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We evaluate different ridge-enhancement and segmentation methods to automatically extract the
network architecture from time-series of Physarum plasmodia withdrawing from an arena via a
single exit. Whilst all methods gave reasonable results, judged by precision-recall analysis against
a ground-truth skeleton, the mean phase angle (Feature Type) from intensity-independent, phase-
congruency edge enhancement and watershed segmentation was the most robust to variation in
threshold parameters. The resultant single pixel-wide segmented skeleton was converted to a graph
representation as a set of weighted adjacency matrices containing the physical dimensions of each
vein, and the inter-vein regions. We encapsulate the complete image processing and network anal-
ysis pipeline in a downloadable software package, and provide an extensive set of metrics that
characterise the network structure, including hierarchical loop decomposition to analyse the nested
structure of the developing network. In addition, the change in volume for each vein and interven-
ing plasmodial sheet was used to predict the net flow across the network. The scaling relationships
between predicted current, speed and shear force with vein radius were consistent with predictions
from Murray’s Law. This work was presented at PhysNet 2015

PACS numbers: 87.17.Pq, 87.18.Hf, 87.18.Nq
Keywords: Slime mold, Transport network, Network analysis, Transport efficiency, Scaling law, Murray’s
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I. INTRODUCTION

Plasmodial slime molds (myxomycetes), such as
Physarum, and mycelial fungi form elaborate intercon-
nected networks that are highly responsive to local envi-
ronmental conditions [22]. These networks explore space
in the search for food, which is patchily distributed in the
environment, and usually present only transiently. As a
result, the growing network faces conflicting demands to
maximise the search area, whilst minimising the cost of
transport and the cost of making the network. Adverse
environmental conditions and competition from other or-
ganisms also impact the growth and survival of the or-
ganism, and the network is continually at risk from dam-
age, predation or disease. Thus, these organisms have
evolved in environments where they must achieve efficient
compromises between cost, efficiency, and resilience, and
studying the adaptive growth of such networks may yield
useful insights into the design of de-localized, robust in-
frastructure networks in other domains [22]. Physarum
is particularly attractive as a model organism as it is easy
to culture, forms a network rapidly within hours that can
be readily imaged, and which can be exposed to multi-
ple different treatments in replicate experiments. Thus
it is possible to build up a statistical basis to test princi-
ples of network self-organisation including problem solv-
ing [41, 50, 51], flow optimisation [33], memory [42, 44],
or decision making [7, 43].

To make full use of Physarum as a model system,

it would be advantageous to develop robust, high-
throughput methods to extract the complete network ar-
chitecture and dynamics, to allow comparison between
treatments and species, and to provide empirical data
to support quantitative modelling. Various groups have
developed methods to characterize the biological net-
works formed by fungi and slime molds [3, 5, 12, 25, 39],
and efficient implementations are available to down-
load that work well for well-defined networks (see for
example[12, 32]). The simplest method to identify the
veins automatically is intensity-based segmentation of a
bright-field transmission image to give a binary image,
with ones representing the vein structure and zeros for
the background. Typically this is followed by thinning
of the binary image to give a single-pixel wide skeleton
[25]. However, the initial segmentation is critically de-
pendent on the value for the threshold used, and it is
rare that a single threshold provides adequate segmen-
tation without either losing thinner, dimmer venules if
it is set too high, or artificially expanding and fusing
adjacent regions if it is set too low [3, 12]. This is partic-
ularly problematic in developing networks of Physarum
as the veins vary in size and absorbance over an order of
magnitude, and the interstitial areas between the veins
also contain plasmodial sheet-like regions that are bio-
logically significant, but not normally included as part
of the network, as the segmentation algorithms fail in
these regions [25]. Local contrast enhancement, adaptive
or hysteresis thresholding may improve the initial seg-
mentation [12, 13]. However, these approaches do not
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deal well with developmental time-series which contain a
range of vein diameters, growing margins and interven-
ing plasmodial sheets. Here we explore additional ridge
enhancement methods applied over a range of scales and
orientations to selectively highlight curvi-linear features,
such as veins within the network structure, prior to seg-
mentation [32, 39].

The skeletonisation process is also problematic as tra-
ditional skeletonisation over-segments the binary image
and introduces many additional spurs depending on the
roughness of the binary outline, which then require prun-
ing [12, 13]. Thinning algorithms perform better, and
yield skeletons that match the centreline of the network
if the original binary image is symmetrical. Alterna-
tively, watershed algorithms [39], or local fitting to the
ridge normal [49], map the centreline directly. In some
cases, errors in the segmentation steps can be repaired
by post-segmentation correction of the pixel skeleton to
fill in gaps [5] or exploit over-segmentation and pruning
to capture even fine parts of the network [39].

Once the skeleton has been extracted, it can be used as
a template to interrogate the image locally to provide an
estimate of the width of the veins. If the original binary
image correctly covers the complete vein width, the Eu-
clidean Distance Map (EDM, [25]) or the segmented area-
to-length ratio [4], can be used to estimate the width.
Alternatively, the original intensity image can be inter-
rogated directly using calibrated measurements of light
transmission following the Lambert-Beer law [1], or using
greyscale granulometry techniques [39].

Typically, the pixel-skeleton is converted to a graph
representation with nodes at the junctions, free ends, and
food sources, if present, and the graph edges weighted by
their Euclidean length and width [3, 5, 25, 39]. The per-
formance of the segmentation can be estimated visually
[3], by comparison with a gold-standard network traced
manually [39], or by graph matching following graph con-
version [12].

A wide range of network metrics can be calculated from
the topological or fully-weighted graph representation [5],
or the weighted network can be analysed in terms of fluid
flow to estimate transport efficiency [2, 23, 24]. By con-
trast, there is no single standard measure to evaluate
network resilience, as the extent of disruption depends
on the type of damage inflicted. Nevertheless, robust-
ness can be evaluated following removal of single edges
[51], or as a function of successive edge removal in an
ordered or random sequence [6, 8, 17].

