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We calculate the two-loop contributions from a modified trilinear Higgs self-interaction, κλλSMvh3, to
the electroweak oblique parameters S and T. Using the current bounds on S and T from electroweak
measurements, we find the 95% C.L. constraint on the modified trilinear coupling to be −14.0 ≤ κλ ≤ 17.4.
The largest effects on S and T arise from two insertions of the modified trilinear coupling that result in
T=S≃ −3=2; remarkably, this is nearly parallel to the axis of the tightest experimental constraint in the S-T
plane. No contributions to S and T arise from a modified Higgs quartic coupling at two-loop order. These
calculations utilized a gauge-invariant parametrization of the trilinear Higgs coupling in terms of higher-
dimensional operators ðH†HÞn with n ≥ 3. Interestingly, the bounds on κλ that we obtain are comparable to
constraints from di-Higgs production at the LHC as well as recent bounds from single Higgs production at
the LHC.
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I. INTRODUCTION

With the Higgs boson discovered [1,2], a major goal for
current and future high-energy experiments is to provide
precision measurements of Higgs couplings in order to
thoroughly test the Standard Model and uncover any
deviations. A key ingredient to the Higgs mechanism [3,4]
is the shape and structure of the scalar potential, which, after
spontaneous symmetry breaking, gives rise to trilinear and
quartic Higgs self-interactions. The self-couplings of the
Higgs boson are, at present, the least-constrained Higgs
interactions of the StandardModel. This motivates exploring
a variety of techniques using a wide array of experimental
data to constrain them. In this paper, we evaluate how well
electroweak precision data, expressed using the electroweak
oblique parameters S and T [5,6], can constrain modifica-
tions of the trilinear Higgs self-interaction.
In the Standard Model (SM), the coefficients governing

the shape of the scalar potential are determined by well-
measured parameters in the broken phase—the vacuum
expectation value and the Higgs boson mass. In order to
study deviations from the SM, we consider a modified
Higgs potential,

VmodðhÞ ⊃
m2

h

2
h2 þ κλλSMvh3 þ κ4

λSM
4

h4; ð1:1Þ

where only mh ≃ 125 GeV has been directly experimen-
tally measured. In general, new physics that would result in
modifications to the Higgs potential would also cause
modifications to other couplings of the Standard Model.
In this paper, we consider only the effects of modifying of
the trilinear and quartic couplings in isolation from the
other Standard Model couplings. This is reasonable if we
can formulate these modifications in a gauge-invariant way,
and we can understand the impact of possible operator
mixing through the renormalization group.
The formulation we use to implement the modified

Higgs potential in Eq. (1.1) is to add gauge-invariant
higher-dimensional operatorsO2n ¼ −ðH†HÞn=Λ2n−4 with
cutoff scale Λ. It will be convenient to write the coefficient
as 1=Λ2n−4 ≡ c̄2nλSM=v2n−4 (see e.g., Refs. [7,8]). In this
formulation, the operators O2n only affect the scalar
potential, and moreover O6 is known to not induce other
dimension-6 operators under one-loop renormalization
[9,10]. Hence, this modification satisfies the requirements.
It is, however, also a potentially dangerous expansion since
the Higgs potential receives corrections from higher-
dimensional operators with, as we will see, Λ ∼ v. There
are several possible ultraviolet completions of these higher-
dimensional operators. The simplest completion would
involve new gauge singlets that interact with H†H (but
do not lead to singlet-Higgs boson mixing), such that
integrating them out generates the tower of higher-
dimensional operators. Other completions could lead to
auxiliary modifications of other Higgs couplings; in this
case, our analysis would be valid only if the other effects
accidentally cancelled out leaving just the modified trilinear
Higgs coupling. In any case, our interest in this paper is to
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determine a model-independent bound on the trilinear
Higgs coupling and leave the model-dependent interpreta-
tions to future work.
While the precise measurement of the trilinear Higgs

self-coupling is highly challenging [11–25], first con-
straints have been obtained from direct searches for
multi-Higgs boson final states at the LHC. Only recently
have corrections from the modified trilinear couplings been
considered in precision observables [26,27]. Furthermore,
loop corrections to single Higgs production and associated
Higgs production were used in Refs. [28–30].
In principle, we include the complete tower of operators

