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Abstract

This paper develops formulae to compute the Fisher information
matrix for the regression parameters of generalised linear models with
Gaussian random effects. The Fisher information matrix relies on the
estimation of the response variance under the model assumptions. We
propose two approaches to estimate the response variance: the first is
based on an analytic formula (or a Taylor expansion for cases where
we cannot obtain the closed-form) and the second is an empirical ap-
proximation using the model estimates via the EM process. Further,
simulations under several response distributions and a real data ap-
plication involving a factorial experiment are presented and discussed.
In terms of standard errors and coverage probabilities for model pa-
rameters, the proposed methods turn out to behave more reliably than
the ‘disparity rule’ or direct extraction of results from the generalised
linear model fitted in the last EM iteration.
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1 Introduction

Consider a generalised linear model with Gaussian random effects (GLMwRE)
for a data set containing n independent observations of a response variable,
given by y = (y1, . . . , yn)>, and corresponding observations on p explanatory
variables, given by x>i = (xi1, . . . , xip)

>, for i = 1, . . . , n. The linear predictor
for the i-th observation, ηi, has the form

ηi = x>i β + σzi, (1)

where β = (β1, . . . , βp)
> is the vector of regression parameters, zi ∼ N (0, 1)

is an unobserved random effect, and σ > 0. The relationship between yi
and ηi is given by the conditional mean µi = E[yi|zi] and the monotonic and
differentiable link function, g( · ) such that µi = g−1(ηi).

By definition, y is a vector of independent random variables and each
yi, i = 1, . . . , n has a distribution in an exponential family with dispersion
parameter. Thus, the probability density function of yi can be written as

f(yi|θi, τ) = exp[τ−1{yiθi − b(θi)}+ c(yi, τ)], (2)

where θ1, . . . , θn are unknown parameters, τ > 0 is a dispersion parameter
common to all observations, and b( · ) and c( · , · ) are known functions. The
parameter estimation procedure requires the probability density function in
(2) to be differentiable with respect to θi and τ .

In (2), θi is related to µi, and consequently to ηi, through two useful
properties of an exponential dispersion family:

E[yi|zi] = b′(θi) and Var[yi|zi] = τVi = τb′′(θi), (3)

where Vi = V (µi) and V (µi) = dµi/dθi = b′′(θi). The function V (µi) is called
the variance function.

In the special case where σ = 0, the GLMwRE reduces to an ordinary
generalised linear model (GLM). If the data are subject to unobserved hetero-
geneity, for instance due to the absence of predictor variables which would be
important for explaining variation in the response, then the mean-variance
relationship (3) becomes incorrect for a GLM. This problem is known as
overdispersion, and leads, among other issues, to incorrect standard errors
for model parameters. The random intercept term in the random effects
model (1) models this excess variation.
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In matrix notation,

g(µ) = η = Xβ + σz (4)

where µ = (µ1, . . . , µn)>, g(µ) = (g(µ1), . . . , g(µn))>, η = (η1, . . . , ηn)>,
X = (x1, . . . ,xn)> and z = (z1, . . . , zn)>. The likelihood function for the
GLMwRE is

L∗(β, σ, τ) =
n∏

i=1

∫
f(yi|β, σ, τ, zi)φ(zi)dzi (5)

where φ( · ) is the standard normal density and f( · ) is the response density.
However, the integral in (5) usually has no analytic solution and, therefore,
is approximated using the respectively Gaussian quadrature weights πk and
the quadrature points z̃k, k = 1, . . . , K, see e.g. Abramowitz and Stegun
[1972]. Hence, the likelihood (5) can be approximated by

L(β, σ, τ) =
n∏

i=1

K∑
k=1

πkf(yi|β, σ, τ, z̃k) ≡
n∏

i=1

K∑
k=1

πkfik, (6)

which is the likelihood for a per-observation K-component mixture of re-
sponse distributions. According to Laird [1978], the approximation (6) be-
comes accurate already for a small integer K. Thus, in the subsequent the-
oretical development, we shall assume that this mixture model is in fact
the true model so that L(β, σ, τ) is the true likelihood. Gaussian quadra-
ture provides a convenient solution to the problem of solving the integral (5)
due to its computational simplicity and its straightforward extendibility to
nonparametric random effect distributions [Aitkin et al., 2009].

It is noted at this occasion that the ‘Adaptive Gaussian Quadrature’
[Pinheiro and Bates, 1995] used in R function glmer [Bates et al., 2014],
which reduces to the Laplace approximation when only a single support point
is used, is different to the methodology being used here, which follows the
approach laid out in Aitkin [1996] and subsequent publications. Further
discussion of this matter is provided in the Concluding remarks in Section 5.