In addition to analysis of the network structure it-
self, the morphology of polygonal regions enclosed by
the veins can be analysed to understand the space-filling
properties of the network. A dual-graph can be con-
structed that links each polygonal area to its neighbours,
with the strength of the edge determined by the width
of the intervening vein. By removing edges in the dual
graph in order of their weight and fusing the adjacent
areas, the original loopy network can be converted to a
binary branching tree, enabling the application of metrics

designed for branching trees [26, 36].
This remainder of this paper is structured as follows:

Section II reviews the main approaches to ridge enhance-
ment developed originally for segmentation of blood ves-
sels [15], neurons [34], fungal networks [12, 32, 39], or
road networks [49]. In Section III, we describe a com-
plete workflow for network extraction and graph con-
version using these methods, including a full software
implementation. In Section IV, we compare the perfor-
mance of the different algorithms against a manually-
defined ground truth, and demonstrate that all can yield
acceptable results if parameter values are tuned care-
fully. Specifically using the mean phase angle (‘Feature
Type’) from the intensity-independent phase congruency
enhancement and watershed segmentation, we analyse
the Physarum network structure and calculate net flows
for networks evacuating a set of enclosed arenas with dif-
ferent geometry. We confirm that flow analysis through
the complete network is consistent with predictions of
Murray’s law [38]. In Section V, we compare the results
for analysis of evacuation networks with growing or exci-
sion networks.

II. APPROACHES TO RIDGE ENHANCEMENT
AND SEGMENTATION

One of the first methods to identify ridges exploited the
local curvature of the intensity landscape as estimated
from the Hessian (Hσ), comprising second-order partial
derivatives, Daa along direction a, of the intensity im-
age (I), where the value of the standard deviation of the
Gaussian kernel (σ) is varied over a range of scales that
span the sizes of the underlying features [15]:

Hσ =

[
Dxx Dxy

Dxy Dyy

]
=

[
δ2I
δx2 ∗Gσ δ2I

δxδy ∗Gσ
δ2I
δxδy ∗Gσ

δ2I
δy2 ∗Gσ

]
(1)

where

Gσ =
1

2πσ2
e−

(x2+y2)
2σ2 (2)

In the resultant scale-space representation, further in-
formation on ridge-like features can be extracted from the
eigenvalues and eigenvectors of the Hessian, which show
characteristic behaviour for a filamentous structure. By
ordering the eigenvalues in terms of their absolute magni-
tude (|λ1| < |λ2|, for a 2D image), the smallest eigenvalue
(|λ1|) denotes the minimum change in intensity, with the
corresponding eigenvector oriented along the centreline of
the ridge, whilst the largest eigenvalue (|λ2|) and eigen-
vector determine the orientation of the maximum cur-
vature, normal to the ridge centreline. Prominent struc-
tures are distinguished from the background by relatively
large values of the eigenvalues (

√
λ21 + λ22). In addition,

the ratio |λ1|/|λ2| gives an indication of how blob-like
(|λ1| ≈ |λ2|) or elongated and filament-like (|λ1| � |λ2|)
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the structure is at that point. Thus the ‘Vesselness’ (Vσ)
measure [15], defined by Equation (3), is large at those
pixels that are part of a linear structure of scale (σ).

Vσ = e
−

λ2
1

2β2λ2
2

(
1− e

λ2
1+λ

2
2

2c2

)
(3)

Note that the relative contributions of the geometric
ratio and the intensity components at a given scale (σ)
are controlled by the coefficients β and c, respectively.
Typically, β is set to 0.5 and c is set to half the maximum
Hessian norm. Multi-scale ‘Vesselness’, for a given set of
scales spanning the expected width of the vessels, can
be computed as the maximum of the ‘Vesselness’ values
calculated at each scale, and the eigenvectors at that scale
used to define local orientation [15].

An alternative weighting of the eigenvalues of the Hes-
sian matrix was proposed by Meijering et al. [34]:

H ′ =

[
Dxx + αDyy (1− α)Dxy

(1− α)Dxy Dyy + αDxx

]
(4)

Where α is set to be −1/3 such that the equivalent
steerable filter [16] used in the calculation of the Hessian
matrix is maximally flat in its longitudinal direction, ef-
fectively generating an anisotropic second order Gaussian
filter. Conveniently, these kernels can be implemented as
steerable filters constructed from a set of basis kernels
[16]. The ‘Neuriteness’ measure at scale σ, (Nσ) is de-
termined from the modified eigenvalues as:

Nσ =

{
λσ

λσ,min
if λσ < 0

0 if λσ ≥ 0
(5)

where λσ is the larger in absolute magnitude of the two
modified eigenvalues, and λσ,min is the smallest value of
λ over all pixels such that:

λσ,1
′ = λσ,1 + αλσ,2 (6)

λσ,2
′ = λσ,2 + αλσ,1 (7)

λσ = max
(
|λσ,1′|, |λσ,2′|

)
(8)

λσ,min = min
p∈I

(λσ) (9)

λσ,1, λσ,2 are the eigenvalues of the Hessian matrix
Hσ(p), at pixel p, for a given scale parameter σ.

The use of second-order derivatives of anisotropic
Gaussian kernels (SOAGKs) was developed further by
Shui et al. [47] to improve detection of ridge like el-
ements, that are applied at a range of orientations to
give anisotropic directional derivative (ANDD) filters at
each scale [47]. On their own ANDD filters also generate
extensions at the end of edge segments, termed edge-
stretch, which has the benefit of improving local connec-
tivity by filling in small gaps, particularly at junctions

that occur in the ‘Vesselness’ filter for example, but with
the disadvantage of adding spurious features at the end of
edge segments. The latter errors can be minimised by us-
ing a fused detector that combines the ANDD filter with
a small isotropic Gaussian as a geometric mean [47]. The
enhanced edge image is taken as the maximum response
at any scale and orientation. These filters give strong
responses when aligned to the dominant ridge at each
scale, and provide estimates of the ridge intensity and
ridge orientation without calculation of the eigenvalues
and eigenvectors. In addition, the response at junctions
is not attenuated to the same degree as the ‘Vesselness’
response because of the edge-stretch phenomena. Con-
version to a single-pixel wide skeleton then uses local non-
maximal suppression to identify key pixels on the ridge
centerline, followed by hysteresis thresholding to identify
pixels that form the connected skeleton [32, 47].

