
ORIGINAL RESEARCH PAPER

Suitability of GPUs for real-time control of large astronomical
adaptive optics instruments

Urban Bitenc1 • Alastair G. Basden1 • Nigel A. Dipper1 • Richard M. Myers1

Received: 8 August 2016 / Accepted: 16 June 2017

� The Author(s) 2017. This article is an open access publication

Abstract Adaptive optics (AO) is a technique for cor-

recting aberrations introduced when light propagates

through a medium, for example, the light from stars

propagating through the turbulent atmosphere. The com-

ponents of an AO instrument are: (1) a camera to record the

aberrations, (2) a corrective mechanism to correct them, (3)

a real-time controller (RTC) that processes the camera

images and steers the corrective mechanism on millisec-

onds timescales. We have accelerated the image processing

for the AO RTC with the use of graphics processing units

(GPUs). It is crucial that the image is processed before the

atmospheric turbulence has changed, i.e., in one or two

milliseconds. The main task is to transfer the images to the

GPU memory with a minimum delay. The key result of this

paper is a demonstration that this can be done fast enough

using commercial frame grabbers and standard CUDA

tools. Our benchmarking image consists of 1:6 � 106 pix-

els out of which 1:2 � 106 are used in processing. The

images are characterized and reduced into a set of 9248

numbers; about one-third of the total processing time is

spent on this characterization. This set of numbers is then

used to calculate the commands for the corrective system,

which takes about two-third of the total time. The pro-

cessing rate achieved on a single GPU is about 700 frames

per second (fps). This increases to 1100 fps (1565 fps) if

we use two (four) GPUs. The variation in processing time

(jitter) has a root-mean-square value of 20–30 ls and about

one outlier in a million cycles.

Keywords Adaptive optics (AO) � Extremely large

telescope (ELT) � Real-time control (RTC) � Graphics

processing unit (GPU)

1 Introduction

Adaptive optics (AO, [1]) is used to correct the aberrations

introduced when light propagates through a medium. In

astronomical observations, AO compensates the distortions

caused by the atmospheric turbulence [2]. The key parts of

an AO instrument are a camera that records the distortions

of light, and a real-time controller (RTC) that processes the

camera images and steers the mechanism correcting the

distortions.

Extremely large telescopes (ELTs, e.g., [3]) will cru-

cially depend on AO; without the AO, the atmospheric

aberrations will void any improvement in the resolution

due to the larger telescope diameter. While AO is now well

established on 8 and 10 meter class telescopes, its exten-

sion to 30–40 m telescopes remains a significant challenge.

One major aspect of that challenge is the provision of a

suitable low-latency RTC.

Since the release by NVidia of the CUDA development

environment, GPUs have been a popular technology for the

acceleration of AO systems [4, 5]. For this paper, we have

implemented the algorithms for AO real-time control on

graphics processing units (GPUs) within DARC (the Dur-

ham AO real-time controller [7]), and we studied its per-

formance for an ELT-size system. One of the key tasks was

minimizing the delay due to the copying of camera images

from the CPU memory to the GPU memory. Sevin et al. [8]

have developed a way to copy the camera images directly

from the camera into the GPU memory, without involving

the CPU memory. While this will clearly provide a better

& Urban Bitenc

urban.bitenc@durham.ac.uk

1 Centre for Advanced Instrumentation, Durham University,

Durham, UK

123

J Real-Time Image Proc

DOI 10.1007/s11554-017-0702-7

http://orcid.org/0000-0001-6742-9272
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-017-0702-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-017-0702-7&domain=pdf

performance, it is based on custom developed hardware

and software. The alternative solution, which we fully

investigate in this paper, is to use a commercial frame

grabber to copy the camera data into the CPU memory and

then use the standard CUDA tools to copy the data from the

CPU memory into the GPU memory. We demonstrate that

the performance of this non-custom solution still has the

potential to satisfy the requirements of ELT instruments.

The Xeon Phi, which can be used in a conceptually

similar way as the GPU, was found to exhibit a larger

amount of jitter [5, 6]. However, that may improve with

newer versions.

An alternative approach to acceleration of the RTC is to

develop faster algorithms; these can provide a twofold to

threefold improvement in processing time. Several such

algorithms have been proposed and tested on-sky, includ-

ing the Fourier transform reconstructor [10] and CuReD

algorithm [11]. While this algorithmic approach is valuable

and will be required for the highest order AO systems, the

conventional algorithm is much more widely tested. As we

will show, it will be possible to use the conventional

algorithm on at least some of the ELT instruments by using

GPUs.