The linear predictor for the k-th component of the i-th observation is

g(µik) = ηik = x>i β + σz̃k, (7)

where µik = E[yi|zi = z̃k]. We now introduce nK pseudo-observations

...
y = (y>,y>, . . . ,y>︸ ︷︷ ︸

K times

)>
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so that (7) can be formulated in stacked form as

g(
...
µ) =

...
η =

...
Xβ + σ

...
z =

...
Zγ (8)

where
...
µ = (µ11, . . . , µn1, . . . , µ1K , . . . , µnK)>,
...
η = (η11, . . . , ηn1, . . . , η1K , . . . , ηnK)>,
...
X = (X>,X>, . . . ,X>︸ ︷︷ ︸

K times

)>,

...
z = (z̃1, z̃1, . . . , z̃1︸ ︷︷ ︸

n times

, . . . , z̃K , z̃K , . . . , z̃K︸ ︷︷ ︸
n times

)>,

...
Z =

( ...
X

...
z
)

and γ =

(
β
σ

)
.

The log–likelihood function for the GLMwRE is

` = logL =
n∑

i=1

log

(
K∑
k=1

πkfik

)
, (9)

and it turns out that equating the first partial derivatives to zero, that is
∂`/∂γ = 0, one obtains precisely the single–distribution score equations
[Aitkin et al., 2009] for the GLM, but summed over k = 1, . . . , K and
weighted by

ωik =
πkfik∑K
l=1 πlfil

. (10)

Each ωik can be interpreted as the posterior probability that observation yi
came from component k. Alternating between this estimation step and an
update step for the wik leads to an EM algorithm:

E-step Calculate weights ωik according to (10);

M-step Update the parameter estimates by fitting the GLM (8) with weights
ωik.

Inference for the dispersion parameter τ , which we consider as a nuisance
parameter, is not of primary interest in this paper. One can estimate τ in
any EM iteration through

τ̂ =
1

n

∑
i

∑
k

wik
(yi − µ̂ik)2

V (µ̂ik)
,
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using the current component mean estimates µ̂ik = g−1(x>i β̂ + σ̂z̃k) and
weights wik. The estimate τ̂ can be used at all occasions where τ appears
henceforth in this manuscript. See for instance Einbeck and Hinde [2006] for
details.

For practical applications, it is very important to have reliable inferential
tools for the regression parameters, β. This is relevant, for instance, for the
construction of confidence intervals or the assessment of strength of effects
through hypothesis testing. Such inferences rely on the standard errors of
the parameter estimates, β̂, which, in turn, can be computed via the Fisher
information matrix. Therefore, the ability to compute this matrix accurately
is paramount for most subsequent inferential procedures.

In this article, we describe a way to obtain the Fisher information matrix
for the GLMwRE approximated by Gaussian quadrature. It is not the first
attempt at doing so; Friedl and Kauermann [2000] tailored the method by
Oakes [1999] to the specific structure of a random effect model. Their ap-
proximation makes use of the final estimates from the EM process but relies
on a Monte-Carlo sandwich correction. We compute analytic forms of the
Fisher information matrix where possible, and give approximate expressions
in those cases where analytic forms are not available.

The article unfolds as follows: Section 2 outlines the theory underlying
the score vector and the Fisher information matrix. The Section 3 presents
the response variance estimators. Section 4 provides applications, where
we compare the standard errors computed using our formulae against Monte
Carlo, a heuristic approximation known as the ‘disparity rule’, and the result
of a Laplace approximation. Finally, Section 5 contains concluding remarks
and directions for future research and implementation.

2 The score vector and the Fisher informa-

tion matrix

Writing the log–likelihood (9) as ` = logL(γ), the total score vector for γ,
U = U(γ), is

U =
∂`

∂γ
=

n∑
i=1

1
K∑
l=1

πlfil

K∑
k=1

πk
∂fik
∂γ

.
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By logarithmic differentiation, we find

U =
n∑

i=1

K∑
k=1

πkfik
∂ log fik
∂γ

K∑
l=1

πlfil

= τ−1
n∑

i=1

K∑
k=1

ωik

{
dµik

dηik

(yi − µik)

Vik

(
xi

z̃k

)}
, (11)

where ωik is given by (10) and Vik = V (µik). In matrix notation, we can
rewrite U as

U =
...
Z>D(

...
y − ...µ), (12)

where D is the diagonal matrix with diagonal entries d11, . . . , dn1, . . . , d1K , . . . , dnK
given by

dik = τ−1
dµik

dηik

ωik

Vik
.

Similarly, denote by K = K(γ) the GLMwRE Fisher information matrix
for γ. Then K = Var [U] and, from (12), we have

K = Var
[...
Z>D(

...
y − ...µ)

]
=
...
Z>DVar [

...
y] D

...
Z

=
...
Z>D

...
ΥD

...
Z,

where
...
Υ = Var [

...
y] is the unconditional variance-covariance matrix for

...
y.