O2n given that the cutoff scale that we are considering is
comparable to the vacuum expectation value of the Higgs
boson. In practice, we actually include just the effects ofO6

on the explicit calculation of the electroweak oblique
parameters S and T. This is not because the dimension-8
and higher order terms are unimportant, but instead one can
show that the modified trilinear coupling captures the full
effects of the tower of operators on S and T up to two-loop
order. Specifically, as we will see, no corrections to the
quartic coupling enter our calculation of S and T.
Consequently, to two-loop order, we can simply calculate
corrections with O6 and reinterpret the correction, without
loss of generality, in terms of a modified trilinear coupling.
A very clear discussion of this was also very recently
presented in Ref. [27].
There is another critical consequence of the observation

that S and T do not depend on the modified quartic
coupling to two loops. Ordinarily, global questions of
vacuum stability of the Higgs potential, such as whether
the minimum is local or global, bounded from below, etc.,
may place severe constraints on the coefficients of a
truncated theory, i.e., stopping at dimension 6 [31–33].
Once at least dimension-8 terms are added, these concerns
become parameter-dependent on the coefficients of the
truncated tower. This does not mean there are no concerns
with the stability of the potential—only that these concerns
require knowledge of the new physics beyond just the
modified trilinear coupling. If we stick to the “high ground”
of model independence, we can tacitly ignore Higgs
potential stability issues.
In Sec. II and III, we outline our calculation of the effect

thatO6 has on the electroweak oblique parameters S and T.
We discuss the obtained limits, including a projection to
future colliders, in Sec. IV, and present our conclusions in
Sec. V. We give the analytic expressions for S and T with
the inclusion of the dimension-6 operator in the Appendix.

II. HIGGS EFFECTIVE FIELD THEORY AND
THE MODIFIED HIGGS POTENTIAL

We begin by briefly reviewing the scalar potential in the
SM in order to define the SM couplings and the associated
modifications. The Higgs potential in terms of the Higgs
doublet field H is

VSMðHÞ ¼ μ2SMH
†H þ λSMðH†HÞ2: ð2:1Þ

After electroweak symmetry breaking, the potential can
be expanded around the vacuum expectation value v of
the neutral component of the Higgs doublet, Re½H0�≡
ðhþ vÞ= ffiffiffi

2
p

. The potential in terms of the physical Higgs
field h at the electroweak symmetry breaking minimum
becomes

VSMðhÞ ⊃
m2

h

2
h2 þ λSMvh3 þ

λSM
4

h4; ð2:2Þ

where m2
h ¼ −2μ2SM ¼ 2λSMv2 and v≃ 246 GeV.

The modified Higgs potential, Eq. (1.1), contains the
multiplicative factors κλ and κ4 that parametrizes the
(potentially sizeable) corrections to the trilinear and quartic
couplings. We implement the modified trilinear and quartic
couplings using higher-dimensional operators that only
affect the Higgs potential,

LEFT ¼ −
X
n≥3

c̄2nλSM
v2n−4

ðH†HÞn; ð2:3Þ

where we have normalized the couplings with a factor
of λSM ≡m2

h=ð2v2Þ. The modified Higgs scalar potential
becomes

VðHÞ ¼ μ2H†H þ λðH†HÞ2 þ
X
n≥3

c̄2nλSM
v2n−4

ðH†HÞn;

ð2:4Þ

where now μ2 and λ are in general different from the SM
values.
For now, consider extending the SM with just the

additional dimension-6 operator O6. The minimization
conditions are shifted, and so μ2 and λ develop different
relations in terms of the physical Higgs boson massmh and
vacuum expectation value v, which remain fixed to their
experimental values. These relations are

μ2 ¼ −λSMv2
�
1 −

3

4
c̄6

�
; λ ¼ λSM

�
1 −

3

2
c̄6

�
:

ð2:5Þ

Expanding the potential around the vacuum expectation
value once again, the Higgs potential becomes Eq. (1.1)
with the identifications,

κλ − 1 ¼ c̄6; κ4 − 1 ¼ 6c̄6: ð2:6Þ

At this stage, we have a gauge-invariant correlated modi-
fication of the trilinear and quartic Higgs self-couplings.
This can be generalized to two separate uncorrelated
modifications by including also the dimension-8 operator
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from Eq. (2.3) with coefficient c̄8. The modified trilinear
and quartic Higgs self-couplings become

