider from the
paths involving exactly 2 turns; of course, we also need to
consider paths involving 1 or 0 turns (if they exist). There are
different situations depending upon the distribution of the
marked nodes needing to be covered; in particular, upon the
distribution of marked nodes along the natural clockwise
and anti-clockwise paths from the source to the destination
on the marked cycle, assuming the source and destination
to be distinct (this is the case in Section 6.1; the case when
the source and destination are the same is considered in
Section 6.2). Sometimes the distribution of marked nodes
rules out the possibility of certain types of paths.

js

j1

ir

i1

j2

i2
ε1

δ1

∆ = 1x

∆ = 000 = src’

...

...

x = dst’

...

...

...

...

...

...

(i)

0 = src’ = dst’

...

...

...

...

...

...

...

...

(ii)

ir
i1

i2

i3

il
il+1

ir-1

δl

∆ = 10

Fig. 4. Visualizing our notation.

6.1 Building our set of paths when x 6= 0

We first suppose that 0 6= x. Let B = {i : 0 ≤ i ≤ k−1, vi 6=
0} (that is, the bit-positions that need to be ‘fixed’). Suppose
that B \ {0, x} = {il : 1 ≤ l ≤ r} ∪ {jl : 1 ≤ l ≤ s}
so that we have 0 < js < js−1 < . . . < j1 < C < i1 <
i2 < . . . < ir < k (we might have that either r or s is 0,
when the corresponding set is empty). If r ≥ 2 then define
δl = il+1 − il, for l = 1, 2, . . . , r − 1, with δ = max{δl : l =
1, 2, . . . , r − 1}; and if s ≥ 2 then define ǫl = jl − jl+1, for
l = 1, 2, . . . , s − 1, with ǫ = max{ǫl : l = 1, 2, . . . , s − 1}.
Also: define ∆0 = 1 (resp. 0), if 0 ∈ B (resp. 0 6∈ B); and
∆x = 1 (resp. 0), if x ∈ B (resp. x 6∈ B). We can visualize the
resulting marked cycle Gn,k(0, x) as in Fig. 4(i). Note that in
this particular illustration 0 6∈ B and x ∈ B; so, ∆0 = 0 and
∆x = 1. Of course, what we are looking for is a sequence
of (a-, b-, c- and d-)moves that will take us from 0 to x in
Gn,k(0, x) so that all nodes of B have been covered.

In what follows, we examine different scenarios involv-
ing the number of marked nodes, r, and also the number
of marked nodes, s. Each scenario for r contributes certain
paths to Π as does each scenario for s. Note that perhaps
the most obvious paths to consider as potential members
of Π are the paths ck+x and a2k−x which have lengths
k + x and 2k − x, respectively. So, we begin by setting
Π = {ck+x, a2k−x}.

From Lemma 2, any shortest path ρ from 0 to x having
2 turns requires that r ≥ 2 or s ≥ 2 and that both nodes at
which these turns occur are different from 0 and x and lie
on the anti-clockwise path from 0 to x or on the clockwise
path from 0 to x, accordingly. Recall also that the node at
which any turn occurs on a shortest path ρ is necessarily a
marked node (irrespective of the number of turns in ρ).

Case (a): Suppose that r = 0.

In this scenario, we contribute either the path cxb to Π, if
x ∈ B, or the path cx to Π, if x 6∈ B; either way, the length
of the path contributed is x+∆x.

Case (b): Suppose that s = 0.

In this scenario, we contribute either the path bak−x to Π,
if 0 ∈ B, or the path ak−x to Π, if 0 6∈ B; either way, the
length of the path contributed is k − x+∆0.

Case (c): Suppose that r = 1.

In this scenario, we contribute 2 paths to Π. If x ∈ B then
we contribute the path ak−i1−1dck−i1−1+xb to Π, or if x 6∈ B
then we contribute the path ak−i1−1dck−i1−1+x to Π; either

9

way, the length of the resulting path is 2k−2i1+x−1+∆x.
We also contribute the path ci1bai1−x to Π of length 2i1 −
x+1. There is potentially another path when i1 = x+1 and
x ∈ B, namely ak−x−1dck−1, but the length of this path is
2k − x− 1 which is greater than 2k − x− 3 + ∆x, which in
turn is 2k − 2i1 + x− 1 + ∆x evaluated with i1 = x+ 1.

Case (d): Suppose that s = 1.

In this scenario, we contribute 2 paths to Π. If 0 ∈ B then
we contribute the path bak−j1−1dcx−j1−1 to Π, or if 0 6∈ B
then we contribute the path ak−j1−1dcx−j1−1 to Π; either
way, the length of the resulting path is k− 2j1+x− 1+∆0.
We also contribute the path cj1bak+j1−x to Π of length k +
2j1 − x + 1. There is potentially another path when j1 = 1
and 0 ∈ B, namely ak−1dcx−1, but the length of this path is
k + x − 1 which is greater than k + x − 3 + ∆0, which in
turn is k − 2j1 + x− 1 + ∆0 evaluated with j1 = 1.

Case (e): Suppose that r ≥ 2.

In this scenario, we contribute r + 1 paths to Π. For each
l ∈ {1, 2, . . . , r − 1}, we contribute the path ak−il+1−1

dck−il+1−1+ilbail−x to Π of length 2k − 2δl − x. If x ∈ B
then we contribute the path ak−i1−1dck−i1−1+xb to Π, or if
x 6∈ B then we contribute the path ak−i1−1dck−i1−1+x to Π;
either way, the length of the path is 2k−2i1+x−1+∆x. We
also contribute the path cirbair−x to Π of length 2ir−x+1.
(These last 2 paths mirror those constructed in Case (c).)

Case (f): Suppose that s ≥ 2.

In this scenario, we contribute s + 1 paths to Π. For
each l ∈ {1, 2, . . . , s − 1}, we contribute the path cjl+1

bajl+1+k−jl−1dax−jl−1 to Π of length k − 2ǫl + x. If 0 ∈ B
then we contribute the path bak−js−1dcx−js−1 to Π, or if
0 6∈ B then we contribute the path ak−js−1dcx−js−1 to Π;
either way, the length of the path is k − 2js + x − 1 + ∆0.
We also contribute the path cj1baj1+k−x to Π of length
k+2j1− x+1. (These last 2 paths mirror those constructed
in Case (c).)

Thus, our set Π of potential shortest paths contains r +
s+ 2 paths (from which at least one is a shortest path).

6.2 Building our set of paths when x = 0

Now we suppose that x = 0. We proceed as we did above
and build a set Π of potential shortest paths. Let B = {i :
0 ≤ i ≤ k− 1, vi 6= 0}. Suppose that B \ {0} = {il : 1 ≤ l ≤
r} so that we have 0 < i1 < i2 < . . . < ir < k (we might
have that r is 0 when the corresponding set is empty). If
r ≥ 2 then define δl = il+1 − il, for l = 1, 2, . . . , r − 1, with
δ = max{δl : l = 1, 2, . . . , r−1}. We define ∆0 = 1, if 0 ∈ B,
and ∆0 = 0, if 0 6∈ B. We can visualize the resulting marked
cycle Gn,k(0, 0) as in Fig. 4(ii). Again, the most obvious path
to consider is ck (or ak) which has length k. We begin by
setting Π = {ck}.

