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Abstract

Methane (CH4) is a strong greenhouse gas known to have perturbed global climate in the past, especially when released in
large quantities over short time periods from continental or marine sources. It is therefore crucial to understand and, if possible,
quantify the individual and combined response of these variable methane sources to natural climate variability. However, past
changes in the stability of greenhouse gas reservoirs remain uncertain and poorly constrained by geological evidence. Here, we
present a record from the Congo fan of a highly specific bacteriohopanepolyol (BHP) biomarker for aerobic methane oxidation
(AMO), 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol), that identifies discrete periods of increased AMO as
far back as 1.2 Ma. Fluctuations in the concentration of aminopentol, and other 35-aminoBHPs, follow a pattern that
correlates with late Quaternary glacial-interglacial climate cycles, with highest concentrations during warm periods. We discuss
possible sources of aminopentol, and the methane consumed by the precursor methanotrophs, within the context of the Congo
River setting, including supply of methane oxidation markers from terrestrial watersheds and/or marine sources (gas hydrate
and/or deep subsurface gas reservoir). Compound-specific carbon isotope values of �30& to �40& for BHPs in ODP 1075
and strong similarities between the BHP signature of the core and surface sediments from the Congo estuary and floodplain
wetlands from the interior of the Congo River Basin, support a methanotrophic and likely terrigenous origin of the
35-aminoBHPs found in the fan sediments. This new evidence supports a causal connection between marine sediment BHP
records of tropical deep sea fans and wetland settings in the feeding river catchments, and thus tropical continental hydrology.
Further research is needed to better constrain the different sources and pathways of methane emission. However, this study
identifies the large potential of aminoBHPs, in particular aminopentol, to trace and, once better calibrated and understood,
quantify past methane sources and fluxes from terrestrial and potentially also marine sources.
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1. INTRODUCTION

Methane (CH4) is a potent greenhouse gas (GHG) esti-
mated to currently contribute about 20% to total global
atmospheric radiative forcing (IPCC, 2007). However, the
different pathways of biochemical cycling of methane,
which exert a primary control on atmospheric and marine
CH4 concentrations through its production and microbio-
logical consumption, remain poorly constrained. Methane
emissions from natural sources are significant, although
there are also large uncertainties (28–43%; Kroeger et al.,
2011 and references therein). For example, in the terrestrial
realm wetlands are the largest natural source of methane,
estimated to account for about 70% of natural emissions
and 40% of total emissions, with other main natural sources
being termites (13%), oceans (6%) and a range of others
(9%; Wuebbles and Hayhoe, 2002).

Furthermore, changes in the strength of tropical meth-
ane sources and sinks (i.e. wetlands, atmospheric oxida-
tion), have been shown to exert a significant control on
the atmospheric methane budget over the last 800,000 years
(e.g. Blunier et al., 1995; Loulergue et al., 2008; Singarayer
et al., 2011). Such changes were modulated by fluctuations
in the hydrological cycle and the extent of periglacial wet-
lands (Loulergue et al., 2008).

Methane production is also substantial in the marine
realm (Reeburgh, 2007), although under modern climate
conditions up to 90% of methane produced in aquatic envi-
ronments is believed to be oxidised before it reaches the
atmosphere, resulting in a significantly reduced contribu-
tion to total global GHG emissions. However, the efficiency
of this marine filter may not have been constant over time:
proportionally more marine-derived methane may have es-
caped from marine sediments and reached the atmosphere,
thus contributing to global greenhouse forcing, at least
transiently during periods of rapid climate change. The
wide range of relationships and feedbacks between marine
microbially-mediated turnover of methane, the Ocean-
Climate System and biogeochemical cycles are poorly con-
strained and further elucidation of the underlying drivers of
such processes is critical to improve reconstructions of past
climate drivers.

To date, research into the marine microbial oxidation of
CH4 has largely focussed on the anaerobic oxidation of
methane (AOM), as this process may remove as much
methane in shallow sediments as is oxidised aerobically in
terrestrial environments and the atmosphere (Boetius and
Suess, 2004 and references therein). However, aerobic
methane oxidation (AMO) has been proposed as playing
another key role by acting to remove methane from the
water column and in turn limiting emissions to the atmo-
sphere (Valentine et al., 2001; Abril et al., 2007). Despite
its potential importance in regulating marine methane
fluxes, the role of marine AMO in global methane and car-
bon cycling, as well as the occurrence and importance of
this process in the past, has received far less attention and
remains poorly constrained (e.g. Valentine, 2011).

The biochemical cycling of methane, both on land and
in the ocean, is believed to have been an important
component of the global carbon cycle since the Archaean
(e.g. Kasting, 2005; Eigenbrode et al., 2008) and is assumed
to have perturbed global climate in the past, especially
when released in large quantities over short time periods
(Dickens et al., 1995; Norris and Roehl, 1999; Dickens,
2003; Kennett et al., 2003; Kemp et al., 2005; Wagner
et al., 2007, 2008; Etiope et al., 2008; Zeebe et al., 2009;
De Conto et al., 2012). In addition to these punctuated per-
turbations in the past, ice-core records spanning the last
800,000 years reveal direct and periodic fluctuations in
atmospheric methane concentrations, with higher values
during interglacials (e.g. Loulergue et al., 2008). As such,
understanding methane cycling and how microbial methane
cycling and metastable CH4 reservoirs drive or respond to
changes in climate is crucial, as is the fate of methane once
released from such reservoirs. To that end it is necessary to
identify and develop diagnostic markers (proxies), which
can be applied to the sedimentary archive.

The main scope of this study is to present a novel bio-
marker concept to investigate microbial AMO in marine
sediments and its links with tropical continental hydrology
and climate. For this purpose we use the sediment section
covering the past 1.2 Ma from Ocean Drilling Program
(ODP) Site 1075, located on the lower Congo fan. This set-
ting is well-documented for methane seepage (Gay et al.,
2007) as well as for having a significant but variable terrig-
enous contribution that has been closely linked to orbitally-
driven variations in monsoonal forcing and tropical African
climate (Schneider et al., 1997), modulated by sea surface
temperature variations (Schefuß et al., 2003, 2005). These
features make the Congo Fan well suited to test a novel
biomarker proxy for AMO in the sedimentary record,
and discuss how possible variations in such biomarker con-
centrations are linked with Quaternary climate cycles and
possible marine and terrestrial sources.

2. BIOHOPANOID BIOMARKERS FOR

RECONSTRUCTING METHANE CYCLING IN THE

PAST

2.1. Biological sources and lipid composition

Aerobic methane oxidising bacteria of the Phylum pro-
teobacteria are divided into two groups with members of
the gammaproteobacteria collectively known as Type I
and the alphaproteobacteria, Type II (e.g. Hanson and
Hanson, 1996). These organisms produce a range of bio-
markers including common C30 hopanoids diploptene (I;
see appendix) and diplopterol (II) which are biosynthesised
by all hopanoid producers, not just methanotrophs (e.g.
Rohmer et al., 1984). Methanotrophs also produce a group
of distinctive extended hopanoids called bacteriohopan-
polyols (BHPs) with an amine functionality at the terminal
C-35 positions and 3, 4 or 5 additional hydroxyls (e.g.
Cvejic et al., 2000; van Winden et al., 2012a).