2 Brief description of adaptive optics

AO systems are composed of three subsystems. The

wavefront sensor (WFS) produces an image of the aber-

rations, the real-time controller (RTC) processes this image

and computes the optimal correction commands, and the

corrective subsystem corrects the aberrations. Read-out of

the WFS camera, the image processing and the application

of the commands on the corrective system must happen

rapidly, before the atmosphere has changed significantly.

Due to atmospheric coherence time, this is typically within

a millisecond [2, 5, 6].

The wavefront is defined as the surface of constant

phase of the electromagnetic field, and it is perpendicular

to the direction of propagation of the light. A perfectly flat

wavefront corresponds to non-aberrated light; aberrations

can be measured by detecting the deviation of the wave-

front from the perfectly flat shape. A Shack–Hartmann

WFS uses a lenslet array to measure the local derivatives of

the wavefront on a grid of points. The lenslets generate

light spots in the image plane of the camera, as shown in

Fig. 1. The position of each spot directly relates to the

wavefront derivative in the corresponding region. A group

of camera pixels corresponding to a lenslet is called a

subaperture, i.e., a subarea of the telescope aperture.

The RTC processes the images and extracts the wave-

front derivatives. Then, it uses the derivatives to calculate

the steering commands for the corrective part of the AO

system. The latter is usually a deformable mirror the shape

of which is modified in real-time to cancel the aberrations

introduced by the atmosphere.

2.1 Image processing in adaptive optics

The AO image processing is performed in three steps: (1)

image calibration, (2) calculation of the wavefront

derivatives and (3) calculation of the steering commands.

The image calibration is performed in three operations:

each pixel of the image is multiplied by the calibration

factor; then, the value of the background is subtracted and

finally; if the resulting value is below the threshold, the

value is set to 0.0 to reduce the effect of noise. The tele-

scope’s primary mirror has a circular geometry, whereas

the WFS camera has a square one. The ‘‘corners’’ of the

WFS image are not illuminated and do not contain any

signal, see Fig. 1. To speed up the calibration, we excluded

the non-illuminated regions, reducing the number of pixels

to be calibrated from 1:6 � 106 to 1:2 � 106.

To calculate the wavefront derivatives, the position of

each light spot on the image is calculated. In our case, light

spots are spread over several pixels and hence the center-

of-gravity method is used to calculate the x and y positions

of the center of the light spot. From the values obtained, the

nominal value, corresponding to a flat wavefront, is sub-

tracted and the result is proportional to the local derivative

of the wavefront.

Fig. 1 A typical image of a wavefront sensor camera on an AO

system with 7 � 7 subapertures (from computer simulation). The

borders of one of the subapertures are shown in red. The central spot

is missing because it is shaded by the telescope’s secondary mirror

J Real-Time Image Proc

123

The steering commands are calculated by multiplying

the array of derivatives with a so-called control matrix

(matrix-vector multiplication, MVM). For large AO

instruments, this computation takes the majority of the

image processing time; for our benchmark, it took about

70% of the total computation time (the other 30% are taken

by the image calibration and by the calculation of

derivatives).

3 Implementation on GPUs

We have implemented the AO image processing algorithm

on GPUs, within the framework of DARC.

3.1 Durham AO real-time controller (DARC)

DARC [7] is a flexible, modular real-time control system

for AO that is primarily CPU-based, but can have optional

hardware acceleration modules. It was first developed for

use with the CANARY on-sky AO demonstrator instru-

ment [12] and has since seen use with several other

instruments worldwide. DARC aims for computational

efficiency using a horizontal processing strategy, where all

processing threads perform similar tasks to optimize load

balancing, rather than a more conventional strategy where

some threads will perform calibration, some slope com-

putation and some wavefront reconstruction. A horizontal

strategy leads to a significant reduction in inter-thread

communication requirements. The achieved measured

performance of DARC makes it suitable for ELT use with

appropriate computational hardware. Key flexibility is

provided by the modular design, with dynamic loading and

unloading of modules allowing development and testing of

new algorithms without a system restart. This therefore

makes DARC highly suited to operation in laboratory

environments, where continued system development is

often necessary.