Case(a): Suppose that r = 0.

In this scenario, we contribute the path b of length 1 (note
that in this case the node 0 is necessarily marked as we
originally assumed that we started with distinct source and
destination servers in the DCN DPillarn,k).

Case(b): Suppose that r = 1.

If i1 = k − 1 then we contribute the path bd, if 0 ∈ B, and
the path d, if 0 6∈ B; either way, the path has length 1 + ∆0.

If 1 = i1 6= k − 1 then we contribute the path cba of length
3. If 1 6= i1 6= k − 1 then we contribute 2 paths. The first of
these paths is the path bak−i1−1dck−i1−1, if 0 ∈ B, and the
path ak−i1−1dck−i1−1, if 0 6∈ B; either way, this path has
length 2k − 2i1 − 1 + ∆0. The second of these paths is the
path ci1bai1 of length 2i1 + 1.

Case(c): Suppose that r ≥ 2.

In this scenario, we contribute r + 1 paths to Π. For each
l ∈ {1, 2, . . . , r − 1}, we contribute the path ak−il+1−1

dck−il+1−1+ilbail to Π of length 2k − 2δl. If 0 ∈ B then we
contribute the path bak−i1−1dck−i1−1 to Π, or if 0 6∈ B then
we contribute the path ak−i1−1dck−i1−1 to Π; either way,
this path has length 2k − 2i1 − 1 + ∆0. We also contribute
the path cirbair to Π of length 2ir + 1. (These last 2 paths
mirror those constructed in Case (b).)

Thus, our set Π of potential shortest paths contains at
most r+1 paths (from which at least one is a shortest path).

6.3 Our algorithm

We now use our set Π of potential shortest paths so as to
find a shortest path or the length of a shortest path. Our
algorithm, DPillarMin, for finding the length of a shortest
path in Gn,k(0, x) is as follows.

Algorithm: DPillarMin
calculate B
if 0 6= x then

L = min{k + x, 2k − x}
calculate r, s, δ, ǫ, ∆0 and ∆x

if r = 0 then L = min{L, x+∆x}
if s = 0 then L = min{L, k − x+∆0}
if r = 1 then

L = min{L, 2k− 2i1 + x− 1 + ∆x,
2i1 − x+ 1}

if s = 1 then

L = min{L, k − 2j1 + x− 1 + ∆0,
k + 2j1 − x+ 1}

if r ≥ 2 then

calculate δ % only need consider max. δl
L = min{L, 2k− 2δ − x,

2k − 2i1 + x− 1 + ∆x, 2ir − x+ 1}
if s ≥ 2 then

calculate ǫ % only need consider max. ǫl
L = min{L, k − 2ǫ+ x, k − 2js + x− 1 + ∆0,

k + 2j1 − x+ 1}
else

calculate r and δ
if r = 0 then L = 1
if r = 1 then

if i1 = k − 1 then L = 1 +∆0

if 1 = i1 6= k − 1 then L = 3
if 1 6= i1 6= k − 1 then

L = min{2k − 2i1 − 1 + ∆0, 2i1 + 1}
if r ≥ 2 then

L = min{k, 2k − 2δ, 2k− 2i1 − 1 + ∆0, 2ir + 1}
output L

If we wish to output a shortest path then all we do
is apply the algorithm DPillarMin but remember which
shortest path corresponds to the final value of L and output
this shortest path (note that there may be more than one

10

shortest path; exactly which path one obtains depends upon
how one implements checking the paths of Π). The time
complexity of both algorithms is clearly O(k); that is, linear
in the number of columns. Henceforth, we assume that the
algorithm DPillarMin outputs an actual shortest path.

It should be clear (using Lemma 2) that the different
considerations for r and s exhaust all possibilities and that
consequently the set of paths Π considered by DPillarMin
is such as to contain a shortest path. Hence, DPillarMin
clearly outputs a shortest path from some source node to
some destination node in DPillarn,k. In summary, we have
the following result.

Theorem 1. Suppose that n, k ≥ 2 so that n is even. The
algorithm DPillarMin takes as input any two servers of
DPillarn,k, a source and a destination, and outputs a
shortest path from the source server to the destination
server; moreover, it computes this path with time com-
plexity O(k).

We can confirm that we have undertaken experiments
so as to empirically check, using a breadth-first search, the
correctness of DPillarMin on DPillarn,k when n and k are
relatively small. We undertook our experiments using our
in-house simulator INRFlow [8].

6.4 The diameter of DPillar

We also compute the diameter of the DCN DPillarn,k, i.e.,
the maximum of the lengths of shortest paths joining any
two distinct servers. All that was stated in [18] was that the
diameter of the DCN DPillarn,k is a ‘linear function of k’.

Theorem 2. If k ∈ {2, 3} then the DCN DPillarn,k has
diameter k; and if k ≥ 4 then the DCN DPillarn,k has
diameter k + ⌊k

2
⌋ − 2.

Proof: Let src and dst be nodes of the digraph
DPillarn,k. W.l.o.g. we may assume that the column-index
of src is 0 and that of dst is x. We work in Gn,k(0, x) and in
the context of the algorithm DPillarMin.

We first note that for any x, the worst-case scenario is
when all nodes of Gn,k(0, x) are marked as a shortest path
in this scenario yields a path in any other scenario (though
not necessarily a shortest one). Hence, in what follows we
assume that all nodes are marked.

Case (a): k ≥ 5.

We consider first the case when x 6= 0. There are 5 different
scenarios for (r, s): (0,≥ 2); (1,≥ 2): (≥ 2,≥ 2); (≥ 2, 1);
and (≥ 2,≥ 2).

Consider first when r ≥ 2 and s ≥ 2. By consideration of
the algorithm DPillarMin, where we have δ = 1, i1 = x+1,
ir = k − 1, ǫ = 1, js = 1, j1 = x − 1, ∆0 = 1 and ∆x = 1,
we immediately see that L = min{k + x, 2k − x, 2k − 2 −
x, 2k − 2(x + 1) + x, 2(k − 1) − x + 1, k − 2 + x, k − 2 +
x, k + 2(x− 1)− x+ 1} = min{k + x− 2, 2k − x− 2}. We
are trying to find a value of x that maximizes this minimum
value. If k + x − 2 ≥ 2k − x − 2 then x ≥ k

2
; so, in this

situation this minimum value is maximized when x = ⌈k
2
⌉

and this minimum value is then 2k−⌈k
2
⌉− 2 = k+ ⌊k

2
⌋− 2.