Since the observations in the GLMwRE are independent,

Cov(yi, yi) = Var(yi), ∀i ∈ {1, . . . n}, and

Cov(yi, yj) = 0, ∀i 6= j ∈ {1, . . . n},

one finds for the K copies in
...
y that

Cov(y
(k)
i , y

(l)
i ) = Var(yi), ∀i ∈ {1, . . . n}, k,m ∈ {1, . . . K}, and

Cov(y
(k)
i , y

(l)
j ) = 0 ∀i 6= j ∈ {1, . . . n}, k,m ∈ {1, . . . K}.

Therefore,

...
Υ =


Υ Υ · · · Υ
Υ Υ · · · Υ
...

...
. . .

...

︸ ︷︷ ︸
K times

Υ Υ · · · Υ


K times,

6



where Υ = diag(υi) and υi = Var(yi). Here, the response variances play an
important role and the following Section 3 develops the necessary formulae.

3 Response variance

Recall that, in model (1), the zi follow a standard normal distribution. That
is, though they are approximated by a discrete set z̃1, . . . z̃K for estimation
purposes, they are random in nature, so that the unconditional mean and
variance of yi are

E[yi] = E[E[yi|zi]] = E[µi] (13)

and

Var(yi) = E[Var[yi|zi]] + Var[E[yi|zi]]
= τE[V (µi)] + Var[µi]. (14)

The remaining task is to determine E[V (µi)] and Var[µi]. This can be
achieved either approximately, by use of the Gaussian quadrature rule, or
analytically, based on explicit expressions depending on the response distri-
bution and link function. We explain both approaches below.

3.1 Estimation via analytic expressions

We derived the analytic form of E[V (µi)] and Var[µi] for Normal, Gamma,
Poisson, Binomial and Inverse Gaussian response distribution and a wide
range of commonly used link functions. The resulting expressions for Var(yi)
are summarized in Table 1. Some combinations of distribution and link
function required the use of a Taylor expansion, which is indicated by a ~.
All such expansions were made to third order. Of course, for practical use,
β and σ need to be replaced by their corresponding estimates.

We do not give all derivations in detail, but restrict ourselves to two
exemplary derivations. Firstly, suppose a GLMwRE with normal response
and identity link function.

µi = ηi = x>i β + σzi
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and V (µ) = 1. Therefore, E[yi] = x>i β and the response variance is

Var(yi) = τE[1] + Var[x>i β + σzi]

= τ + σ2.

However, there are cases in which there is no analytical solution for
E[V (µi)] and Var[µi]. In such cases, an approximate solution can be ob-
tained by expanding V (µi) and µi by Taylor series around zi = 0. Therefore,
secondly, consider a GLMwRE with Gamma response and inverse link. For
this configuration, V (µ) = µ2 and

µi =
1

ηi
=

1

x>i β + σzi
.

Thus,

E[V (µi)] = E
[
(x>i β + σzi)

−2] , and

Var[µi] = Var[(x>i β + σzi)
−1].

By Taylor expansion around 0, we have

(x>i β + σzi)
−1 ≈ (x>i β)−1 − (x>i β)−2σzi + (x>i β)−3σ2z2i − (x>i β)−4σ3z3i ,

and

(x>i β + σzi)
−2 ≈ (x>i β)−2 − 2(x>i β)−3σzi + 3(x>i β)−4σ2z2i − 4(x>i β)−5σ3z3i .

Therefore, after some algebra, we have the response variance as

Var(yi) ≈ τ
[
(x>i β)−2 + 3(x>i β)−4σ2

]
+

+ (x>i β)−4σ2 + 8(x>i β)−6σ4 + 15(x>i β)−8σ6.

Conceptually, it is clear that this approximation can only yield useful results
if σ < |x>i β| as otherwise the expansion will diverge. For practical purposes,
we found empirically that σ < 0.4 × |(x>i β)| should be fulfilled in order to
enable a reasonably accurate approximation.
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Table 1: Variance of response under Gaussian quadrature models.
Response Link
Distribution function Var(yi)

Normal identity τ + σ2

log τ + exp{2(x>i β) + σ2}(exp{σ2} − 1)
inverse~ τ + (x>i β)−4σ2 + 8(x>i β)−6σ4 + 15(x>i β)−8σ6