3.2 Details of the implementation

We set up DARC in such a way that the wavefront sensor

camera frame is split into a number of chunks (groups of

subapertures). The number of these chunks is a key

parameter of the system and is denoted by NC. Each chunk

is assigned to its own CPU thread for processing, and each

thread is coupled to a CUDA stream which controls

copying the chunks of data to the GPU and processing

them. If several GPUs are used, the chunks are distributed

to the GPUs evenly, so that all GPUs perform a similar

amount of computation. When all the streams on a GPU

have completed processing and have produced their partial

output, these partial outputs from all streams are summed

up and copied back to the CPU. If more than one GPU is

used, the CPU sums up the outputs from all GPUs. The

final output is then virtually sent to a deformable mirror

and the processing of the next camera image begins. (For

our test, no actual deformable mirror is used.)

The processing pipeline consists of 12 steps as sum-

marized in Table 1. These steps are:

1 Copy the pixels from the subapertures used to

a separate buffer. The memory for this buffer

was allocated using cudaMallocHost(), which

results in the so-called pinned memory being

used. This enables one to start processing one

subaperture chunk (step 8) as soon as all its

pixel data have been copied to the GPU (step

7). While this chunk is being processed, other

chunks of data are being copied from CPU to

GPU.

2, 3 Each CPU thread launches the command to

copy the pixels to the GPU and launches the

kernel calls into the CUDA stream corre-

sponding to this thread.

4–6 One of the CPU threads launches a kernel to

sum up the partial outputs from all the chunks

processed on that GPU and launches the

command to copy the output back to the CPU.

These are launched into the default CUDA

stream. For synchronization with the GPU, it

creates an event ‘‘copied OK’’.

7, 8 Each CUDA stream copies its data to the GPU

and processes it.

9–11 When the last CUDA stream has finished

processing its data, the default stream sums up

all the partial outputs on this GPU and copies

them to the CPU. Finally it records the event

‘‘copied OK’’ to signal the CPU that process-

ing on that GPU has completed.

12 After the ‘‘copied OK’’ event has been

recorded by a GPU, the CPU adds the output

of this GPU to the final output array.

For pixel calibration and for the center-of-gravity calcu-

lation, we developed the GPU kernels ourselves. For the

matrix-vector multiplication, we used the CUBLAS func-

tion cublasSgemv as a starting point and customized it for

our particular use-case to improve performance.

For configurations using more than one GPU, we

explored several options for the synchronization between

the CPU and the GPUs at the end of each processing cycle.

The optimal results were obtained using ‘‘cu-

daEventQuery()’’ which continuously polls all GPUs,

checking whether any of them has finished processing.

J Real-Time Image Proc

123

3.3 Correlation wavefront Sensing

Cross-correlation is an optional addition to the calculation

of wavefront derivatives to improve its performance in

cases when the light spot has a bigger size [9]. This cal-

culation consists of five steps: zero-padding each sub-

aperture (from 16 � 16 to, e.g., 32 � 32), Fourier transform

of each subaperture, complex multiplication with the ref-

erence, inverse Fourier transform and clipping the sub-

aperture edge to speed up the center-of-gravity calculation.

The result of this cross-correlation is then passed on to the

centroiding algorithm.

We used the library ‘‘cufft’’ to calculate the Fourier

transforms. Note that with correlation the number of kernel

launches per chunk of subapertures increases from three to

eight.

4 Benchmarking

The results presented here were obtained using the GPU

devices K20Xm and K80. The error-correcting code

mechanism was deactivated to investigate the maximum

achievable performance, and the clock rate of K20Xm was

increased from the default 732 MHz to its maximum value

of 784 MHz.

4.1 System configuration

We set up DARC for a virtual single conjugate AO (SCAO,

the simplest AO configuration, see [2]) system with a grid

of 80 � 80 subapertures. The system parameters are given

in Table 2.

For the majority of our tests, no physical camera was

used. The camera images were read in from a file when

starting the application.

4.2 Configuration of the GPU host computer

In our initial measurements of image processing time for

each cycle, these times varied significantly between con-

secutive cycles, exhibiting a distribution with the root-

mean-square of several 100 ls, strongly non-Gaussian

shape and regular outliers of several tens of milliseconds.

This phenomenon is called jitter and is due to other pro-

cesses running on the CPU and due to dynamic scheduling

(both on the CPU and on the GPU), resulting in a non-

deterministic order of memory access and similar effects.