κλ − 1 ¼ c̄6 þ 2c̄8;

κ4 − 1 ¼ 6c̄6 þ 16c̄8: ð2:7Þ

If we include even higher-dimensional operators ðH†HÞn
with n ≤ nmax, we again find two different linear
combinations,

κλ − 1 ¼
Xnmax

n¼3

a2nc̄2n;

κ4 − 1 ¼
Xnmax

n¼3

b2nc̄2n: ð2:8Þ

The coefficients a2n and b2n, where in general a2n ≠ b2n,
have to be evaluated for the chosen nmax. We will see that it
is not necessary to include operators beyond the additional
dimension-6 operator O6 since the quartic coupling, and
hence κ4, will be shown to not contribute to S and T at two
loops. The result will therefore be expressed in terms of c̄6,
which will allow a direct translation in terms of the κλ
trilinear self-coupling modification. Also, the higher-
dimensional operators in Eq. (2.3) generate even higher
order Higgs boson interactionsOðhnÞ with n ≥ 5, but since
they do not contribute to the observables at the order to
which we calculate, we do not need to consider them
further.

III. ELECTROWEAK OBLIQUE
PARAMETERS

In the electroweak sector, the effect of new physics, if
heavy, is expected to have its dominant contribution
through the modification of gauge boson propagators via
vacuum polarisation functions, or self-energies. These so-
called oblique corrections can be parametrized in terms of
the three Peskin-Takeuchi parameters, S, T and U [5,6].
Since U is only constrained by the W boson mass and
width, it is relatively insensitive to new physics, and so it is
usually set to zero. S and T can therefore be used as a probe
of the effects of new physics in the electroweak sector. They
are defined by [34]

S ¼ 4c2s2

αem2
Z
Re

�
ΠZZðm2

ZÞ − ΠZZð0Þ −
c2 − s2

cs

× ½ΠZγðm2
ZÞ − ΠZγð0Þ� − Πγγðm2

ZÞ
�
; ð3:1Þ

T ¼ 1

αe

�
ΠWWð0Þ
m2

W
−

c2

m2
W

�
ΠZZð0Þ þ

2s
c
ΠZγð0Þ

��
: ð3:2Þ

In these equations, ΠABðp2Þ represents the part of the self-
energy proportional to the metric tensor gμν of the gauge
boson A propagating into the gauge boson B with an
external momentum p. αe is the electromagnetic coupling
constant, and we use the notation s≡ sin θW and c≡
cos θW where θW is theWeinberg angle. S and T are defined
to arise solely due to the effects of new physics, and so
when calculating these quantities, the SM contribution
must be subtracted. The experimentally allowed values of
the electroweak oblique parameters can be obtained by
performing global fits to the electroweak precision observ-
ables and comparing the results to the SM prediction [35].
Contributions to S and T involving the dimension-6

operator O6 first appear at the two-loop level. At this
order in perturbation theory, self-energy diagrams con-
taining both trilinear and quartic Higgs self-interactions
appear, which, due to their modifications from c̄6 outlined
above, are manifest as nonzero corrections to S and T.
However, as we will see later, contributions from the
quartic Higgs self-interaction exactly cancel in these
observables. It is also important to note that at this order
in perturbation theory, there are no vertex or box
diagrams that depend on c̄6 involving light external
fermions (i.e., light enough that their Yukawa couplings
can be neglected). Since two-loop corrections to vertex or
box diagrams involving both c̄6 and heavy external
fermions do not enter the electroweak observables, the
relevant two-loop c̄6 contributions to the self-energies
must be separately gauge invariant.

A. Self-energy diagrams

To evaluate the electroweak oblique parameters S and
T, all two-loop self-energy diagrams involving corrections
from c̄6 need to be calculated. From the definitions of S
and T, all SM contributions are subtracted, and so only
terms proportional to c̄6 and c̄26 can remain. Working in the
Feynman gauge, and discarding all two-loop diagrams
that do not contain a contribution from c̄6, there are 26
diagrams for ZZ, 26 for WW, 5 for Zγ and 5 for γγ. An
example Feynman diagram for each of the self-energies is
shown in Fig. 1. From Eqs. (3.1) and (3.2), it is apparent
that the ZZ, Zγ and γγ self-energies need to be evaluated at
both zero and nonzero external momenta, whereas the
WW self-energies are only required with zero external
momenta.
The two-loop self-energies can be reduced to linear

