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Abstract

Background: Alternative gene splicing is a common phenomenon in which a single gene gives rise to multiple
transcript isoforms. The process is strictly guided and involves a multitude of proteins and regulatory complexes.
Unfortunately, aberrant splicing events do occur which have been linked to genetic disorders, such as several types of
cancer and neurodegenerative diseases (Fan et al., Theor Biol Med Model 3:19, 2006). Therefore, understanding the
mechanism of alternative splicing and identifying the difference in splicing events between diseased and healthy
tissue is crucial in biomedical research with the potential of applications in personalized medicine as well as in drug
development.

Results: We propose a linear mixed model, Random Effects for the Identification of Differential Splicing (REIDS), for
the identification of alternative splicing events. Based on a set of scores, an exon score and an array score, a decision
regarding alternative splicing can be made. The model enables the ability to distinguish a differential expressed gene
from a differential spliced exon. The proposed model was applied to three case studies concerning both exon and
HTA arrays.

Conclusion: The REIDS model provides a work flow for the identification of alternative splicing events relying on the
established linear mixed model. The model can be applied to different types of arrays.

Keywords: Exon arrays, HTA arrays, Alternative splicing, Mixed effects models

Background
Alternative splicing (AS) was considered to be an uncom-
mon phenomenon until microarray and high-throughput
sequencing technology enabled whole genome expression
profiling [1]. More than 90% of human genes exhibit
multiple transcript isoforms due to exon enrichment or
depletion in mRNA transcription [2–4]. Since transcript
isoforms of a single gene have been observed to vary
between tissues and even between developmental stages,
alternative splicing has been proposed as a primary driver
of evolution and phenotypic complexity in mammals
[5–7]. Straying splice variants, however, has been linked
to cancers such as mammary tumorigenesis and ovarian
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cancer [8]. Although the underlying relationship between
aberrant splicing events and cancer is often not (yet)
established, the potential exists to develop new diagnos-
tic and therapeutic interventions when more insights are
gained [9]. Therefore, a better understanding of the mech-
anism of alternative splicing and identification of the dif-
ferences in splicing events between diseased and healthy
tissues is considered crucial in cancer and other medical
research [10]. By measuring a relative amount of distinct
splice forms, one can test whether a new splice form really
constitutes an important fraction of a gene’s transcript
in at least some cell types. This type of research could
reveal patterns of regulation across a large number of dif-
ferent tissues [11]. Several alternative splicing detection
methods have been proposed with the development of
the RNA sequencing (RNASeq) [12] and microarray plat-
forms such as the Affymetrix Exon ST arrays [13] and
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the Human Transcriptome Arrays 2.0 [14]. Recent studies
emphasize the complementary nature of RNASeq and
microarrays; combined, both technologies have strengths
which might overcome the reported weaknesses. The pri-
mary advantage of RNASeq is its potential to explore the
entire diversity of the transcriptome while the microar-
ray has the ability to measure lower abundance transcripts
[15]. Since the RNASeq is not able to properly account for
low abundance transcripts and its competitive detection,
the resulting library diversity will be limited [16, 17]. The
limited diversity can be resolved by relying on the tech-
nology of exon and HTA arrays. Methods for alternative
splicing detecting using RNASeq include Mats, DEXSeq
and Cufflinks [18–20]. However, these have shown to
be insufficient [21]. Alternative splicing has been studied
with microarray platforms as well resulting in a variety of
methods. The Microarray Detection of Alternative Splic-
ing (MiDAS)method employs gene-level normalized exon
intensities in an ANOVAmodel based on a Splicing Index
(SI) [13, 22]. The SI method normalizes the exon level
expression intensities by their corresponding gene level
intensities, and compares these normalized intensities
between sample groups. Another ANOVA based method
is the so-called Analysis Of Splice VAriation (ANOSVA)
[23], which fits a linear model to the observed data aiming
to identify non-zero interaction terms between the sample
groups and the exons. However, it has been argued that
the ANOSVA method performed poorly [13]. The Probe
Level Alternative Transcript Analysis (PLATA) method is
based on the normalization of probe level intensities: first
the probe-wise intensities, using gene level summarized
values, are computed; afterwards the group averages of
these normalized intensities are compared by considering
all measurements across probes and arrays as indepen-
dent [24]. The probe level SI estimation procedure for
detecting differential splicing (PECA-SI method) detects
alternative splicing based on a probe level splicing index
instead of the exon level used by MiDAS [25]. PECA-SI
outperforms other existing methods except for Finding
Isoforms using Robust Multichip Arrays (FIRMA) [25,
26]. In contrast to other methods, FIRMA formulates
alternative splicing identification as an outlier detection
problem. It is based on the residuals of the Robust Mul-
tichip Analysis (RMA) [27]. A recent method is Robust
Alternative Splicing Analysis for Human Transcriptome
Arrays (RASA) [28] which was applied to HTA arrays
and uses exon junction information in the identification
of alternative splicing. In this paper, we propose a new
modelling approach for the detection of AS namely the
Random Effects for the Identification of Differential Splic-
ing (REIDS). This model identifies splicing events based
on a set of two scores; an array score which is used
to identify samples containing an alternatively spliced
exon and an exon score to prioritize spliced exons. The