For adaptive optics instruments, such behavior has to be

Table 1 Steps of the image processing

CPU CPU GPU GPU

Each thread One thread only Each stream One stream only

1 Copy pixels used to abuffer. Then launch:

2 Copying pixels to GPU,

3 Image processing.

Launch

4 Sum up output on GPU,

5 Copy output to CPU,

6 Event ‘‘copied OK.’’

7 Copy pixels to GPU, process the image

8

9 Sum up output on GPU,

10 copy output to CPU,

11 record ‘‘copied OK’’

12 Sum up output on CPU

The CPU prepares pixel data, launches the data copy commands and the processing kernels and finalizes the output in the end. The GPU copies

the data and processes it

Table 2 AO system configuration used for benchmarking

AO system type SCAO, one WFS

Subaperture grid 80 � 80

Number of subapertures used 4624

Subaperture size (in pixels) 16 � 16

Subap. size for correlation 32 � 32

Number of controlled actuators 4828

MVM size 9248 � 4828

The number of subapertures used is smaller than 80 � 80 ¼ 6400

because the subapertures outside the circle covered by the telescope

mirror are not used

J Real-Time Image Proc

123

minimized; the repeatability of the processing time is of

key importance for the quality of the correction of light

aberrations. We took the following steps to minimize the

jitter:

• Use the lowlatency Linux kernel (rather than generic).

• Switch off power-saving, i.e., set the CPU frequency

scaling_governor to performance (rather than to

ondemand).

• We set thread affinity so that each CPU thread is forced

to run on exactly one hyper-thread. We investigated

which hyper-threads work best for which GPU device.

We set the thread priorities to 99.

With these settings, the jitter exhibits a close-to-Gaussian

distribution with the root-mean-square of a few 10 ls (see

Fig. 4; Table 3) and on average one or two outliers in one

million cycles.

One expects that the lowest jitter will be obtained when

using the real-time patch (PREEMPT_RT) for the Linux

kernel. However, NVidia drivers are only supported for the

generic and lowlatency kernels; hence, tests with the real-

time patch were not possible. Our initial test showed that

the lowlatency kernel gives less jitter than generic. Smith

et al. [13] suggest that after applying all the other settings

the generic kernel would perform similarly, but we have

not verified that.

4.3 Optimizing the parameters

The goal is to achieve a high average frame-per-second rate

(i.e., process images as quickly as possible) with a low

variation of processing times for each frame (i.e., low jit-

ter). Several parameters and options have to be tuned to

achieve the optimal performance, the most important

being:

• The number of subaperture chunks, NC,

• which CPU threads run on which CPU cores.

• use or no-use of mutex_lock for each CPU thread when

the thread is launching the kernels.

• the number of CUDA threads per block

• in the pixel calibration kernel,

• in the MVM kernel,

• the extent of loop unroll in the MVM kernel.

The optimal values of these parameters depend on the GPU

type, on the number of GPUs used and on the architecture

of the server hosting the GPUs.

The most important parameter is NC. When NC is

increased, the GPU resources are utilized better for two

reasons. First, more of the data is processed in parallel to

other data being copied, and second, smaller data chunks

can generally fill the available GPU resources better (in the

same way as a number of small boxes fill the available

space better than a few large boxes). However, each sub-

aperture chunk requires a launch of three kernels and a

CPU thread controlling it, adding some overhead for each

additional subaperture chunk. Hence, there is an optimal

NC with an optimal trade-off between these effects.

Figure 2 shows an example of parameter optimization.

The upper plot demonstrates that in case of one GPU, the

criterion of high speed conflicts with the criterion of low

jitter, so one needs to make a trade-off. The lower plot

shows that if using two GPUs, the fastest solution will also

have the lowest jitter, which is an unexpected and a very

positive result. The latter trend is also observed when using

3 or 4 GPUs.

4.4 Results

We benchmarked a number of NVidia GPUs: Quadro 600,

GeForce GTX 580 and 780Ti, Tesla C2070, K20Xm, K40

and K80. It turned out to be non-trivial to understand the

correlation between the GPU properties and the observed

performance; the best figures of merit are the number of

cores and clock speed, but not necessarily GPU’s age or

price. One of the fastest GPUs was GTX 580, which is

older and cheaper than most of the GPUs we studied.