combinations of a set of basis integrals using the reduction
algorithm from O. V. Tarasov [36], based on integration by
parts relations [37]. This reduction procedure is imple-
mented in theMathematica package TARCER [38], which is
part of the program FeynCalc [39,40]. The amplitudes for the
self-energy diagrams were generated using a model file in
FeynArts [41], before using TARCER for the integral reduc-
tion. The reduction algorithm allows for the calculation of
self-energies with nonzero external momenta and requires a
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total of eight basis integrals, but this reduces to a simplified
set of two basis integrals when the external momenta are
zero. A numerical implementation for the evaluation of all
the basis integrals is given by the TSIL package [42]. The
correspondence between the notations for the basis inte-
grals in both TARCER and TSIL is given in the Appendix
of Ref. [42].
As a cross-check of our results, we have performed a

second calculation of S and T based on an almost completely
independent setup.After deriving the Feynman ruleswith the
help of FeynRules [43], the self-energy diagrams were gen-
erated with QGRAF [44] and reduced to basis integrals using
Laporta’s algorithm [45] as implemented in FIRE [46] and
Crusher [47]. Intermediate algebraic manipulations were
performed with FORM [48]. Finally, the basis integrals were
again evaluated numerically with TSIL. As a further check of
our results, we used theMathematica programTwoCalc [49] to
verify the analytic expressions for the self-energy diagrams
resulting from the FeynArts model file.

B. Renormalization

The leading order contribution to the electroweak
oblique parameters from the Standard Model (and mod-
ifications to the renormalizable couplings) begins at one
loop.1 This means, for the calculation of these parameters
at next-to-leading (two-loop) order, no actual two-loop
counterterms are needed. However, all the tree-level parts

entering into the one-loop leading order result, such as
vertices and propagators, obtain a one-loop counterterm
contribution in the next-to-leading order calculation of
the oblique parameters. Since contributions of the O6

operator and the corresponding c̄6 parameter only enter at
the two-loop level, no renormalization condition is needed
for this parameter. All the other parameters are SM
parameters, and we perform the renormalization pro-
cedure analogously to Ref. [50], which uses the on-shell
scheme.
As already stated, we only take c̄6-dependent corrections

into account. Since the one-loop results for S and T are
independent of c̄6, in order to obtain a c̄6-dependent
contribution at the two-loop level, the one-loop counterterm
insertions must depend on c̄6. In the counterterm vertices,
the only c̄6-dependent contributions originate from the
field renormalization constant of the Higgs boson, but
these field renormalization constants cancel together with
the field renormalization constants from the counterterm
insertions in the Higgs boson propagator. The only con-
tributing counterterms are the Higgs mass and tadpole
counterterms inserted into the Higgs boson and the
Goldstone boson propagators.
It should be noted that the counterterm insertion into the

Higgs boson propagator contains a part that is proportional
to the quartic Higgs self-coupling. It originates from the on-
shell Higgs mass counterterm, δm2

h ¼ Σhhðm2
hÞ, and the

corresponding contribution to the Higgs self-energy Σhh
shown in Fig. 2(a). The correction due to Feynman
diagrams with a counterterm insertion into the Higgs
propagator, an example of which is shown in Fig. 2(b),
cancels the corresponding quartic Higgs self-couplings

(a) (b)

(c) (d)

FIG. 1. Example Feynman diagrams for the (a) ZZ, (b) WW, (c) Zγ and (d) γγ two-loop self-energies. The square represents a vertex
where there is a contribution from the dimension-6 operator.

1We have assumed throughout the paper that the only higher-
dimensional operators present are O2n, and in particular, the
dimension-6 operators that give tree-level contributions to S and
T are absent.
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arising in the two-loop self-energy diagrams, such as in
Fig. 2(c).