If k + x − 2 ≤ 2k − x − 2 then x ≤ k
2

; so, in this situation

this minimum value is maximized when x = ⌊k
2
⌋ and this

minimum value is then k + ⌊k
2
⌋ − 2.

In each of the other 4 cases for (r, s), where x ∈ {0, 1, k−
2, k − 1}, we have that the length of the path produced by
DPillarMin is trivially less than k + ⌊k

2
⌋ − 2 (simply look at

the initial minimization L = min{k+x, 2k−x}). Also, when
x = 0 the length of the path produced is trivially less than
k+ ⌊k

2
⌋− 2. Hence, when k ≥ 5 the dameter is k+ ⌊k

2
⌋ − 2.

Case (b) 2 ≤ k ≤ 4.

It is trivial to see by hand that the diameter in this case is k.
The result follows.

7 EXPERIMENTAL WORK

Whilst we have obtained an optimal single-path routing
algorithm for DPillar (optimal in that our algorithm always
outputs a shortest path), as yet we have no idea as to how
often the single-path routing algorithm DPillarSP is sub-
optimal and the savings to be made by employing our
optimal algorithm. To undertake a precise analytical eval-
uation of this question would be challenging; consequently,
we proceed to evaluate empirically the most important per-
formance metrics, namely path length, aggregate bottleneck
throughput and transmission latency.

We undertake our evaluation using simulation. We use
our own flow-based framework INRFlow [8]. The reason we
adopt a simulation-based evaluation is as follows. Future
DCNs are intended to incorporate hundreds of thousands,
if not millions, of processors. Consequently, building a test-
bed of servers (bearing in mind realistic access to resources)
would only yield a DCN with a handful of servers and
there would be no grounds for believing that any such
evaluation would scale up. For instance, in order to build
even the smallest meaningful DPillarn,k would require that
n should be at least 6 and k at least 3 which would result in
a test-bed with 81 servers which is beyond our means. Not
surprisingly, simulation is the standard evaluation mech-
anism in the literature. Of the DCNs mentioned in this
paper, FiConn, MCube, HCN, BCN, SWKautz, SWCube,
and SWdBruijn were all evaluated using simulation with
only DCell, BCube, and CamCube evaluated using test-
beds, incorporating 20, 16 and 27 servers, respectively. In
addition, the aspects of symmetry present in DCNs ame-
liorates the likelihood of ‘random’ aspects of the network
topology having an unexpected impact upon performance
when compared with more unstructured networks. Finally,
as regards our evaluation of communication latency in
Section 7.3, we have incorporated realistic measurements of
protocol stack, propagation, data transmission, and routing
latencies into our analysis.

7.1 Path Length

In order to obtain some idea of the practical significance
of our algorithm DPillarMin in terms of path length, we
undertook the following experiment. For specific values of
n and k, we measured the average length of the paths
obtained by employing both DPillarMin and DPillarSP
for every possible source-destination pair (node-symmetry
means that we can actually fix a unique source node) as well
as the cumulative frequencies of the lengths of paths arising.
We also measured the number of such occasions when the
path derived by DPillarSP is longer than the path derived by

11

DPillarMin; that is, the number of times DPillarSP produced
a non-minimal path. Our results are shown in Table 2 and
Table 3. In Table 2, the columns denote (in order): the
parameters n and k of the particular DPillarn,k that we are
working with; the number of servers in that DPillarn,k; the
average path lengths obtained from inputting every possible
source-destination pair to the algorithms DPillarMin and
DPillarSP; the improvement in terms of average path length
obtained by employing DPillarMin as a percentage of the
average path length obtained by employing DPillarSP; and
the percentage of source-destination pairs where the optimal
path length is shorter than that obtained by employing
DPillarSP. In Table 3, for each chosen n and k we show the
cumulative frequencies of the lengths of paths obtained by
employing the two algorithms DPillarSP and DPillarMin.
These cumulative frequencies are shown as percentages of
the total number of pairs of (not necessarily distinct) servers
and are rounded to the nearest 0.1% (in order to save space
we do not show data relating to all pairs of n and k; this
omitted data is as might be expected).

TABLE 2
Average path lengths: DPillarMin vs. DPillarSP.

DPillarn,k # of av. pth. len. av. pth. len. av. length non-min.
n k servers DPillarMin DPillarSP improve. paths
16 3 1,536 2.72 3.86 29% 66%
16 4 16,384 3.74 5.36 30% 73%
16 5 163,840 4.77 6.86 30% 78%
32 3 12,288 2.86 3.93 27% 67%
32 4 262,144 3.87 5.43 28% 74%
48 3 41,472 2.9 3.96 26% 67%
64 3 98,304 2.93 3.97 26% 67%
80 3 192,000 2.94 3.97 25% 67%

128 3 786,432 2.96 3.98 25% 67%

TABLE 3
Cumulative frequencies of path lengths: DPillarMin vs. DPillarSP.

DPillarn,k rout. path lengths
n k alg. 0 1 2 3 4 5 6 7 8 9
16 3 SP 0.1 0.6 4.8 38.0 70.8 100 − − − −
16 3 Min 0.1 2.0 26.2 100 − − − − − −
16 5 SP 0.0 0.0 0.0 0.4 2.9 22.9 42.9 62.8 82.5 100
16 5 Min 0.0 0.0 0.3 2.5 20.3 100 − − − −
32 4 SP 0.0 0.0 0.1 1.7 26.7 51.7 76.6 100 − −
32 4 Min 0.0 0.0 0.7 12.0 100 − − − − −
80 3 SP 0.0 0.0 0.0 33.3 67.4 100 − − − −
80 3 Min 0.0 0.1 5.7 100 − − − − − −

128 3 SP 0.0 0.0 0.5 33.9 67.2 100 − − − −
128 3 Min 0.0 0.0 3.6 100 − − − − − −

As can be seen from Table 2, using the algorithm DPil-
larMin yields a very significant improvement of between
25% and 30% in terms of the average path length. It is
also worth highlighting that the number of non-optimal
paths generated by DPillarSP is between 66% and 78% and
increases significantly with k. Note that a reduction in path
length does not only mean that the latency experienced by
network traffic should be reduced (more on this later) but
also that each flow will require less aggregate bandwidth to
be transmitted and so the overall throughput of the network
should also increase. As can be seen from Table 3, in each
of the chosen scenarios DPillarMin yields significant cu-
mulative improvements in path length. For example, when

n = 16 and k = 5, with DPillarSP only 22.9% of all paths
have length at most 5 whereas with DPillarMin all paths do.
We measure next the aggregate bottleneck throughput ob-
tained through using the two different routing algorithms.

