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We present a ray tracing code to compute integrated cosmological observables on the fly in AMR N-body
simulations. Unlike conventional ray tracing techniques, our code takes full advantage of the time and spatial
resolution attained by the N-body simulation by computing the integrals along the line of sight on a cell-by-cell
basis through the AMR simulation grid. Moroever, since it runs on the fly in the N-body run, our code can
produce maps of the desired observables without storing large (or any) amounts of data for post-processing.
We implemented our routines in the RAMSES N-body code and tested the implementation using an example
of weak lensing simulation. We analyse basic statistics of lensing convergence maps and find good agreement
with semi-analytical methods. The ray tracing methodology presented here can be used in several cosmological
analysis such as Sunyaev-Zel’dovich and integrated Sachs-Wolfe effect studies as well as modified gravity. Our
code can also be used in cross-checks of the more conventional methods, which can be important in tests of
theory systematics in preparation for upcoming large scale structure surveys.

I. INTRODUCTION

Observations of large scale structure in the Universe have
been playing a crucial role in getting ever tighter con-
straints on competing theoretical cosmological models. Per-
haps the most classical type of such observations consists
in mapping the three-dimensional distribution of galaxies
(which trace with some bias the total matter distribution)
with spectroscopic surveys [1–3]. These surveys measure the
baryon acoustic oscillations (BAO) signal [4, 5] and cluster-
ing anisotropies due to redshift space distortions (RSD) [6–8],
which allow to put constraints on the rate at which the Uni-
verse expands and the rate at which structure grows in it. A
complementary approach to traditional galaxy surveys (and
which is the focus of this paper) is to infer the large scale
structure of matter by measuring its integrated effect on light
that travels from background sources towards us. These in-
clude shifts in the temperature of cosmic microwave back-
ground (CMB) photons caused by inverse Compton scatter-
ing with high energy electrons inside galaxy clusters – the
so-called Sunyaev-Zel’dovich (SZ) effect [9–12], shifts in
the temperature of CMB photons as they cross time-evolving
gravitational potentials – the so-called integrated Sachs-Wolfe
(ISW) effect [13–16], and magnification and distortions of
background light sources as their emitted light bends due to
strong and weak gravitational lensing effects [17–20].

As observational surveys of large scale structure keep at-
taining higher precision, it is important that our theoretical
understanding of the relevant physical processes keeps evolv-
ing as well. This helps in the interpretation of current data,
as well as in the planning of future missions. In comput-
ing these theoretical predictions, theorists typically recourse
to N-body simulation methods since these are currently the
most accurate way to predict the clustering of matter on inter-
mediate and small scales, where the density fluctuations have
become nonlinear. N-body simulations allow also to include
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recipes to model the effects of baryonic physics and can be
used in the generation of mock data sets to calibrate obser-
vational pipelines. Using N-body simulations to predict inte-
grated effects along lines of sight that cover a redshift range
is, in general, not as straightforward as getting predictions at
fixed redshift values. For the latter, it often suffices to analyse
the simulation output at a given snapshot of the particle distri-
bution, whereas for the former it is required that the simulation
results are analysed in a continuous range of redshift values.
As a result of that, N-body methods for integrated observables
are often subject to a number of approximations that are more
or less valid depending on the exact observable studied. For
instance, one of the most popular methods for cosmological
weak lensing simulations consists of projecting the continu-
ous matter distribution along the line of sight into a series of
lens planes [21–34]. This naturally erases the details of the
time evolution of the fields along the line of sight. Further-
more, these projections assume that the superposition princi-
ple holds for the lensing effects of gravity, which is not nec-
essarily true in theories beyond General Relativity that have
nonlinear equations. Simulations of the ISW effect also make
certain simplifying assumptions in the calculation of the time
derivative of the gravitational potentials (see e.g. [35]).

A great deal of effort is normally put into assessing the va-
lidity of the approximations made in these numerical meth-
ods, and in general, they seem to be robust enough. However,
given the ever higher precision observations that lie ahead, it
is desirable that the same observables can be computed with
different methods, especially those which are subject to fewer
approximations. This can allow for important checks of any
residual theory systematics that could still be present. More-
over, current N-body methods to probe the clustering of matter
along the line of sight sometimes require substantial amounts
of data to be stored before it is post-processed to compute
the desired signal. This provides extra motivation to develop
new numerical techniques that are lighter in data storage, es-
pecially in light of the upcoming generation of surveys, which
will require large simulations and mock data sets for calibra-
tion purposes.

This paper is precisely about a numerical method for in-
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tegrated cosmological observables that goes beyond existing
techniques in the number of approximations made and data
storage concerns. Our method, which is based on the origi-
nal idea of Refs. [36, 37], is designed to trace rays from some
source redshift to the observer, on the fly in the N-body sim-
ulation. Our algorithm is implemented in the adaptive mesh
refinement (AMR) RAMSES N-body code [38] and performs
the integrations along the line of sight on a cell-by-cell ba-
sis, fully exploiting the spatial and time resolution provided
by the N-body code. Moreover, since it runs on the fly in the
N-body simulation, it can produce the desired maps (lensing,
ISW, etc) without having to output the particle snapshots for
post-processing analysis. The goal of this paper is to intro-
duce the code implementation and illustrate its application in
cosmological weak lensing simulations.

The outline of this paper is as follows. We start in Sec. II by
describing in more detail the reasons that motivated us to de-
velop the ray tracing code presented in this paper. Section III
explains the main aspects of the implementation of the algo-
rithm in the RAMSES code. In Sec. IV, we explain the formal-
ism to perform weak lensing studies with our code and test our
implementation in Sec. V for a fixed Gaussian potential. Sec-
tion VI is devoted to weak lensing cosmological simulations.
We analyse our code results for one- and two-point statistics
of the lensing convergence, where we assess the impact of N-
body resolution and different integration methods. We also
investigate the lensing signal around dark matter haloes in our
simulations. Finally, we summarise and analyse the prospects
for future developments and work in Sec. VII.

II. MOTIVATING A NEW RAY TRACING CODE

In general, numerical studies of integrated observables em-
ploy the following three step strategy. First, one runs a N-
body simulation for a given cosmology and stores the parti-
cle data at a specified number of redshift values. Second, the
output from the simulations is used to generate a mock light-
cone from some observer to a given source redshift1. Here,
one often needs to employ some interpolation scheme to con-
struct a continuous matter distribution from the simulation re-
sults that are available only at a finite number of redshift val-
ues. Finally, rays are traced across the lightcone to probe the
distribution of matter along the line of sight. This strategy
has been employed most notably in weak lensing studies (see
e.g. Refs. [21–34] and references therein), but also in ISW
[35, 39, 40] and SZ [41–45] related work.

One can identify, however, two less appealing aspects of
this strategy. The first one is practical and relates to the large
amounts of data that are needed to generate lightcones for
post-processing. The second is related to the loss in resolution
along the line of sight that follows from analysing a lightcone
that has been constructed from a finite number of snapshots.

1 There are however ways to compute the lightcone on the fly in the simula-
tion (e.g. Refs. [23, 25]).

To give a concrete example, conventional weak lensing studies
usually employ the so-called multiple lens-plane approxima-
tion, in which the observables are calculated only on a series
of planes, onto which the density field has been projected2.
Although one can always perform convergence tests on the
number of planes used (e.g. Ref. [32]), some of the detailed
information on the time evolution along the line of sight is in
general lost.

Our main motivation to develop the code presented in this
paper was to overcome the two above-mentioned aspects.
Namely, we aimed to implement a numerical method that (i)
computes the integrated observables on the fly in the simula-
tion, thereby avoiding the need to store large amounts of data;
and (ii) takes full advantage of the spatial and time resolution
of the N-body run to compute the integrals along the line of
sight. Our numerical implementation is based on the origi-
nal idea of Ref. [36] for weak lensing simulations, which was
later optimized in Ref. [37]. In particular, in the latter work,
the authors realized that in particle-mesh (PM) N-body simu-
lations, the integrated quantities can be computed analytically
on a cell-by-cell basis as the simulation is running. These au-
thors implemented their method in regular grid PM codes. In
this paper, we follow a similar approach, but implement the
algorithm in the publicly available RAMSES code [38], which
can achieve a far greater resolution due to its AMR nature.

When designing this code, it was also our goal to make it
general enough so that it could be used as a platform to per-
form studies of other types of integrated observables, and not
just lensing. As a result, even though in this code presentation
paper we illustrate the code operation for lensing, we stress
that the algorithm is more general than that. In short, the code
we present in this paper can calculate integrals of the form

I =

∫
K(χ)Q(x, y, z)dχ, (1)

where χ is the comoving distance along some ray trajectory,
K is an integration kernel and Q is any field that can be de-
termined inside the simulation box at coordinates x, y and z.
The calculation of different observables corresponds to dif-
ferent expressions for K and Q. For instance, for thermal
and kinetic SZ studies, Q is related to the density-weighted
temperature and bulk velocity of electrons in clusters, respec-
tively; for ISW studies, Q is given by the time derivative of
the lensing gravitational potential; and for lensing studies, Q
would be associated with second transverse derivatives of the
lensing potential (cf. Sec. IV). For the case of lensing, rays
may also get their trajectories bent (although we anticipate
here that this is not the case in this first version of the code).
As we commented above, there is already a substantial body
of work available in the literature on these topics. The code
we present here provides a different method to compute the

2 See, however, the approach of Ref. [29], in which the lensing quantities
are integrated using the three-dimensional distribution of the simulations
(without projection onto planes), but which is still only available at a finite
number of redshifts.
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same quantities which, amongst other things, can be used in
important cross-checks of the traditional methods.