IV. CURRENT AND FUTURE LIMITS
FROM ELECTROWEAK
OBLIQUE PARAMETERS

We have performed the calculation of the contribution
from the dimension-6 operator O6 to the electroweak
oblique parameters S and T, and we find that after
renormalization all ultraviolet divergences from the loop
integrals cancel out, leaving nonzero and finite contribu-
tions to S and T. Analytic expressions for the two-loop
contributions to S and T from the c̄6 modification are given
in the Appendix. For the numerical analysis, we take as
input parameters [51]

mW ¼ 80.385 GeV;

mZ ¼ 91.1876 GeV;

mh ¼ 125 GeV;

GF ¼ ð1.16637870 × 10−5Þ GeV−2: ð4:1Þ

The W and Z boson masses are the pole masses, and the
electroweak scheme is specified by the tree-level relations
between the parameters [52]. We find that the contribution
of c̄6 to S and T is

S ¼ −0.000138c̄26 þ 0.000180c̄6;

T ¼ 0.000206c̄26 − 0.000324c̄6: ð4:2Þ

As there are no contributions from the quartic Higgs self-
coupling, we can use the relation between c̄6 and κλ in
Eq. (2.6) to write this result as

S ¼ −0.000138ðκ2λ − 1Þ þ 0.000456ðκλ − 1Þ;
T ¼ 0.000206ðκ2λ − 1Þ − 0.000736ðκλ − 1Þ: ð4:3Þ

The distinction between the contribution from two inser-
tions of a modified Higgs self-coupling and a single
insertion is made explicit here, since a term proportional
to ðκ2λ − 1Þ is exactly the contribution we get from two
insertions.
The path of the κλ contribution in the S-T plane is

shown in Fig. 3. The light blue ellipse shows the current
95% C.L. bound on the S and T parameters, as obtained
by The Gfitter Group [35]. Also shown in the plot are
possible future bounds on these parameters. The ellipses
are constructed for U ¼ 0 and are centred on (0,0). From
the intersection points of the path of κλ in the S-T plane

FIG. 3. Current limits and projected sensitivities of κλ from the
electroweak oblique parameters S and T. The light blue area in
the S-T plane corresponds to the 95% C.L. region based on
measurements at LEP and the LHC. The green and orange areas
correspond to projected LHC and ILC/GigaZ sensitivities re-
spectively. The longer (shorter) thin blue lines show the shift in S
and T as κλ extends up to −20 (þ20). The intersection of these
lines with the current limits and projected sensitivities gives the
ranges of κλ as shown in the figure.

(a) (b) (c)

FIG. 2. Feynman diagrams demonstrating the cancellation of the quartic Higgs self-coupling. (a) shows the quartic contribution to the
Higgs self-energy, and (b) shows a counterterm insertion containing the quartic Higgs self-coupling which cancels with the contribution
arising in (c). The square represents a vertex where there is a contribution from the dimension-6 operator, and the cross represents a
counterterm insertion.
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with the current ellipse, we estimate for the 95% C.L. a
bound of

−14.0 ≤ κλ ≤ 17.4: ð4:4Þ

Similar bounds have been derived using the observables
mW and sin θW instead of S and T [27]. The limits of
Eq. (4.4) can be compared to existing bounds from searches
for di-Higgs final states and Higgs coupling measurements.
Direct searches constrain κλ to −14.5 ≤ κλ ≤ 19.1 [29,53]
and −8.4 ≤ κλ ≤ 13.4 [30,54] using Run I and Run II data
respectively. In addition, Higgs coupling measurements
performed in single Higgs production result in the com-
bined bound of −9.4 ≤ κλ ≤ 17.0 [28]. While current limits
from single Higgs production are stronger than bounds
derived from electroweak precision measurements, they
provide complementary information and can be used to
extract a combined limit.

V. CONCLUSIONS

Detailed knowledge of the self-interactions of the Higgs
boson is of crucial importance to improve our under-
standing of the underlying mechanism of electroweak
symmetry breaking and the nature of the Higgs boson
itself. Only very recently have investigations of con-
straints on the trilinear self-interaction from (di-)Higgs
production at the LHC begun to appear. However, in the
absence of a signal in di-Higgs production (and thus a
determination of the Higgs self-coupling), alternative
ways of studying Higgs self-interactions can help to shed
light on the dynamics of the scalar interactions of the
Higgs boson. For example, loop-induced single Higgs
production has recently been investigated and found to
provide comparable limits to those from di-Higgs cross
section measurements.
In this study, we have focused on the effect of Higgs self-