Gamma identity (τ + 1)σ2 + τ(x>i β)2

log exp{2(x>i β) + σ2}[(τ + 1) exp{σ2} − 1]
inverse~ τ

[
(x>i β)−2 + 3(x>i β)−4σ2

]
+

+(x>i β)−4σ2 + 8(x>i β)−6σ4 + 15(x>i β)−8σ6

Poisson log (exp{x>i β}) exp{σ2/2}×
×[1 + (exp{x>i β}) exp{σ2/2}(exp{σ2} − 1)]

identity x>i β + σ2

square root (x>i β)2 + 4(x>i β)2σ2 + σ2 + 2σ4

Binomial logit~
exp{x>i β}

exp{x>i β}+ 1
− (exp{x>i β})2

(exp{x>i β}+ 1)2
−

− [(exp{x>i β})2 − exp{x>i β}]σ2

2(exp{x>i β}+ 1)3
+

+
[(exp{x>i β})3 − (exp{x>i β})2]σ2

(exp{x>i β}+ 1)4
−

−(exp{x>i β})2 − exp{x>i β}]2σ4

4(exp{x>i β}+ 1)6

probit~ Φ(x>i β)− (x>i β)σ2φ(x>i β)

2
− Φ2(x>i β)+

+(x>i β)σ2φ(x>i β)Φ(x>i β)−

−(x>i β)2σ4φ2(x>i β)

4

cauchit~
1

4
− 1

π2

{
arctan(x>i β)− (x>i β)σ2

[(x>i β)2 + 1]2

}2

log exp

{
x>i β +

σ2

2

}
− exp{2(x>i β) + σ2}

comp. log-log~ exp{− exp{x>i β}}+
exp{2(x>i β)} − exp{x>i β}]σ2

2 exp{exp{x>i β}}
−

− exp{−2 exp{x>i β}} −
[exp{2(x>i β)} − exp{x>i β}]σ2

exp{2 exp{x>i β}}
−

− [exp{4(x>i β)} − 2 exp{3(x>i β)}+ exp{2(x>i β)}]σ4

4 exp{2 exp{x>i β}}

Inv. Gaussian 1/µ2~ τ

[
1

(x>i β)
√
x>i β

+
15σ2

8(x>i β)3
√
x>i β

]
+

+
σ2

4(x>i β)3
+

σ4

2(x>i β)5
+

375σ6

256(x>i β)7

inverse~ τ
[
(x>i β)−3 + 6(x>i β)−5σ2

]
+

+(x>i β)−4σ2 + 8(x>i β)−6σ4 + 15(x>i β)−8σ6

identity τ [(x>i β)3 + 3(x>i β)σ2] + σ2

log τ exp

{
3(x>i β) +

9σ2

2

}
+ exp{2(x>i β + σ2)}−

− exp

{
2(x>i β) +

σ2

2

}
~ Approximated via Taylor expansion.
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3.2 Estimation via Gaussian Quadrature

Approximating

E[V (µi)] ≈
K∑
k=1

Vikπk, Var[µi] =
K∑
k=1

µ2
ikπk −

(
K∑
k=1

µikπk

)2

,

one has via (14)

Var(yi) ≈ τ
K∑
k=1

Vikπk +
K∑
k=1

µ2
ikπk −

(
K∑
k=1

µikπk

)2

. (15)

An advantage of this expression is that it extends to nonparametric maxi-
mum likelihood estimation (NPML) of random effect models [Aitkin et al.,
2009] by substituting µk and zk with their estimates from the final EM it-
eration. In the context of Gaussian quadrature, which is the focus of this
manuscript, we found (15) to behave very similarly to the analytic expres-
sions above, as demonstrated in the following section.

4 Examples

We now provide two examples, using simulated and real data, to illustrate
the use of the Fisher information matrix for the computation of standard
errors of the regression parameter estimates. The first example involves four
simulated data scenarios, one each for models with Poisson, Gamma, Nor-
mal and Inverse Gaussian responses. The second example illustrates the
application of the Inverse Gaussian distribution to a real dataset with 30
observations. The results for the real data example can be reproduced with
code available in the supplementary material. As reference, we use the stan-
dard errors obtained by two procedures: (i) via Monte Carlo with 10,000
replicates, (ii) via the heuristic formula

se(β̂j) =
|β̂j|√

∆ dispj

,

where ∆ dispj is the change in disparity (−2`) when omitting the explanatory
variable xj [Aitkin et al., 2009, p. 439]. A natural limitation of this formula
is that it is not possible to compute the standard error for σ or the intercept
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term. The values given in column (iii) of Tables 2 to 5 are the standard
errors of γ̂ in the GLM fit of the last EM iteration. The results (iv) and (v)
are the standard errors obtained using the analytic formula for variance (or
the Taylor expansion) from Section 3.1 and the approximation from Section
3.2, respectively. In all of (i) to (v), the actual model fitting was carried out
using R function alldist [Einbeck et al., 2013], using K = 3 throughout. For
comparative purposes, we also provide the standard errors (vi) and parameter
estimates γ̂∗ produced by the glmer function [Bates et al., 2014], using the
default option nAGQ=1 which implies a Laplace Approximation for the integral
in (5).