We note in passing that the ray-tracing machinery that we
installed in RAMSES may also serve as a starting point to de-
velop a code that could be applied in radiative transfer stud-
ies (see e.g. Refs. [46–50] and references therein). This will,
however, require some modifications to the code presented
here, which is primarily oriented for integrated observables
along lines of sight.

III. CODE DESCRIPTION

In this section, we describe the main parts of the ray tracing
code. We start by presenting a quick review of the default
RAMSES code, which is followed by an overview of the ray
tracing algorithm and how it is implemented in RAMSES. We
then explain with more detail each of the main parts of the ray
tracing code.

A. Notation and basics of the RAMSES code

Our ray tracing modules are installed in the publicly avail-
able AMR RAMSES N-body code [38]. RAMSES employs a
number of simulation particles Np which act as discrete trac-
ers of the underlying matter field. The simulation box is cov-
ered by a three dimensional mesh, on which the density val-
ues are calculated using the cloud-in-cell (CIC) interpolation
scheme given the particle distribution at any time step. The
code then solves for the gravitational potential field on the
mesh, which can be finite-differenced to find the correspond-
ing gravitational forces. The force at the particle positions is
obtained by interpolating back from the mesh using the same
CIC scheme to ensure momentum conservation. This is then
used to update the particle’s velocity and position at the next
time step. The whole process is repeated from some initial
time (typically redshift z = 50− 100) to a later time (usually
z = 0). The cubic cells of the 3D mesh can get refined if the
effective number of particles contained in them exceeds some
pre-specified threshold, Nrefine. Conversely, the cells are also
de-refined if the number of particles drops below that thresh-
old. This AMR nature of the code is useful in cosmological
simulations, because it allows for high resolution in regions of
high matter density, whilst saving computational resources in
regions of lower density where the resolution can be lower.

The term "domain level" refers to the coarsest mesh that
regularly covers the whole simulation volume. In RAMSES,
the domain level contains N1/3

p cells in each direction3. If a
cell of the domain level gets refined, then it is called a "father
cell" with eight cubic "son cells". If the cell size of the father
cell is h, then each of the eight sons has cell size h/2. The

3 In this paper, we always assume three dimensional systems, although some
times we shall use two-dimensional diagrams to facilitate the illustrations
and explanations.

father cell, together with its son cells, form a so-called "grid"
or "oct" of the refined level. If one of these eight sons gets
further refined, then it will form a grid of the second refined
level, i.e., its son cells will have cell size h/4. This series of
grids accross refinement levels is organized in a tree structure.
RAMSES stores the grid and cell IDs in separate arrays and
in a way that (i) given a son cell’s relative position inside its
grid and the ID of that grid, one can find the ID of the son
cell, and vice versa; and (ii) given the parent cell’s ID one
can find the grid ID. Each level of refinement is labelled by
l. The domain level l = ldomain is defined by 2ldomain =

N
1/3
p . For instance, if the simulation has Np = 5123, then

ldomain = 9. The first refinement level is labelled by ldomain+
1 and so on. Another characteristic of the RAMSES code is
that, at refinement boundaries, the coarse and fine sides differ
only by one level of refinement. The size of the time steps
is determined independently for each refinement level, with
higher refinements taking smaller time steps. For example,
one of the criteria to determine the size of the time steps is
that the particles should move only by a fraction of the cell
size they are currently in (cf. Sec. 2.4 of Ref. [38]).
RAMSES is also efficiently parallelised using MPI. When

run in parallel, each grid is "owned" by the same CPU that
"owns" the parent cell of the grid. "To own" here means that
the CPU knows all necessary information of a cell/grid, and is
responsible for calculating all the relevant quantities inside the
cell (density, potential, etc.), as well as the son cell position in-
side the grid. As domain decomposition strategies, RAMSES
can employ Peano-Hilbert, angular and planar schemes. Of
these, the Peano-Hilbert space filling curve is the most optimal
for standard N-body runs. However, given the angular geom-
etry of the ray tracing operations that we aim to perform, it is
beneficial to consider the angular scheme since it distributes
better the rays accross CPUs (specially when the number of
rays becomes large).

Our modifications to the RAMSES code are mostly in the
form of additional independent numerical modules, which
keep the base code unchanged (except only for a few inter-
faces). We refer the reader to the RAMSES code paper [38] for
more details about its operation.

B. Tiled simulation boxes

High-resolution N-body simulations of boxes that are large
enough to contain the distance travelled by photons from z &
1 (χ & 2 Gpc/h) typically require massive computational
resources (see e.g. Refs. [24, 25]). To circumvent this, one
can "tile" together a number of simulation boxes in order to
fit the whole light bundle [21, 36, 37]. Figure 1 shows an
example of a possible tiling scheme. The observer lies in the
box that we refer to as the "last box", as opposed to the "first
box", which contains the ray sources. The source redshift is
zs = 1 in this example. Each simulation box takes as input
the position of the observer w.r.t. its origin, xobs, yobs, zobs.
For example, for the case illustrated in Fig. 1, the observer
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FIG. 1. Example of a tiling scheme for ray tracing. The x-axis points into the plane of the figure. The boxes have size L = 512 Mpc/h. The
thin red lines illustrate the trajectory of the rays in a light bundle with opening angle Υ = 10 deg from zs = 1. The different boxes should
also simulate different realizations of the initial density field to avoid rays crossing the same structures at different times. If the ray trajectories
are straight lines, then the boxes in the tile can be simulated simultaneously. In the case of bending rays, each box can start when the previous
box (higher redshift) has finished the calculations. Although it is not the case in the figure, closer to the observer where the bundle covers a
smaller volume, the simulation boxes can be made smaller to increase the particle resolution.

is located at the center of x-y face (z = 0) of the last box4,
and so we have xobs = yobs = 256 Mpc/h, zobs = 0 for
that box. For the first box, on the other hand, these would be
xobs = yobs = 256 Mpc/h, zobs = −2048 Mpc/h. Given
the geometry of the light bundle, the ray positions are more
easily described using a spherical coordinate system with the
observer at its origin

xray = χ sinθ cosϕ,

yray = χ sinθ sinϕ,

zray = χ cosθ, (2)

where θ ∈ [0, π], ϕ ∈ [0, 2π] are the two angular coordinates
on the sky and χ is the radial coordinate. If the rays follow
straight trajectories, then χ(z) is equal to the comoving dis-
tance Dc(z) = c

∫ z
0

dz/H(z), with H(z) being the Hubble
expansion rate, z the redshift and c the speed of light.

In the tiling scheme, a ray is only traced in a given box in
the redshift interval during which the ray position lies within
that box. For example, the integration of the rays in the first
box would start at z = 1 and it will last until z ≈ 0.86, which
is approximately when the rays "touch" the face of the box.
Following the same reasoning, the second box would start the
integrations at z ≈ 0.86, which will continue until z ≈ 0.60;
and so on and so forth, until the rays reach the observer at z =
0. Naturally, rays located in the outermost regions of the light
bundle move from one box to the other before the more central
rays. The conditions for the start and end of integration in each
of the boxes are explained with more detail in Sec. III F 3. We
note also that for straight ray cases, the boxes in the tile can be
run simultaneously, since they all "know" a priori the position

4 We use the same letter, z, to denote redshift and one of the cartesian coor-
dinates. The meaning of z should be taken by the context.

of the rays at all times. On the other hand, if rays bend, then
boxes located closer to the observer can start tracing the rays
after reading their positions from higher-redshift boxes.

We note that each simulation box should also start from dif-
ferent statistical realizations of the initial density field. This
way, one ensures that the rays do not see the same structures
throughout their trajectories (due to the periodic conditions of
the simulation box). Finally, although not depicted in Fig. 1,
it is also worth mentioning that closer to the observer, where
the spatial volume covered by the light bundle is smaller,
the boxes in the tile can be made smaller to gain resolution
without sacrificing computational efficiency (although not too
small to still allow large enough structures to form).

C. Outline of the code

Figure 2 shows a sketch of the flow of calculations in the
code. The first operation of the ray tracing calculation consists
of the initialization of the ray data structure (cf. Sec. III D).
The goal is to identify the ID of the grid that a given ray
belongs to, i.e., determining the physical location of the ray
within the grid structure (cf. Sec. III E). This is performed
only when the rays start the integration because, as the rays
move through the mesh, it is possible to determine the ID of
the next crossed grid, by searching for neighbouring grids.

After the rays have been initialized, they are moved across
the mesh on a cell-by-cell basis (cf. Sec. III F), integrating a
given quantity along the path inside each cell. As we explain
in Sec. III G, the integration can be done analytically by using
the values of the desired quantity at each crossed cell centre or
at its vertices. The latter have to be obtained by interpolation
from the cell centres, which is where RAMSES evaluates all
fields (density, potential, etc.) by default (cf. Sec. III H).