array scores have an intuitive interpretation as the devi-
ation of the exon from the overall gene expression. The
REIDS method was compared with FIRMA as the exist-
ing preferred method for alternative splicing detection
using simulated data and two real-life exon array stud-
ies. A third case study based on HTA illustrates how the
REIDS method enables the disentanglement of differen-
tially expressed genes and differential spliced exons. The
data and the proposed random effects model are intro-
duced in the Methods sections. Next, the model is applied
to three case studies in the Results sections. The paper is
concluded with a discussion and conclusion. Illustrations
are based on the R packages BiomaRt and GenomeGraphs
[29]. REIDS is currently bundled in a package publicly
available on R-forge.

Methods
Data
Three data sets are used to illustrate the proposed random
effects model for the identification of alternative splicing.

The tissue data
The tissue data was obtained with the GeneChip® Human
Exon 1.0 ST array. The array is a whole genome array con-
taining only perfect matching (PM) probes with a small
number of generic mismatching probes for the purposes
of background correction. A probe set identifies an exon
using four perfect match probes. There are no probes
which span exon-exon junctions [30]. The data set con-
sists of triplicates from 11 tissues, so in total 33 arrays.
Each tissue is thus represented by three replicates. This
data set was also used to illustrate the FIRMAmethod [26]
and is publicly available on the Affymetrix website.

The colon cancer data
The colon cancer data was also generated with the
GeneChip® Human Exon 1.0 ST array and contains 10
paired tumor-normal cancer samples. The data was ana-
lyzed before [9, 26] and is publicly available on the
Affymetrix website.

The HTA data
The Human Transcriptome Array (HTA) is a recent
microarray platform of Affymetrix. It is an expansion of
the Human Exon array containing 10 probes per probe
set. In addition, the HTA array contains probes that span
exon-exon junctions which are supported by four probes
each. The data was provided by Janssen Pharmaceutica,
Belgium and contains measurements on seven tissues
with three replicates each. An annotation file connect-
ing the exon level to the gene level was taken from the
Brainarray website [31]. As the provided cdf file currently
does not yet annotate the junctions on the array, exon
junctions are not considered in this paper.
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Models for the detection of alternative splicing
In this section we present the REIDS model for the detec-
tion of alternative splicing.

Finding Isoforms using Robust Multichip Arrays (FIRMA)
We begin with a brief description of the FIRMA model.
The FIRMA algorithm for the detection of alterna-
tive splicing events relies on the RMA preprocessing
approach [26, 27]. The algorithm consists of background
correction, normalization and summarization of probe
level data into gene level data, with one value per
combination of gene and array. The gene level sum-
marization is done by fitting an additive model on
probe intensities:

Yij = ci + pj + εij. (1)

Here, Yij denotes a log2-transformation of the intensi-
ties of array i and probe j. The parameter pj denotes the
average value of probe j, ci represents the summarized
gene level intensity of array i while the residual of probe
j of array i is denoted by εij. The unknown parameters in
the model are estimated using a median polish algorithm
to ensure robust estimates of the summarized gene level
intensities against outlying probes. The RMA model for
summarization at the gene level can be extended to sum-
marization at the exon level:

Yijk = ci + ek + dik + pj + εijk . (2)

The effect of exon k is denoted by ek while dik rep-
resents the interaction between array i and exon k and
εijk is the residual of probe j which belongs to exon k in
array i. Since the probes are nested within exons, the exon
effect ek is absorbed into the probe effect pj. Ignoring the
interaction between the exon and the array, the informa-
tion about alternative splicing is left to be absorbed into
the residual [26]. This is a crucial point since it implies
that alternatively spliced exons will have substantial higher
residuals for some arrays than for others which motivates
the definition of the FIRMA score as

Fik = median εijk/s. (3)

Here, probe j is assumed to belong to exon k (j =
1, . . . nk) and s is the MAD (Median Absolute Deviation)
allowing comparisons across genes. An exon is declared
AS whenever Fik is large [26].