7.2 Aggregate Bottleneck Throughput

The aggregate bottleneck throughput, or simply ABT, is a
metric introduced in [13] in order to estimate the throughput
performance of a DCN. The reasoning behind ABT is that
the performance of an all-to-all operation is limited by its
slowest flow, i.e., the flow with the lowest throughput. The
ABT is defined as the total number of flows times the
throughput of the bottleneck flow, i.e., the link sustaining
the most flows. In our experiments the bottleneck flow is
determined experimentally using actual routing functions
within our framework INRFlow. We assume an all-to-all
communication pattern, so that there are N(N − 1) flows,
and a bandwidth of 1 unit per directional link, where N
is the total number of servers. Since datacenters are most
commonly used as stream processing platforms and are
therefore bandwidth limited, this is an extremely relevant
performance metric.

TABLE 4
Aggregate bottleneck throughput: DPillarMin vs. DPillarSP.

DPillarn,k # of ABT ABT ABT
n k servers DPillarMin DPillarSP improve.
16 3 1,536 757.16 397.93 90%
16 4 16,384 6077.88 3056.72 99%
16 5 163,840 52953.26 23883.38 122%
32 3 12,288 5651.85 3126.72 81%
32 4 262,144 92102.69 48276.98 91%
48 3 41,472 18634.09 10472.73 78%
64 3 98,304 43653.56 24761.71 76%
80 3 192,000 84659.97 48362.72 75%

128 3 786,432 343097.99 197595.98 74%

Table 4 shows that DPillarMin is capable of offering
much higher ABT than DPillarSP in all cases, with im-
provements of between 74% and 122% (the right-most is
the improvement in ABT by using DPillarMin rather than
DPillarSP divided by the ABT of DPillarSP). Informally,
this means that bandwidth-limited applications such as, for
example, Big Data analytics, running over a DCN using
DPillarMin might be able to achieve nearly twice as much
computational throughput as the same application running
over a DCN using DPillarSP. This can provide significant
savings in terms of running and maintenance costs associ-
ated with each application and thus will result in more com-
petitive pricing for tenants. Furthermore, as applications run
faster it will be possible to run more applications in a given
time frame and so there is a huge potential for increasing
the overall profit of the datacenter.

7.3 Communication Latency

Not all datacenter applications are bandwidth sensitive;
indeed, many of them are more sensitive to latency, such
as real-time operations or, more generally, any application
interfacing with users. For this reason, it is important that
we look at the transmission latency that we can expect
from DPillarSP and DPillarMin. As there is no server-centric

12

DCN framework available that will enable us to perform
testbench experiments (building one ourselves is not pos-
sible), we measure the latencies imposed by the different
steps of the transmission, namely within the protocol stack,
propagation latency, data transmission latency and routing
at the servers, so as to obtain an estimate of how changing
the routing algorithm would affect the overall performance.
Our experiments were as follows.

• We measured the round trip time of both an empty
frame (28 bytes for the headers) and a full frame
(1,500 bytes, including the headers) sent to localhost
so as to measure the latency imposed by going up
and down the protocol stack. In both cases, the stack
latency, Ls, was found to be 10 µs.

• We measured the round trip of an empty frame
sent to a neighbouring server connected to the same
Gigabit Ethernet switch. This was found to be 64 µs;
thus we can compute the one-way propagation latency,
Lp, i.e., the time to go through the links and the
switch, by dividing by two and removing the stack
latency. This yields a propagation latency of 22 µs.

• We measured the round trip time of a full-frame sent
to the same neighbouring server. This was found to
be 140 µs; thus the one-way data transfer latency, Ld,
can be calculated similarly by dividing by two and
subtracting the stack latency as well as the propaga-
tion latency. This results in a data transfer latency of
38 µs (roughly 26 ns per byte).

• We measured the average routing latency, Lr, for both
algorithms for a selection of the configurations above
(those with between 8 and 40 thousand servers).
Note that the code for the two algorithms is not
optimised and that it includes some overheads im-
posed by our framework; so the running times for
the algorithms can be considered as a worst case.

Consequently, for both DPillarSP and DPillarMin we obtain
the per-hop latency Lhop = Ls + Lp + Ld + Lr along with
the server-to-server latency Ltotal = Lhop × d̄, where d̄ is the
average path length.

All the measurements were carried out under low load
conditions in the same server: a 32-core AMD Opteron 6220
with 256 Gbytes of RAM and running an Ubuntu 14.04.1
SMP OS. Round-trip time measurements were carried out
with the ping utility. The server and its neighbour are
located within the same rack and are connected with short
(at most 1 metre) electrical wires to a 24-port 1-Gbit Ethernet
switch which does not support jumbo frames (we do not
have 10-Gbit Ethernet hardware available). Note that the
use of short wires is the best case for the propagation
delay, as in a real scale-out datacenter wires will be much
longer and so propagation delays will be larger (even if fibre
connections are used [21]). Similarly, the measured latency
of the protocol stack does not take into account any extra
management/control inherent to the server-centric nature
of the system; so, again, it can be considered a best case
scenario. Increasing these delays will dilute the effects of
the average routing latency in the total latency even more
than in our preliminary estimate. (We remind the reader
that a DPillar datacenter would be constructed out of COTS
hardware and so our experimental set-up is reasonable).

TABLE 5
Average routing latencies: DPillarMin vs. DPillarSP.

DPillarn,k # of Lr Lr Lr

n k servers DPillarMin DPillarSP increase
16 4 16,384 5.964 µs 1.349 µs 442%
32 3 12,288 3.325 µs 0.960 µs 346%
48 3 41,472 3.328 µs 0.859 µs 387%

TABLE 6
Per-hop and overall latencies: DPillarMin vs. DPillarSP.

DPillarn,k Lhop Lhop Lhop Ltotal Ltotal Ltotal

n k DPillarMin DPillarSP decl. DPillarMin DPillarSP improve.
16 4 76.0 71.3 6% 284.1 382.2 26%
32 3 73.3 71.0 3% 209.5 279.1 25%
48 3 73.3 70.9 3% 212.9 280.4 24%

Table 5 shows the average routing latency Lr for DPil-
larSP and DPillarMin, along with the increase in the aver-
age routing latency when using DPillarMin as opposed to
DPillarSP (shown as a percentage of the average routing
latency when using DPillarSP). Table 6 details the per-
hop and server-to-server latencies for both DPillarSP and
DPillarMin. The very slight increase in the per-hop latency
when using DPillarMin as opposed to DPillarSP is shown,
as is the improvement in the server-to-server latency when
using DPillarMin as opposed to DPillarSP (both are shown
as a percentage of the corresponding value for DPillarSP).

It can be seen that the average routing latency for
DPillarMin is between 3.4 and 4.5 times slower than that
for DPillarSP, but of the order of only a few microseconds
which is well below the other latencies measured in our
experimental set-up. In consequence, the per-hop latencies
of DPillarSP and DPillarMin are very similar; however,
there is a significant reduction in server-to-server latency
for DPillarMin over DPillarSP (between 24% and 26%) when
the reductions in average path-length are factored in.