In a given time step, each CPU moves the rays that are cur-
rently within its spatial domain until one of the following pos-
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FIG. 2. Sketch of the code flow. The ray tracing routines are called after default RAMSES computes the field values and the next scale factor,
but before the particles are moved. The ray tracing routines are initialized once each simulation box in the tile reaches the redshift at which
the rays start their propagation there. In each time step, each CPU integrates each ray on a cell-by-cell basis (i) until it travels the maximum
allowed distance light can travel, in which case the CPU goes directly to the next ray; (ii) until it reaches a CPU domain boundary, in which
case the ray is marked for communication for another CPU to continue its integration; or (iii) until it reaches the observer and/or the end of the
box, in which case the ray integration in the box is marked as finished for that ray.

sibilities happens:

i the rays travel the distance that light can travel in that time
step;

ii the rays reach the observer/face of the box;

iii the rays reach the end of the CPU’s spatial domain.

If (i) is satisfied, then the CPU simply moves on to the next
ray. If (ii) happens, then the ray’s integration is marked as fin-
ished, and the CPU also proceeds to the next ray. Finally, if
(iii) happens, then the ray is marked for communication and
the CPU still carries on to its next ray. Once each CPU has
dealt with its initial number of rays, it checks whether rays
from other CPUs have been marked to enter its domain, and
whether its own rays have been marked to leave. If there are
rays entering and/or leaving the CPU’s domain, then the rel-
evant CPUs exchange ray data via MPI communication and
repeat the above calculations for the incoming rays. This pro-
cess is repeated until all rays satisfy (i) or (ii).

Our ray integration routines require as input the field val-
ues given by RAMSES at a given time step, and hence, they
are called after RAMSES computes these quantities. Once the

ray tracing calculations for this time step are finished, the code
proceeds with the standard N-body part, until it is time to call
the ray tracing routines again at the next time step. Our mod-
ifications consisted therefore in the development of indepen-
dent modules that do not impact in any way the standard N-
body part.

In the remainder of this section, we explain in more de-
tail each of the steps and concepts involved in the propaga-
tion and integration of the rays across the mesh. The reader
who wishes to skip these details can jump to Sec. IV, from
whereon we present tests and results from weak lensing ray
tracing simulations.

D. Ray data structure

To implement our ray tracing algorithm in RAMSES we
need to establish a data structure that links ray and grid IDs
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FIG. 3. Sketch of two possible data structure schemes to link global
ray IDs with local grid IDs. The particle approach treats rays as a
different particle type in RAMSES associating each grid with all the
rays contained it. This approach, which is based on RAMSES’s linked
lists, is, however, computationally expensive because ray particles
travel at the speed of light, which requires the linked lists to be update
too many times. In the ray approach, two ordered lists link each ray
to the grid it is currently in. If a ray leaves its current grid, then all
there is to do is to update the entry of the grid list that corresponds to
that ray.

5. One can think of at least two ways to do so. We call one the
"particle approach" and the other the "ray approach". These
two approaches are sketched in Fig. 3.

In crude terms, the particle approach determines which rays
are in each grid (cf. left-hand side of Fig. 3). The advantage of
it is that it enables direct use of the existing RAMSES structure
for other types of "particles" (dark matter, stars, sinks, etc.),
therefore making the coding easier. In this approach, a linked
list data structure is used in RAMSES to find the global IDs
of the particles that lie within a grid, given the grid ID. The
communication of rays between CPUs would also follow the
strategy already set up for other types of particles in RAMSES.
However, in the code, one criterion for determining the size of
the time step ensures that dark matter particles move only by a
fraction of the current grid size. During this particle time step,
photons, which travel at the speed of light, can cross many
grids. This means that one has to either update the linked lists
each time rays change grids, which involves a large numbers
of operations and memory allocations/deallocations, or dras-
tically reduce the particle time step so that rays do not cross
more than one grid in a time step, which would make the code
prohibitively slow.

The above drawbacks motivated us to implement the ray
approach, in which one determines which grid a ray is in
(cf. right-hand side part of Fig. 3). In this case, the data struc-
ture consists of two ordered lists of global ray IDs and their
corresponding local grid IDs. Ordered here is in the sense
that the global ray ID that is in the n-th entry of the ray list
physically resides inside the grid whose local grid ID is that
of the n-th entry of the grid list. Note that, naturally, if a ray

5 Once the link between grid and ray IDs is set, then the link between the ray
and the relevant cell is made by checking in which octant of the grid the
ray is in.

is inside a refined grid, then it also physically lies inside its
parent grid. In the data structure, rays are always linked to
the grid that is at the highest refinement level. With the ray
approach, the integrated quantities are associated to each ray
ID in the same way as grid IDs. For example, if the ray in the
n-th entry of the ray list crosses one cell to enter another, then
all the code needs to do is to (i) compute the integral for the
crossed cell and accumulate it in the n-th entry of the quan-
tity’s list; and (ii) update the n-th entry of the grid list with
the grid ID that contains the new cell (which can be the same
grid). The ray approach is more efficient than the particle ap-
proach, even though it involved developing new strategies to
move rays and communicate between CPUs (when rays move
outside a CPU’s spatial domain or when RAMSES does load
balancing to reassign domains to CPUs).

E. Ray initialization

The goal of the ray initialization is to set up the data struc-
ture described in the previous subsection. Just to guide the
discussion in this section, we assume that the central ray of
the bundle travels in the negative z direction. The light bundle
is specified by (i) its opening angle in the x and y directions,
Υx, Υy , respectively; and (ii) the number of rays in each of
these two directions, Nx and Ny . The angular positions of the
rays in the field of view are assigned as

θa =
Υa

Na − 1
(ia − 1)− Υa

2
, a = x, y, (3)

and we define the global ray ID number as6

rayid = (iy − 1)Nx + ix, (4)

with ix ∈ [1, Nx] and iy ∈ [1, Ny]. Once initialized, the
global ray ID stays the same throughout the simulation, even
when rays change CPUs. At the end of the simulation, given
a ray ID, one can reverse the above equations to find the ray’s
position in the 2D ray tracing map.

In the RAMSES structure, it is straightforward to retrieve
the spatial location of a grid given its ID, but not the inverse
operation: to find the grid ID given a certain (the ray’s) spatial
location. To achieve this, one can loop over all grids, and for
each grid, loop over all rays to identify those that are inside
it. We note that such a "brute force" search may not lead to
huge overheads to the overall performance of the code since
the initialization is performed only once per box. Neverthe-
less, we have developed a more efficient algorithm that loops
over all grids, but for each, only loops over a smaller targeted
range of ray IDs. The details of the algorithm are given in Ap-
pendix A, but in short, the idea is to compute the solid angle
that subtends a sphere that contains the grid, with which one
can determine a range of θx and θy . This then enables us to

6 There is an abuse of notation with the subscripts x and y . Here, they de-
note the two directions perpendicular to the line of sight and should not be
confused with the 3D Cartesian coordinates.
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FIG. 4. Example of a ray trajectory in a cell. Points A and B are,
respectively, the ending and starting points of the trajectory. In this
illustration, these two points are the intersection points of the ray
trajectory and the cell faces, but in general points A and B can lie
anywhere inside the cell.

significantly narrow down the ray IDs to loop for each grid
using Eqs. (3) and (4).

For non-first boxes in the tile, the rays are initialized at the
box face, and as a result, if the spatial location of the grid
(which can be determined straightforwardly in RAMSES) does
not lie on the box face, then the loop over rays can be skipped.
Note also that since rays are linked always to the finest grid
(cf. Sec. III D), one can also skip the loop over grids that are
not at the highest refinement level.

As we commented above already, the initialization needs
only to be performed once per box. During the course of the
ray integrations, when a ray leaves a grid to enter another,
there are other ways to efficiently determine the IDs of the
new grid.

In this paper, we limit ourselves to analysing the code re-
sults for small opening angles, for which the flat-sky approx-
imation holds. For full-sky ray tracing, one may benefit from
using techniques such as HEALPix [51] to describe the ray
distribution across the sphere. We leave the generalization to
full-sky cases for future work.

F. Moving rays

In this section, we describe how the algorithm determines
the path of a ray in a cell and how the rays are moved through
the mesh across particle time steps and CPU domains.

1. Trajectory inside cells

Given the direction of a ray inside a cell, the calculation of
its trajectory and the determination of the face from which the
ray leaves the cell (which determines the next crossed cell) is

mostly a geometrical exercise. Denoting by θ and ϕ the two
spherical coordinate angles that specify the direction of the
ray, then the position of the ray can be parametrized by λ in
the equation 7

~r =
(
χA + λ

)(
sinθcosϕ, sinθsinϕ, cosθ

)
, (5)

where χA is the comoving distance of the ray to the observer
at the beginning of the trajectory in the cell (cf. Fig. 4). Hence,

~rA = χA
(
sinθcosϕ, sinθsinϕ, cosθ

)
(6)

is the position vector of the ray at the beginning of its trajec-
tory. Of all of the six cell faces the ray can cross, three can be
ruled out by the signs of cosθ, sinϕ and cosϕ. For instance,
if cosθ > 0, then the ray is travelling in the negative z direc-
tion (θ ∈ [0, π/2]). This means that the ray cannot enter the
neighbouring cell that lies in the positive z direction. Simi-
larly, if sinϕ > 0 (cosϕ > 0), then the ray cannot enter the
neighbouring cell that lies in the positive y (x) direction. More
compactly, the faces from which the ray can leave the cell lie
on one of three planes, each characterized by

x = xtarget = xcell − sign(cosϕ)h/2,

y = ytarget = ycell − sign(sinϕ)h/2,

z = ztarget = zcell − sign(cosθ)h/2, (7)

where h is the cell size and xcell, ycell and zcell are the cell
center coordinates. The trajectory of the ray, Eq. (5), intersects
each of these three planes, respectively, at

~rB,x = xtarget

(
1,

sinϕ

cosϕ
,

cosθ

sinθcosϕ

)
~rB,y = ytarget

(
cosϕ

sinϕ
, 1,

cosθ

sinθsinϕ

)
~rB,z = ztarget

(
sinθcosϕ

cosθ
,

sinθsinϕ

cosθ
, 1

)
, (8)

where the subscript B denotes the end of the ray trajectory in-
side the cell (cf. Fig. 4). The face from which the ray leaves
the cell is that to which the ray needs to travel the least. There-
fore, one computes

Dx = ‖~rA − ~rB,x‖2 = χA −
xtarget

sinθcosϕ
,

Dy = ‖~rA − ~rB,y‖2 = χA −
ytarget

sinθsinϕ
,

Dz = ‖~rA − ~rB,z‖2 = χA −
ztarget

cosθ
, (9)

and the value of min {Dx, Dy, Dz} specifies the target face.
For example, if min {Dx, Dy, Dz} = Dx, then the ray leaves
from the face x = xtarget (and analogously for y and z).