The REIDSmodel
The alternative splicing detection problem can be formu-
lated as a variance decomposition problem in a random
effects model. The underlying assumption is that the
between array variability of an alternatively spliced exon
will be higher than the within array variability among the

exons of the same gene. Similar to FIRMA, we define a
linear model for the probe intensities:

Yijk = pj + dik + εijk . (4)

The background noise is assumed to follow a normal
distribution, εijk ∼ N

(
0, σ 2) and it captures the within

array variability
(
σ 2) across all exons of the same gene. In

contrast to the FIRMAmodel, the parameter dik is decom-
posed into an average gene intensity per array i, ci, and an
exon specific deviation from its average gene intensity bik ,

dik = ci + bik . (5)

where bik ∼ N(0,D). The covariance matrix D is a K × K
diagonal matrix containing the between array variabilities(
τ 2k

)
for each exon. The model formulation in Eqs. (4) and

(5) can be combined into a single model consisting of both
the fixed effects (pj and ci) and the random effects (bik).
The combined mixed effect model is given by:

Yijk = pj + ci + bik + εijk , (6)

in which the random effects bik ∼ N(0,D) are assumed to
be independent of the background noise εijk ∼ N

(
0, σ 2).

Figure 1 illustrates themean structure of the REIDSmodel
presented in (5) for a scenario in which the gene is not
differentially expressed and the kth exon is alternatively
spliced. The exon is related to four probes. This results
in four probe effects p1, p2, p3 and p4 which represent an
average of the probe values across all arrays. The array
effects in the REIDS model c1a, c1b, . . ., c2b are used to
measure the differences between the arrays. The devia-
tion of the probes from the gene level will be captured
by a random effect per sample: b1ak , b1bk , . . ., b2ck which
are, as mentioned above, assumed to follow a normal dis-
tribution with variability τk . The remaining variation of a
probe j of exon k in array i is captured by the error term
εijk . Hence, the model splits the total variability of the
probe intensities of an exon k into the variability which
can be accounted for by the arrays τ 2k and an the remaining
variability σ 2.

REIDSScores forQuantification of Alternative Splicing
The advantage of a mixed model formulation for alterna-
tive splicing detection is the existence of a standard score
for every exon in every sample which quantifies the trade-
off between signal and noise. We refer to this score as the
exon score. The exon score for the kth exon in a gene is
defined as:

ρk = τ 2k /
(
σ 2 + τ 2k

)
.

It intuitively follows from this definition that an equity
threshold for the exon score is 0.5. Note that this thresh-
old can be adapted depending on the amount of signal in
a microarray data set. Given that exon k has been identi-
fied to have substantial variation between the arrays, the
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Fig. 1 A clarification of the parameter estimation by the REIDS model

estimated random effects bik per array per exon can be
used as array scores to quantify the degree of alternatively
splicing per array. Arrays enriched or depleted with exon k
will have array scores greater than zero. It should be noted
that the array scores are expected to be correlated with
the FIRMA scores for an alternatively spliced exon as both
the random effects of the REIDS model will resist and the
residuals of the FIRMAmodel will be large. The combina-
tion of an exon score and an array score gives enables us to
differentiate between differential expression of a gene and
differential splicing of an exon. Four scenarios can be dis-
tinguished for which illustrations can be found in Section
2 of Additional file 1.

• The first scenario describes a gene that is not
differentially expressed between the arrays and has
no alternatively spliced exons. This implies that exon
intensities are similar across all arrays. In this case it
is expected that τ 21 = . . . = τ 2K = τ 2 and τ 2 << σ 2.
As a consequence, the exon score ρk will be low and
the exons should not be identified by the model.

• The second scenario consists of a non-differentially
expressed gene that contains an alternatively spliced
exon k and non-alternatively spliced exons k−. For
the alternatively spliced exon, it is expected that
τ 2k > τ 2k− with τ 2k >> σ 2 and τ 2k− << σ 2. The exon
score for this probe set k will be high. As an
acceptable ρk is present, a test on the array scores can
be conducted in order to identify biologically induced
splicing associated with the experimental conditions
or tissue types.