4.1 Simulated data example

For each considered response distribution, we simulate 10,000 data sets of
size n = 90 based on the following linear predictor

ηi = β0 + β1xi + β2i + σzi, i = 1, . . . , n,

with the intercept β0 = 1 in the case of Poisson, Gamma and Normal re-
sponse, and β0 = 1.5 for Inverse Gaussian. The covariate x is generated from
U(0, 1) with coefficient β1 = −1 for Poisson, Gamma and Normal cases and
β1 = −0.125 for Inverse Gaussian. The β2i represent the coefficients of a
factor with three levels, which β2i = (i mod 3)− 1 for Poisson, Gamma and
Normal cases and β2i = 0.125× {(i mod 3)− 1} for Inverse Gaussian. The
random effect term is generated from N (0, 1) and the amount of variability
due to the random effects is controlled by σ with value 0.125 for all mod-
els. We choose τ equal 1 for Gaussian and Gamma model, and equal 1/64
for the Inverse Gaussian model. The link functions are log for Poisson and
Gamma, identity for Normal and inverse for Inverse Gaussian. We opt for a
different set of parameter values for the Inverse Gaussian model due to the
inverse link constraint ηi 6= 0, and the larger value of τ offers a balance for
µ3
i in Var(yi) = E[τµ3

i ] + Var[µi]. We resample a new dataset for cases where
alldist or glmer did not fit the model. For the Normal model, lmer is used
instead of glmer.

Tables 2, 3, 4 and 5 display, respectively, the average value of the 10,000
values of γ̂ as well as the average standard errors of γ̂ for models fitted to
the simulated response distributions Poisson, Gamma, Normal and Inverse
Gaussian.
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Table 2: Estimated fixed effects and respective standard errors (Poisson
model with log link)

se(γ̂)
γ γ̂ (i) (ii) (iii) (iv) (v) (vi) γ̂∗

β0 1 0.98608 0.17855 — 0.17658 0.17149 0.17658 0.18070 0.98629
β1 -1 -1.00175 0.24900 0.23640 0.24903 0.24019 0.24903 0.25527 -1.00199
β22 1 1.00395 0.16835 0.16769 0.16607 0.16157 0.16607 0.16924 1.00445
β23 -1 -1.01731 0.27644 0.23448 0.27395 0.27098 0.27396 0.27595 -1.01726
σ 0.125 0.12582 0.07255 — 0.07192 0.06912 0.07192 — 0.08803

Standard errors for γ̂ obtained via
(i) Monte Carlo;
(ii) disparity rule;
(iii) GLM fit in last EM iteration (summary.glmmGQ output);
(iv) Fisher information matrix with analytic variance;
(v) Fisher information matrix using approximation (15); and
(vi) Laplace approximation (glmer output).
∗ shows the estimates for γ obtained via glmer.

For the standard errors of the regression parameters, we see from columns
(iv) and (v) of Tables 2 to 5 that the values obtained using our proposed
methods are slightly below those obtained by Monte Carlo resampling (i).
The standard errors (ii) using the disparity rule offer numbers close to (i)
in the Poisson, Gamma and Normal examples. However, (ii) shows rather
small standard error estimates for the Inverse Gaussian example. The stan-
dard errors (iii) taken from the generalised linear model fit of the last EM
iteration are quite accurate for the Poisson model, but are underestimating
the standard error for the Gamma, Normal and Inverse Gaussian models.
We did not observe much difference between the approaches (iv) and (v) us-
ing the Fisher information, though the standard errors using (v) were slightly
more accurate in general, especially for the Inverse Gauss scenario where a
Taylor expansion was used for the analytic formula (iv). The standard er-
rors using glmer (vi) were usually higher than than those of (i), (iv) and
(v), except for the inverse Gaussian model, and were reasonably consistent
with overall results. However, it is observed that glmer struggles to estimate
the σ parameter correctly, sometimes underestimating (Poisson model) but
mostly overestimating, and does not provide a value for the standard error of
σ̂ at all. We further note that, for the Gamma model, the average of glmer
estimates for β0 is less than half of the true value, which might indicate an
identifiability issue.