Once the exiting face is found, then one can identify the
next crossed cell by searching for neighbours using the default

7 For straight rays, θ andϕ coincide with the angles that specify the spherical
coordinates of the ray (cf. Eq. (2)). We leave the generalization of our
algorithm to follow non-straight trajectories for future work.
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FIG. 5. Two-dimensional sketch of two rays moving through the
mesh. The colors indicate different CPU domains and the red dots
denote the starting and ending points of a ray inside a cell. The rays
move from top to bottom in the figure. There are three coarse time
steps shown, and the mesh gets refined from the second to the third.
Note that the distance that rays travel in a time step becomes smaller
when there are refinements.

data structure in RAMSES. If the new cell belongs to the same
grid, then one needs only to update the cell information. If
on the other hand the next crossed cell belongs to a different
grid, then one updates the grid information as well. Note that
the new grid can lie at a different refinement level and/or in a
different CPU domain, and this information is also recorded
in our ray data structure.

2. From cell to cell across different time steps and CPU domains

Figure 5 shows a two-dimensional sketch of rays moving
through the mesh. Shown are the trajectories of two rays dur-
ing three coarse time steps. During the first two there are no
refinements (left), and in the last coarse step some cells get re-
fined (right). The different colors indicate different CPU do-
mains. The red dots along the ray trajectories indicate where
the rays cross cells or reach the end of a time step.

In the first coarse time step, ray A starts from the middle
of a cell and is moved to the face of this cell. During this
trajectory, the code integrates the desired quantity using the
algorithm that shall be described in Sec. III G. Ray A then
continues its trajectory in the next crossed cell, but stops be-
fore reaching the new cell’s face, at the point where the ray has
travelled the maximally allowed distance in that time step. In
the meantime, Ray B is moved similarly to ray A, but in the
domain of CPU 2.

In the second coarse time step, CPU 1 moves ray A to the
face of the cell and marks it for communication to CPU 2,
which is found to own the next crossed cell (CPU 1 would
then continue to move the other rays in its domain, if any). In
the meantime, CPU 2 moves ray B until it is marked for com-
munication to CPU 3. After CPU 2 has dealt with ray B (and
all the other rays in its domain), it checks whether other CPUs
have marked rays to be sent to it and moves these incoming
rays as described above. Similarly, CPU 3 also checks for in-
coming rays. In the case sketched in Fig.5, CPU 2 receives
ray A and integrates it until it is marked for communication to
CPU 3, and CPU 3 receives ray B and integrates it until the
end of the time step. These series of CPU communications
occur until all rays have reached the end of the time step 8. In
our particular example, CPU 3 receives ray A and integrates it
until the end of the time step.

The way that rays move in the third coarse step is analo-
gous to that of the other two, except that the distance that the
rays travel before RAMSES updates the field values is smaller,
because of the smaller particle time step. In the current im-
plementation of the code, all rays travel by the distance deter-
mined by the particle time step on the finest level, regardless
of which level they belong to. In principle, this is not nec-
essary since, if a ray only crosses unrefined cells, then it can
be moved by the (larger) distance allowed in the coarse step,
if the field values at the corresponding cell are not updated
during the finer steps taken by the code. The implementation
of this in RAMSES is, however, slightly more involved and
therefore we opted to have all rays moving by the distance
determined by the finest cells of the mesh.

3. From box to box in the tile

As the bundle approaches the face of non-last boxes, some
of the rays will cross the face earlier than other rays. For in-
stance, the outermost rays in the bundle are the first to reach
the box face, whereas the center rays are the last. To exem-
plify how the code deals with this transition, consider the tra-
jectory of the outermost and center rays as they leave a given
box (call it Box 2) to enter another (call it Box 1), and de-
note by zoutermost

end,2 and zcenter
end,2 the redshift values at which the

outermost and center rays cross the face of the box. In this
case, Box 2 propagates the outermost ray until it reaches its
face. At this point, the integration for this ray stops, but the
calculation for the center ray is still ongoing. The simulation
of Box 2 should therefore only be stopped for z ≤ zcenter

end,2 . As
for Box 1, it initializes the ray data structure at z = zoutermost

end,2
for all rays, including the center one whose position is known
beforehand 9. However, it starts by integrating only the out-

8 We note in passing that, in addition to the communications that occur when
rays leave CPU domains, there are other situations that require communi-
cating the ray information, namely when the code performs load balancing
(redistribution of the spatial domains across CPUs).

9 As mentioned previously, the geometry is fixed for straight ray simulations
and therefore Box 1 "knows" a priori the position of all rays at any redshift.
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ermost ray. The center ray remains "initialized" at the box
face, and it only starts being integrated when Box 1 reaches
z = zcenter

end,2 < zoutermost
end,2 .

G. Integration in cells

One of the key parts of our algorithm is the computation
of the integral of a given field along the ray trajectories. Ex-
plicitly, we wish to evaluate integrals of the form of Eq. (1),
which we repeat here for easy reference,

I =

∫ χs

0

K(χ)Q(x, y, z)dχ, (10)

where χs = χ(zs) (with zs the source redshift),K(χ) is some
weighting function or kernel that can be a polynomial of χ and
Q(x, y, z) is any quantity that can be evaluated in the cells.
Compared with Eq. (1), Eq. (10) is more specific as it encodes
the information that we wish to follow rays from some distant
source to an observer at redshift zero. The integral of Eq. (10)
can be split into the contribution from each cell crossed by a
ray

I =
∑
cells

Ic, (11)

in which

Ic =

∫ χA

χB

K(χ)Q(x, y, z)dχ, (12)

with χA and χB being, respectively, the radial coordinate of
the starting and ending points of the ray trajectory in a cell
as the ray travels towards the observer (χA > χB) 10 (see
Fig. 4). To perform the integral we need to be able to evaluate
the quantityQ at any given point inside the cells. The simplest
way to do so is to take the field to be constant inside the cell
and equal to the value at its center Qc, as given by default
RAMSES. In this case, Q can be taken out of the integral in
Eq. (12) and the contribution of each cell to the total integral
becomes

INGP
c = Qc

∫ χA

χB

K(χ)dχ, (13)

where the superscript NGP stands for nearest grid point. We
note that, in this way, the fields being integrated do not vary
continuously when crossing cell boundaries.

Another, more involved, way to construct the field at an
arbitrary point inside the cell is via trilinear interpolation of
the values of Q at each cell vertex:

Q(x, y, z) = α1 + α2∆x + α3∆y + α4∆z + α5∆x∆y

+ α6∆y∆z + α7∆x∆z + α8∆x∆y∆z, (14)

In this case Box 1 and Box 2 can be run simultaneously.
10 The points χA and χB can lie anywhere inside the cell and not necessar-

ily at the intersection of the line-of-sight with the cell faces. This is, for
instance, the general case at the start and end of particle time steps.

where the αi’s are given by

α1 = Q1,

α2 = Q2 −Q1,

α3 = Q3 −Q1,

α4 = Q5 −Q1,

α5 = Q4 −Q3 −Q2 +Q1,

α6 = Q7 −Q5 −Q3 +Q1,

α7 = Q6 −Q5 −Q2 +Q1,

α8 = Q8 −Q7 −Q6 −Q4 +Q2 +Q5 +Q3 −Q1,(15)

in whichQi denote the values ofQ(x, y, z) at the cell vertices
Pi, as indicated in Fig. 4. In Eq. (14), ∆x, ∆y and ∆z are
given by

∆x =
xray − x1

h
=
a+ (χ− χA) sinθcosϕ

h
,

∆y =
yray − y1

h
=
b+ (χ− χA) sinθsinϕ

h
,

∆z =
zray − z1

h
=
c+ (χ− χA) cosθ

h
, (16)

where h is the cell size, and (xray, yray, zray), (x1, y1, z1)
and (a, b, c) are, respectively, the coordinates of the given ray
(cf. Eq. (2)), the point P1, and the point A w.r.t. point P1.