• The third scenario corresponds to a differentially
expressed gene with no alternatively spliced exons.
Again it is expected that τ 21 = . . . = τ 2K = τ 2. Since

there is a natural difference between the gene levels
of the arrays here; it will be the case that τ 2 >> σ 2

and that the exon scores are high. A test on the array
scores will conclude the absence of alternatively
spliced exons since the scores will not be associated
with experimental conditions or tissue types.

• The fourth scenario is a differentially expressed gene
with an alternatively spliced exon. For the
alternatively spliced exons, the same reasoning
applies as for when the gene is not differentially
expressed. The non-alternatively spliced exons will
show enough signal in the exon score but a test
between the array scores will show no association
with experiment conditions or tissue types.

Estimation of the Model Parameters The parameters
of the proposed mixed effects model are estimated within
the Bayesian framework with vague proper priors since
the full conditional posterior distributions for the param-
eters of interest are known. Let D be a K × K diag-
onal covariance matrix of τ 21 , τ

2
2 , · · · , τ 2K for which an

Inverse-Wishart prior was assumed, i.e., D ∼ Inverse −
Wishart(ψ ,�). An inverse gamma prior was specified for
σ 2 and 1/σ 2 ∼ Gamma(α,β). The full conditional pos
terior distributions for the parameters of interest are given by

P
(
bi|p, c,D, σ 2) = NK

(

,ϒ−1) .

Here, ϒ = D−1 + σ−2ni where ni is a K vector of num-
ber of probes per exon. Further, 
 = ϒ−1�′ where � is a
K vector of σ−2 ∑

j,k(log2(PMijk(j)) − pk − ci). Hence, the
full conditional posterior distribution for D, the matrix of
the between array variability is

P
(
D|b,p, c, σ 2) = Inverse−Wishart(ψ + n,� + b′b),
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where � is a K × K diagonal matrix of ones, n is the
number of arrays withψ specified as the number of exons.
Finally, the full conditional distribution for 1/σ 2 is

P(1/σ 2|b,p, c,D) = Gamma(α + 0.5N , η)

where η = β + 0.5
∑

i,j,k(Yijk(j) − pk − ci − bikzik)2 with
α = β = 0.0001 and N is the number of observations
for all the arrays, exons and probes. Using Gibb’s sam-
pler, we generate posterior samples for the parameters by
iteratively sampling from their full conditional posterior
distributions conditioning on the sample of the param-
eters at the immediate previous iteration. The posterior
point estimates and the credible intervals for the param-
eters are based on the MCMC chains after discarding the
burn-in parts.

Identification of Alternative Splicing Events There are
two main types of alternative splicing detections: (1)
detection of sample-specific alternative splicing and (2)
detection of differential splicing between two or more
experimental conditions. Figure 2 illustrates the flexible
framework of the mixed model and how it can be used
to investigate either sample-specific alternative splicing
or differential splicing between experimental groups. First
the REIDS method is applied to each gene to obtain array
and exon scores after which the probe sets are priori-
tized according to their exon scores. Probe sets with exon
scores greater than a pre-specified threshold (0 < ρ < 1)
are retained for further investigation. The exon scores
directly reflect the heterogeneity between samples and
consequently, a probe set with a high exon score implies
enrichment or depletion of the exon in some of the sam-
ples. A prioritized probe set is considered to be expressed

Fig. 2 The REIDS method flowchart. The proposed workflow is similar
to the workflow of FIRMA. Both models fit a statistical model on the
PM data and compute a score on which the decision whether or not
an exon is alternative splicing is based. In case of an AS event, we
expect to see a correlation between the array scores of the REIDS
model and the FIRMA scores

in a subset if the array scores for some samples are further
away from zero compared to the other samples or if the
samples have the maximum array score for exon enrich-
ment or the minimum array score for exon depletion.
For the detection of differential splicing between two or

more experimental conditions, the exon scores also reflect
heterogeneity between arrays. This does not imply that
such heterogeneity is associated with experimental con-
ditions. Heterogeneity between arrays captured by exon
scores is a necessary but not a sufficient criterion for dif-
ferential splicing detection. We recommend to use the
array scores as input into a t-test for independent arrays
or a paired t-test for paired arrays to test whether the
array scores are significantly different between experi-
mental conditions. Other relevant tests might also be per-
formed as the framework is flexible and allows many types
of downstream analyses. Finally, the prioritized exons
are ranked according to their corresponding p-values or
t-statistics.