Informal analytical modelling using the values above as
a reference suggests that if jumbo frames were used then
there would be negligible increase in per-hop latency so
as to yield a significant overall improvement in server-to-
server latency of up to 30%. A similar analytic analysis us-
ing 10-Gbit Ethernet hardware suggests that while per-hop
latency can increase by up to 12.5% when using DPillarMin
as opposed to DPillarSP, the overall server-to-server latency
improvement will still be in the range 19-23%. Finally, the
estimates with jumbo frame-enabled 10-Gbit Ethernet yield
very similar results as the ones presented here. Full details
are available in the supplemental material.

While the latency analysis performed here is rather sim-
plistic and only covers zero-load latencies, our objective is
not to provide highly accurate latency figures but to show
that the impact of the routing algorithm DPillarMin on
latency is insignificant, particularly when compared with
the huge gains in terms of path length and throughput. Note
that due to its less favourable throughput, the use of DPil-
larSP would lead to additional queuing in the servers which
would in have a detrimental impact upon performance.

13

7.4 FiConn and DCell

There does not exist a proper comparative experimental
evaluation of the numerous (dual-port) server-centric DCNs
in the literature; comparative evaluations that have been
undertaken so far are somewhat ad hoc, both in terms of the
DCNs compared and the performance metrics evaluated.
Of course, an extensive comparative evaluation will be a
significant body of work and is well beyond the scope
of this paper (where our focus has been on improving
routing in DPillar). Moreover, we are fully aware that there
are many different metrics for DCN evaluation, such as
those relating to fault-tolerance, bisection bandwidth, load
balancing, latency, throughput, scalability, and so on, and
that the eventual success of a DCN will usually depend
on its capacity to cope well across a range of such metrics.
Nevertheless, we end our experimentation by including an
interesting prelude to a fuller analysis of routing within
server-centric DCNs: we briefly compare routing in DPillar
with routing in the two DCNs DCell and FiConn.

We have chosen FiConn and DCell as they are widely
regarded as benchmark server-centric DCNs. Like DPillar,
FiConn is dual-port, whereas DCell is such that the number
of server NIC ports is variable. The reader is referred to [16]
and [12] for definitions of FiConn and DCell, respectively,
but just as with DPillar, FiConn and DCell are families of
DCNs parameterized by n, the number of switch-ports in
a switch, and k, the depth of the recursive construction
(actually, a server in DCelln,k has k + 1 NIC ports).

In Table 7, we have displayed the average path length
and the ABT of (various instantiations of) DPillar with
the routing algorithm DPillarMin, FiConn with the routing
algorithm TOR (from [16]), and DCell with the routing
algorithm DCellRouting (from [12]); we have chosen these
instantiations so that the different DCNs can be compared
on three different bases, namely them all having roughly
24K, 117K and 170K servers, respectively (so, we have
normalized against the number of servers). As usual, the
data in Table 7 has been derived using our tool INRFlow.

TABLE 7
Average path lengths and ABT: DPillarMin vs. FiConn vs. DCell

DPillarn,k # of av. pth. len. ABT
n k servers DPillarMin DPillarMin
12 5 38,880 4.68 12805.63
16 5 163,840 4.77 52952.94
18 4 26,244 3.77 9616.46
26 4 114,244 3.84 40637.47
48 3 41,472 2.90 18633.64
64 3 98,304 2.93 43653.12
FiConnn,k # of av. pth. len. ABT
n k servers TOR TOR
10 3 116,160 12.97 13026.18
24 2 24,648 6.56 5005.47
36 2 117,648 6.71 23694.75
40 2 177,240 6.74 35650.59
DCelln,k # of av. pth. len. ABT
n k servers DCellRouting DCellRouting
3 3 24,492 10.18 5475.43
4 3 176,820 11.29 33582.97

12 2 24,492 6.34 6968.73
18 2 117,306 6.56 31937.10

As can readily be seen, DPillar compares extremely well
with FiConn and DCell in terms of both average path length

and ABT (even though DCell would appear to have a
natural advantage over the other two DCNs as it involves
servers with more than two NIC ports).

We end with some comments on our very brief com-
parative evaluation. First, we reiterate that what is really
required is an extensive evaluation involving a range of
server-centric DCNs across a range of performance met-
rics. Second, we observe (in comparison with data in Ta-
bles 2 and 4) that the improvements made in using DPil-
larMin in the DCN DPillar, rather than DPillarSP, have re-
sulted in moving DPillar from only comparable with DCell
and FiConn to better than DCell and FiConn (at least in
terms of average paths length and ABT). Third, there is no
reason why a closer combinatorial scrutiny of both DCell
and FiConn might not result in new and better routing
algorithms than DCellRouting and TOR, respectively (just as
we have improved routing within DPillar within this paper).

8 CONCLUSIONS

In this paper we have: developed an optimal and practi-
cal single-path routing algorithm DPillarMin for the DCN
DPillar; shown that DPillar is a Cayley graph, and so
node-symmetric; and provided an exact formulation of the
diameter of DPillar. Our experimental results show not only
that DPillarMin can significantly reduce the average path
length of network traffic (up to 30%), but also that this
reduction results in a significant increase (more than 2×)
in terms of overall network throughput. Finally we showed
that the computational overhead of DPillarMin is negligible
and will barely affect the processing of network traffic: less
than a 6% increase in per-hop latency, which is more than
compensated by the reductions in path length.

In summary, we can claim that our proposed routing
algorithm can unleash a massively improved performance
to the DPillar DCN. Furthermore, we feel that there are other
areas where efficiency gains might be made; in particular,
with regard to multi-path routing. Of course, we reaffirm
our statement above that what also needs to be undertaken
is an holistic comparison of different (dual-port) server-
centric DCNs, with their different routing algorithms and
across a wide range of performance metrics, along with
the combinatorial study of DCNs different to DPillar with
a view to improving their routing algorithms.

ACKNOWLEDGEMENTS

All of the authors are supported by the EPSRC grants
EP/K015680/1 and EP/K015699/1 ‘Interconnection Net-
works: Practice unites with Theory (INPUT)’. Dr. Javier
Navaridas is supported by the European Union’s Horizon
2020 programme under grant agreement No. 671553 ‘ExaN-
eSt’. We are also grateful for the insightful comments of the
reviewers which helped to significantly improve this paper.

REFERENCES

[1] D. Abts, M.R. Marty, P.M. Wells, P. Klausler and H. Liu, “Energy
Proportional Datacenter Networks”, Proc. of 37th Ann. Int. Symp.
on Computer Architecture, 2010, pp. 338–347.

[2] H. Abu-Libdeh, P. Costa, A. Rowstron, G. OShea and A. Donnelly,
“Symbiotic Routing in Future Data Centers”, SIGCOMM Computer
Communication Review, vol. 40, no. 4, 2010, pp. 51–62.