Using Eqs. (14), (15) and (16), it is possible to compactify
the expression for Q as

Q (χ, θ, ϕ) =

4∑
N=1

dN (χ− χA)
N−1

, (17)

where the coefficients dN depend on a, b, c, αi, θ and ϕ, but
not on χ (note also that we are now specifyingQ as a function
of spherical coordinates). Their expression is given in Ap-
pendix B. Since the dN ’s do not depend on χ, one can com-
bine Eqs. (12) and (17) to write

Ic =

4∑
N=1

dN

∫ χA

χB

K(χ) (χ− χA)
N−1

dχ. (18)

The integrand in the above equation is a polynomial in χ, and
so the integral can be solved analytically [37]. Therefore, the
calculation of the integral in the cell reduces to the geomet-
rical exercise of determining the position of points A and B
and the evaluation of the quantity Q at the cell vertices. In
Secs. IV B and IV D we shall see a concrete example of the
use of these formulae when we apply it to lensing.

Equations (13) and (18) provide two possible ways to com-
pute the final result. The latter has the advantage of allowing
for the integration of a continuous field when crossing cell
boundaries, by appropriately evaluating the fields at the ver-
tices of the cells (see next section). On the other hand, the
use of Eq. (13) does not involve evaluating the fields at the
cell vertices (which do not exist in default RAMSES), making
it therefore more computationally efficient. In Sec. VI D, we
compare results based on Eqs. (13) and (18).
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FIG. 6. Two-dimensional illustration of a boundary region. The
coarse cells are labelled from c1, c2, etc., and a few fine cells are
labelled f1, f2, etc. The vertices V1 to V6 are illustrative vertices
where the fields values are to be evaluated from interpolation from
the cell centers, which is where RAMSES evaluates the fields by de-
fault.

H. Field values at cell vertices

In default RAMSES, the field values are evaluated at cell
centers, but the application of Eq. (18) above requires them
to be interpolated to cell vertices. When doing so, one can
ensure that the fields reconstructed with trilinear interpolation
(cf. Eq. (14)) vary continuously from cell to cell and also that
the total mass 11 is preserved. This is trivial on a regular mesh
without AMR, but requires special care at the boundary of
refined regions. We discuss these subtle issues in this subsec-
tion.

Figure 6 illustrates a refinement boundary in two dimen-
sions (we shall later generalize the discussions to three dimen-
sions). In the figure, the nine coarse level cells shown are la-
belled from c1 to c9 and a few fine level cells are labelled from
f1 to f12. The vertices V1 to V6 represent different types of
vertices at which one wishes the evaluate the fields. To be con-
crete, we shall take the example of the matter density field, ρ,
but the interpolation scheme that we describe here is applied
to any type of field.

For vertices of the type of vertex V1, which is shared
by four cells of the same level, one can simply set ρV1 =(
ρf5+ρf6+ρf8+ρf9

)
/4, where ρi are the values at the relevant

cell centers. This average ensures that ρ varies continuously

11 In this subsection, we use the word "mass" to denote the product of a sur-
face or volume density with an area or volume.

from one cell to another when computed with Eq. (14) (or its
two-dimensional version). In regular mesh simulations, this is
the only type of vertex. The vertex V2, which lies at the mid-
dle of a coarse cell edge and is shared by two fine cells, can be
straightforwardly computed after the values in vertices V3 and
V4 have been determined. Explicitly, ρV2 =

(
ρV3 + ρV4

)
/2.

This ensures, for instance, that two rays that are infinitesi-
mally close to vertex V2, with one crossing cell c4 and an-
other crossing fine cells f5 or f8, experience the same density
field (as reconstructed with trilinear interpolation), i.e., there
is no sharp discontinuity between the density experienced by
one ray and the other.

The cases of vertices V3, V4 and V5 are more involved as
they are shared by both coarse and fine cells. Let us consider
vertex V3 as an example, which is shared by cells c1, c4, f2
and f5. It is natural to assume that the density at V3 depends
on the density in each of these four cells. The simplest way to
write this is as

ρV3 = αc1ρc1 + αc4ρc4 + αf2ρf2 + αf5ρf5, (19)

where the α’s are some weights to be determined. Let us focus
on αc1. The mass associated with cell c1 is ρc1h

2, where h in
this subsection is the coarse cell size. After the interpolation,
we want the mass of this cell to be the sum of the masses as-
sociated with each of its vertices. Hence, the mass associated
with vertex V3 due to cell c1 is mc1

V3 = ρc1h
2/4. Due to mass

conservation, the value of mc1
V3 is re-distributed by vertex V3

to other cells at the boundary. In this sense, we can colloqui-
ally describe vertex V3 as a mass reservoir that is collecting
mass from c1 and redistributing it to neighbouring cells. This
mass distribution constraint can be written as

ρc1h
2

4
=
αc1ρc1

4

(
h2 + h2 +

(
h

2

)2

+

(
h

2

)2

+
1

2

(
h

2

)2

+
1

2

(
h

2

)2

+
1

2

(
h

2

)2

+
1

2

(
h

2

)2
)
.

(20)

In this equation, the first two terms on the RHS represent the
mass from V3 due to cell c1 that is redistributed to cells c1
and c4 (αc1ρc1/4 is the density that V3 contributes to c1 and
c4 and h2 is the area of cells c1 and c4). The third and forth
terms are the same as the first two, but for cells f2 and f5 (note
that (h/2)2 is the area of the fine cells). The last four terms
on the RHS of Eq. (20) must be included as vertex V3 also
contributes to the masses in cells f1, f2, f5 and f8 via vertices
V2 and V6. Since the contribution from V3 to ρV2 and ρV6

is only ρV3/2, each of these four terms gets a factor of 1/2
compared to the third and forth terms. We can solve for αc1 in
Eq. (20) and, to facilitate the discussions below, we write the
result as

αc1 =

Nc +
1

4

Nf∑
i

Nfv,i

−1

, (21)

where Nc is the number of coarse cells that share vertex V3,
Nf is the number of fine cells that share vertex V3 andNfv,i is
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the number of vertices that the fine cell i that shares V3 has at
the boundary (i = f2, f5). Explicitly, for V3 we have Nc = 2,
Nf = 2 and Nfv,f2 = Nfv,f5 = 2. The coefficient αc4 in
Eq. (19) is obtained in the same way: Eq. (20) remains the
same, just with ρc1 replaced by ρc4 (which appears on both
sides of the equation and therefore cancels). Hence, αc1 =
αc4.

The determination of the remaining coefficients, αf2 and
αf5 differs from αc1 and αc4. To determine αf2, the RHS
of Eq. (20) remains the same, just with ρc1 and αc1 replaced
by ρf2 and αf2, respectively. From the reasoning that led to
Eq. 20, one could naively think that the LHS would be simply
given by the mass that vertex V3 collects from f2, mf2

V 3 =
ρf2(h/2)2/4. However, recall that vertex V3 also contributes
to the mass in cells f2 and f1 via V6 (this is why two of the last
four terms in Eq. (20) appear). As a result, the mass that V6
collects from f2, mf2

V 6 = ρf2(h/2)2/4 must also be included
in the LHS of the mass distribution equation that determines
αf2. Explicitly,

ρf2

2

(
h

2

)2

=
αf2ρf2

4

(
h2 + h2 +

(
h

2

)2

+

(
h

2

)2

+
1

2

(
h

2

)2

+
1

2

(
h

2

)2

+
1

2

(
h

2

)2

+
1

2

(
h

2

)2
)
.

(22)

The equation for αf5 is the same (apart from f2 →f5) and the
equation for both can be written as

αj =
Nfv,j

4

Nc +
1

4

Nf∑
i

Nfv,i

−1

, (23)

where i, j = f2, f5. The meaning of Nc, Nf and Nfv,i is the
same as above and since Nfv,f2 = Nfv,f5, then αf2 = αf5

Equations (21) and (23) were written in terms of Nc, Nf
and Nfv,i because this way they also hold for the other ver-
tices. By following the same steps for V4 and V5 we can
write:

ρV4 = αc4ρc4 + αc7ρc7 + αc8ρc8 + αf8ρf8, (24)
ρV5 = αc8ρc8 + αf9ρf9 + αf10ρf10 + αf11ρf11, (25)

where the coefficients associated with coarse and fine cells
are obtained as in Eq. (21) and (23), respectively. For V4,
Nc = 3, Nf = 1 and Nfv,f8 = 3, whereas for V5 Nc = 1,
Nf = 3, Nfv,f9 = 2, Nfv,f10 = 1 and Nfv,f11 = 2. Note that
in Eqs. (19), (24) and (25), the summed value of the α weights
adds up to unity, as it should.

1. Generalization to three dimensions

In three dimensions, the above derivation holds with only
a few generalizations. When writing the RHS of mass distri-
bution equations, Eqs. (20) and (22), for each vertex, in ad-
dition to considering the contribution from vertices that lie at
the edge of coarse cell vertices (which get a factor of 1/2),

one must also consider the contribution to vertices that lie at
the center of the coarse cell faces, which get a factor of 1/4.
Moreover, in two dimensions, the ratio of the area of a fine
to coarse cell is 1/4, whereas in three dimensions the ratio of
their volumes is 1/8. Bearing these two things in mind, it is
possible to show that the weights associated with coarse cells
are given by

αcoarse =

Nc +
1

8

Nf∑
i

Nfv,i

−1

, (26)

and the weights associated with fine cells by

αj =
Nfv,j

8

Nc +
1

8

Nf∑
i

Nfv,i

−1

. (27)

These expressions differ from their two-dimensional counter-
parts by replacing the factors of 1/4 by 1/8. The meaning of
Nc, Nf and Nfv,i is the same as in two dimensions. Just to
give an example, consider a vertex V that is shared by seven
coarse cells and one fine cell. In the scheme described above,
the density at this vertex is

ρV = αcoarse

7∑
i=1

ρi,coarse + αfineρfine, (28)

where ρi,coarse is the density at the center of the i-th coarse
cell and ρfine is the density at the center of the fine cell. For
this case, Nc = 7, Nf = 1 and Nfv,fine = 7 in Eqs. (26) and
(27).