Exclusion of Non-Informative Probe Sets Alternative
splicing detection is known to suffer from a large num-
ber of false positives when many probes in a probe set
are non-informative. Therefore, filtering has been recom-
mended as a step prior to alternative splicing detection
[9, 26]. A non-informative probe set can be defined by
a lack of coherence among its probes. By evaluating the
intra-probe set correlation, a non-responsive probe set
can be identified as such and excluded prior to alterna-
tive splicing detection based on informative calls. The
concept of informative or non-informative calls was intro-
duced for arrays by applying a factor analysis model to
calculate a score of informativeness based on signal to
noise ratio [32]. We used a mixed model framework for
Informative/Non-Informative calls (I/NI calls) to iden-
tify and exclude non-responsive probe sets based on an
intra-probe set correlation as a filtering score [33].

Results
In this section we present the analysis of the three case
studies presented in “Background” section . All data sets
are pre-processed using the R package aroma.affymetrix
[34]. The raw .CEL files are background corrected with the
RMA background correction, normalized with quantile-
normalization and log2-transformed [27] resulting in
probe level intensities on which first the I/NI calls and
then REIDS model are performed. For the first case study,
the tissue data, we illustrate the method on three genes
for which several probe sets were identified to be alterna-
tive spliced. For the second case study, the colon cancer
data, we present the results for 24 validated genes. The
third case study, the HTA data, shows examples of the four
scenarios described above.
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The tissue data
The ABLIM1 gene
The tissue data contains 284258 probe sets for 18708
unique genes. In order to illustrate the methods, we first
focus on the ABLIM1 gene which was validated to be
alternatively spliced [9]. The ABLIM1 gene contains 35
probe sets, 33 of which pass the I/NI calls threshold.
Figure 3 shows the FIRMA scores (log scaled) and array
scores from the REIDS method. As expected, the array
scores and the FIRMA scores are strongly correlated. Ten
probe sets have exon scores greater than the equity thresh-
old of 0.5 but only four have exon scores higher than 0.7.
Probe set 3307988, which was validated in earlier stud-
ies and was also discovered by FIRMA, has the highest
exon score of 0.82 with array scores ranging from -2 to
2.5 [9, 26]. REIDS also identified exon 3307988 as alter-
natively spliced for the heart and muscle tissues. The
measured intensities of all probe sets of the ABLIM1 gene
and the annotation to known transcripts can be found in
Additional file 1: Figure S6.

A genomewide analysis
A genome wide analysis was conducted on the tissue data
considering the heart, muscle, prostate and thyroid tissues
as one group and the remaining tissues as another group.
In total 1334 of the 4579 probe sets with exon scores
exceeding 0.5 are identified to be alternatively spliced
between tissues using the t-test with a BH-FDR false dis-
covery correction [35] using an error rate of 5%. In what
follows we focus on two examples. The top ranked probe

set (based on the adjusted p-values) is 2513813 with an
exon score of 0.76, which maps to the XIRP2 gene. This
probe set and annotation of the gene to known transcripts
are shown in Additional file 1: Figure S7 and S8. Probe
set 2319718 from gene KIF1B is found to be up-regulated
in the heart, muscle, thyroid and prostate tissues as well,
but depleted in the other tissues. The KIF1B gene has
previously been reported to be differentially expressed in
32 cancer experiments and to be alternatively spliced in
heart, muscle and thyroid [36]. A third example is the
PALLD gene which has been found in 75 cancer experi-
ments and whose probe sets (2751068 and 2751072) were
identified by REIDS to be up-regulated in heart, muscle,
thyroid and prostate, but down-regulated in the other tis-
sues. Figure 4 shows the gene level and exon level data for
probe set 2319718 from the KIF1B gene and 2751068 from
the PALLD gene.