The hexafunctionalised BHP 35-aminobacteriohopane-
30,31,32,33,34-pentol (III, aminopentol) is considered spe-
cific to Type I aerobic methane oxidising bacteria based
on culture studies (e.g. Neunlist and Rohmer, 1985a; Zhou
et al., 1991; Cvejic et al., 2000; Talbot et al., 2001; van
Winden et al., 2012a). Two other aminoBHPs are
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commonly reported including the pentafunctionalised 35-
aminobacteriohopane-31,32,33,34-tetrol (V; aminotetrol),
produced by most Type I and II methanotrophs (Neunlist
and Rohmer, 1985a,b; Cvejic et al., 2000; Talbot et al.,
2001) with the exception of the Type II genera Methylocella

(van Winden et al., 2012a,b). Finally the tetrafunctionalised
35-aminobacteriohopane-32,33,34-triol (IV; aminotriol) is
synthesised by all Type II and some Type I methanotrophs
(e.g. Neunlist and Rohmer, 1985b; Cvejic et al., 2000;
Talbot et al., 2001; van Winden et al., 2012a); however, it
is also produced by a wide variety of other organisms
(e.g. Talbot and Farrimond, 2007 and references therein).

Some Type I methanotrophs also produce a group of
35-amino-BHPs methylated at the C-3 position (see
appendix) including 3b-methyl-35-aminobacteriohopane-
30,31,32,33,34-pentol (3-methylaminopentol; IIIc) and the
pentafunctionalised homologue 3-methylaminotetrol (Va).
Production of any C-3 methylated BHP appears to be lim-
ited to those organisms which contain the recently identified
hpnR gene (Welander and Summons, 2012). The hpnR gene
was identified in only 3 of 9 methanotroph genomes includ-
ing the Type I Methylococcus capsulatus, as expected based
on prior culture studies (e.g. Neunlist and Rohmer, 1985a;
Summons et al., 1994; Jahnke et al., 1999). Although not
currently present in the genomic database, the presence of
hpnR must also be inferred for the related Type I genera
Methylocaldum, for which there is supporting data from
culture studies demonstrating production of C-3 methyl-
ated aminotetrol and aminopentol (Cvejic et al., 2000).
The hpnR gene was also identified in two species of another
Type I genera Methylomicrobium (Welander and Summons,
2012); however, to the best of our knowledge, actual syn-
thesis of methylated BHPs has not been demonstrated for
this genera and the one literature report we know of identi-
fied production of aminotriol and aminotetrol but not
aminopentol (Talbot et al., 2001), so it may produce C-3
methylated homologues but possibly only of the tetra-
and pentafunctionalised aminoBHPs.

Although the identity of the other methanotroph gen-
omes interrogated in the Welander and Summons (2012)
study are not indicated, culture based investigations of
the BHP composition of other Type I species have revealed
that production of aminopentol without the co-occurrence
of the methylated homologue is a common feature, partic-
ularly in members of the Type I genera Methylomonas (e.g.
Neunlist and Rohmer, 1985a; Summons et al., 1994; Jahnke
et al., 1999; Talbot et al., 2001; van Winden et al., 2012a)
and more recently in Methylovulum sp. (van Winden
et al., 2012a). Furthermore, no Type II methanotrophs
have ever been found to make methylated BHPs (e.g. Neun-
list and Rohmer, 1985b; Cvejic et al., 2000; Talbot et al.,
2001; Van Winden et al., 2012a) and were not reported as
containing the hpnR gene (Welander and Summons, 2012).

Whilst a range of non-methanotroph sources are known
for aminotriol (e.g. Talbot and Farrimond, 2007 and refer-
ences therein), reports of additional sources of aminotetrol
(IV) are limited to low levels (aminotriol: aminotetrol in the
range 20–100:1) in a few members of the genus Desulfovib-

rio (deltaproteobacteria, sulphate reducing bacteria [SRB];
Blumenberg et al., 2006, 2009a, 2012). Trace levels of
aminopentol were also reported in one of these organisms
(D. salexigens, ratio aminotriol: aminopentol of 1352:1;
Blumenberg et al., 2012). Given the extremely low level of
aminopentol in D. salexigens the same authors stated in a
subsequent paper that aminopentol “remains an excellent
biomarker for Type I aerobic methanotrophs” (Berndmeyer
et al., 2013).

2.2. Aminopentol – a diagnostic marker for AMO in the

sedimentary record

The development of liquid chromatography-mass spec-
trometry techniques has allowed the direct identification
of intact biohopanoid structures including aminopentol in
bacterial cultures and various environmental matrices
(soils, peat, sediments, water column particulates (e.g.
Talbot et al., 2001; Talbot and Farrimond, 2007; Talbot
et al., 2008; Sáenz et al., 2011a; van Winden et al.,
2012a). Subsequently, the observation of aminopentol
(III) has been proposed as a diagnostic marker for Type I
methanotrophs and its occurrence in a range of settings
was used to infer AMO activity of Type I methanotrophs.
For example, it has been identified (without the
co-occurrence of the C-3 methylated homologue) in a wide
range of environmental samples including Antarctic lake
sediment where Methylomonas sp. DNA was also recovered
(Ace Lake; Coolen et al., 2008). Other examples include
Yangtze River Estuary sediments where peak aminopentol
concentrations were found precisely at the point in the river
where water column methane concentrations showed a ra-
pid decline (Zhu et al., 2010). Non-methylated aminopentol
was also reported in a range of other locations including: a
range of lake sediments but excluding sites with high sulfate
levels (Talbot et al., 2003; Talbot and Farrimond, 2007;
Coolen et al., 2008), Amazonian wetland, shelf and deep
sea fan sediments (Wagner et al., 2014), soils (e.g. Cooke,
2010), peat (Kim et al., 2011; van Winden et al., 2012a,b),
a hot spring microbial mat (Zhang et al., 2007), one sample
of River water from the Pacific coast of Panama (Sáenz
et al., 2011a) and the water column of the Baltic Sea
(Berndmeyer et al., 2013).

In combination with earlier work using less specific gas
chromatography techniques which allowed the BHPs to
be identified only at the level of degree of functionalisation
(tetra-, penta- or hexafunctionalised [e.g. IV, V, III respec-
tively]; e.g. Innes et al., 1997; Farrimond et al., 2000; Talbot
et al., 2003), it has repeatedly been demonstrated that hexa-
functionalised BHPs are only common and abundant in ter-
restrial systems. Conversely, tetrafunctionalised BHPs
always dominate in marine settings (e.g. Farrimond et al.,
2000; Watson, 2002; Blumenberg et al., 2009b, 2010; Sáenz
et al., 2011a,b).

In comparison to observations of aminopentol, reports
of 3-methylaminopentol (IIIc) (with or without 3-methy-
laminotetrol, Va) in modern samples are extremely limited,
including one lake sediment (Talbot and Farrimond, 2007),
a geothermal silica sinter deposit (Gibson et al., 2008) and
the water column of the Black Sea (Blumenberg et al.,
2007); although another study of Black Sea water column
samples found only the non-methylated aminopentol
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homologue (Wakeham et al., 2007) and aminopentol has
not been reported from Black Sea sediments (Blumenberg
et al., 2009b). This as yet unexplained miss-match between
observations of the C-3 methylated biohopanoids in mod-
ern studies and the more widespread reports of 3-methyl
degradation products (see Section 2.3) was first noted by
Farrimond et al. (2004).