The best results were obtained with the K80 device that

contains two GPUs. Using only one of the two GPUs, the

frame rate achieved is 670 frames per second (fps); this

number can be increased up to 720 fps but then the jitter

also increases, see the upper plot in Fig. 2. Using both

GPUs of the K80 device, the rate achieved is 1100 fps. By

deploying additional two GPUs K20Xm hosted in the same

server, the rate increases to 1565 fps. With the error-cor-

recting code activated (which guarantees the absolute

correctness of the result), the achieved frame rates were

about 10% lower. The frame rates achieved are given in

Table 3 Frame rates and jitter

achieved by different

configurations

Configuration NC Average frame rate (fps) RMS of jitter (ls) Minimum frame rate (fps)

K80, one GPU 10 672 23 620

K80, two GPUs 18 1111 27 970

K80 ? 2 � K20 28 1565 32 1170

The right-most column gives the frame rate with which 99.999% of cycles will complete processing before

the next camera frame is ready

J Real-Time Image Proc

123

Table 3 and are shown in Fig. 4. These results have to be

compared to the rates required for different ELT instru-

ments, which vary from 250 to 1000 fps or even 2000 fps.

We performed further test, showing that the K20Xm

GPUs are about 10% slower than the K80; hence, we

conclude that with two K80 devices the frame rate would

probably exceed 1600 fps. Using more than four GPUs

would probably provide little increase in frame rate, for the

reasons discussed in Sect. 5.2.

Performing the same test on the CPU, we achieved rates

of up to 160 fps, see Fig. 3. The use of two K80 devices in

this case provides a tenfold increase in speed.

The spread of cycle times obtained with the GPUs is

relatively low and has an RMS of 20–30 ls. A further

investigation shows that about half of the jitter comes from

the data processing on GPU and about a quarter from

copying the camera images between the CPU to the GPU.

For comparison, the RMS of the jitter obtained by the CPU

is 11 ls. When using four GPUs instead of one, the jitter

increases by about 50% only, which is an unexpectedly

positive result.

Note that in Fig. 4 we only show distributions for

100,000 cycles as afterward the temperature of the K80

device, if both GPUs are used, increases to a point where

the GPU’s clock rate is reduced automatically. To char-

acterize the outliers, we have performed several longer

tests with one GPU only and with the two K20Xm GPUs.

We typically observe one or two outliers in one million

cycles. The largest outlier we observed in over 30 million

cycles was at 4.8 ms.

These results clearly demonstrate that by using one or

two GPU devices, an 80 � 80 system can be comfortably

controlled with rates well above 1 kHz. We achieved this

by using only commercial off-the-shelf components for

transferring the camera images from the WFS camera to

the GPU via the CPU memory.

The results obtained deploying the correlation wavefront

sensing are given in Table 4. The optimal NC is lower than

in Table 3 which is due to a higher number of kernel

launches (eight instead of three). We have not fully

explored the available parameter space to find the fastest

configuration, and also further optimizations of the code

may be possible. Nevertheless, these results demonstrate

the capability to control an 80 � 80 system with the cross-

correlation algorithm, with a rate higher than 500 Hz.

Fig. 2 Illustration of parameter tuning. Different markers represent

different values of NC. Different points for the same marker show the

values obtained with different loop unroll size in the MVM kernel.

The upper plot shows the results when using one of the two GPUs

from K80, and the lower plot when using both GPUs

Fig. 3 Distribution of processing times if GPUs are not utilized and

all processing is done on the CPU. Two typical configurations are

shown: the faster one is wider (more jitter) and the slower one is

narrower (less jitter)

J Real-Time Image Proc

123

4.5 Test with a real camera

For the majority of our tests, a camera image was read in

from a file when starting the application and then the same

image was used on every iteration.

However, we also performed a test with real data from a

10G Ethernet camera, EVT HS-2000. This camera has

1088 � 2048 pixels and can run at 338 Hz, delivering full

frames. For this test, we used a different GPU, GeForce

580. The frame rate obtained with the pixel input from the

real camera was 510 fps which is very close to the values

obtained by using the images from a file. (The subapertures

were reshaped from 16 � 16 pixels to 8 � 25 pixels to

enable the camera to deliver frames at this rate. The GPU

processing time is only minimally affected by this

decreased subaperture size.) The jitter was also similar

showing that our results are equally applicable to real-

camera data.

5 Lessons learned

The main conclusions of our work are the following.

5.1 Copying camera images to GPU

One of the main objectives of this study was to investigate

the impact of copying the camera images from the CPU

memory to the GPU memory.