The colon cancer data
The colon cancer data contains 10 paired tumor-normal
cancer samples and 284258 probe sets from 18708
uniquely identified genes. The goal of the analysis is
to identify exons whose differential splicing can be
associated with tumors or normal samples. The paired
t-test was used to test whether the mean paired differ-
ences of the array scores is equal to zero or not. First, we
focus on the 24 validated probe sets [9] of which 11 probe
sets were ‘confirmed’ to be alternatively spliced, seven
probe sets were ‘unconfirmed’ and six were categorized
as ‘unclear’. With the term ’confirmed’ we refer to probe

Fig. 3 Left panel: a heatmap of the FIRMA scores of the ABLIM1 gene. Right panel: a heatmap of the array scores of the ABLIM1 gene
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Fig. 4 Left panel: the probe set 2319718 of the KIF1B gene. Right panel: the probe set 2751068 of the PALLD gene. The black and blue lines indicate
the mean profiles of the gene and exon level data respectively. The blue dots show the probe level data

sets which have been confirmed to be alternatively spliced
by RT-PCR results to consistently have a different iso-
form in cancer from the normal [26]. Figure 5 presents the
fold change from the FIRMA and REIDS methods. The
FIRMA scores and the array scores obtained by the REIDS
method for these probe sets are strongly correlated. The
FIRMA scores are observed to contain more noise. The
array scores for the ‘confirmed’ probe sets are more dis-
sociated from zero as compared to the ‘unconfirmed’ and
the ‘unclear’ probe sets. A genome-wide scan for differ-
ential splicing on the colon data identified 894 probe sets
with exon scores greater than 0.5. Figure 6 shows the vol-
cano plots of the p-values and fold changes for the FIRMA
and REIDSmethods. The most interesting probe sets with
evidence of tumor induced differential splicing are located
in the upper left and right corners of the plots. These
are the probe sets with the largest fold changes and the
smallest p-values. A total 114 of probe sets were identi-
fied as alternatively spliced (using a significance level of
5%). A further comparison can be found in Section 4 of
Additional file 1.

The HTA data
The HTA data contains 36799 genes and 575650 probe
sets. The cancer cell lines were grouped into two groups.
The first group contains the colon cancer cell lines (HCT-
116 and HT-29) and the second group the cell lines from

lung (A549 and NCI-H460), ovary (SK-OV-03), prostate
(DU-145) and breast cancer (MDA-MB-231) cell lines.
This division is clear using a spectral map analysis shown
in Section 5 of Additional file 1. A genome-wide analy-
sis of the HTA data resulted in 2522 probe sets that are
likely to be alternatively spliced between the colon tis-
sues and the other tissues (ovary, prostate and breast).
The top ranked probe set is ENSE00001668645 with
an exon score of 0.70 which is presented in the Addi-
tional file 1: Figure S17. This exon is mapped to the
DOCK10 gene which has been reported in several cancer
studies [37].

A differentially expressed genewith an alternatively
spliced exon
Figure 7 (left panel) shows the gene level data of the
MYO18A gene with the exon level data of probe set
ENSE00001297204. The gene was significantly differen-
tially expressed between colon and other cell lines with
a p-value of 0.0008 and fold change of 0.57. The fold
change for the gene level data was however much smaller
than the fold change at the exon level. This indicates that
this particular exon behaves differently compared to the
other exons of the same gene. The ability to separate sig-
nal (i.e. variability between samples) from noise, is one of
the main advantage of the REIDS method over FIRMA.
The density plot of the array scores of ENSE00001297204
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Fig. 5 Left panel: the mean paired differences of the FIRMA scores for the 24 validated probe sets. Right panel: the mean paired differences of the
array scores for the 24 validated probe sets. Dark grey boxes indicate confirmed probesets while light grey boxes are unconfirmed probesets and
white boxes are unclear probesets

(Fig. 7b) shows the clear separation between the colon
cell lines and the other cell lines. This superimposed
bimodal distribution of the array scores illustrates the dis-
crimination of the random effects model for alternating
splicing detection.

A differentially expressed genewith non alternatively
spliced exon
In the previous example we focused on an alternative
spliced exon for a differentially expressed gene. This
section shows an example of a differentially expressed