An alternative strategy was proposed by Steger [49]
to identify ridge centre-lines following convolution with
first and second order derivatives of (isotropic) Gaussian
kernels, to identify the ridge direction and then identify-
ing the position of the centre-line, without segmentation,
from the coefficients of a second-order Taylor polynomial
fit to the data [49]. Thus, the direction normal to the
ridge is determined from the maximum absolute eigen-
value of the Hessian matrix, and the centre-line point
determined from the first derivative of a quadratic poly-
nomial along the normal line, with the strength of the
ridge given by the second derivative [49]. Using Da and
Daa to represent the first and second partial derivatives
along direction a, and (tnx, tny) to represent the normal
to the ridge centre-line at distance t, the centre-line point
is given by [49]:

(px, py) = (tnx, tny) (10)

where

t = − Dxnx +Dyny
Dxxn2x + 2Dxynxny +Dyyn2y

(11)

While ridge enhancement can be built on purely
intensity-based filters, such as the Hessian or SOAGKs,
these have the downside of being sensitive to changes in
image contrast, which often leads to loss of a few pix-
els from the skeleton during the subsequent threshold-
ing step, effectively disconnecting these edges. This can
be ameliorated to some extent by inclusion of a local
contrast equalisation step prior to enhancement [47], or
by the use of adaptive or hysteresis thresholding during
segmentation [32], or when linking points in the Steger
algorithm [49]. Nevertheless, in these approaches it is
critical to establish a reliable, context-dependent thresh-
old selection to achieve segmentation of a fully connected
network.

Human observers face a similar challenge when trying
to discriminate edges or ridges is a complex visual field.
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Morrone and Owens [37] proposed that human edge per-
ception depends on the degree of phase congruency, in-
dependent of the brightness. Phase congruency can be
estimated from the local energy determined by convo-
lution of the image with Gabor filters at varying scale
and orientation [52]. The phase congruency approach
has been developed further as a generic means to extract
a variety of image features by Kovesi [27, 28]. Kovesi
also introduced a range of improvements to the original
measure to improve its overall utility, including log Ga-
bor filters to increase the filter bandwidth, procedures
for automated noise rejection, weighting to select against
phase congruency of only a few frequencies, and improved
spatial precision by including both the cosine and sine of
the phase in the estimate [27]. These provide good ridge
enhancement, irrespective of image intensity, but also in-
crease the number of parameters that can be tuned to
achieve the best enhancement in any particular context.

Following Kovesi [27, 28], the local energy for a one-
dimensional profile, I(x) is given by:

E(x) =
√
F 2(x) +H2(x) (12)

where F (x) is the signal with its DC component re-
moved, and H(x) is the Hilbert transform of F (x), ob-
tained by convolving the signal with a quadrature pair
of log Gabor filters at scale n, and summing the even
filter convolutions (en(x)) to give F (x), and the odd fil-
ter convolutions (on(x)) to give H(x). The phase con-
gruency PC(x), is normalised by the sum of the Fourier

amplitudes
∑
nAn(x) '

∑
n

√
en(x)2 + on(x)2, with the

addition of a small constant ε to improve stability at low
Fourier amplitudes:

PC(x) =
E(x)∑
nAn + ε

(13)

The log Gabor filter bank is controlled by the min-
imum wavelength scale, the number of scales, the fre-
quency bandwidth, and the number of filter orientations.
Each of these requires some optimisation to achieve good
enhancement for specific types of biological networks.

The next tuneable parameter controls the amount of
noise rejection. To estimate the amount of noise adap-
tively from the image, Kovesi used a measure of the mean
(µR) and variance (σ2

R) of the Rayleigh distribution (R)
describing the noise distribution at the smallest scale,
with the assumption that ridges are relatively sparsely
distributed in the image, so the mean will be dominated
by background noise at this scale. Thus the noise thresh-
old (T ), is given by the mean noise response plus some
number, k, of deviation units:

T = µR + kσR (14)

The local energy term E(x) is therefore modified by
subtracting the estimated noise (and setting any values
below zero to zero).

The second set of tuneable parameters relate to the
minimum spread of frequencies required to constitute
a useful estimate of phase congruency. In the case of
Physarum we are concerned with the detection of ridges,
rather than lines or step functions. The expected power
spectrum of a ridge falls off at 1/ω4, where ω is the
center frequency of the filter, which gives an expected
distribution of frequency responses strongly skewed to-
wards low-frequency end. The significance of PC(x) can
be down-weighted if the spread of frequencies is too nar-
row, however, in the case of ridge detection, this criterion
should not be too harsh. Kovesi provides an estimate of
the frequency spread by considering the normalised ra-
tio of the sum of the Fourier amplitudes divided by the
maximum response:

s(x) =
1

N

( ∑
nAn(x)

Amax(x) + ε

)
(15)

Where N is the total number of scales, Amax(x) is the
maximum filter response at x, and ε prevents division by
zero. To penalise regions with few frequency components,
the weighting function is constructed as a sigmoidal func-
tion:

W (x) =
1

1 + eγ(c−s(x))
(16)

where c is the cut-off value below which phase con-
gruency values are penalised, and γ is a gain factor that
controls the sharpness of the cutoff.

PC(x) =
W (x)bE(x)− T c∑

nAn(x) + ε
(17)

Where b c denotes that E(x) − T is equal to itself for
positive values and zero otherwise.

The final amendment that Kovesi proposes is to in-
clude the information from both the cosine of the phase
deviation, which should be large if phase congruency is
high, and the absolute value of the sine of the phase de-
viation, which should be small (18):

∆Φn(x) = cos(φn(x)− φ̄(x)− | sin(φn(x)− φ̄(x)| (18)

This gives the complete estimate of phase congruency
as:

PC(x) =

∑
nW (x)bAn(x)∆Φn(x)− T c∑

nAn(x) + ε
(19)

The two dimensional extension of the phase congru-
ency gives:

PC(x) =

∑
o

∑
nWo(x)bAno(x)∆Φno(x)− Toc∑

o

∑
nAno(x) + ε

(20)

Where o is the index over orientations.
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III. MATERIALS AND METHODS

A. Establishment of evacuation networks

Plasmodia of Physarum polycephalum were grown on
a 1% w/v agar (S-7, Ina Food Industry) with oat meal
flakes (Quaker) in the dark. Evacuation networks were
formed by allowing an excised sheet of protoplasm to exit
an enclosed rectangular arena through a single channel
in response to addition of a food source according to [1].
Time lapse images were obtained with transmitted light
with an (x, y) pixel spacing of 6.2µm, at 1 h intervals
and imported into a MATLAB GUI for all subsequent
processing steps.