The step of copying the camera images to GPU takes

about 1 ms (or 0.5 ms with PCIe 3.0) on its own; this

includes the extraction of only the pixels that are used

(Table 1, step 1). This would directly increase the time

delay before the AO correction can be applied to correct for

the atmospheric distortion. However, by processing the

data in parallel to copying them, the overhead of copying is

reduced by 80–90%.

To demonstrate the potential gain of transporting the

camera images from the camera directly to the GPU, we

perform the following test. We skip the step of copying the

camera images from the CPU to the GPU; the GPUs are

then processing pixel data which are all 0.0. The average

frame rate increases by about 10–15% if using one GPU,

and by about 20–25% if using two or four GPUs. The jitter

increases by about 20–50%. The corresponding distribu-

tions are shown with dashed lines in Fig. 4.

The solution which copies the camera images directly

into the GPU memory would obviously perform better.

However, we conclude that the solution transporting the

data via the CPU memory, using standard tools, is not

much worse and presents a good candidate for the RTC

hardware for ELT instruments.

Fig. 4 Distributions of processing times for different configurations,

shown in linear (upper) and logarithmic scale (lower). The red, blue

and green lines show the cycle times achieved by using one, two and

four GPUs. The full lines are for the complete process, whereas the

dashed lines show the times achieved if the camera images are not

copied from CPU to the GPU

Table 4 Frame rates and jitter

achieved when the cross-

correlation algorithm is

activated

Configuration NC Average frame rate (fps) RMS of jitter (ls) Minimum frame rate (fps)

K80, one GPU 9 282 47 260

K80, two GPUs 10 456 62 390

K80 ? 2 � K20 4 541 54 460

J Real-Time Image Proc

123

5.2 Scaling when using several GPUs

When using two GPUs instead of one, the frame rate

achieved increases by a factor of 1.6; when using four

GPUs, it increases by about a factor 2.3. These factors are

similar for different GPUs tested. The respective ideal

increments would be by a factor of 2.0 and 4.0.

The main reason for the gain being lower than the ideal

one is the kernel launching time; the overhead of the CPU

handling an increased number of threads also has some

contribution. If the GPUs are attached to the same PCIe

bus, the data cannot be copied to the GPUs concurrently

which further limits the gain in performance.

We investigated the kernel launching time and some

options to reduce it. We introduced a mutex which enforces

that, while all threads are performing step 1 in parallel

(Table 1), only one thread at a time is performing steps 2

and 3. For some GPUs, this mutex improved the results,

while for others it made them worse.

We investigated ‘‘dynamic parallelism,’’ a feature

enabling a kernel running on a GPU to launch new kernels.

Generally, the main advantage of this feature is the reduced

communication between the GPU and the CPU in algo-

rithms where the result of one step of the calculation leads

to a decision about the next step of the calculation. Since

there is no such communication in our algorithm, we only

investigated whether it is advantageous to launch the ker-

nels from the GPU rather than from the CPU. We launched

one kernel from the CPU and that kernel then launched the

three data processing kernels on the GPU. The result did

not improve: the total kernel launching time remained the

same.

6 Conclusions

We have implemented the real-time image processing for

astronomical adaptive optics on GPUs. For an SCAO

system of 80 � 80 subapertures, the maximum average

frame rate achieved is about 1100 fps, using both GPUs of

the NVidia K80 device. Using only one of the two GPUs,

the frame rate achieved is about 700 fps. When running on

more than one GPU, the gain in frame rate is limited by the

kernel launching time.

The overhead of copying the camera images from CPU

to GPU is largely reduced by processing the data in parallel

to copying. The benefit of bypassing the CPU memory and

copying the camera data to the GPU directly would be

about 10–15% if using one GPU, and 20–25% when using

two or four GPUs.

The distribution of cycle times (i.e., jitter) has a root-

mean-square value of 20–30 ls and about one outlier in a

million, with a value of up to 5 ms. The main source of

jitter is the processing of data on the GPU; the contribu-

tions from data copying, kernel launching and CPU thread

management are smaller.

With the addition of the cross-correlation algorithm, the

frame rate achieved still exceeds 500 fps when using four

GPUs.

These results demonstrate that GPUs are a good candi-

date for the RTC hardware for ELT instruments, although

an additional step is needed to copy the camera images

from the CPU memory to the GPU memory.