2.3. C30 hopanoids and geohopanoid markers of AMO

The hopanoid biomarkers diploptene and diplopterol (I
and II respectively; see Appendix for structures) reported
from recent sediments, such as the Santa Barbara Basin
(northwestern Pacific; 44 ka; Hinrichs, 2001; Hinrichs
et al., 2003), the western North Pacific (Uchida et al.,
2004) and the Sea of Marmara (northeastern Mediterra-
nean; during the last deglaciation; Menot and Bard,
2010), have been used to infer methane cycling. However,
these biomarkers are not specific to aerobic methane oxidis-
ers as they are also produced by a variety of other organ-
isms (e.g. cyanobacteria, nitrogen-fixing bacteria; e.g.
Rohmer et al., 1984), and therefore complimentary, more
diagnostic evidence is required to confirm such a source,
such as a highly depleted carbon isotope composition of
the biomarkers.

Methanotrophs use different carbon assimilation path-
ways for methane with Type I methanotrophs using the
ribulose monophosphate (RuMP) pathway and Type II
methanotrophs using the serine pathway (e.g. Hanson and
Hanson, 1996). An additional group of Type I organisms
(formerly known as Type X), including Methylococcus

sp., use the RuMP pathway as well as the reductive pentose
phosphate and serine pathways (Jahnke et al., 1999). Differ-
ences in these assimilation pathways result in significant
variation in carbon isotope fractionation between the car-
bon source, which are also linked to the particular type of
methane monooxygenase enzyme (MMO) which is ex-
pressed by the organism. The membrane bound particulate
methane monooxygenase (pMMO) enzyme typically results
in greater fractionation leading to more depleted d13C lipid
values in Type I and X methanotrophs. Conversely, studies
have shown that lipids produced by Type II methano-
trophs, capable of expressing both pMMO and a soluble
form of the enzyme sMMO, can range from 10& enriched
to 12& depleted (Summons et al., 1994; Jahnke et al.,
1999). However, this differentiation between Type I and
Type II organisms can be further complicated by the fact
that some Type I Methylomonas-like species isolated from
a freshwater environment contained both pMMO and
sMMO (Auman et al., 2000; Auman and Lidstrom, 2002).

Hopanes, including C-3 methylated hopanes are the
defunctionalised diagenetic products of the BHPs (e.g.
Farrimond et al., 2004). They have been reported from
rocks dating back to the late Archean (e.g. Eigenbrode
et al., 2008) and, as for the C30 biohopanoids, in combina-
tion with 13C depleted carbon isotope values, have been
used as molecular evidence for AMO (e.g. Collister et al.,
1992). A particular focus has been marine cold seeps where
geohopanoids (hopanoic acid and hopanes) with a wide
range of depleted C isotope compositions have been
reported (�60 to <�110&; e.g. Burhan et al., 2002; Thiel
et al., 2003; Peckmann and Thiel, 2004; Birgel et al.,
2006a,b).

2.4. Summary for this study

Biological sources of the 3-methylhopanoids appear rel-
atively restricted (Welander and Summons, 2012) and when
supported by significantly depleted C isotope compositions
have been demonstrated to be useful indicators of AMO
(e.g. Collister et al., 1992; Burhan et al., 2002; Peckmann
and Thiel, 2004; Birgel et al., 2006a,b). However, these
compounds are in fact only produced by a small subset of
methanotrophs (Neunlist and Rohmer, 1985a; Cvejic
et al., 2000) and their precursor BHPs in modern systems
are proving to be highly elusive. Therefore in this study
we take the relatively novel approach of using aminopentol
(III) as a biomarker for Type I methanotrophs and AMO.

3. MATERIALS AND METHODS

3.1. Site location and sample description

ODP Site 1075 was drilled as part of Ocean Drilling
Program (ODP) Leg 175 and is situated on the Northern
part of the Congo deep-sea fan (4�47.11980S, 10�4.49890E;
Fig. 1) at 2996 m water depth (e.g. Wefer et al., 1998).
The collected sediments are bioturbated monotonous
greenish-grey clays. The age model for ODP 1075 was
adopted from Jahn et al. (2005) with the age assignment
of marine isotope stages and sub-stages according to
Lisiecki and Raymo (2005).

The sediment sample from the estuary of the Congo
River (‘Anker 24’) was taken as grab sample (Eisma
et al., 1978) and stored as dried sediment before analyses.
Additional lipid data were published earlier (Schefuß
et al., 2004).

Soil samples were collected from 22 sites spanning a
wide range of land cover types, ranging from scrub savan-
nah and grasslands, secondary forest and pristine tropical
mixed forest, to tropically seasonally flooded and swamp
forest environments within the Congo Basin (Fig 1;
Table S2). Surface soils (0–5 cm) were collected during the
months of November 2010 and August 2011. Sites were
located approximately 5–30 m from nearby streams and
rivers. Samples were wrapped in clean foil and shipped to
Newcastle University (UK) within three weeks of collec-
tion. Samples were stored frozen on arrival and were
freeze-dried and ground prior to lipid extraction.

Malebo Pool floodplain wetland sediments were col-
lected along a transect at three sites encompassing sediment
that is permanently flooded, sediment inundated during
high discharge months only and sediment from above the
seasonal high water point (Fig. 1). At each of the three sites
sediment was collected at two distinct depths (0–5 cm and
5–15 cm), i.e. a surface and sub-surface sample. Samples
were immediately frozen and shipped to the University of
Newcastle-upon-Tyne (UK). Previous work has shown that
OM exported from this site at the Malebo Pool is geochem-
ically similar to OM at the head of the estuary (�350 km



Fig. 1. Geographical location of the study site on the Congo deep sea fan. The map shows the location of Ocean Drilling Program (ODP) Site
1075 on the northern part of the Congo fan at 2995 m water depth as well as the locations of the estuarine and floodplain wetland sediment
and soil samples. The map was plotted using the planiglobe beta online plotting service (http://www.planiglobe.com/omc_set.html).
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downstream) and no major tributaries join the Congo River
between this site and the Atlantic Ocean (Spencer et al.,
2012).

3.2. Total organic carbon analysis

TOC of the ODP 1075 samples was measured as detailed
in Holtvoeth et al. (2001). TOC of the soils and Malebo
pool samples was measured at Newcastle University using
a LECO CS244 Carbon/Sulfur Analyser after removal of
inorganic carbon by treatment with hydrochloric acid.

3.3. Lipid extraction

Freeze-dried sediments and soils (ca. 3 g) were extracted
using a modified Bligh and Dyer extraction method as de-
scribed by Cooke et al. (2008). Material was extracted in
a Teflon centrifuge tube by adding a monophasic solution
of water/methanol (MeOH)/chloroform (4 ml:10 ml:5 ml).
The mixture was sonicated at 40 �C for 1 h followed by
shaking at room temperature for a further 2–4 h. The mix-
ture was then centrifuged at 12,000 rpm for 15 min and the
supernatant transferred to a second centrifuge tube. The
same monophasic solution was again added to the initial
tube and the extraction procedure repeated twice with the
supernatant decanted each time. Chloroform and water
(5 ml each) were added to the tubes containing the superna-
tants and these were centrifuged for 5 min to complete the
separation of the organic (chloroform) and MeOH/water
phases. The organic fractions were then transferred to a
round-bottomed flask and rotary evaporated to near dry-
ness, transferred to a glass vial using a solution of warm
(ca. 50 �C) chloroform/MeOH (2:1, v/v) and then evapo-
rated to dryness under a stream of N2 to yield the total lipid
extract (TLE). A 5a-pregnane-3b,20b-diol internal stan-
dard was added to the TLE, which was then split into three
equal aliquots following dilution with 5 ml chloroform/
MeOH (2:1, v/v; heated at 50 �C for 10 min).