B. Overview of the network extraction work flow

A flow diagram of the complete network extraction
and analysis workflow is given in Fig. 1, and an in-
troduction to the software package is given in the on-
line Supplementary Material. The code available from
www.markfricker.org.

In brief, a time-series of images spanning a 4-5h pe-
riod when the network was forming, typically after 9-
10h, were aligned by cross-correlation (Fig. 1A). The
minimum vein size was estimated as the full-width half-
maximum (FWHM) from a user-defined profile drawn
across the image (Fig. 1B), and used to resample the im-
age to ensure that the minimum vein size was consistent
(typically 5 pixels wide), and matched to subsequent fil-
tering operation. Images were inverted, background cor-
rected, and smoothed with a guided filter [21], with 5×5
kernel size (Fig. 1C). The median intensity over time was
used to construct a single a template image, and veins
selectively enhanced using the ‘Vesselness’ [15], ‘Neurite-
ness’ [34], SOAGK [32], Steger curvilinear detector [49],
or phase congruency feature type [27, 28, 39]. The Steger
algorithm automatically yields a single-pixel wide skele-
ton. For the other methods, an h-minimum transform
[48] was used to suppress background regions containing
noise. A single-pixel wide skeleton was extracted using
a watershed algorithm [35], to ensure full connectivity,
or using hysteresis thresholding with manually adjusted
thresholds. Hysteresis thresholding is required if there
are free ends present, but also risks disconnecting edges
that fall below the minimum threshold. The boundary
of the arena was used to define a binary mask that was
imposed on the template (Fig. 1D), whilst the exit re-
gion and food source were defined as a ‘feature’ used to
set the identity of the node in the graph representing the
exit point (node 0) (Fig. 1E). The polygonal regions be-
tween the veins were segmented from the complement of
the pixel skeleton (Fig. 1F), which allowed various mor-
phological metrics to be calculated for each inter-vein
region.

C. Comparison with ground-truth

Pixel skeletons for each ridge enhancement-
skeletonisation combination were scored against a
manually digitised ground-truth (Fig. 1G), with a
tolerance of half the minimum vein width for true
positives (TPs), true negatives (TNs), false positive
(FPs), and false negatives (FNs) [31]. Results were
combined using Precision-Recall (PRC) analysis, where
Precision was calculated as TP/(TP+FP), and Recall
as TP/(TP+FN). PRC was used in preference to
Receiver Operating Characteristic (ROC) plots, as the
former are better suited to imbalanced datasets [45],
such as Physarum networks, when the number of true
negatives (TNs) from the background is expected to
be much greater than the true positives (TPs) from
the skeleton. As all the algorithms have several tune-
able parameters, including intensity thresholds or the
h-minimum threshold, PRC analysis was used as a guide
to parameter optimisation by combinatorial evaluation
of parameter settings, with the PRC curve constructed
by tuning the segmentation threshold parameter. The
best performance was assessed from the highest Fβ score
representing a harmonic mean of recall and precision.
Fβ , can also be tuned to weight recall (β = 2) or
precision (β = 0.5) more:

Fβ = (1 + β2)
Precision× Recall

(β2 × Precision) + Recall
(21)

D. Conversion to a weighted graph

The width of the veins and intervening plasmodial
sheet at each pixel was estimated using the Lambert-Beer
law (Fig. 1H) as k log10(I0/I), where I0 was the incident
light intensity, I the transmitted light intensity, and k
a calibration coefficient based on the absorbance of the
filled arena at the start where the path length was fixed
at 170µm. The pixel skeleton was then converted to a
graph G, (Fig. 1J) with N nodes and M edges, where
edge ij represents a vein segment between two junctions
or a junction and free end, denoted as node i and node
j. The graph was adjusted to accommodate any features,
by placing a new node at the centroid of the feature, con-
nected to each edge incident on the boundary (Fig. 1K).
A dual-graph for the inter-vein regions was constructed
that linked each polygonal region to its neighbours, with
the strength of the edge determined by the width of the
intervening vein (Fig. 1L).

E. Measurement of graph metrics

Each edge was associated with a vector of features in-
cluding the average intensity (Iij), length (lij), and av-
erage width (wij), determined by excluding pixels that
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FIG. 1: (Colour on-line) Flow diagram of the main steps in automated extraction and analysis of Physarum networks

overlapped with any larger veins at the end of the edge,
to give a centre-weighted estimate, more representative
of the vein itself. The centre-weighted width was used
to calculate the radius (rij), area (aij = πr2ij), volume
(vij = aij lij), predicted resistance to flow or drag [2]
(θij = lij/r

4
ij). The position of each node in the arena

was used to calculate the Euclidean distance from the
exit point, denoted as node0, (di0), and the hydraulic ac-
cessibility to the exit point [1, 2], measured as the path
of minimum resistance, calculated using Dijkstra’s algo-
rithm. The edge betweenness centrality βu for edge u
was calculated as the proportion of all shortest paths
(σiuj) between pairs of nodes i and j, that pass through

u (Equation 22), to give a measure of the importance of
a node or link to transport. Loss of the node or link with
the highest betweenness centrality leads to the greatest
increase in shortest path lengths.

βu =
∑
ij

σiuj
σij

(22)

These measures were used to calculate summary statis-
tics for the network, including the route factor [19], de-
fined as the average path length to the exit point divided
by the Euclidean distance:
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q =
1

N − 1

N−1∑
i=1

li0
di0

(23)

The global efficiency [29], defined as the mean recipro-
cal of the shortest paths, weighted by resistance, with the
reciprocal for disconnected nodes defined as zero (Equa-
tion 24), and the root efficiency (Eroot) was calculated in
a similar manner from the exit point to all other nodes.