14

[3] J.H. Ahn, N. Binkert, A. Davis, M. McLaren and R.S. Schreiber,
“HyperX: Topology, Routing, and Packaging of Efficient Large-
scale Networks”, Proc. of Conf. on High Performance Computing
Networking, Storage and Analysis, 2009, article no. 41.

[4] S. B. Akers and B. Krishnamurthy, “A Group-theoretic Model
for Symmetric Interconnection Networks”, IEEE Transactions on
Computers, vol. 38, no. 4, 1989, pp. 555–566.

[5] M. Al-Fares, A. Loukissas and A. Vahdat, “A Scalable, Commodity
Data Center Network Architecture”, SIGCOMM Computer Commu-
nication Review, vol. 38, no. 4, 2008, pp. 63–74.

[6] C. Camarero, C. Martinez and R. Beivide, “Lattice Graphs for
High-scale Interconnection Topologies”, IEEE Transactions on Par-
allel and Distributed Systems, vol. 26, no. 9, 2015, pp. 2506–2519.

[7] W.J. Dally and B.P. Towles, Principles and Practices of Interconnection
Networks, Morgan Kaufmann, 2004.

[8] A. Erickson, A. Kiasari, J. Pascual Saiz, J. Navaridas and I.A.
Stewart, “Interconnection Networks Research Flow Evaluation
Framework (INRFlow)”, Feb. 16, 2016. [Software]. Available:
https://bitbucket.org/alejandroerickson/inrflow. [Accessed: Feb.
22, 2016].

[9] A.W.-C. Fu and S.-C. Chau. “Cyclic-cubes: A New Family of Inter-
connection Networks of Even Fixed-degrees”, IEEE Transactions on
Parallel and Distributed Systems, vol. 9, no. 12, 1998, pp. 1253–1268.

[10] A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D.A. Maltz, P. Patel and S. Sengupta, “VL2: A Scalable and Flex-
ible Data Center Network”, SIGCOMM Computer Communication
Review, vol. 39, no. 4, pp. 51–62, 2009.

[11] D. Guo, T. Chen, D. Li, M. Li, Y. Liu and G. Chen, “Expandible and
Cost-effective Network Structures for Data Centers using Dual-
port Servers”, IEEE Transactions on Computers, vol. 62, no. 7, 2013,
pp. 1303–1317.

[12] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang and S. Lu, “DCell: A
Scalable and Fault-tolerant Network Structure for Data Centers”,
SIGCOMM Computer Communication Review, vol. 38, no. 4, 2008,
pp. 75–86.

[13] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang
and S. Lu, “BCube: A High Performance, Server-centric Network
Architecture for Modular Data Centers”, SIGCOMM Computer
Communication Review, vol. 39, no. 4, 2009, pp. 63–74.

[14] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee and N. McKeown, “ElasticTree: Saving Energy in Data
Center Networks”, Proc. 7th USENIX Conf. on Networked Systems
Design and Implementation”, 2006, pp. 249–264.

[15] F.T. Leighton, Introduction to Parallel Algorithms and Architectures:
Arrays. Trees. Hypercubes, Morgan Kaufmann, 1992.

[16] D. Li, C. Guo, H.Wu, K. Tan, Y. Zhang and S. Lu, “FiConn: Using
Backup Port for Server Interconnection in Data Centers”, Proc. of
INFOCOM, 2009, pp. 2276–2285.

[17] D. Li and J. Wu, “On Data Center Network Architectures for In-
terconnecting Dual-port Servers”, IEEE Transactions on Computers,
vol. 64, no. 11, 2015, pp. 3210–3222.

[18] Y. Liao, J. Yin, D. Yin and L. Gao, “DPillar: Dual-port Server
Interconnection Network for Large Scale Data Centers”, Computer
Networks, vol. 56, no. 8, 2012, pp. 2132–2147.

[19] Y. Liu, J.K. Muppala, M. Veeraraghavan, D. Lin and J. Katz,
Data Centre Networks: Topologies, Architectures and Fault-Tolerance
Characteristics, Springer, 2013.

[20] R.N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya and A. Vahdat, “Portland: A
Scalable Fault-tolerant Layer 2 Data Center Network Fabric”,
SIGCOMM Computer Communication Review, vol. 39, no. 4, 2009,
pp. 39–50.

[21] L.L. Peterson and B.S. Davie, Computer Networks, Fifth Edition: A
Systems Approach, Morgan Kaufmann, 2011.

[22] J.-Y. Shin, E.G. Sirer, H. Weatherspoon and D. Kirovski, “On
the Feasibility of Completely Wireless Datacenters”, IEEE/ACM
Transactions on Networking, vol. 21, no. 5, 2013, pp. 1666–1679.

[23] C. Wang, C. Wang, Y. Yuan and Y. Wei, “MCube: A High Perfor-
mance and Fault-tolerant Network Architecture for Data Centers”,
Proc. Int. Conf. on Computer Design and Applications, vol. 5, 2010, pp.
V5-423–V5-427.

[24] W. Xiao and B. Parhami, “A Group Construction Method with
Applications to Deriving Pruned Interconnection Networks”, IEEE
Transactions on Parallel and Distributed Systems, vol. 18, no. 5, 2007,
pp. 637–643.

Alejandro Erickson is a Postdoctoral Research
Associate at Durham University, UK, where he
does research on various topological aspects
of interconnection networks, with an emphasis
on applications in data centre networks. He re-
ceived his Ph.D. in Computer Science from the
University of Victoria, Canada, in 2013, and his
M.Math in Combinatorics and Optimization from
the University of Waterloo, Canada, in 2008.
Dr. Erickson has published in a broad range of
topics, including data centre networks, computa-

tional geometry, graph and matroid theory, enumerative combinatorics,
education, and mathematical art.

Abbas Eslami Kiasari received the BSc de-
gree in Electrical Engineering from the Ferdowsi
University of Mashhad, Iran, in 2003, the MSc
degree in Computer Engineering from the Sharif
University of Technology, Iran, in 2005, and the
PhD degree in Electronic and Computer Sys-
tems from KTH Royal Institute of Technology,
Sweden, in 2013. He is currently a Postdoc-
toral Research Associate at The University of
Manchester, UK, where he does research on
various aspects of interconnection networks. Dr.

Kiasari received a guest scholarship from the Swedish Institute (SI)
while a researcher at KTH in 2009. He served several journals and
conferences as a referee, including IEEE Transactions on Parallel and
Distributed Systems (TPDS), IEEE Transactions on Computers (TC),
IEEE Transactions on Computer-Aided Design of Integrated Circuit and
Systems (TCAD) and ACM Transactions on Embedded Computing Sys-
tems (TECS). His research interests include performance evaluation,
interconnection networks, computer architecture, and queueing theory.