3.4. Bacteriohopanepolyol analysis

An aliquot (one third) of the TLE was used for bacterio-
hopanepolyol (BHP) analysis: the aliquot was evaporated
to dryness under N2 and acetylated by adding acetic anhy-
dride and pyridine (1 ml each) and heating at 50 �C for 1 h
then left at room temperature overnight to yield acetylated
BHPs. The acetic anhydride and pyridine were removed un-
der a stream of N2 and the resulting acetylated extract was
dissolved in 1 ml MeOH/propan-2-ol (3:2, v/v).

BHP analysis was performed by reversed-phase high
performance liquid chromatography-atmospheric pressure
chemical ionisation-mass spectrometry (HPLC-APCI-MSn)
using a ThermoFinnigan surveyor HPLC system fitted with
a Phenomenex Gemini C18 column (150 mm; 3.0 mm i.d.;
5 lm particle size) and a security guard column cartridge
of the same material coupled to a Finnigan LCQ ion-trap

http://www.planiglobe.com/omc_set.html
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mass spectrometer equipped with an APCI source operated
in positive ion mode. Chromatographic separation was
accomplished at 30 �C with a flow rate of 0.5 ml.min�1

and the following mobile phase solvent gradient: 90% A,
10% B (0 min); 59% A, 1% B, 40% C (at 25 min); isocratic
to 45 min returning to the starting conditions in 5 min and
stabilising for 10 min (where A = MeOH, B = water and
C = propan-2-ol). APCI was achieved at 155 �C capillary
temperature and 490 �C APCI vaporiser temperature with
a corona discharge current of 8 lA, sheath and auxiliary
gas flow of 40 and 10, respectively (arbitrary units). MSn

analysis was carried out in data-dependent mode with three
scan events: SCAN 1: full mass spectrum, m/z 300–1300;
SCAN 2: data-dependent MS2 spectrum of most intense
ion from SCAN 1; SCAN 3: data-dependent MS3 spectrum
of most intense ion from SCAN 2. Detection was achieved
at an isolation width of m/z 5.0 and fragmentation with
normalised collisional dissociation energy of 35% and an
activation Q value (parameter determining the m/z range
of the observed fragment ions) of 0.15. The semi-
quantitative estimate of BHP concentrations was achieved
employing the characteristic base peak ion peak areas of
individual BHPs in mass chromatograms (from SCAN 1)
relative to the m/z 345 mass chromatogram base peak area
of the acetylated 5a-pregnane-3b,20b-diol internal stan-
dard. Averaged relative response factors relative to the
internal standard, determined from a suite of acetylated
BHP standards, were used to adjust the BHP peak areas.
Typical error in absolute quantification was ±20%, based
on selected replicate analyses and BHP standards of known
concentration (Cooke, 2010; van Winden et al., 2012a).

3.5. Conversion of BHPs to primary hopanols

Seven samples (Table 1) were selected for compound-
specific carbon isotope analysis. Highly functionalised BHPs
cannot be analysed directly by gas chromatography-isotope
ratio mass spectrometry (GC-IRMS) due to their low vola-
tility and high polarity. However, it is possible to analyse
the primary alcohols that are produced from BHP precursors
via periodic acid reduction followed by sodium borohy-
dride reduction (e.g. Crossman et al., 2001; Coolen et al.,
2008) which converts hexa-/penta-/tetrafunctionalised BHPs
Table 1
Selected samples from ODP 1075 subjected to compound specific stable

Sample Age (ka) Carbon isotope values (%, VPBD)

C30 C31

avg. S.D. avg. S.D.

3H1W 105 65.88 �38.9 0.6 N/Ab N/A
6H3W 105 372.7 �41.3 0.7 �39.1 1.4
6H7W 74 425.23 �40.3 0.7 �34.0 0.1
7H4W 5 481.38 �40.7 0.6 �34.3 0.8
7H6W 15 521.12 �40.2 0.7 �34.6 1.4
8H3W 65 580.41 �34.7 0.1 �36.6 1.0
8H7W 15 629.87 �37.9 0.2 �34.5 0.03

a Based on relative contribution of aminoBHP to total BHP (of each
respectively) based on LCMS analysis.

b N/A not analysed (due to low intensity and/or absence of peak).
to terminal C30/C31/C32hopanols, respectively as described in
detail below.

Periodic acid (H5IO6; 300 mg) and tetrahydrofuran/
water (8:1, v/v; 3 ml) were added to a TLE aliquot (1/3 of
total TLE) in a conical flask equipped with a magnetic stir-
rer. This was then stirred for 1 h to oxidise polyols to yield
aldehyde products. The solution was then transferred to a
separating funnel. The flask was rinsed with 10 ml distilled
water followed by 15 ml petroleum ether and these washes
were added to the funnel, which was then gently shaken.
The layers were allowed to separate and the upper (organic)
layer transferred to a round bottomed flask. This was re-
peated 3 times. The combined organic layers were rotary
evaporated to near dryness. Sodium borohydride (NaBH4;
100 mg) was added to the round bottomed flask, followed
by ethanol (3 ml) and a magnetic stirrer. This was stirred
for 1 h on a magnetic stirring plate to produce terminal
alcohols by reduction of the aldehydes. A solution of potas-
sium dihydrogen phosphate (KH2PO4; 15 ml; 100 mM) was
carefully added and the resultant solution transferred to a
100 ml separating funnel. Petroleum ether (15 ml) was
added and the funnel gently shaken. The layers were al-
lowed to separate and the upper (organic) layer transferred
to a round bottomed flask. This was repeated 3 times in to-
tal. The combined organic layers were rotary evaporated to
near dryness and transferred to a sample vial using dichlo-
romethane. The solvent was removed under N2 and the
hopanols were then acetylated using acetic anhydride and
pyridine as described in Section 3.4.

3.6. Compound-specific carbon isotope analysis

Compound-specific stable carbon isotope ratios were
determined for the acetylated terminal hopanols (produced
by the reactions described in Section 3.5) by gas chromatog-
raphy–combustion–isotope ratio mass spectrometry (GC–
C–IRMS) using a Thermo Trace Ultra GC with splitless
injection (280 �C) via a Combustion III interface linked to
a Thermo Delta V + IR-MS. Chromatographic separation
was achieved on a fused silica capillary column (30 m �
0.25 mm i.d.) coated with a 0.25 lm dimethyl polysiloxane
stationary phase (HP-5) with the following temperature
program: 50–200 �C at 15 �C/min (held for 1 min),
carbon isotope analysis.

% Hopanol derived from aminoBHPa

C32 C30 C31 C32

avg. S.D.

�30.3 0.4 78 N/A 17
�33.2 0.2 86 64 15
�33.2 0.7 74 80 15
�29.6 0.7 93 49 52
�35.0 1.0 83 60 34
�33.2 1.4 93 70 32
�31.7 1.2 78 55 21

degree of functionalisation: Hexa-, penta- and tetrafunctionalised
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200–250 �C at 10 �C/min (held for 1 min), 250–350 �C at
5 �C/min, followed by an isothermal for 8 min. Values,
measured in duplicate, are determined from a pulsed
reference gas calibrated from a reference Alkane A4
mixture with peak specific known isotopic values (Arndt
Schimmelmann, Indiana University, USA) and reported
in standard per mil notation (&) relative to Vienna PeeDee
Belemnite (VPDB); analytical precision on the basis of
replicate analysis of standards, was typically ±0.3& and
accuracy is represented by 1 sigma standard deviation
(Table 1). Measured d13C values were corrected to take into
account the added acetate moiety, the d13C value of which
was determined from an acetylated androstanol standard of
known isotopic composition. This approach assumes that
the fractionation of the acetate group during acetylation
is the same for the standard and the hopanols.