Tables 6 and 7 show the estimated coverage probabilities for the Poisson
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Table 3: Estimated fixed effects and respective standard errors (Gamma
model with log link)

se(γ̂)
γ γ̂ (i) (ii) (iii) (iv) (v) (vi) γ̂∗

β0 1 0.96764 0.27011 — 0.14468 0.23456 0.24826 0.29173 0.40759
β1 -1 -0.99366 0.38621 0.33437 0.20773 0.33435 0.35646 0.41886 -0.98002
β22 1 0.99877 0.26766 0.26031 0.14359 0.23107 0.24639 0.28946 1.00816
β23 -1 -0.99716 0.26561 0.25669 0.14350 0.23092 0.24624 0.28927 -0.98762
σ 0.125 0.12427 0.11265 — 0.05980 0.09665 0.10261 — 1.25017

Standard errors for γ̂ obtained via
(i) Monte Carlo;
(ii) disparity rule;
(iii) GLM fit in last EM iteration (summary.glmmGQ output);
(iv) Fisher information matrix with analytic variance;
(v) Fisher information matrix using approximation (15); and
(vi) Laplace approximation (glmer output).
∗ shows the estimates for γ obtained via glmer.

and Gamma models, respectively. In each table, the numbers show the re-
sults of estimated coverage probability (C.P.) computed through confidence
intervals which use the standard error estimates (i), (ii), (iii), (iv), (v) and
(vi) already discussed. Our intention here is to show two rather different
scenarios, where the first (Poisson model) exemplifies well behaved numbers
of C.P. and, in the second (Gamma model), an extreme case where we are
able to note an evident contrast between the methods on the C.P.s.

Assuming that a specific method to compute the standard errors is rea-
sonably suitable to compute the confidence intervals, we overall expect values
close to the usual true confidence levels (C.L.) of 90%, 95% and 99% on aver-
age. Thus, we observe that for the Poisson model in Table 6, all five methods
are acceptable according to our criteria, except for the disparity rule in (ii).
However, for the Gamma model in Table 7, we note that the Monte-Carlo
values in (i) are rather close to the true confidence levels, followed by the es-
timates via Fisher information matrix in (v) and (iv). The values computed
using the disparity rule in (ii), the last EM iteration in (iii) and, especially,
from glmer output in (vi) are overall smaller than the confidence levels.

4.2 Real data example

As a real data example, we take a subsample of the data from a 5 × 2
factorial experiment given by Ostle and Mensing [1963]. This subsample

13



Table 4: Estimated fixed effects and respective standard errors (Normal
model with identity link)

se(γ̂)
γ γ̂ (i) (ii) (iii) (iv) (v) (vi) γ̂∗

β0 1 0.99425 0.27235 — 0.15096 0.25531 0.25903 0.26715 0.99440
β1 -1 -0.99892 0.38068 0.32482 0.21190 0.35837 0.36360 0.37497 -0.99938
β22 1 1.00644 0.26113 0.24809 0.14772 0.24983 0.25348 0.26142 1.00670
β23 -1 -0.99233 0.26064 0.24702 0.14786 0.25007 0.25372 0.26171 -0.99250
σ 0.125 0.12676 0.11043 — 0.06150 0.10400 0.10553 — 0.79139

Standard errors for γ̂ obtained via
(i) Monte Carlo;
(ii) disparity rule;
(iii) GLM fit in last EM iteration (summary.glmmGQ output);
(iv) Fisher information matrix with analytic variance;
(v) Fisher information matrix using approximation (15); and
(vi) Laplace approximation (lmer output).
∗ shows the estimates for γ obtained via lmer.

is provided in the R library mdscore [da Silva-Júnior et al., 2014], using
the syntax data(strength). It is of interest to investigate how the impact
strength of an insulating material is affected by the lot (I, II, III, IV, V) of the
material and the type of specimen cut (lengthwise and crosswise). Previous
analysis of the original dataset is given in Shuster and Miura [1972] and
for the same subsample in da Silva-Júnior et al. [2014]. Shuster and Miura
[1972] argued that the impact strength, which is a positive quantity, could be
described by a failure time model (where ‘strength’ plays the role of ‘time’),
so that an Inverse Gaussian response distribution is deemed adequate. In
our analysis, we adopt this reasoning, and hence assume that the impact
strength measurements of a given replicate corresponding to the i-th cut and
j–th lot are independently distributed as Inverse Gaussian distributions with
means µij and a fixed dispersion parameter. Suppose the linear predictor in
the inverse link scale corresponds to the two–way interaction model

µ−1ij = τ0 + τi + βj + (τβ)ij + σz, i = 1, 2, j = 1, 2, ..., 5, (16)

where τ1 = 0, β1 = 0, (τβ)11 = · · · = (τβ)15 = (τβ)21 = 0, and z is a random
effect that has Gaussian distribution.