Acknowledgements We acknowledge the support from Science and

Technology Facilities Council in the UK (ST/L00075X/1) and from

the European Commission under program H2020-EU.1.2.2, Project

671662 (Green Flash), coordinated in H2020-FETHPC-2014.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Babcock, H.W.: The possibility of compensating astronomical

seeing. PASP 65(386), 229 (1953)

2. Davies, R., Kasper, M.: Adaptive optics for astronomy. Annu.

Rev. Astron. Astrophys. 50, 305–351 (2012)

3. de Zeeuw, T., Tamai, R., Liske, J.: Constructing the E-ELT.

Messenger 158, 3 (2014)

4. Dekany, R., et al.: PALM-3000: exoplanet adaptive optics for the

5 m Hale telescope. Astrophys. J. 776, 130 (2013)

5. Vran, J.-P., et al.: Results of the NFIRAOS RTC trade study.

Proc. of SPIE 9148, 91482F (2014)

6. Barr, D., et al.: Reducing adaptive optics latency using Xeon Phi

many-core processors. MNRAS 453, 3222–3233 (2015)

7. Basden, A.G., Myers, R.: The Durham adaptive optics real-time

controller: capability and extremely large telescope suitability.

MNRAS 424, 1483–1494 (2012)

8. Sevin, A., et al.: Enabling technologies for GPU driven adaptive

optics real-time control. Proc. SPIE 9148, 91482G (2014)

9. Thomas, S.J., et al.: Study of optimal wavefront sensing with

elongated laser guide stars. MNRAS 387(1), 173–187 (2008)

10. Poyneer, L.A., et al.: On-sky performance during verification and

commissioning of the Gemini Planet Imager’s adaptive optics

system. Proc. SPIE 9148, 91480K-1 (2014)

11. Bitenc, U., et al.: On-sky tests of the CuReD and HWR fast

wavefront reconstruction algorithms with CANARY. MNRAS

448(2), 1199–1205 (2015)

12. Gendron, E., et al.: MOAO first on-sky demonstration with

CANARY. Astron. Astrophys. 529, L2 (2011)

13. Smith, M., et al.: Benchmarking hardware architecture candidates

for the NFIRAOS real time controller. Proc. SPIE 9148, 9148-2F-

20 (2014)

Urban Bitenc is a postdoctoral research associate at the Centre for

Advanced Instrumentation (CfAI) at the Physics Department of

Durham University (UK), working in adaptive optics for astronomy.

He obtained his degree in physics from the University of Ljubljana,

J Real-Time Image Proc

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Slovenia, in 2002. His Ph.D. (Ljubljana, 2007) was in experimental

particle physics at the BELLE experiment, KEK institute, Japan.

Then, he joined Freiburg University (Germany) to contribute to the

background studies for the Higgs boson search at the ATLAS

experiment at CERN. Afterward he worked as a systems engineer in a

company, developing inertial navigation systems used in oil drilling,

before he joined Durham University (UK) as a software engineer in

the field of adaptive optics.

Alastair G. Basden has extensive expertise in low noise detectors

and adaptive optics, including real-time control and simulation. He is

an eternal postdoc at CfAI, Durham University (UK), where he has

worked on AO systems for more than a decade.

Nigel A. Dipper is a senior research fellow at the Physics Department

and the head of software at the CfAI, Durham University (UK). He

obtained his Ph.D. at Southampton University (1980) and joined

Durham University in 1985 to work on high-energy astrophysics. He

specialized in software for astronomy in 1998, becoming the head of

software for CfAI in 2003.

Richard M. Myers is a professor at the Physics Department, Durham

University (UK), and the head of the Advanced Instrumentation

Research Section. He obtained his Ph.D. at Durham University in

1988, became a lecturer in 1998, senior fellow in 2004, reader in 2008

and professor in 2012. His area of expertise is adaptive optics for

astronomy.

J Real-Time Image Proc

123

	Suitability of GPUs for real-time control of large astronomical adaptive optics instruments
	Abstract
	Introduction
	Brief description of adaptive optics
	Image processing in adaptive optics

	Implementation on GPUs
	Durham AO real-time controller (DARC)
	Details of the implementation
	Correlation wavefront Sensing

	Benchmarking
	System configuration
	Configuration of the GPU host computer
	Optimizing the parameters
	Results
	Test with a real camera

	Lessons learned
	Copying camera images to GPU
	Scaling when using several GPUs

	Conclusions
	Acknowledgements
	References