4. RESULTS

4.1. Bacteriohopanepolyol concentrations

A variety of fully functionalised BHPs have previously
been reported from ODP Site 1075 sediments, with abun-
dant BHPs in all samples (Cooke et al., 2008; Handley
et al., 2010). Here, we confirm that aminopentol (III) is
present in 120 of the 122 sediments analysed, as are the
other aminoBHPs aminotriol (IV) and aminotetrol (V;
Fig. 2) together with 2 other minor BHPs related to amin-
opentol (IIIa and IIIb; Table S1), up to 115 metres below
sea floor (mbsf) and an estimated age of ca. 1.2 Ma based
on the age model of Jahn et al. (2005). We did not find
any C-3 methylated hopanoids in this study (see also
Handley et al., 2010). No statistically relevant co-variation
is observed between aminopentol concentration and TOC
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Fig. 2. TOC and 35-AminoBHP concentrations from ODP Site 1075 on
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(R2 = 0.006, p = 0.392). Aminopentol concentrations vary
widely throughout the core, reaching several maxima of
ca. 170 lg gCorg

�1 (Fig. 2). Such values are an order of
magnitude greater than previously reported sedimentary
aminopentol concentrations in river and estuarine
sediments (Cooke et al., 2009; Zhu et al., 2010) and the
highest reported to date from any marine sediment.
Aminotriol concentrations are, generally, higher than
aminopentol, with maximum values reaching ca.
360 lg gCorg

�1 . Conversely, aminotetrol is present in subordi-
nate quantities, with concentrations consistently a factor of
ca. 5 lower than aminotriol. The concentrations of these
two 35-aminobacteriohopanepolyols also vary significantly
over the last 1.2 Myr and their changes generally mirror
those in aminopentol concentration (Fig. 2). Linear
regression of concentrations of aminopentol vs. aminotriol
and aminotetrol show highly significant correlations with
R2 values of 0.69 (p = <0.001) and 0.81 (p = <0.001),
respectively.

Within the uncertainties of accuracy of the age model
(Jahn et al., 2005) there appears to be a relationship be-
tween aminopentol concentrations and marine isotope
stages (MIS), which are defined by shifts in global ocean
oxygen isotopic composition (Lisiecki and Raymo, 2005):
concentrations are generally higher during interglacial
stages (Fig. 2). Some slight mismatches in the positioning
of the aminopentol maxima at the glacial/interglacial tran-
sitions (e.g. around 680 and 245 kyr) may arise due to the
limited resolution of the aminopentol record and limita-
tions inherent in the age model. It should also be noted that
the pronounced shifts in aminoBHP concentrations ob-
served in the Congo core are unlikely to be the result of a
preservational bias as the same relationship is also observed
if the aminoBHPs are plotted as a proportion of total BHPs
0 20 40 60

(d) Aminotetrol (µg.gCorg
-1)

0 100 200 300 400

(c) Aminotriol (µg.gCorg
-1)

the Congo deep sea fan from ca. 10 ka to 1.2 Ma. (a) TOC (%). (b)
mino-bacteriohopane-32,33,34-triol (aminotriol). (d) 35-Amino-

re expressed as weight per gram of sedimentary organic carbon
ssarily represent the complete absence of aminoBHPs but indicates

or bars represent analytical error of ±20% associated with the
acial marine oxygen isotope stages (MIS) as defined by Lisiecki and



Fig. 3. Cross-plot of d13C values of terminal hopanols produced by
periodic acid/sodium borohydride treatment with the % hopanol
derived from aminoBHPs. The % hopanol derived from an
aminoBHP precursor was estimated as the % contribution of each
aminoBHP to total BHPs of the same degree of functionality,
based on quantification using LC-MS. Error bars represent 1 sigma
standard deviation based on replicate analyses. The average d13Corg

value is the average of bulk organic carbon isotopic compositions
for 303 ODP Site 1075 samples from ca. 10 ka to 1.2 Ma
(Holtvoeth et al., 2001).
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(not shown). We argue that if diagenetic processes exerted a
significant influence on downcore changes in concentrations
they would likely affect structurally related BHPs similarly.
However, other BHP records (Handley et al., 2010) do not
mirror the trends observed in the aminoBHP records and
there is no indication of significant diagenetic overprinting
of other sedimentary BHP records at depth, except for the
more labile soil marker adenosylhopane as reported
previously (Cooke et al., 2008; Handley et al., 2010).

4.2. Compound-specific carbon isotope analysis

Hexa-, penta- and tetrafunctionalised biohopanoids
were converted to terminal C30, C31 and C32 hopanols,
respectively, for compound specific isotope analysis. The
measured value is therefore an integrated one for all con-
verted biohopanoids as well as free-hopanols possessing
the same degree of functionality, which were already pres-
ent in the sediment. Assuming a minimum contribution
from pre-existing free hopanols, the relative contribution
of 35-aminobacteriohopanepolyol to the total hopanol con-
centration can be estimated via quantification using LC-
MS. The measured hopanol d13C values are plotted against
the % contribution of amino-BHP to total BHPs of each
specific degree of functionality (Fig. 3). Hopanol d13C val-
ues decrease as the % contribution of aminoBHP to total
precursor BHPs increases (Fig. 3; Table 1) e.g. for the C30

hopanol, the most depleted values of around �41& are ob-
served when the aminopentol precursor contributes ca. 90%
of the total hexafunctionalised BHPs.

4.3. BHP composition of Congo surface estuarine, wetland

and soil samples

The BHP composition of one surface sediment sample
from the Congo River estuary, 3 surface and 3 subsurface
sediments from the Malebo Pool and 22 soils from the con-
tinental hinterland (see Fig. 1 for locations) was investi-
gated. All samples contain a wide variety of BHPs, with
similar compounds to those found in the ODP 1075 sedi-
ments (Cooke et al., 2008; Handley et al., 2010). Here we fo-
cus on the aminoBHPs only, which are present in all samples
(Table S2; Fig. 4). The BHP composition of the estuarine
and wetland sediment samples closely resembl that of the
Congo core sediments with strong contributions from ami-
notetrol and aminopentol relative to aminotriol, whereas
that of the soils shows marked differences with aminotriol
(Fig. 4) being by far the most dominant aminoBHP and with
aminopentol observed in only 7 of the 22 samples. Amin-
opentol was a significant component (>50 lg gC�1

org) in only
one soil (closed evergreen lowland forest sample C18B;
Table S2; Fig. 4) collected from a swampy area, approxi-
mately 2 m from a small 7 m wide river channel.

5. DISCUSSION

5.1. A 1.2 Myr record of aerobic methane oxidation intensity

As described above (Section 2.1), Type I methane
oxidising bacteria are the only know significant source of
aminopentol (III). The methanotrophic origin of the 35-
aminoBHPs is supported, although not finally conclusive,
by the compound-specific carbon isotope analyses. d13C
values of the hopanol derivatives with a primary hydroxyl
group decrease markedly when the % derived from amino-
BHP increases (Fig. 3), confirming that the aminoBHPs are
substantially more 13C-depleted than most other BHPs and
bulk organic matter (average d13Corg = �21&; Holtvoeth
et al., 2001).