Eglobal =
1

N(N − 1)

∑
i6=j∈G

1

dij
(24)

The α-coefficient [20] or meshedness [9] was used to
measure the fraction of links present compared to a fully
connected planar network, taking values from 0 to 1 to
allow comparison of networks of different sizes:

α =
M −N +G

2N − 5
(25)

Graphs were also output for investigation using com-
munity detection algorithms and mesoscopic response
functions for comparison with networks in other domains
[30, 40], but are not described further here.

F. Hierarchical network decomposition

The overall structure of the Physarum network was in-
vestigated using hierarchical loop decomposition [26, 36]
of the dual-graph (Fig. 1L). In this implementation, the
areas that were separated by the thinnest edge were fused
first, then the areas separated by the second thinnest
edge, and so on. Both the initial areas and the areas
formed by fusions were represented as nodes in the dual-
graph of the vein network, and these nodes were con-
nected if the areas in question were formed by this hier-
archical, fusion process. Note that by construction, the
dual graph of the vein network is a binary tree.

G. Analysis of predicted flows

The difference in vein volume between two time points
was used to estimate the volumetric current flow through
the network exiting the arena [23, 24] (Fig. 1I). Veins
that thin over time are the source of protoplasmic vol-
ume, while thickening veins are sinks. To accommodate
flows of material from any plasmodial sheet remaining in
the inter-vein regions, the volume change for each pixel
in the inter-vein region was also allocated to the near-
est edge in the network, based on the Euclidean distance
map (EDM) from the pixel skeleton. The net difference
in volume for all veins and inter-vein regions was assumed
to exit the arena to conserve mass. Assuming the volume

of vein ij decreases from uij to vij over time t, the current
flowing out of vein ij must be (vij − uij)/t greater than
the current flowing into vein ij. As a simplifying assump-
tion, half the net current was allocated to node i, and half
to node j. To make an unbiased analysis of the relation-
ship between current and changes in cross-sectional area,
the current induced in vein ab by the changes in volume
of the all the veins was calculated excluding vein ab itself.
Thus, the net current flowing out of node i was defined
as:

qi =


−
∑
j 6=i

qj if node j is the exit,∑
ij 6=ab

uij−vij
2t otherwise.

(26)

Note that the first sum is over the set of all nodes, while
the second sum is over the set of all the veins ij directly
connected to node i. The net current flowing out of each
node and the conductance of each vein uniquely deter-
mine the pressure difference between any pair of nodes
[24]. Given a pressure drop ∆P between the end points
of a vein of length l and radius r, the current Q through
the vein follows equation (27), where ν is the dynamic
viscosity of the cytoplasm:

Q =
πr4

8νl
∆P (27)

Given the net current at each node and the hydraulic
conductance of each vein, we calculated the unique cur-
rent [24] in each vein that was consistent with equations
(26) and (27). We have previously examined the scaling
relationship between parent and daughter vessel radii at
three-way junctions [1] to test whether Physarum net-
works obey Murray’s law [38]. This predicts that the
radius r0 of a parent vessel is related to the radii of the
daughter vessels r1 and r2 by the relationship:

r30 = r31 + r32 (28)

Here we extend this analysis to test the predicted scal-
ing relationships with vein radius based on flow through
the entire network, specifically volumetric flow (∝ r3),
speed (∝ r1), and shear force (∝ r0) [46].

IV. RESULTS

A. Evaluation of different ridge enhancement
methods in Physarum

A typical vein network for Physarum exiting a square
arena is shown in Fig. 2A, where a branching tree with
many loops has formed as the plasmodium re-deploys
biomass from the arena via a single exit channel located
at the bottom of the image in Fig. 2A.



8

A B

C D

E F

FIG. 2: (Colour on-line) Automated analysis of a Physarum
network evacuating from a 10× 10 mm square arena through
a single exit point. (A) Original image; (B) ridge enhance-
ment using the ‘Vesselness’ algorithm [15]; (C) ‘Neuriteness’
algorithm [15];(D) second-order anisotropic Gaussian kernel
(SOAGK) [32, 47]; (E) local weighted mean phase angle (‘Fea-
ture Type’, FT) from phase congruency [27, 28, 39]; and (F)
Steger algorithm [49], where the center-line is marked in green
and the width in blue. the inset shows an enlarged region,
where edges fail to connect to the main vein where the plas-
modial sheet is not yet well resolved into separate veins

The results of ridge enhancement are shown for
the ‘Vesselness’ filter (Fig. 2B), ‘Neuriteness’ filter
(Fig. 2C), second-order anisotropic Gaussian filter
(SOAGK, Fig. 2D), local weighted mean phase angle
(termed the ‘Feature Type’) calculated from the phase
congruency (Fig. 2E), and the Steger algorithm (Fig. 2F).
The ‘Vesselness’ filter provided good smoothing and en-
hancement of the major veins, but gave low contrast for
the minor veins. In addition, information was lost at the
junctions and branch points, that led to disconnection
of elements in the skeleton unless a very low threshold
was chosen. The ‘Neuriteness’ (Fig. 2C) and SOAGK fil-
ters (Fig. 2D) also gave good smoothing, improved con-

trast of minor veins, and were less susceptible to errors at
junctions. However, all three methods retained much of
the original intensity information in the strength of the
ridges, making subsequent intensity-based segmentation
steps sensitive to the absolute threshold values used. The
phase congruency ‘Feature Type’ image gave a strong re-
sponse for all sizes of veins, independent of their original
intensity, but also gave spurious responses to noise in
the background (Fig. 2E). The Steger algorithm calcu-
lated the position of ridge centre-line directly from the
minimum ratio of the first and second derivatives drawn
normal to the ridge centreline (Fig. 2F, green), and also
estimated the width (Fig. 2F, blue). However, veins were
often disconnected in regions where the plasmodial sheet
was not yet well resolved into separate venules (Fig. 2F,
inset).
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FIG. 3: Precision-Recall plots for factorial parameter com-
binations using (A) the ‘Vesselness’ algorithm; (B) ‘Neurite-
ness’ algorithm; (C) SOAGK; or (D) phase congruency ‘Fea-
ture Type’. The circled point represents the combination that
gives the highest overall F1 value.