Analogously to the two dimensional case, once the density
at the vertices that are shared by both coarse and fine cells is
determined, then (i) the density at vertices that lie at the mid-
dle of a coarse cell edge is given by the average of the den-
sities of the two coarse cell vertices of that edge; and (ii) the
densities at vertices that lie at the center of a coarse cell face
is given by the average of the densities at the four coarse cell
vertices of that face. The density at vertices that are shared by
eight cells of the same level (i.e. not in a refinement boundary)
is given by the average value of the density at those eight cell
centers.

As a test of our interpolation scheme, we have measured
the total mass inside simulation boxes by using the values at
the cell centers and at the cell vertices. The agreement be-
tween the two ways of measuring the total mass was perfect
for meshes with and without refinements, which confirms that
the design and implementation of our interpolation is correct.
We note also that these operations to interpolate the field val-
ues from cell centers to cell vertices naturally add some com-
putational costs to the code, and hence, it is desirable to reduce
the number of times these operations should be performed.
For instance, since a single cell can contain a large number
of rays, the interpolation needs to be performed only once to
compute the integral for all rays. Morevoer, if the fields at the
vertices of a given cell do not change from one time step to
the other (e.g., if it is a coarse cell that is not at a refinement
boundary and the time step taken was a fine one), then one can
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also store the interpolated values from the previous time step,
thereby saving some computational time.

Before proceeding, we note that the interpolation scheme,
as describe in this section, represents in practice a form of
adaptive smoothing of the fields used in the ray integration
[27]. This is in the sense that the field values at a given cell
vertices (and hence the interpolated field inside that cell) de-
pend on the field values on neighbouring cells. The reason
why we dub this an adaptive smoothing is because the size of
the smoothing kernel (roughly the volume occupied by all the
cells that are used in the interpolation) depends on the sizes
of the given cell and its neighbours, which in turn depends on
the local matter density.

IV. WEAK LENSING SIMULATIONS: METHOD

In this section, we explain how our algorithm can be applied
to studies of weak gravitational lensing.

A. Lensing basics

We start with a brief recap of the basics of gravitational
lensing (see e.g. Refs. [17–20, 52, 53]). In a perturbed
Friedmann-Robertson-Walker (FRW) spacetime, the line el-
ement in the absence of anisotropic stress can be written as
(considering only scalar perturbations)

ds2 =

(
1 +

2Φ

c2

)
c2dt2 − a2

(
1− 2Φ

c2

)
ds2

space, (29)

where a = 1/(1 + z) is the scale factor. Photons travelling
from distant sources towards an observer get their trajectories
bent due to the intervening gravitational potential, Φ. The (un-
observed) angular position of the source on the source plane,
~β, is related to the observed one, ~θ, by the lensing deflection
angle ~α as

βi = θi + αi

= θi − 2

c2

∫ χs

0

(χs − χ)

χs
∇x

i

Φ(χ, ~β(χ))dχ

= θi − 2

c2

∫ χs

0

(χs − χ)χ

χs
∇β

i

Φ(χ, ~β(χ))dχ, (30)

where i = 1, 2 denotes the two perpendicular directions to the
line-of-sight. The third line in Eq. (30) is obtained from the
second one by defining the derivatives w.r.t. the angular co-
ordinate ∇βi = χ∇xi , or equivalently, ∇βi

= ∇xi

/χ. The
Jacobian matrix,Aij , of this source-to-observer mapping is ob-
tained by differentiating the above equation w.r.t. ~θ as in

Aij = ∇θjβi = δij −
2

c2

∫ χs

0

g (χs, χ)∇β
i

∇θjΦ(χ, ~β(χ))dχ,

(31)

where g (χs, χ) = (χs − χ)χ/χs. Note that the integral is
performed along the perturbed path of the photon, as indi-
cated by the β(χ) dependence of the potential inside the inte-
gral. Note also that one of the derivatives of Φ is w.r.t. ~β and

another w.r.t. ~θ. These two aspects add complication to the
ray tracing, but they can be neglected to obtain approximate
solutions. To first order, we can write

Aij = δij −
2

c2

∫ χs

0

g (χs, χ)∇θ
i

∇θjΦ(χ, ~θ(χ))dχ,

(32)

in which the integral is now peformed along the unper-
turbed apparent direction of the photons, which is the so-
called Born approximation, and the derivatives are now both
w.r.t. ~θ, which amounts to neglecting the so-called lens-lens
coupling12). The lensing results that we present in this pa-
per are obtained under these two approximations, which are
generally found to be valid, at least in what concerns deter-
minations of the power spectrum of lensing quantities [27].
The generalization of our ray tracing calculations to follow
the rays in their perturbed paths, as well as calculations that
take lens-lens coupling into account is the subject of ongoing
work (see e.g. the Appendix of Ref. [37] for a discussion).

Equation (32) can be written in matrix form

Â =

[
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

]
, (33)

to define the lensing convergence, κ,

κ = 1−
(
A1

1 +A2
2

)
/2

=
1

c2

∫ χs

0

g (χs, χ)
[
∇1∇1Φ +∇2∇2Φ

]
dχ, (34)

and the two components of the lensing shear ~γ = (γ1, γ2),

γ1 = −
(
A1

1 −A2
2

)
/2

=
1

c2

∫ χs

0

g (χs, χ)
[
∇1∇1Φ−∇2∇2Φ

]
dχ, (35)

γ2 = −A1
2 = −A2

1

=
2

c2

∫ χs

0

g (χs, χ)∇1∇2Φdχ, (36)

where we have now denoted ∇i ≡ ∇θi for compactness of
notation.

B. Lensing integration in the code

The integrals of Eqs. (34), (35) and (36) can be found by us-
ing the algorithm outlined in Sec. III G. In the case of lensing,
the integration kernel in Eq. (12) is given by (up to factors
∝ 1/c2) K ≡ g(χs, χ), and the quantity Q that one needs
to evaluate at cell vertices is Q = ∇1∇1Φ + ∇2∇2Φ for κ,
Q = ∇1∇1Φ − ∇2∇2Φ for γ1, and Q = ∇1∇2Φ, for γ2.

12 Lens-lens coupling refers to the correlation between the distortions of the
sources with the intervening sources that act as lenses, whose images and
positions seen by the observer are also distorted.
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Consequently, the contribution of each crossed cell to the in-
tegral according to method NGP (cf. Eq. (13)) is given by

Ic = Qc

∫ χA

χB

χs − χ
χs

χdχ

=
Qc
χs

[
χs
2

(
χ2
A − χ2

B

)
− 1

3

(
χ3
A − χ3

B

)]
. (37)

Alternatively, according to Eq. (18), the contribution is

Ic =
1

χs

4∑
N=1

dN

∫ χA

χB

χ (χs − χ) (χ− χA)
N−1

dχ

=
1

χs

4∑
N=1

dN

[
RN

N
(χA − χs)χA +

RN+1

N + 1
(2χA − χs)

+
RN+2

N + 2

]
, (38)

where R = χB − χA.
What is left to specify is the relation between the quanti-

ties ∇1∇1Φ, ∇2∇2Φ and ∇1∇2Φ, with the values of ∂a∂bΦ
(a, b = x, y, z) that are actually computed on the simulation
mesh (see the subsection below). This relation is

∇1∇1Φ = sin2ϕ [∂x∂xΦ] + cos2ϕ [∂y∂yΦ]− sin2ϕ [∂x∂yΦ] , (39)

∇2∇2Φ = cos2ϕcos2θ [∂x∂xΦ] + sin2ϕcos2θ [∂y∂yΦ] + sin2θ [∂z∂zΦ] + sin2ϕcos2θ [∂x∂yΦ]− sinϕsin2θ [∂y∂zΦ]

−cosϕsin2θ [∂x∂zΦ] , (40)

∇1∇2Φ =
cosθ

sinθ

[
cosϕsinϕ

(
[∂y∂yΦ]− [∂x∂xΦ]

)
+
(

cos2ϕ− sin2ϕ
)

[∂x∂yΦ]

]
+ sinϕ [∂x∂zΦ]− cosϕ [∂y∂zΦ] . (41)

The above equations are derived by associating the two
spherical coordinates ϕ and θ that specify the incoming direc-
tion of the rays with θ1 and θ2. Then, the expressions follow
straightforwardly from applying∇i∇jΦ = ∂i∂jΦ− Γkij∂kΦ,
with Γkij being the Christoffel symbols of the line element13

ds2
space = dχ2 + χ2dθ2 + χ2sin2θdϕ2, and then writing ∂ϕ

and ∂θ in terms of ∂x, ∂y , ∂z according to Eq. (2).