The most negative carbon isotope values of ca. �41&

are not as negative as some previously reported values for
biohopanoids produced by aerobic methanotrophs (e.g.
Hinrichs, 2001; Coolen et al., 2008; Birgel et al., 2011),
but is equivalent to the most depleted values reported for
diploptene by Uchida et al. (2004) where they used varia-
tions between �41.0& and �27.9& to infer enhanced
incorporation of 13C depleted methane via methanotrophic
processes. However, we also postulate that a likely source
organism for the aminoBHPs in the Congo fan could be
members of the Type I genera Methylomonas given the sig-
nificant amount of aminopentol without the corresponding
C-3 methylated homologue (see Section 2.1). Although we
can only speculate, this could potentially include members
of this genera which can express both pMMO and sMMO
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(see Section 2.3), depending on prevailing conditions as
reported in freshwater isolates from Lake Washington
(Auman et al., 2000; Auman and Lidstrom, 2002). Previous
studies of Type II methanotrophs using sMMO have shown
that their lipid carbon isotope compositions can be much
more variable potentially resulting in 13C enrichment as
well as depletion (Jahnke et al., 1999). The studies of Type
II organisms also showed that the type of MMO expressed
had no effect on the BHP distribution (Jahnke et al., 1999).
It may therefore be possible that the limited 13C depletions
observed in our study are at least partially the result of BHP
production by sMMO-expressing aminopentol producers
as no difference in BHP composition was observed in stud-
ies of Type II organisms when expressing sMMO vs.
pMMO (Summons et al., 1994; Jahnke et al., 1999).

To the best of our knowledge there is no data on meth-
ane carbon isotope composition from the Congo system
(river and/or wetlands). Tyler et al. (2007), report typical
values of �56& for swamps and marshes and �59& for
“bogs, fens and lakes” at latitudes below 60�N, although
biogenic methane produced locally under substrate limiting
conditions or by methylotrophic methanogenesis may be
somewhat enriched (in the region of those reported for ther-
mogenic methane (�50& to �30&; Jahnke et al., 1999 and
references therein). At this time we can only speculate if any
of these values might be representative for our source areas
but if valid, then we would not expect the highly depleted
values observed previously in other settings including mar-
ine cold seeps (typically in the range �65& to �110&; e.g.
Collister et al., 1992; Burhan et al., 2002; Thiel et al., 2003;
Birgel et al., 2006a,b). However, less depleted d13C values
between �31& and �40&, for example, have recently been
reported for hopanoids with an inferred methanotrophic
origin from peat bogs (van Winden et al., 2010), demon-
strating the wide range of negative carbon isotope signa-
tures derived from methanotrophs occurring in natural
samples.

The strong correlation between the different aminoBHP
records (Fig. 2) combined with the carbon isotopic values
suggest that, although other sources cannot be discounted
entirely, aminotriol and aminotetrol are likely primarily
derived from the same source organism as aminopentol,
or organisms that respond in similar ways to changes in
environmental conditions. As aerobic methanotrophic bac-
teria are the only significant source of aminopentol (Cvejic
et al., 2000; van Winden et al., 2012a) and, at least partially,
aminotetrol and aminotriol, we conclude that changes in
concentration of these biomarkers in the Congo sediments
are mainly proportional to changes in methanotrophic
biomass and thus the intensity of aerobic methane
oxidation. Consequently, the intervals of increased
sedimentary aminopentol concentration are interpreted as
periods of increase in aerobic methanotroph activity,
although no quantitative estimates are currently possible.

Fluctuations in the intensity of aerobic methane oxida-
tion appear to follow the pattern of late Quaternary
glacial-interglacial climate cycles and marine isotope stages
(Fig. 2; based on the age model of Lisiecki and Raymo,
2005). Within the limitations of resolution of our amino-
pentol record, the highest activity is observed during inter-
glacials, possibly focussed to the beginning of interglacials
(near or at Terminations) when temperature and sea level
rose at the highest rates. This relationship is somewhat less
clear in the deeper sections of the core, which may also be
due to larger uncertainties in the age model in this part of
the core and/or the more sparse data coverage.
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We recognise that aminopentol concentration is not gen-
erally elevated during MIS 3, compared to other interglacial
periods. It has been proposed that MIS 3 was generally less
pronounced than other interglacials (e.g. Shackleton et al.,
1990), suggesting that the methane cycling mechanism
responsible for the aminopentol response in the sediments
may also have been attenuated, in comparison to other
interglacials. If correct, this suggests a causal link between
shifts in Quaternary climate and aerobic methane oxidation
intensity.

5.2. Possible sources of the methane oxidation signatures on

the Congo fan

Considering the location of ODP Site 1075, aminopen-
tol, and other BHPs, may have an allochthonous terrige-
nous or an autochthonous marine origin, or a
combination of both. We therefore discuss possible sources
of the aminopentol and, by association, the bacteria from
which it was derived.

5.2.1. Aerobic methane oxidation on land

Aerobic methane oxidation is a widespread process in
the terrestrial realm (e.g. Hanson and Hanson, 1996) and
aminopentol has been reported from a range of continental
environments, including soils (Cooke, 2010) peat bogs (van
Winden et al., 2012a,b), river sediments (Cooke et al., 2009;
Zhu et al., 2010) and lakes (Talbot and Farrimond, 2007;
Coolen et al., 2008). The elevated BHP concentrations ob-
served in the Congo core are uncommon in marine sedi-
ments and BHP concentrations are typically greater in
estuarine and coastal sediments and waters than in the open
ocean (Zhu et al., 2011; Sáenz et al., 2011a). In such set-
tings, surface sediment concentrations usually decrease
markedly with distance from the coast (Zhu et al., 2010,
2011; Doğrul Selver et al., 2012). A terrestrial source for
aminopentol must therefore be considered very likely.

The full sedimentary aminoBHP composition provides
insight into this possible terrestrial source. We compare
the aminoBHP composition for all samples from the Congo
core with that of the surface sediment sample from the Con-
go estuary, the 6 floodplain wetland sediments and 22 soil
samples from throughout the Congo River Basin (Fig. 4).
The BHP distribution of the soils from the hinterland is
markedly different to that from the Congo fan sediments,
with the exception of one soil from swampy ground (sample
C18B, Table S2), implying that sedimentary BHPs in the
estuary and at Site 1075 are not primarily derived from soil
settings. The aminoBHP composition of the 6 floodplain
wetland sediments are, however, more closely related to
the composition of ODP 1075 (Fig. 4), although there are
some variations, particularly in the proportion of aminote-
trol (V) which is always a minor component (and frequently
absent) throughout the core when compared to aminotriol
and aminopentol (See Fig. 2). A terrestrial source is, how-
ever, indeed supported by compound-specific carbon
isotope data as their signatures are too heavy for a purely
marine microbiological source (about �40& as opposed
to <�60&; e.g. Jahnke et al., 1995; Burhan et al., 2002;
Peckmann and Thiel, 2004; Birgel et al., 2006a,b).
Consequently, terrestrial BHP sources other than soils
must be considered. The Congo River Basin is associated
with a complex system of inland waters, seasonally inun-
dated wetlands and includes the World’s largest swamp for-
est found within its central depression (Cuvette Congolaise
or Cuvette Centrale) and the Malebo Pool (Fig. 1), close to
the outflow of the Congo River where organic matter can
be produced, stored, degraded and ultimately exported to
the Atlantic Ocean (Spencer et al., 2013). These processes
in the Congo River Basin and their integrated export signal
are poorly constrained at the moment. However, floodplain
lakes and seasonally inundated wetland systems are wide-
spread across all terrestrial ecosystems including the tropi-
cal Congo (Fig. 1; Spencer et al., 2013) and Amazon
(Melack and Hess, 2010) Basins. For the latter, first BHP
signatures have recently been reported and linked with mar-
ine sedimentation on the Holocene to deglacial shallow and
deep Amazon fan (Wagner et al., 2014). Comparable and
highly invariant BHP compositions were observed in two
marine sediment records, with high relative abundance of
C-35 amino-BHPs, including aminopentol, that ranged be-
tween 40% and 50% of all BHPs. The strong similarity in
BHP composition in marine and floodplain sediments was
used to suggest that BHPs measured in the marine sedi-
ments have initially been produced within continental wet-
land regions and therefore document export from terrestrial
wetland regions to the marine environment, both during re-
cent and past glacial climate conditions.