Javier Navaridas is a Lecturer in Computer
Architecture in the Advanced Processors Tech-
nologies group at the University of Manchester,
UK. He obtained his PhD in Computer Engineer-
ing in 2009 from the University of the Basque
Country which was rewarded with an Extraordi-
nary Doctorate Award (top 5% theses). During
that period he held a pre-doctoral and a post-
doctoral grant with the Intelligent Systems Group
led by Prof. J.A. Lozano. He joined the University
of Manchester with a prestigious Newton Inter-

national Fellowship in 2010. His research interests include interconnec-
tion networks, parallel and distributed systems, performance evaluation,
simulation and modelling, computer architecture and engineering. Javier
is currently leading the workpackage on interconnects of the ExaNeSt
H2020 project, which aims to develop a novel architecture for Exascale
computing systems.

Iain A. Stewart received the MA in Mathematics
from Oxford University, UK, in 1983 and the PhD
in Mathematics from the University of London,
UK, in 1986. He has been Professor of Computer
Science at Durham University, UK, since 2002;
he was formerly Professor of Computer Science
at the University of Leicester, UK, from 1996-
2002 (he has been Head of Department at both
Leicester and Durham). His current research in-
terests lie in interconnection networks for parallel
and distributed computing but he has published

in computational complexity, logic and finite model theory, algorithmic
graph theory, theoretical aspects of artificial intelligence, and GPGPU
computing.

1

Supplemental Material for
“An Optimal Single-Path Routing Algorithm

in the Datacenter Network DPillar”

Alejandro Erickson, Abbas Kiasari, Javier Navaridas and Iain A. Stewart

✦

PROOF OF LEMMA 1

Lemma 1. The digraph DPillarn,k is a Cayley graph.

Proof: We first define a set of elements and then a
notion of multiplication on this set. Let t0, t1, . . . , tk−1 be
distinct symbols and for each i ∈ {0, 1, . . . , k − 1}, define

Gi = {tpi

i t
pi+1

i+1 . . . t
pk−1

k−1
t
p0

0 t
p1

1 . . . t
pi−1

i−1

: 0 ≤ pj ≤
n
2
− 1, for all j ∈ {0, 1, . . . , k − 1}}.

Define Gn
k = ∪k−1

i=0 Gi; so, note that |Gn
k | = k(n

2
)k. Define

Sa = {tqk−1
t00t

0
1 . . . t

0
k−2 : 0 ≤ q ≤ n

2
− 1};

Sb = {tq0t
0
1 . . . t

0
k−1 : 0 ≤ q ≤ n

2
− 1};

Sc = {t01t
0
1 . . . t

0
k−1t

q
0 : 0 ≤ q ≤ n

2
− 1};

Sd = {t00t
0
1 . . . t

q
k−1

: 0 ≤ q ≤ n
2
− 1}.

Define a right-multiplication ◦ of the elements of Gn
k by the

elements of S = Sa ∪ Sb ∪ Sc ∪ Sd as follows:

t
pi

i t
pi+1

i+1 . . . t
pk−1

k−1
t
p0

0 t
p1

1 . . . t
pi−1

i−1 ◦ tqk−1
t00t

0
1 . . . t

0
k−2

= t
pi−1+q

i−1 t
pi

i t
pi+1

i+1 . . . t
pk−1

k−1
t
p0

0 t
p1

1 . . . t
pi−2

i−2

t
pi

i t
pi+1

i+1 . . . t
pk−1

k−1
t
p0

0 t
p1

1 . . . t
pi−1

i−1 ◦ tq0t
0
1 . . . t

0
k−1

= t
pi+q
i t

pi+1

i+1 . . . t
pk−1

k−1
t
p0

0 t
p1

1 . . . t
pi−1

i−1

t
pi

i t
pi+1

i+1 . . . t
pk−1

k−1
t
p0

0 t
p1

1 . . . t
pi−1

i−1 ◦ t01t
0
2 . . . t

0
k−1t

q
0

= t
pi+1

i+1 . . . t
pk−1

k−1
t
p0

0 t
p1

1 . . . t
pi−1

i−1 t
pi+q
i

t
pi

i t
pi+1

i+1 . . . t
pk−1

k−1
t
p0

0 t
p1

1 . . . t
pi−1

i−1 ◦ t00t
0
1 . . . t

q
k−1

= t
pi

i t
pi+1

i+1 . . . t
pk−1

k−1
t
p0

0 t
p1

1 . . . t
pi−1+q

i−1 ,

with i, p0, p1, . . ., pk−1 and q as appropriate and with
addition on superscripts modulo n

2
.

We now extend the multiplication we have just defined
so that we make Gk

n into a group with a generating set
S0 that is a subset of S. Let 〈S〉 be the set of all elements

• Abbas Kiasari and Javier Navaridas are with the School of Computer
Science, University of Manchester, Oxford Road, Manchester M13 9PL,
U.K.
E-mail: {abbas.kiasari,javier.navaridas}@manchester. ac.uk

• Alejandro Erickson and Iain Stewart are with the School of Engineering
and Computing Sciences, Durham University, South Road, Durham DH1
3LE, U.K.
E-mail: {alejandro.erickson,i.a.stewart}@durham.ac.uk

generated by right-multiplication by elements of S. It is
trivial to show that this set is Gn

k ; that is,

Gn
k = {((. . . ((s1 ◦ s2) ◦ s3) . . .) ◦ si)

: i ≥ 1, sj ∈ S for j = 1, 2, . . . , i}.

Extend the multiplication ◦ to Gn
k by defining that no matter

how a multiplication of elements of S is bracketed, e.g., as
(s1 ◦ (s2 ◦ s3)) ◦ (s4 ◦ s5), the product is defined as that
obtained by multiplying on the right, e.g., as ((((s1 ◦ s2) ◦
s3) ◦ s4) ◦ s5). Consequently, we have now equipped Gn

k

with an associative multiplication ◦. It is trivial to check
that there is an identity in Gn

k (w.r.t. ◦; it is t00t
0
1 . . . t

0
k−1) and

also that every element of Gn
k has an inverse; furthermore,

every element of S has an inverse in S. Hence, Gn
k is a group

generated by the 2n− 2 elements of S0 = S \ {t00t
0
1 . . . t

0
k−1}

and S0 is closed under inverses. Let Gn
k (S) be the Cayley

graph of Gn
k w.r.t. the generating set S0.