C. Calculation of ∂a∂bΦ

The values of ∂a∂bΦ (a, b = x, y, z) can be computed at
the center of a given cell by finite differencing the values of
Φ on neighbouring cells. If a cell has all its neighbours at
the same refinement level, this calculation is straightforward.
For instance, if Φi,j,k is the gravitational potential on the cell
labelled by {i, j, k}, then we have

∂x∂xΦ =
Φi−1,j,k − 2Φi,j,k + Φi+1,j,k

h2

∂x∂yΦ =
Φi+1,j+1,k + Φi−1,j−1,k − Φi+1,j−1,k − Φi−1,j+1,k

4h2
,

(42)

13 We note in passing that by using this line element one takes into account
the curvature of the sky. However, Eqs. (39), (40) and (41) remain the
same if ∇1 and ∇2 are interpreted as being derivatives w.r.t. the coordi-
nates (x1, x2) = χ(θ1, θ2), i.e., by taking the flat sky approximation. This
coordinate system is essentially a Cartesian system rotated such that the di-
rection of the incoming ray is perpendicular to the x1−x2 plane. A simple
argument for this equivalence is that the sphere is locally flat, which means
that the curvature can in practice be neglected when one takes derivatives.

as two representative examples. The other components of
∂a∂bΦ are obtained similarly. However, some complications
arise at boundary regions of refinements. As an example, con-
sider that we wish to compute ∂x∂xΦ on cell f5 in Fig. 6,
where x and y are, respectively, the horizontal and vertical
directions on the figure. The fine cell f5 is missing the neigh-
bour that would exist if coarse cell c4 had been refined. One
can think of two ways to compute the missing values that are
needed for the finite difference. One option is to interpolate
the values of Φ obtained from the coarse level to the point in
cell c4 where the center of the relevant son cell would be if
it existed. This value could then be used in a fine-level finite
difference to compute ∂x∂xΦ in cell f5. Another option is in-
terpolating directly the coarse values of ∂x∂xΦ in cells c1, c2,
c4 and c5 to the center of cell f5, without finite differencing.

To test these two approaches, we have set up a grid with
more that one refinement level in the code and used the cell
centers to define a Gaussian potential on the mesh. We then
compared the analytical result of ∂a∂bΦ with the result given
by the code. We have found that the second approach agrees
very well with the analytical result, but the first option showed
larger discrepancies at the refinement boundaries. This is be-
cause by taking the finite difference using interpolated values,
one amplifies the interpolation error in Φ by the factor of h−2,
which enters in the finite difference. In the results that follow,
we have therefore implemented the second approach, which
is also more computationally efficient14. Once ∂a∂bΦ is eva-

14 As a technical point, imagine that there is a CPU domain along the line that
contains vertices V6, V2, V3 and V4 in Fig. 6. In RAMSES, there are "com-
munication buffers" at the CPU domain boundaries, i.e., regions in the next
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luted at the center of the cells, then its interpolation to cell
vertices is as described in Sec. III H.

D. Alternative lensing integration in the code

The lensing methodology described above involves the cal-
culation of ∂a∂bΦ (a, b = x, y, z) on the mesh, which in-

evitably adds some computational overheads. However, as
described in this section, it is possible to compute κ and γ
by integrating only quantities that are computed by default in
RAMSES.

Equation (34) can be written as

c2κ =

∫ χs

0

g (χs, χ)
[
∇2Φ−∇2

χΦ
]

dχ

=
3

2
Ωm0H

2
0

∫ χs

0

g (χs, χ)
δ

a
dχ +

∫ χs

0

∇χΦ ∂χgdχ +
1

c

∫ χs

0

g ∂t (∇χΦ) dχ − g∇χΦ
∣∣∣χs

0
, (43)

where in the second equality we have used the Poisson equa-
tion to relate the comoving three-dimensional Laplacian to the
matter density contrast, δ, and the term g∇2

χΦ was integrated
by parts using ∇χ = ∂t/c+ ∂χ, where t is the physical time.
The integration of the first term on the RHS of Eq. (43) is the
same as that of Eqs. (34), (35) and (36), but with δ/a as the
quantity Q15. The second term is obtained analogously, but
with Q = ∇χΦ = sinθcosϕ∂xΦ + sinθsinϕ∂yΦ + cosθ∂zΦ
(where ∂xΦ, ∂yΦ and ∂zΦ are the negative of the three com-
ponents of the gravitational force) and the kernel K = ∂χg =
1− 2χ/χs. The third term involves the time derivative of the
potential, which is not calculated in RAMSES by default. In
the results presented in this paper, we neglect the contribution
from this term, which is expected to be small anyway (see
e.g. Ref. [21]).

The last term on the RHS of Eq. (43), which is a surface
term, is exactly zero in theory, since the lensing kernel g van-
ishes at χ = 0 and χ = χs. However, if one breaks down the
calculation of this term into the contributions coming from
each time step

g∇χΦ
∣∣∣χs

0
=

∑
time steps

g∇χΦ
∣∣∣χi

χf

, (44)

where χi and χf are, respectively, the values of χ at the start
and end of a particle time step, then the result is not zero due to

CPU’s domain that are available to the present CPU. In order to compute
the value of ∂a∂bΦ in cell f5, then its CPU needs to access the value of
∂a∂bΦ at cell C4, whose calculation involves Φ on cells further left of C4
(not shown in Fig. 6). These latter cells are outside of the communication

buffer of standard RAMSES, which means that we had to increase its size.
This is one of the few changes made to the main code.

15 In the current implementation of the code, a is taken to be constant dur-
ing the time step integration. This should not lead to big errors in high-
resolution simulations if the time steps are sufficiently small. There are
however ways to go beyond this by, for instance, implementing the relation
a(χ) in the integration.

discontinuities between particle time steps and at the bound-
ary of boxes in the tile. This is because, if RAMSES updates
the values of the potential from one time step to the next, then
its value at the end of the current time step (when the ray is at
χ = χtcurrentf ) is not the same as at the start of the next time
step (when the ray is at χ = χtnexti ), where χtcurrentf = χtnexti
16. As a result,

g∇χΦ
∣∣∣χs

0
= g∇χΦ

∣∣∣
χ=χs

− g∇χΦ
∣∣∣
χ=0

+ εdisc

= εdisc, (45)

where εdisc denotes the cumulative error that arises due to the
discontinuities at each time step. The latter are unavoidable
since they are linked to the intrinsic discreteness of N-body
simulations. Note however that the nonzero value of εdisc,
which comes from integrating the second term in the bracket
of the first line of Eq. (43), means that the same discreteness
also affects the integration of the first term there. Therefore,
having εdisc included in the calculation for each time step can
reduce the error in the density integral of Eq. (43) that comes
from the same discreteness. We have checked explicitly that
including εdisc brings the κ map obtained using Eq. (43) into
closer agreement with the result from Eq. (34).

Note that the discreteness in time also introduces another
source of error. For example, when computing the second
integral in Eq. (43), the values of∇χΦ are assumed to be con-
stant in a time step, and therefore the integral misses the con-
tribution that comes from the time evolution of fields within
the time step. This also affects the integral of Eq. (34). How-
ever, we expect this error to be small in cosmological simula-
tions where the fine time step is typically of order ∆a ∼ 10−4

or smaller. In principle, our algorithm can be straightfor-
wardly extended to interpolate the fields between neighbour-
ing time steps so that they are continuous in time; however,

16 That is, the ending point at the current time step is the starting point at the
next time step integration.
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given the small error that this discontinuity causes, we will
leave this for future implementations.

In the end, we have two ways to compute the lensing con-
vergence. One is that of Eq. (34), which we call Method B
and it involves only one integral term. The other, which we
call Method A17, uses Eq. (43) and in the current implemen-
tation of the code involves two integral terms and the inclu-
sion of the surface term at each time step to cancel some of
the errors of the integral terms. These two methods therefore
respond differently to the discontinuities between time steps.
Another numerical difference between these two methods is
that Method B involves the calculation of ∂a∂bΦ, which for
each cell requires using a different number of field values on
neighbouring cells, compared to the evaluation of δ or ∇χΦ
in Method A. In Sec. VI D, we shall see that the two methods
give consistent results, which is telling that these numerical
differences are not critical.

As we mentioned above, Method A is more convenient than
Method B in the sense that it avoids the computationally ex-
pensive calculation of ∂a∂bΦ. On the other hand, it does not
yield directly the lensing shear, which needs to be obtained
indirectly from the κ maps. This can be done by (i) Fourier
transforming κ(~θ) to obtain κ̃

(
~̀
)
; (ii) computing the Fourier

transform of the shear as [54]

(γ̃1, γ̃2) =

(
`21 − `22
`21 + `22

κ̃,
2`1`2
`21 + `22

κ̃

)
, (46)

where `1 = π/θ1, `2 = π/θ2; and finally, (iii) inverse Fourier
transforming (γ̃1, γ̃2) to get

(
γ1(~θ), γ2(~θ)

)
18.