Previous studies have proposed that variations in the
hydrological cycle at low latitudes are the dominant control
on atmospheric methane levels due to expansion/
contraction of tropical and boreal wetlands (e.g. Blunier
et al., 1995; Fischer et al., 2008; Loulergue et al., 2008).
We consequently propose that wetland areas, one apparent
source of the observed aminoBHP signatures, would have
been expanded during more humid (interglacial) conditions
concurrent with enhanced precipitation and river outflow to
the shelf and deep fan. At this point it is not yet possible to
deconvolute both controls, but we suggest that expansion of
wetland environments during humid climate periods may
have been more important than enhanced runoff, consider-
ing that large tropical rivers constantly export large volumes
of freshwater and organic matter to the coastal ocean, irre-
spective of glacial or interglacial climate conditions.

5.2.2. Aerobic methane oxidation from marine sources

Alternatively, or in addition, the aminopentol record
from the Congo fan may represent an autochthonous mar-
ine signal. However, to the best of our knowledge there are
no reports of aminopentol from other marine sites such as
cold seeps (including cold seep mussel gill symbionts) where
only tetra- and pentafunctionslised biohopanoids have been
reported, including but limited to aminotriol and aminote-
trol (e.g. Jahnke et al., 1995; Burhan et al., 2002; Pancost
et al., 2005; Birgel et al., 2011). If there is a marine source
of aminopentol, it could be interpreted as an indirect record
of methane emission intensity into the oxic bottom and/or
pore water during or slightly after sediment deposition. The
inferred increase in shallow pore water or bottom water
column methane concentrations could be the result of an
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increase in sedimentary methanogenesis, linked to high sur-
face water productivity and elevated OM flux to the sedi-
ments. The Congo records, however, do not show a clear
correlation between sedimentary total organic carbon
(TOC) concentration and glacial-interglacial climate cycles
(Fig. 2; Holtvoeth et al., 2001), driven by fluctuations in
productivity (Schneider et al., 1997) in response to varia-
tions in upwelling intensity and nutrient availability
(Schneider et al., 1994; Holmes et al., 1997; West et al.,
2004). We therefore conclude that changes in productivity
and associated increases in organic carbon flux and shallow
sedimentary methanogenesis are unlikely to be the primary
cause for the observed fluctuations in methane oxidation
intensity.

A second potential marine methane source is deep sub-
surface gas reservoirs. There is ample evidence for seafloor
methane seepage in the Congo fan region based on pock-
mark structures (Gay et al., 2006a; Sahling et al., 2008).
Giant structures of over 800 m in diameter have been re-
ported that correlate with elevated methane concentrations
in overlying waters (up to 20 lmol/l; Gay et al., 2006b) and
authigenic carbonate precipitates (Feng et al., 2010). Gay
et al. (2007) demonstrated that most of the pockmarks on
the deeper Congo Fan are currently dormant, but that they
were periodically active in the past (see Noethen and
Kasten, 2011 for discussion), possibly connecting to gas
sources in the deep subsurface. The episodic nature of such
outgassing events, however, makes a direct link to the ob-
served glacial-interglacial climate variability unreasonable.
However, there is currently no biohopanoid data from
any pockmarks available to support or refute this idea.

A third and final potential marine source for methane
outgassing is the presence of gas hydrates, which have been
inferred on the Northern Congo fan from mud volcanoes
and along the Congo continental slope near the presence
of pockmark structures (Charlou et al., 2004; Sultan
et al., 2004). Gas hydrates have also been recovered from
the shallow subsurface at water depths of 3100 m in the
vicinity of ODP Site 1075 (Sahling et al., 2008). Considering
the observed stratigraphic relationship between aminopen-
tol concentrations and late Quaternary climate, a shallow
gas hydrate source would be consistent with enhanced
methane emission into the aerobic water column especially
during early interglacial periods, assuming that the AOM
filter (see Jorgensen and Kasten, 2006 for further informa-
tion) was not quantitative in the subsurface at temporarily
very high methane fluxes from an unstable gas hydrate
layer. Still, even if a gas hydrate source of the methane
seems feasible within the Congo fan area, it must be consid-
ered that ODP Site 1075 is situated at 3000 m water depth,
which under modern conditions is within the lower part of
the hydrate stability zone and further discussion is beyond
the scope of this study.
6. CONCLUSIONS

This study confirms molecular evidence for AMO, in the
form of specific aminoBHPs produced by aerobic methan-
otrophs, in marine sediments from the Congo deep sea
fan (ODP Site 1075) dating back to 1.2 Ma. Our record
from the Congo fan is the first to document aerobic meth-
ane oxidation over such an extended time interval in this
way and highlights natural variability in methane emission
and cycling in the past. At this point we cannot categori-
cally identify the source of the molecular signature with
absolute confidence, but available data favour a continental
source of the BHP signals in the Congo deep sea fan sedi-
ments. The exact origin of the BHP signature in the Congo
River Basin is difficult to constrain, but close similarities be-
tween average BHP signatures in one estuarine sample from
the Congo mouth and the fan sediments with those from
tropical floodplain wetland sediments from the interior of
the Basin strongly point towards wetland areas as the most
likely source environment. At this point we cannot exclude
additional in situ production of aminoBHPs in aerobic mar-
ine surface sediments and/or the overlying water column
linked to short periods of enhanced destabilisation of shal-
low subsurface marine gas hydrates, however, there is no
direct evidence to support such a source and mechanism.
With the primary scope of this study being to introduce a
new molecular proxy for methane cycling from the sedi-
mentary record, more systematic studies are required to fur-
ther constrain the variability of BHP composition and
isotopic signatures within different source areas, both mar-
ine and terrestrial, and associated rates of methane flux.
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APPENDIX A.

All BHP side structures shown (III, IV, V) have previ-
ously been unambiguously identified by NMR and side
chain stereogenic centres determined by ORD measure-
ments for all three mentioned aminopolyols (Zhou et al.,
1991). When identified in this study using LC-MS only,
where stereochemistry cannot be confirmed, we have as-
sumed the structure to be the same as that previously char-
acterised but the occurrence of additional/alternative
isomers cannot be excluded. Structure IIIa includes double
bond at either position C-6 or C-11 (cf. Cvejic et al., 2000).
Structure, IIIb is a novel, early eluting (on reversed phased
HPLC) isomer of aminopentol (III) proposed to comprise 2
hydroxyl groups located on one C atom which hinders full
acetylation (see van Winden et al., 2012a).
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APPENDIX B. SUPPLEMENTARY DATA

Supplementary data associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/
j.gca.2014.02.035.
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methane oxidation in an estuarine turbidity maximum. Limnol.

Oceanogr. 52, 470–475.
Auman A. J., Stolyar S., Costello A. M. and Lidstrom M. E. (2000)

Molecular characterisation of methanotrophic isolates from
freshwater lake sediment. Appl. Environ. Microbiol. 66, 5259–5266.

Auman A. J. and Lidstrom M. E. (2002) Analysis of sMMO-
containing Type I methanotrophs in Lake Washington sedi-
ment. Environ. Microbiol. 4, 517–524.