In each case, parameter values were optimised by sys-
tematically testing factorial combinations of parameter
values, and comparing the resultant pixel skeleton to
a manually-determined ground truth using Precision-
Recall (P-R) plots (see Fig. 3 and Fig. 4). In all cases, pa-
rameter combinations could be found that yielded com-
parable overall performance (Table I), although the sen-
sitivity of the final result to perturbation of each param-
eter differed between the methods (Fig. 3), indicated to
some extent by the spread between successive P-R plots.

Comparison with the ground-truth aided parameter
selection. furthermore, the Fβ criteria used to evalu-
ate PRC performance can itself be further weighted in
favour of avoiding false negatives (FN), to offset the con-
sequences of losing a pixel that should be part of the
skeleton. FNs have a much greater impact on connectiv-
ity than the risk of including some background pixels in
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A B C

D E F

FIG. 4: (Colour on-line) Spatial mapping of Precision-Recall
analysis following parameter optimisation and watershed seg-
mentation for a small region-of-interest using the ‘Vesselness’
algorithm (A,D); SOAGK (B,E); and Feature Type (C,F). In
the pixel skeletons (D-F), green represents pixels that match
the ground-truth (GT) within a 3 pixel tolerance (∼ 19µm),
red pixels are false negatives (FNs) that are present in the
GT, but not the segmented skeleton, whilst blue pixels are
false positive (FPs), present in the skeleton, but not in the
GT.

a false edge (compare, for example FT (F1) and FT (F2)
in Table I).

TABLE I: Typical Precision-Recall analysis of different ridge
enhancement and segmentation algorithms. Each algorithm
was run with a factorial set of different parameter combina-
tions (comb.). Results are shown for the highest F1 score for
all algorithms, and for the highest F2 score, which weights
Recall higher than Precision, for the Feature Type.

Vesselness Neuriteness SOAGK Feature Feature
Type (F1) Type (F2)

comb. 180 35 45 324 324
TP 6,545 7,466 8,072 7,229 7,937
FP 796 1,116 985 464 1,642
FN 2,030 1,322 695 1,250 740
TN 278,980 278,450 278,600 279,910 278,040
Prec. 0.89 0.87 0.89 0.94 0.83
Recall 0.76 0.85 0.92 0.85 0.91
F1 0.82 0.86 0.91 0.89 0.9

B. Analysis of the tubule network

The evacuation networks examined here progress from
a fully-connected network to a branching system, even-
tually leaving some free ends as they regress completely
from the arena. As the veins do not shift their posi-
tion laterally, a single fully-connected skeleton was deter-
mined from the median projection of the time series, fol-
lowing ‘Feature Type’ enhancement and watershed seg-
mentation. The skeleton was then used to interrogate

the intensity image at each time point. This ensures that
each node and edge in the graph retained its unique iden-
tity throughout the time series, even if the width tended
to zero as the edge was removed. In other situations,
hysteresis thresholding and thinning of the resultant bi-
nary image can be used to give a pixel-based skeleton
that includes free ends, but this method of segmentation
is much more sensitive to the hysteresis thresholds used.
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FIG. 5: (Colour on-line) Conversion from a pixel skeleton to
a weighted graph. (A) single pixel-wide pixel skeleton, colour
coded by local vein thickness; (B) graph representation with
nodes at junctions and edges colour-coded by average vein
thickness; (C) network graph colour-coded by betweenness
centrality; (D) network graph colour-coded by hydraulic ac-
cessibility.

The width (w) at each pixel was estimated follow-
ing calibration of the each intensity image using the
Lambert-Beer law (Fig. 5A). The pixel-skeleton was then
converted to a graph representation with nodes at the
junctions and free ends (if present), connected by edges
that were weighted by length (l) and width (w) (Fig. 5B).
The volume of plasmodial sheet in the region adjacent
to each vein was also calculated from the Lambert-Beer
law and any change in volume was allocated to the near-
est edge. The graph was further modified to accom-
modate additional features, such as the location of re-
sources. Standard graph-theoretic metrics were then cal-
culated, including the node or edge betweenness central-
ity (Fig. 5C). In addition, spatially relevant network mea-
sures were determined, such as the euclidean distance
from exit point in the boundary of the experimental
arena, or the hydraulic accessibility (Fig. 5D), defined
as the average shortest path weighted by resistance from
the exit to the end nodes of each edge. Typically the
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architecture of the network conferred a similar predicted
evacuation time irrespective of Euclidean distance from
the exit point (Fig. 5D), confirming previous results for
manually delineated networks [1].

C. Network metrics

Plasmodia evacuating the different arena shapes typ-
ically formed networks with 2200-2500 edges connecting
1400-1800 nodes (Table II), giving an edge:node ratio of
1.497±0.006, with an overall length of 500-600 mm, giv-
ing a vein density of 5-6 mm mm−2, a node density of
15-17 nodes mm−2, and a polygon density of ∼8 polygons
mm−2, with polygons showing consistently high circular-
ity (Table II). The node degree (k=3) was un-informative
in these networks, as the watershed segmentation ensures
that there are no k=1 nodes, except for the edges inci-
dent on the feature, and k>3 nodes are extremely rare.
Vein length followed an approximate log-normal distribu-
tion, with a slight skew towards shorter values (Fig. 6A).
Note vein length does not change in these experiments,
as the network structure was constrained to the same
skeleton at each time point (see Materials and Meth-
ods). The average and median vein lengths were around
200-250 µm for all the different arena sizes, and were
fairly straight, with a low tortuosity (Table II). Vein
widths and vein volumes followed a log-normal distribu-
tion (Fig. 6B and C, respectively), that decreased from
10h (black bars) to 13h (white bars), as the network
evacuated the arena. The average width at 10h ranged
from 46-64 µm, with larger values associated with an in-
creasing width-to-height aspect ratio in the arena (Table
II). As the total vein length was similar between arenas,
this also resulted in different network volumes at the 10h
time point (Fig. 6C). Vein resistance or drag increased
as the networks evacuated (Fig. 6D). One factor that im-
pacts on the performance of the network is the number
of cross-links present. In all arenas, the α-coefficient or
‘meshedness’ was around 0.25, meaning around 1 in 4 of
the maximum number of cross-links expected for a planar
network were present. Another way to express the im-
pact of additional edges is to compare the total length of
network with the minimum spanning tree (MST), which
was remarkably consistent at just under 0.5 for all arena
shapes (Table II).