Finally, we prove that the Cayley graph Gn
k (S0) is exactly

the same as DPillarn,k. In what follows, by DPillarn,k we
mean the digraph DPillarn,k. Define the mapping ϕ from
the nodes of Gn

k (S0) to the nodes of DPillarn,k by

ϕ(tpi

i t
pi+1

i+1 . . . t
pk−1

k−1
t
p0

0 t
p1

1 . . . t
pi−1

i−1) = (i, pk−1pk−2 . . . p0)

where i, p0, p1, . . ., pk−1 are as appropriate. As

t
pi

i t
pi+1

i+1 . . . t
pk−1

k−1
t
p0

0 t
p1

1 . . . t
pi−1

i−1 ◦ tqk−1
t00t

0
1 . . . t

0
k−2

= t
pi−1+q

i−1 t
pi

i t
pi+1

i+1 . . . t
pk−1

k−1
t
p0

0 t
p1

1 . . . t
pi−2

i−2 ,

this describes the a-edge of DPillarn,k from (i, pk−1pk−2 . . .

p0) to (i− 1, pk−1pk−2 . . . pi(pi−1 + q)pi−2 . . . p0). As

t
pi

i t
pi+1

i+1 . . . t
pk−1

k−1
t
p0

0 t
p1

1 . . . t
pi−1

i−1 ◦ tq0t
0
1 . . . t

0
k−1

= t
pi+q
i t

pi+1

i+1 . . . t
pk−1

k−1
t
p0

0 t
p1

1 . . . t
pi−1

i−1 ,

this describes the b-edge of DPillarn,k from (i, pk−1pk−2 . . .

p0) to (i, pk−1pk−2 . . . pi+1(pi + q)pi−1 . . . p0) when q > 0.
As

t
pi

i t
pi+1

i+1 . . . t
pk−1

k−1
t
p0

0 t
p1

1 . . . t
pi−1

i−1 ◦ t01t
0
1 . . . t

0
k−1t

q
0

= t
pi+1

i+1 . . . t
pk−1

k−1
t
p0

0 t
p1

1 . . . t
pi−1

i−1 t
pi+q
i ,

this describes the c-edge of DPillarn,k from (i, pk−1pk−2 . . .

p0) to (i+ 1, pk−1pk−2 . . . pi+1(pi + q)pi−1 . . . p0). As

t
pi

i t
pi+1

i+1 . . . t
pk−1

k−1
t
p0

0 t
p1

1 . . . t
pi−1

i−1 ◦ t00t
0
1 . . . t

q
k−1

= t
pi

i t
pi+1

i+1 . . . t
pk−1

k−1
t
p0

0 t
p1

1 . . . t
pi−1+q

i−1 ,

2

this describes the d-edge of DPillarn,k from (i, pk−1pk−2 . . .

p0) to (i, pk−1pk−2 . . . pi(pi−1 + q)pi−2 . . . p0) when q > 0.
Consequently, ϕ is an isomorphism of Gn

k (S0) to DPillarn,k
and the result follows.

MODELLING OTHER NETWORK CONFIGURATIONS:

JUMBO FRAMES AND 10-GBIT ETHERNET

While we were unable to carry out experiments with
more advanced datacenter networking equipment, such as
switches capable of dealing with jumbo frames or 10-Gbit
Ethernet NICs or switches, it should be possible to extrapo-
late their performance from the statistics we captured from
our experimental set-up. Having estimates for the latency
expected from these configurations is useful as they can be
seen as pathological cases in relation to the performance
gains inherent to DPillarMin. Using jumbo frames (that
is, frames with a payload of 9,000 bytes1, rather than the
standard 1,472 bytes) means that any routing algorithm is
executed less often and that the protocol- and propagation-
induced delays become less substantial when compared
with the data transmission delay. In our case, this means
that the overhead due to using DPillarMin becomes less
significant; consequently, the overall delay will be even
better than with standard frames. On the other hand, the
higher bandwidth of 10-Gbit (10×) equipment means that
the per-hop delay will be reduced which, in turn, means
that the time taken to undertake routing computations may
become dominant. However, according to our assessment
this will not be the case.

We now explain how we extrapolate the per-hop latency
and server-to-server latency for these technologies from the
latencies we measured empirically in Section 7.3 (that is, Ls,
Lp, Ld and Lr).

• The stack latency, Ls, should not change as it is due
to software executions at the server-side.

• The propagation latency, Lp, would barely be af-
fected by the bandwidth of the links, or the size of
the frames, but would be affected by the length of the
links or the transmission media used (copper/fibre).
For simplicity, we assume the propagation latency
does not vary.

• The data transfer latency depends on the transmis-
sion bandwidth and the size of the frame. For sim-
plicity, we assume perfect linear scaling of the per-
byte delay: 26 ns per byte for 1-Gbit Ethernet and 2.6
ns per byte for 10-Gbit Ethernet, multiplied by either
1 standard frame (1,472 bytes) or 1 jumbo frame
(9,000 bytes).

• There is no change to the average routing latency, Lr.

The extrapolation for 10-Gbit Ethernet (see Table 1)
suggests that, even though the per-hop delay might go up
significantly with faster networks, the great improvement
in path length achieved by DPillarMin still compensates
for this and provides an improvement in terms of overall
latency of between 20% and 23%. The use of jumbo frames

1. Different networking equipment may have different frame length
limits. For simplicity, we stick to a payload of 9,000 bytes, even though
some devices can handle even larger jumbo frames, e.g., Cisco devices
can typically handle up to 9,216 bytes.

alleviates the overhead incurred by using DPillarMin (see
Tables 2 and 3) and raises the improvement in terms of
overall latency up to 29% (1-Gbit Ethernet) and 24% (10-
Gbit Ethernet).

Further informal analysis using stack and propagation
delays that were one order of magnitude smaller than the
ones obtained in our empirical testing, suggested that with
standard frames the overall latency will still be reduced by
around 20 to 23% with 1-Gbit Ethernet and between 4% and
16% with 10-Gbit Ethernet in most of the cases. If jumbo
frames were considered then the stack and propagation
delays barely affect the overall latency so the figures remain
similar to those discussed above.

TABLE 1
Per-hop and overall latencies with 10-Gbit Ethernet and standard

frames.

DPillarn,k Lhop Lhop Lhop Ltotal Ltotal Ltotal

n k DPillarMin DPillarSP decl. DPillarMin DPillarSP improve.
16 4 41.76 37.15 12% 156.2 199.0 22%
32 3 39.12 36.76 6% 111.8 144.6 23%
48 3 39.13 36.66 7% 113.6 145.0 22%

TABLE 2
Per-hop and overall latencies with 1-Gbit Ethernet and jumbo frames.

DPillarn,k Lhop Lhop Lhop Ltotal Ltotal Ltotal

n k DPillarMin DPillarSP decl. DPillarMin DPillarSP improve.
16 4 270.30 265.69 2% 1011.0 1423.3 29%
32 3 267.66 265.30 1% 764.6 1043.5 27%
48 3 267.67 265.20 1% 777.3 1049.3 26%

TABLE 3
Per-hop and overall latencies with 10-Gbit Ethernet and jumbo frames.

DPillarn,k Lhop Lhop Lhop Ltotal Ltotal Ltotal

n k DPillarMin DPillarSP decl. DPillarMin DPillarSP improve.
16 4 61.20 56.58 8% 228.9 303.1 24%
32 3 58.56 56.19 4% 167.3 221.0 24%
48 3 58.56 56.09 4% 170.1 221.9 23%