Berndmeyer C., Thiel V., Schmale O. and Blumenberg M. (2013)
Biomarkers for aerobic methanotrophy in the water column of
the stratified Gotland Deep (Baltic Sea). Org. Geochem. 55,
103–111.

Birgel D., Thiel V., Hinrichs K.-U., Elvert M., Campbell K. A.,
Reitner J., Farmer J. D. and Peckmann J. (2006a) Lipid
biomarker patterns of methane-seep microbialites from the
Mesozoic convergent margin of California. Org. Geochem. 37,
1289–1302.

Birgel D., Peckmann J., Klautzsch S., Thiel V. and Reitner J.
(2006b) Anaerobic and aerobic oxidation of methane at
late cretaceous seeps in the western interior seaway, USA.
Geomicrobiol J. 23, 565–577.
Birgel D., Feng D., Roberts H. H. and Peckmann J. (2011)
Changing redox conditions at cold seeps as revealed by
authigenic carbonates from Alaminos Canyon, northern Gulf
of Mexico. Chem. Geol. 285, 82–96.
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Cvejic J. H., Bodrossy L., Kovács K. L. and Rohmer M. (2000)
Bacterial triterpenoids of the hopane series from the methan-
otrophic bacteria Methylocaldum spp.: phylogenetic implica-
tions and first evidence for an unsaturated
aminobacteriohopanepolyol. FEMS Microbiol. Lett. 182, 361–
365.

De Conto R., Galeotti S., Pagani M., Tracy D., Schaefer K., Zhang
T., Pollard D. and Beerling D. J. (2012) Past extreme warming
events linked to massive carbon release from thawing perma-
frost. Nature 484, 87–92.

Dickens G. R., O’Neil J. R., Rea D. K. and Owen R. M. (1995)
Dissociation of oceanic methane hydrate as a cause of the
carbon isotope excursion at the end of the Paleocene. Paleoce-

anography 10, 965–971.
Dickens G. R. (2003) Rethinking the global carbon cycle with a

large, dynamic and microbially mediated gas hydrate capacitor.
Earth Planet. Sci. Lett. 213, 169–183.
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J. S., Talbot H. M. and Woebken D. (2007) Microbial ecology
of the stratified water column of the Black Sea as revealed by
a comprehensive biomarker study. Org. Geochem. 38, 2070–
2097.

Watson D. F. (2002) Environmental distribution and sedimentary
fate of hopanoid biological marker compounds. Ph. D. Thesis,
University of Newcastle, UK.

Wefer G., Berger W. H. and Richter C., et al. (1998) Proceedings of
the ODP, Initial Reports College Station, Texas (Ocean
Drilling Program), Vol. 175, 49–86. doi:10.2973/odp.proc.ir.
175.103.1998.

Welander P. V. and Summons R. E. (2012) Discovery, taxonomic
distribution, and phenotypic characterization of a gene required
for 3-methylhopanoid production. Proc. Natl. Acad. Sci. USA

109, 12905–12910.
West S., Jansen J. H. F. and Stuut J.-B. (2004) Surface water

conditions in the Northern Benguela Region (SE Atlantic)
during the last 450 ky reconstructed from assemblages of
planktonic foraminifera. Mar. Micropaleontol. 51, 321–344.

Wuebbles D. J. and Hayhoe K. (2002) Atmospheric methane and
global change. Earth Sci. Rev. 57, 177–210.

Zhang C. L., Huang Z., Li Y.-L., Romanek C. S., Mills G., Gibson
R. A., Talbot H. M., Wiegel J., Noakes J., Culp R. and White
D. C. (2007) Lipid biomarkers, carbon isotopes and phyloge-
netic characterisation of bacteria in California and Nevada hot
springs. Geomicrobiol J. 24, 519–534.

Zeebe R. E., Zachos J. C. and Dickens G. R. (2009) Carbon
dioxide forcing alone insufficient to explain Palaeocene-Eocene
Thermal Maximum warming. Nat. Geosci. 2, 576–580.

Zhou P., Berova N., Nakanishi K., Knani M. and Rohmer M.
(1991) Microscale CD method for determining absolute con-
figurations of acyclic amino tetrols and amino pentols. Struc-
tures of aminobacteriohopanepolyols from the methylotrophic
bacterium Methylococcus luteus. J. Am. Chem. Soc. 113, 4040–
4042.

Zhu C., Talbot H. M., Wagner T., Pan J.-M. and Pancost R. D.
(2010) Intense aerobic methane oxidation in the yangtze
estuary: a record from 35-aminobacteriohopanepolyols in
surface sediments. Org. Geochem. 41, 1056–1059.

Zhu C., Talbot H. M., Wagner T., Pan J.-M. and Pancost R.
D. (2011) Distribution of hopanoids along a land to sea
transect: implications for microbial ecology and the use of
hopanoids in environmental studies. Limnol. Oceanogr. 56,
1850–1865.

Associate editor: Jochen J Brocks

http://refhub.elsevier.com/S0016-7037(14)00144-6/h0415
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0415
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0415
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0420
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0420
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0420
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0420
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0420
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0425
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0425
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0425
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0430
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0430
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0430
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0430
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0540
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0540
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0540
http://dx.doi.org/10.1029/2006JD0072311
http://dx.doi.org/10.1029/2006JD0072311
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0440
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0440
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0440
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0440
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0445
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0445
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0445
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0445
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0445
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0450
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0450
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0450
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0450
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0450
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0455
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0455
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0455
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0455
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0460
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0460
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0465
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0465
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0465
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0465
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0470
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0470
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0470
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0470
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0475
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0475
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0475
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0475
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0475
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0475
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0475
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0545
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0545
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0545
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0545
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0545
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0485
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0485
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0485
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0485
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0485
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0485
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0500
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0500
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0500
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0500
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0505
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0505
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0505
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0505
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0510
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0510
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0515
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0515
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0515
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0515
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0515
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0520
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0520
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0520
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0525
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0525
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0525
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0525
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0525
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0525
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0530
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0530
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0530
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0530
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0535
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0535
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0535
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0535
http://refhub.elsevier.com/S0016-7037(14)00144-6/h0535

	Variability in aerobic methane oxidation over the past 1.2Myrs recorded in microbial biomarker signatures from Congo fan sediments
	1 Introduction
	2 Biohopanoid biomarkers for reconstructing methane cycling in the past
	2.1 Biological sources and lipid composition
	2.2 Aminopentol – a diagnostic marker for AMO in the sedimentary record
	2.3 C30 hopanoids and geohopanoid markers of AMO
	2.4 Summary for this study

	3 Materials and methods
	3.1 Site location and sample description
	3.2 Total organic carbon analysis
	3.3 Lipid extraction
	3.4 Bacteriohopanepolyol analysis
	3.5 Conversion of BHPs to primary hopanols
	3.6 Compound-specific carbon isotope analysis

	4 Results
	4.1 Bacteriohopanepolyol concentrations
	4.2 Compound-specific carbon isotope analysis
	4.3 BHP composition of Congo surface estuarine, wetland and soil samples

	5 Discussion
	5.1 A 1.2Myr record of aerobic methane oxidation intensity
	5.2 Possible sources of the methane oxidation signatures on the Congo fan
	5.2.1 Aerobic methane oxidation on land
	5.2.2 Aerobic methane oxidation from marine sources


	6 Conclusions
	Acknowledgements
	Appendix A.
	Appendix B Supplementary data
	Appendix B Supplementary data
	References