interactions on the electroweak oblique parameters S and T
in order to set limits on a modified trilinear self-coupling.
Since the self-energies needed for S and T do not involve
external Higgs bosons, the effects of a modified trilinear
self-coupling appear only at the two-loop level and above.
We found that at this order the quartic Higgs self-coupling
has no effect, enabling us to set model-independent limits
on κλ from its effects on S and T using a gauge-invariant
effective field theory approach.
Our estimate for the current 95% C.L. bound on κλ is

comparable to bounds derived from single Higgs processes.
As the two approaches are orthogonal in nature, with
independent uncertainties, they can be used to check the
self-consistency of the bounds and, in combination (see
e.g., Ref. [27]), set better limits on the trilinear Higgs self-
coupling.
Reinterpreting limits on κλ as bounds on the scale

of the higher-dimensional operators ðH†HÞn=Λ2n−4

implies a lower bound on the cutoff scale of order

Λ≳ ðv= ffiffiffi
2

p Þ × ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15.5=c̄6

p
. Should evidence for such a

large deviation in the Higgs trilinear self-coupling appear,
this clearly implies the scale of the new physics must be
very close to the scale of electroweak breaking. The
simplest models of new physics would involve singlets
that couple only to ðH†HÞ but without mixing with the
Higgs boson. We leave for future work the investigation of
such models and whether they could permit large devia-
tions in the trilinear self-coupling without having appeared
in any other collider search. It is tempting to also consider
the implications on the electroweak phase transition. The
presence of the dimension-6 operator with c̄6 ≲ 2 has been
known for some time to suggest the transition becomes first
order [33,55]. Larger values of c̄6 run into trouble with the
global properties of the Higgs potential (global vs local
minimum), but obviously once c̄6 is large enough to
suggest Λ is near the electroweak scale, it no longer makes
sense to truncate to dimension 6. Should evidence for large
deviations in the trilinear self-coupling be observed, the
electroweak phase transition is undoubtedly drastically
modified. If new physics causing deviations in the trilinear
self-coupling at the level that could be probed from future
electroweak precision tests existed so close to the electro-
weak scale, it seems unavoidable that the full theory
realizing the effects of the effective operators is needed
to fully understand and characterize the electroweak phase
transition.
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Note added.—As this paper was being completed,
Ref. [27], which also considered electroweak precision
bounds on the trilinear Higgs self-coupling, appeared.
Their approach was to calculate the two-loop contributions
to mW and sin2 θlepeff , and the bounds they obtained (at
95% C.L.) can be read off from their Fig. 4, roughly
−14 ≤ κλ ≤ 17, fully consistent with our results.

APPENDIX: ANALYTIC RESULTS

In the following, we present the analytic results for the c̄6
contributions to S and T. The notation for the basis integrals
closely follows Ref. [42]. For the self-energy diagrams B,
S, T, U, and M, the first argument is the square of the
external momentum,
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S ¼ αec̄6
1024π2s2m2

Wm
4
Zðm2

h − 4m2
ZÞðm2

h −m2
ZÞ2

× f36ð2þ c̄6Þm2
hðm2

h −m2
ZÞBðm2

h; m
2
h; m

2
hÞð−m2

Zðm6
h − 3m4

hm
2
Z þ 4m2

hm
4
Z þ 16m6

ZÞ
þ 2ðm2

h − 2m2
ZÞ3ðm2

h −m2
ZÞBðm2

Z;m
2
h; m

2
ZÞÞ

þ 8m2
hAðm2

ZÞð−4ðm2
h − 4m2

ZÞðm2
h − 2m2

ZÞðm2
h −m2

ZÞ2Bðm2
Z;m

2
h; m

2
ZÞ

− ðm2
h −m2

ZÞ½ð10þ 3c̄6Þm6
h − 3ð18þ 5c̄6Þm4

hm
2
Z

þ 48ð3þ c̄6Þm2
hm

4
Z − 4ð34þ 9c̄6Þm6

Z�
− 9ð2þ c̄6Þðm8

h − 6m6
hm

2
Z þ 14m4

hm
4
Z − 8m2

hm
6
Z þ 8m8

ZÞBðm2
h; m

2
h; m

2
hÞÞ

þ 8Aðm2
hÞð−2m2

hð2m6
h − 9m4

hm
2
Z þ 16m6

ZÞAðm2
ZÞ

−m2
hðm2

h −m2
ZÞ½ð14þ 3c̄6Þm6

h − 6ð10þ c̄6Þm4
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