Neither meshedness nor MST-ratio consider the widths
of the edges, which may give a misleading view of the im-
portance of different paths through the network. By con-
trast, the global transport efficiency (Eglobal) between all
nodes, calculated as the sum of the inverse of all shortest
paths normalised to the number of nodes, showed that
the network architecture in the different systems had
an impact on the predicted overall transport efficiency
(Table II). This difference was less pronounced when
only transport efficiency to the exit node (root efficiency,
Eroot) was considered (Table II), which is perhaps more
representative of the biological situation in these arenas.

The edge betweenness centrality (Bu), calculated on
the basis of vein length alone followed a log-normal dis-
tribution (Fig. 6E, open bars). However, Bu calculated
for vein resistance, showed a more complex distribution
(Fig. 6E, closed bars). Thus, a few edges had a very low
βu, and were likely to disappear, whilst the remainder
followed a high-power exponential distribution. The hy-
draulic accessibility (Fig. 5F), measured as the path of
least resistance from the exit point to every node, fell
away from the exit point, but then showed a relatively
similar behaviour across the entire network irrespective
of the distance from the exit point (Fig. 6F).
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FIG. 6: Distributions of key network measurements. (A) vein
length; (B) vein width; (C) vein volume; (D) vein resistance;
(E) vein betweenness centrality based on length (open bars)
or resistance (closed bars); and (F) Hydraulic accessibility,
measured as the inverse of the path of least resistance to the
exit.

D. Dual-graph of the intervening polygonal areas

The area of the polygonal regions between the veins
(Fig. 7A), followed a right skewed log-normal distribu-
tion (Fig. 7C), although the lower end of the distri-
bution was critically dependent on how well the initial
pixel skeleton subdivided the plasmodial sheet at the
finest scale. The maximum distance within any region
to the skeleton was normally distributed, with a mean
around 110µm. A more powerful hierarchical decompo-
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TABLE II: Network metrics for five different rectangular arenas

Rectangle 1 Rectangle 2 Rectangle 3 Rectangle 4 Rectangle 5
size (mm) 6 × 17.5 7.5 × 14.5 10 × 10 14 × 7.3 20 × 5
replicates 5 4 5 5 4
number of veins 2243 ± 262 2712 ± 454 2205 ± 211 2515 ± 128 2304 ± 353
number of nodes 1498 ± 175 1811 ± 302 1475 ± 141 1681 ± 86 1538 ± 235
number of polygons 744 ± 87 902 ± 152 730 ± 70 833 ± 43 766 ± 117
node degree 2.99 ± 0.002 2.99 ± 0.005 2.98 ± 0.005 2.99 ± 0.003 2.99 ± 0.00
total length (mm) 531 ± 33 599 ± 58 551 ± 24 598 ± 17 578 ± 43
vein density (mm mm−2) 5.84 ± 0.28 5.67 ± 0.57 5.56 ± 0.29 5.96 ± 0.15 5.76 ± 0.41
node density (mm−2) 16.4 ± 1.7 16.3 ± 3.2 14.9 ± 1.5 16.7 ± 0.8 15.7 ± 2.2
polygon density (mm−2) 8.16 ± 0.85 8.13 ± 1.62 7.38 ± 0.76 8.30 ± 0.40 7.81 ± 1.10
area circularity 0.78 ± 0.01 0.79 ± 0.01 0.78 ± 0.01 0.78 ± 0.01 0.79 ± 0.01
mean vein length (µm) 242 ± 12 246 ± 25 255 ± 14 239 ± 6 253 ± 18
median vein length (µm) 211 ± 11 213 ± 23 224 ± 13 214 ± 6 227 ± 19
tortuosity 1.10 ± 0.01 1.09 ± 0.004 1.09 ± 0.002 1.09 ± 0.01 1.09 ± 0.003
mean vein width (µm) 46.4 ± 3.4 48.8 ± 5.2 47.2 ± 3.9 63.9 ± 5.7 57.7 ± 8.8
median vein width (µm) 36.2 ± 3.7 36.9 ± 3.9 35.9 ± 2.7 54.6 ± 6.0 48.2 ± 8.7
total volume (mm3) 0.72 ± 0.10 0.64 ± 0.11 0.74 ± 0.09 1.10 ± 0.19 1.05 ± 0.19
meshedness 0.25 ± 0.0002 0.25 ± 0.001 0.25 ± 0.001 0.25 ± 0.001 0.25 ± 0.0001
MST ratio 0.47 ± 0.01 0.47 ± 0.003 0.48 ± 0.003 0.47 ± 0.002 0.48 ± 0.01
global efficiency (mm3) 137 ± 25 104 ± 29 141 ± 33 327 ± 74 267 ± 97
root efficiency (mm3) 1278 ± 67 1016 ± 308 1048 ± 140 1707 ± 597 1486 ± 708

sition analysis [26, 36] was based on the dual-graph of
the vein network with the edge weights between adja-
cent regions determined by the width of the common vein
(Fig. 7B). A binary tree was constructed by successively
fusing polygonal regions in sequence depending on the
thickness of the intervening edge. The terminal nodes in
the tree represent each original inter-vein region, and the
pattern of fusions led to aggregation into larger regions
in a characteristic hierarchical manner (Fig. 7E).

E. Prediction of long-term flow dynamics

Over short time intervals (hours), the spatial posi-
tion of the tubes did not vary significantly, but their
diameter changed in response to both short-term shuttle-
streaming, and longer-term re-modelling of the network
architecture as it exited the arena. It was therefore pos-
sible to track changes in each part of the network by
re-applying the same network extraction routine to suc-
cessive images using a skeleton based on the median net-
work present in the time window considered. Such time-
dependent changes in tube volume were used to predict
the net mass flow through the tubular network. Mate-
rial flowing to or from the sheet-like regions between the
veins or at the growing margin of the plasmodium were
included in the flow models by allocating their change in
volume to the nearest tube.