Fig. 6 Left panel: a vulcano plot of the -log10(p-values) versus the mean paired differences of the FIRMA scores. Right panel: vulcano plot of the
-log10(p-values) versus the mean paired differences of the array scores for the probe sets with an exon score higher than 0.5
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Fig. 7 Probe set ENSE00001297204. Left panel: gene level and exon level data. The black and blue lines indicate the mean profiles of the gene and
exon level data respectively. The blue dots show the probe level data. Right panel: a density plot for array scores showing the values of group 1 (red)
and group 2 (blue)

gene with no splicing variants. Figure 8 (left panel)
shows the gene and exon level data for probe set
ENSE00001505352 of the PRTG gene. Both gene level
and exon level data show a similar pattern across the cell
lines with fold changes of 2.40 and 3.11, respectively. This
implies that this exon is expressed similarly as the others
exons of the PRTG gene. We note that both gene level and
the exon level data are lower for the colon cancer cell lines
compared to the level in the ovary, prostate and breast
cancer group. This implies that the gene is differentially
expressed. Furthermore, Fig. 8 (right panel) shows a uni-
modal distribution for the arrays scores which implies that
these are not discriminatory between colon and other tis-
sues (i.e., the exon ENSE00001505352 is not alternatively
spliced). Thus, the REIDS model is able to differenti-
ate between differential gene expression and differential
splicing.

A non differentially expressed genewith an alternatively
spliced exon
In the next two sections we present examples for non-
differentially expressed genes. Figure 9 shows an exam-
ple of the non-differentially expressed gene CD47 of
which probe set ENSE00001369930 with an exon score
of 0.93 is alternatively spliced. The values of probe set
ENSE00001369930 has consistently high expression in all
colon cancer samples while it is expressed 6 fold lower in
the other samples. The density plots of the array scores

indicates consequently a clear bimodal distribution which
represent a distinction between the groups of interest.

A not differentially expressed genewith a non alternatively
spliced exon
As an illustration that REIDS successfully identifies
genes without signal as negative outcomes, Fig. 10
shows a non-differentially expressed gene with a non-
alternatively spliced exon. The array scores of probe set
ENSE00002334350 with an exon score of 0.79 are not sig-
nificantly different between the groups of interest. The
probe set belongs to the COX6A1 gene. The density plot
of the array scores resembles a unimodal distribution
and does not show a distinction between the groups of
interest.

Simulation study
Although a mixed effect model is a well-established sta-
tistical methodology, a simulation study using the same
setting as Purdom et al. (2008) should be completed, in
order to test its usage for alternative splicing detection.
The data are simulated from the following model:

yij = log2
(
Bj + Iij × 2(Ci+Pj) + εij

)
(7)

where yij denotes the intensity for array i and probe j.
Bi ∼ N

(
5, 0.352

)
is the background noise common to all

arrays and all probes. Pj ∼ N(0, 3) denotes probe specific
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Fig. 8 Probe set ENSE00001505352. Left panel: gene level and exon level data. The black and blue lines indicate the mean profiles of the gene and
exon level data respectively. The blue dots show the probe level data. Right panel: a density plot for array scores showing the values of group 1 (red)
and group 2 (blue)

effects whilst εij ∼ N
(
0, 0.72

)
denotes the residuals from

array i and probe j. The array mean effect ci ∼ N
(
c, 1.52

)

was assumed to have two mean values μc = {7, 10} with
a common standard deviation of 1.5. Each of the simu-
lated alternatively spliced genes contained 40 arrays and
10 exons with four probes per exon. The spliced isoforms
were randomly selected from a set of pre-defined patterns
with equal probability and the arrays that contained a
spliced isoform were randomly selected with probabilities
(P = 0.1,0.3,0.5,0.8) [26]. In total 1000 datasets were gen-
erated. The results of the simulation study are presented
in Table 1 for a probability of 80% for including a splice
isoform. The REIDS method and the FIRMA method are
comparable when there was a low probability of splice
variants. However, the REIDS method outperformed the
FIRMA method when there was a high probability of
splice variants.
A second simulation study based on eqn 7 was per-

formed in order to investigate the performance of infor-
mative calls in identification of non-responsive probe
sets [38]. All arrays were simulated from the background
noise with no array and probe effects, except for the
arrays that were randomly selected with probabilities
P = (0.05, 0.1, 0.15, 0.2) to contain one or more non-
responsive probe sets. Table 2 shows that informative
calls as a filtering approach prior to alternative splicing
detection correctly identified non-responsive probe sets

in more than 90% of times independent of the number
of non-responsive probe sets. By applying informative
calls before alternative splicing detections, the problem
of non-responsive probe sets could be minimized and
consequently, a reduction in false positive rates.