Again, the estimate γ̂ was obtained using alldist, and columns (ii) to
(v) of Table 8 report the standard errors of γ̂ obtained using the different
techniques. Additionally, column (i) reports Monte-Carlo standard errors
for γ̂ by generating 10,000 new samples of size 30 responses based on (16),
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Table 5: Estimated fixed effects and respective standard errors (Inv. Gaus-
sian model with inverse link)

se(γ̂)
γ γ̂ (i) (ii) (iii) (iv) (v) (vi) γ̂∗

β0 1.5 1.50068 0.03923 — 0.02197 0.02801 0.03771 0.02686 1.54060
β1 -0.125 -0.12495 0.05492 0.01756 0.03127 0.03961 0.05366 0.03140 -0.12421
β22 0.125 0.12508 0.03986 0.01699 0.02243 0.02879 0.03849 0.03743 0.12406
β23 -0.125 -0.12523 0.03848 0.01702 0.02153 0.02702 0.03694 0.04122 -0.12429
σ 0.125 0.12490 0.01615 — 0.00910 0.01166 0.01562 — 0.19321

Standard errors for γ̂ obtained via
(i) Monte Carlo;
(ii) disparity rule;
(iii) GLM fit in last EM iteration (summary.glmmGQ output);
(iv) Fisher information matrix with Taylor expansion of the analytic variance;
(v) Fisher information matrix using approximation (15); and
(vi) Laplace approximation (glmer output).
∗ shows the estimates for γ obtained via glmer.

taking γ̂ as “true” parameter values, and refitting the model for each one.
It is further noted that, for this data set and model specification, the glmer

attempt to fitting the model (16) failed to converge in our trials even when
we relax the tolerances and the algorithm stopping criteria.

The numbers in (iv) and (v), for the fixed effects, are very slightly smaller
than their counterparts in (i) and (ii). However, and contrary to our sim-
ulations presented in Subsection 4.1, the numbers in (iv) and (v) for σ̂ are
rather large. This might be due to misspecification of the random effects
distribution. Finally, the numbers in (iii) are considerably smaller than their
counterparts in (i), (ii), (iv) and (v).

5 Concluding remarks

Our simulation experiments indicate that the two presented approaches to
compute the Fisher information matrix offer similar results for the standard
errors of model parameters in GLMwRE’s. While the resulting standard
errors tend to be slightly underestimated as compared to their Monte Carlo
counterparts, they are overall still more reliable than the disparity rule or the
GLM standard errors obtained from the last EM iteration, which have been
commonly used until now [Aitkin et al., 2009]. Standard errors based on EM
are generally known to underestimate the true values, since they ignore the
uncertainty inherent in the EM procedure. Also, while the standard errors
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Table 6: Estimated coverage probabilities (Poisson model with log link)
C.P. (%)

C.L. (%) β0 = 1 β1 = −1 β22 = 1 β23 = −1 σ = 0.125
(i) 90.00 89.96 90.26 90.19 90.30 89.94

95.00 94.86 94.94 94.97 94.89 94.93
99.00 98.90 98.97 98.86 98.69 98.94

(ii) 90.00 — 87.30 89.72 83.85 —
95.00 — 92.67 94.56 90.26 —
99.00 — 97.11 98.48 96.06 —

(iii) 90.00 89.86 90.46 89.96 90.87 89.80
95.00 94.91 95.19 94.88 95.71 95.05
99.00 99.05 99.11 98.90 99.17 99.08

(iv) 90.00 88.87 89.12 88.96 90.48 87.71
95.00 94.07 94.31 94.23 95.44 93.21
99.00 98.80 98.77 98.66 99.09 98.26

(v) 90.00 89.86 90.46 89.96 90.87 89.80
95.00 94.91 95.19 94.88 95.71 95.05
99.00 99.05 99.11 98.90 99.17 99.08

(vi) 90.00 89.80 90.46 90.03 90.86 —
95.00 94.93 94.92 94.85 95.69 —
99.00 99.00 99.08 98.83 99.18 —

Coverage probabilities of confidence intervals for γ̂ computed using the standard
errors obtained via
(i) Monte Carlo;
(ii) disparity rule;
(iii) GLM fit in last EM iteration (summary.glmmGQ output);
(iv) Fisher information matrix with analytic variance;
(v) Fisher information matrix using approximation (15); and
(vi) glmer output.

computed using the disparity rule appeared reasonable for the examples,
this methodology is not applicable for the intercept and the random effects
parameter estimators.

The glmer alternative offers generally good standard errors (except for
the σ parameter), which are however based on a different model estimation
methodology at first place. The difference to the approach considered herein
can be understood by following the classification given in Fahrmeir and Tutz
[2001], who distinguish direct and indirect methods for maximizing integral
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Table 7: Estimated coverage probabilities (Gamma model with log link)
C.P. (%)

C.L. (%) β0 = 1 β1 = −1 β22 = 1 β23 = −1 σ = 0.125
(i) 90.00 90.20 90.10 89.88 89.88 90.05

95.00 94.88 94.74 94.96 94.89 94.73
99.00 98.60 98.99 99.07 98.95 98.73

(ii) 90.00 — 80.33 86.35 86.58 —
95.00 — 85.53 91.62 91.45 —
99.00 — 91.05 96.36 96.08 —

(iii) 90.00 62.39 62.56 62.43 62.46 61.78
95.00 70.70 70.94 70.59 71.07 70.77
99.00 83.03 83.34 82.49 83.12 83.02