The predicted current was determined from the vol-
ume flow in each edge, and the resultant speed and shear
forces calculated from the cross-sectional area. Colour-
coded maps of the log10 absolute values are shown for
volume change between 10h and 11h (Fig. 8A), the pre-
dicted current (Fig. 8B), speed (Fig. 8C), and shear force
(Fig. 8D), with the corresponding regression of each pa-
rameter against log10 tube radius in (Fig. 9A-C). If the

entire system follows expectations from Murray’s law, the
slope of the regression lines would be expected to be 3, 1
and 0, respectively. Results for all the networks, grouped
by the arena size, are shown in (Fig. 9D), and follow ex-
pectations well.

V. DISCUSSION

A number of scale-space ridge enhancement techniques
were examined to improved network extraction from an
initially homogeneous plasmodial sheet of Physarum as
it evacuated a rectangluar arena with different aspect
ratios. By comparison with a ground-truth skeleton us-
ing precision-recall analysis, it was possible to optimise
the enhancement and segmentation parameters for each
method to give a reasonable pixel skeleton, particularly
when combined with watershed segmentation that en-
sures edges remain connected. The disadvantage of the
watershed approach was it excludes veins with free ends.
These could be extracted using hysteresis thresholding,
however, all the intensity-based methods (‘Vesselness’
[15], ‘Neuriteness’ [34], SOAGK [32, 47]) were very sensi-
tive to the precise threshold used. By contrast, the ‘Fea-
ture Type’ output from the phase congruency method
[27, 28, 39] delivered a high-contrast enhanced ridge im-
age, that was insensitive to the initial intensity variation
from the different size veins or sheet regions. This made
segmentation by either watershed or hysteresis thresh-
olding tolerant of the threshold value, and added robust-
ness to the overall processing pipeline. The alternative
Steger algorithm [49] that finds the center-line and vein
width without explicit segmentation, performed well over
large regions of the network, by failed at critical junctions
where the veins were still emerging from the intervening
plasmodial sheet. Nevertheless, there may be merit in
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FIG. 7: (Colour on-line) (A) Measurement of the inter-vein
areas; (B) Dual graph connecting areas via adjacent edges,
colour coded by the edge width; (C) Distribution of inter-
vein areas; (D) Distribution of the maximum distance to the
skeleton from within each region; (E) Conversion of the dual
graph to a branching tree by fusing areas following removal
of edges in inverse order of their width.

combining the ridge-finding and contour linking elements
of the Steger algorithm with the intensity-independence
of the phase-congruency algorithm.

The initial images used here were collected from
smaller arena sizes (100 mm2), but at 7-15× the spatial
resolution (6.2 µm pixel−1) of previous studies on net-
work formation in Physarum [2–5, 25], or 2× that of Fes-
sel et al. [13, 14]. This enabled segmentation and analysis
of much smaller veins and a more complete distribution
of veins widths (6). Equally, the spatial scale, image res-
olution, network volume, and distribution of vein widths
were comparable to the excised networks used by Mar-
bach et al. [33], although as the latter networks were
already well established, they could be segmented by sim-
ple intensity-based thresholding.

As a result of the increased resolution, other network
parameters, such as the meshedness (0.25), were higher
than previous estimates (0.1-0.15, [25]) for Physarum,
more closely resembling a hexagonal lattice. The meshed-
ness is somewhat lower in other biological systems, typi-
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FIG. 8: (Color on-line) Predicted volumetric flows of pro-
toplasmic material over a 1h time interval. (A) Change in
volume; (B) Predicted speed; (C) Predicted current; (D) Pre-
dicted shear force

cally in the range 0.04-0.29 for ant galleries [9] or 0.11-0.2
for fungal networks [6], but closer to that observed for
road networks in cities [10, 11].

Estimates of the resistance to flow or drag extended
over a greater range than previous reports [2], particu-
larly for low resistance vein segments, probably because
in these early developing networks the individual vein
lengths were shorter. The converse was true for the hy-
draulic accessibility, which is the reciprocal of the sum
of resistances to the exit from each node, and therefore
includes the total length of all the vein segments on the
shortest path, including very fine veins. Thus average
values to the exit were typically in the 10−2−10−4µm−3

range here, compared to 100 − 10−2 for coarsening net-
works [2]. The global and root efficiency measures sum-
marise the predicted transport behaviour of the network.
The root efficiency to the exit is probably the most use-
ful measure for evacuation networks, and showed a slight
increase as the aspect ratio of the arena decreased. We
note that Eglobal and Eroot used here are for shortest
paths weighted by resistance [6, 17, 18], rather than on
length alone [14], with units of µm3. However, whilst this
may be a more appropriate indicator for the predicted
transport behaviour of the network, it cannot then be
normalised by the geodesic distance to obtain a dimen-
sionless ratio [14], which may be a more useful compara-
tive indicator between systems.

The average predicted speed for the exit of protoplasm,
averaged over 1h intervals, was a few mm h−1, which
was at least an order of magnitude slower than for peri-
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FIG. 9: (Colour on-line) Scaling relationship between radius
and (A) Predicted speed with the green lines represent the
best-fit linear regression and the red lines ±50% prediction
confidence limits; (B) Predicted current; (C) Shear force; (D)
Summary of the slopes of the regression for each of the five ex-
perimental arenas (mean± s.e.m.). The coefficients are close
to predictions from Murray’s law, although the spread in each
is significant for each parameter at any given radius.

staltic flows responsible for rapid shuttle streaming that
operate on a minutes time scale [33]. Indeed, it is likely
that changes in vessel diameter due to shuttle stream-
ing are one of the major sources of error in the estimate
of vein thickness that lead to the wide variation in pre-
dicted speed for any given vein radius. Nevertheless, the
trend across all veins matched the scaling exponents pre-
dicted from Murray’s law, and provide further support
that temporal evolution of vein radii may be responding
to a internal shear threshold [1].
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