Discussion
We have reformulated the identification of alternative
splicing events in terms of a random effects model. Alter-
native splicing is seen as the deviation of the exon level
data from its gene level data in a subset of samples or cell
lines or under a set of conditions. The proposed REIDS
method is capable of identifying cassette alternative exon
usage which is the most prevalent type of alternative splic-
ing [39, 40]. The identification relies on a set of scores:
the exon score and the array scores produced by the
model. Exons which are alternative splicing candidates
will have larger exon scores implying that an alternatively
spliced exon must be discriminatory between tissues or
experimental conditions. In addition to exon scores, large
positive array scores indicate exon enrichment while large
negative values indicate exon depletion. Overall, REIDS is
at least as good as FIRMA since both rely on a similar con-
cept. REIDS, however, detects alternative splicing based
on a signal-to-noise ratio instead of relying on the total
variability as used by the FIRMAmethod. This means that
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Fig. 9 Probe set ENSE00001369930. Left panel: gene level and exon level data. The black and blue lines indicate the mean profiles of the gene and
exon level data respectively. The blue dots show the probe level data. Right panel: a density plot for array scores showing the values of group 1 (red)
and group 2 (blue)

Fig. 10 Probe set ENSE00002334350. Left panel: gene level and exon level data. The black and blue lines indicate the mean profiles of the gene and
exon level data respectively. The blue dots show the probe level data. Right panel: a density plot for array scores showing the values of group 1 (red)
and group 2 (blue)
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Table 1 Area under the curve for 80% probability of alternative
splicing

Method μ = 7 μ=10

REIDS 0.97 0.99

FIRMA(mean) 0.90 0.94

FIRMA(median) 0.89 0.93

both the REIDS and FIRMAmethods will perform equally
well when an exon is alternatively spliced. Themain differ-
ence is that FIRMA is more prone to false positives than
REIDS as shown in our simulation study. We have pre-
sented a number of alternatively spliced probe sets across
the case studies which are supported by literature. For
example, probe set 3307988 of the ABLIM1 gene in the tis-
sue data was found by the REIDS model and confirmed by
[9]. The aforementioned KF1B gene has been cited to be
subjected to alternative splicing in heart, muscle and thy-
roid [2, 36] as well. In the colon cancer study, 11 confirmed
alternatively spliced probe sets were identified before [9].
The REIDS model also identified six of these as alterna-
tively spliced implying that we have not found all of the
confirmed probe sets. Our results so far seem to coincide
with literature for several probe sets.

Conclusions
Alternative splicing detection is becoming an interest-
ing area of methodological research in genomics with the
introduction of exon arrays and RNA-sequencing plat-
forms. A better understanding of variation in gene expres-
sion between tissue types or experimental conditions is a
crucial element to advance precision medicine. The bio-
logical dogma of one gene leading to multiple proteins
makes the investigation of alternative splicing detections
appealing for drug development and target identifica-
tion. Pharmaceutical research seeks new putative targets
in cancer therapy with advances in biotechnologies and
increasing knowledge of the genome. Our future work
consists of improving and investigating the effects of the
model. A next step could be to expand the model to a

Table 2 Area under the curve for non-responsive probe set
identification

Non-responsive Arrays
probe sets 5% 10% 15% 20%

1 0.987 0.993 0.994 0.994

2 0.985 0.992 0.994 0.994

3 0.993 0.997 0.997 0.997

4 0.988 0.993 0.995 0.995

5 0.992 0.996 0.997 0.997

6 0.992 0.996 0.997 0.997

new summarization technique. In this way, we would have
a model that is able to identify alternative splicing and
summarize intensities at the gene and exon level. Con-
cerning the HTA data, we will investigate if we can make
use of the junction probes that are present on this array.
In the above analysis, the HTA data was annotated with
a cdf file, publicly available on the Brainarray website,
and the junction probes were not detected in this file.
We will endeavor to discover the junction probes and
see in which way we can use them to our benefit. Once
these can be annotated, we can compare our method to
RASA which makes use of the junctions in the detec-
tion of alternative splicing. Finally, as an extension of the
model, it will be interesting if we can perform a similar
analysis for RNASeq data. Our goal is to see if this type
of model can be applied to both microarray and RNASeq
data with minor alterations. Studying the transcriptome
might be most efficient, combining both technologies as
suggested by the Sequencing Quality Control Consortium
[41]. During the further development of the model and its
applications, we will also develop an R package with our
method and its elaborations to perform a data analysis in
a pipeline.
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Additional file 1: Supplementary Material. Supplemental examples and
figures (PDF 31000 kb)
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