(iv) 90.00 84.06 84.13 83.66 84.13 83.40
95.00 90.41 90.48 90.22 90.29 89.32
99.00 96.52 96.80 96.89 96.72 95.15

(v) 90.00 86.63 87.04 86.38 86.94 86.74
95.00 92.42 92.54 92.33 92.54 92.31
99.00 97.65 97.92 97.93 98.03 97.76

(vi) 90.00 39.44 79.00 78.44 79.17 —
95.00 50.37 83.99 83.35 83.90 —
99.00 68.89 87.75 87.80 88.04 —

Coverage probabilities of confidence intervals for γ̂ computed using the standard
errors obtained via
(i) Monte Carlo;
(ii) disparity rule;
(iii) GLM fit in last EM iteration (summary.glmmGQ output);
(iv) Fisher information matrix with Taylor expansion of the analytic variance;;
(v) Fisher information matrix using approximation (15); and
(vi) glmer output.

(5). The ‘Adaptive Gaussian Quadrature’ (AGQ) [Pinheiro and Bates, 1995]
used in glmer is a direct method, where derivatives of the marginal likelihood
(5) with respect to the model parameters are taken first, and then Gauss-
Hermite integration is carried out to find a numerical approximation of the
score vector. The approach discussed in this paper is an indirect method,
in which the integral is approximated first, and then the EM algorithm is
used to iteratively find the expected probabilities of component membership,
and maximize the corresponding expected complete log-likelihood (again by
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Table 8: Estimated fixed effects and respective standard errors for strength
data

se(γ̂)
γ̂ (i) (ii) (iii) (iv) (v)

τ0 1.01704 0.07042 — 0.03197 0.06869 0.06832
τ2 0.32828 0.10564 0.11340 0.04873 0.10462 0.10413
β2 0.03201 0.10043 0.09876 0.04557 0.09780 0.09728
β3 0.35915 0.10711 0.11543 0.04904 0.10531 0.10482
β4 0.14128 0.10273 0.10293 0.04676 0.10037 0.09986
β5 0.82348 0.11757 0.15159 0.05359 0.11513 0.11468

(τβ)22 -0.40636 0.14657 0.15279 0.06637 0.14247 0.14175
(τβ)23 -0.10864 0.15825 0.15968 0.07322 0.15726 0.15661
(τβ)24 -0.35020 0.14937 0.15481 0.06841 0.14689 0.14619
(τβ)25 -0.19501 0.17043 0.17270 0.07879 0.16928 0.16867
σ 0.00887 0.02119 — 0.01131 0.37348 0.37174

Standard errors for γ̂ obtained via
(i) Monte Carlo;
(ii) disparity rule;
(iii) GLM fit in last EM iteration (summary.glmmGQ output);
(iv) Fisher information matrix with Taylor expansion of the analytic variance; and
(v) Fisher information matrix using approximation (15).

taking appropriate derivatives). This approach is computationally simpler
than the direct approach, as the component probabilities in each iteration
are completely known, while in the direct approach they depend on the true
parameter vector [Fahrmeir and Tutz, 2001, p. 306]. The difference between
the two approaches is most obvious by considering the case K = 1: in the
approach considered herein, this corresponds to a fixed effect model, while
in the context of AGQ it corresponds to the Laplace approximation. Due
to this very different way in which the support points affect the estimation,
we did not attempt to compare the direct and the indirect approach using a
‘matching’ number of components.

As pointed out by a referee, in generalised linear models the likelihood
may be quite skewed around the MLE, and so the suitability of information–
based standard errors for representing the precisions of parameter inference
may be questioned. From this perspective, a Bayesian approach to the prob-
lem might be suggested. The reported coverage probabilities give some ev-
idence that, despite this possible conceptual concern, the approach taken is
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still feasible, and that efforts to compute the standard errors accurately are
useful and important.

In this manuscript we have discussed random effect models fitted via
Gaussian Quadrature in the spirit of Aitkin [1996]. This model class is by
construction easily extendible to the case of an unspecified random effect
distribution, where the masses and support points are estimated simultane-
ously with the model parameters through the EM algorithm. This technique
is known as ‘Nonparametric Maximum Likelihood’ (NPML, Aitkin et al.
[2009]). The methods introduced in this manuscript could be extended to
this scenario.

We finally note that, while the procedures outlined in this paper give
standard errors for both fixed effects and random effects parameter estima-
tors, we consider the standard errors produced for σ̂ not to be fully reliable
for any of the techniques investigated. The estimation of the standard error
of σ̂ suffers from identifiability issues, and is also sensitive to the correctness
of the Normality assumption of the random effects. Accurate estimation of
this standard error is a very hard problem which requires further attention.
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