V. A CODE TEST: LENSING BY A GAUSSIAN
POTENTIAL

As a check of our ray tracing implementation for lensing,
we tested the code results in a controlled setup for which we
can obtain solutions with other integration methods. Specif-
ically, we compute the lensing signal associated with a fixed
Gaussian potential

Φ̃(r) = Aexp

[
− r2

2σ2

]
, (47)

where the tilde denotes that the potential is written in code
units. We set the parameters as A = 104 and σ = 2 Mpc/h
(the exact values are not critical for our tests). The cen-
ter of the potential is located at the center of a box of size
L = 10 Mpc/h and the potential is defined on cell centers.
The observer lies at the center of one of the box faces and
we integrate 128 × 128 rays covering a 40 × 40 deg2 field
of view. The source redshift for this test is zs = 0.95, but

17 This naming is the same as in Ref. [37].
18 Equation (46) is valid only in the flat-sky approximation, in which Fourier

modes and spherical harmonic multipoles are equivalent.

the rays are only integrated in the box that contains the ob-
server and the Gaussian potential. We consider three domain
mesh resolutions with 32, 64 and 256 cells per dimension.
For each domain mesh resolution, we hierarchically refine the
mesh towards the inner region of the box using two cubic-
shaped refined levels. That is, if ld is the domain level, then
a ray moving away from the center of the potential will go
through cells on level ld + 2, then on level ld + 1 and finally
ld. We create the refinement levels by appropriately distribut-
ing particles inside the box. However, these particles are only
used to define the AMR structure and play no other role in this
test, e.g., the potential felt by the rays is that of Eq. (47) and
not that associated with the particle distribution. We let the
code run as if it was a normal N-body simulation, but at each
time step the particles are kept from moving to ensure that
the AMR structure remains fixed. We ran this test on 8 CPUs
using integration method B with Eq. (38) (cf. Sec. IV B), and
compared our code results with the integral solutions obtained
with an adaptive 1D numerical integrator from the GSL library
[55] for the same ray settings.

The outcome of this test is shown in Fig. 7, which displays
κ profiles (left), γ1 profiles (middle) and γ2 maps (right), for
the tested resolutions (the κ and γ1 profiles correspond to a
given radial slice of the corresponding maps). Figure 7 illus-
trates the very good agreement between the expected result
and that from our ray tracing code. In the κ and γ1 panels,
the error (the difference between the expected result and the
ray tracing one) for the highest mesh resolution is kept well
within 1%. The error is also smaller than 1% for the inter-
mediate resolution, and even for the poorest resolution case it
never exceeds ≈ 3%. When quoting these figures, we do not
consider the radial scales where κ and γ1 cross zero, since this
artificially amplifies the relative error there. We have checked
that these small errors are mostly caused by errors in the inter-
polation of the potential values from cell centers to cell ver-
tices19, and not due to the integration routines. This is why the
agreement with the expected result becomes noticeably better
when the cells become finer, and hence the interpolation more
accurate 20. For a spherically symmetric potential, γ2 = 0,
which makes it harder to quantify the code error. However,
the γ2 panels do show that its absolute value is close to zero
(up to some weak noisy pattern) and that the agreement with
the expected result improves with increased resolution. Note
also that our κ, γ1 and γ2 results show no evidence of any
inaccuracies caused by the interpolation at refinement bound-
aries.

This test represents an important validation of not only the
integration algorithm, but also of the calculation of the tidal
tensor, ∂a∂bΦ and the interpolation scheme from cell cen-
ters to cell vertices. These are all routines that do not ex-

19 We checked this by comparing the reconstructed potential values at cell
vertices (cf. Sec. III H) with the values determined by Eq. (47).

20 Although not explicit in Eq. (47), when written in code units, Φ acquires
a factor of a2, which we take to be constant in each time step. Since the
time steps get smaller with increased resolution, this also contributes to the
better accuracy seen in the higher resolution setting.
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FIG. 7. Code lensing tests with a fixed Gaussian potential. From left to right, the panels show the profiles of κ, γ1 and the maps of γ2, for
different domain grid resolutions, as labelled. The black curve shows the expected result obtained using the same potential and ray geometry,
but with the equations solved with an independent Runge-Kutta numerical integrator. The panels below the κ and γ1 profiles show the
percentage error relative to the expected result. In the γ2 panels, the expected result is γ2 = 0.

ist in default RAMSES and this successful test demonstrates
that they have been implemented correctly. Finally, we note
that this test serves also as an important check of the code in-
frastructure, namely the fact that the ray propagation through
the AMR structure and the communications between CPUs
are done correctly – otherwise there would be errors coming
from artifacts at the boundaries of CPU domains or not all rays
would reach the observer at redshift z = 0.

VI. COSMOLOGICAL WEAK LENSING SIMULATIONS

In this section, we show and discuss some code results for
cosmological weak lensing simulations. We start by sum-
marising our simulation settings and ray geometry, and then
show our code results for one- and two-point statistics, as well
as for the lensing signal around dark matter haloes.

A. Summary of the simulation and tile settings

Our lensing maps were obtained by tracing Nray = 2048×
2048 rays from zs = 1, covering a field of view with
10×10 deg2. This yields an angular resolution of 0.005 deg =
0.3′. To encompass this lightcone geometry, we employed the
tiling scheme depicted in Fig. 1 with five L = 512 Mpc/h
boxes, in which we simulate a flat ΛCDM cosmology using
Np = 5123 and Np = 10243 dark matter tracer particles.
We refer to these two resolutions as LowRes and HighRes,
respectively. Our ΛCDM parameters are Ωb0 = 0.049,
Ωc0 = 0.267, ΩΛ0 = 1−Ωb0−Ωc0, h = 0.671, ns = 0.9624,
σ8 = 0.834, in accordance with the recent results from the
Planck satellite [56, 57] (but assuming that all neutrino species
are massless). The simulation in each box in the tile stops

after all rays have reached the end of the integration there
(cf. Secs. III B, III C) and the observer is located at the cen-
ter of the face of the last box (that which is furthest away from
the sources). In particular, from the first to the last box, the ray
integrations are performed in the redshift intervals, [1, 0.86],
[0.86, 0.6], [0.6, 0.38], [0.38, 0.18] and [0.18, 0], respectively.

For each particle resolution, we considered five realiza-
tions of the particle initial conditions (generated with the
MPGRAFIC code [58] at z = 49) for each of the five boxes
in the tile. This allows to construct 55 = 3125 lensing maps
by combining the integration results from each box realiza-
tion. These maps are not all independent from one another
21, but they are equally likely realizations of the lightcone.
This "shuffling" of different realizations of the boxes in the
tile allows for a measure of the uncertainties associated with
cosmic variance, specially for those boxes in the tile whose
volume is only very partially covered by the light bundle. In
these lensing map constructions, we do not mix the results
from LowRes and HighRes boxes. If one requires all tiles
to be completely independent from one another then we can
construct 5 tiles for each resolution 22.

All these lensing maps are obtained using integration
Method A with Eq. (38) (cf. Sec. IV D). However, for test-
ing purposes, we have selected one combination of initial
conditions for a HighRes tile to construct lensing maps with
method B, using both Eq. (37) and Eq. (38). We refer to the re-

21 For instance, consider the lensing map obtained by one realization of the
lensing tile. Then, the lensing map constructed from this map by replacing
the result of first box with another realization of the first box still gets the
same contribution from all the other boxes.

22 This is in the sense that using the available box realizations, one can only
construct 5 tiles using each box realization only once.
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sults obtained using Eq. (37) as Method B (NGP). If not spec-
ified, when we refer to Method A and Method B, we mean
the result obtained using Eq. (38). We compare the different
integration methods in Sec. VI D.

B. Convergence probability distribution function

The color maps in Fig. 8 show the κ fields obtained from
one particular tile realization of the HighRes and LowRes
ray tracing simulations. The upper panels show the maps as
computed by our code and the lower panels show the maps
smoothed by a Gaussian filter with size 2′ ≈ 0.03 deg. The
corresponding rightmost panels show the probability distribu-
tion function (PDF) of the κ fields shown in the color maps,
but also for the other 4 independent tile realizations that we
can construct from our simulations (cf. Sec. VI A).

The upper right panel shows that the PDFs of the HighRes
and LowRes tiles are in good agreement for κ & 0.02, but
show some discrepancies at smaller values. In particular, the
distribution of the HighRes realizations is shifted towards
lower values of κ, relative to the LowRes ones. This result
can be attributed to the differences in resolution. In partic-
ular, the particle CIC clouds in the LowRes case are larger
than in the HighRes case and the particle mass is distributed
to a larger volume. Hence, the LowRes simulations do not de-
velop density troughs that are as deep as in the HighRes case,
which pushes the low-κ tail of the distribution in the LowRes
tiles to larger values of κ, as seen in the upper right panel
of Fig. 8. By the same reasoning, the PDF of the HighRes
simulations should be higher for larger values of κ because
of the better resolved high density peaks. However, the PDFs
for large values of κ becomes noteciably suppressed, which
makes that assessment more difficult.

The lower right panel of Fig. 8 shows the same as the
upper right panel, but for the smoothed maps. The size of
the filter (2′) corresponds roughly to cluster size scales at
z ≈ 0.5 and to typical smoothing scales employed on real
lensing maps [59, 60]. For the smoothed maps, the two reso-
lutions now agree quite well for all values of κ. Compared to
the unsmoothed cases, the smoothing suppresses the PDF for
κ & 0.02, which indicates that these values of κ were due to
peaks with size smaller than 2′. The smoothing, however, does
not noticeably suppress the amplitude of the PDF for κ . 0.

C. Convergence power spectrum

Figure 9 shows our convergence power spectrum results for
the tiles constructed with the HighRes (blue) and LowRes
(green) simulation boxes. The solid lines indicate the median
of the 3125 power spectra that we can construct for each reso-
lution and the errorbars indicate the 25% and 75% percentiles.

The black solid line shows the result given by the formula23

Cκκ` =
9Ω2

m

4

(
H0

c

)4 ∫ χs

0

g2 (χs, χ)
Pδ(k = `/χ, χ)

a2
dχ,

(48)

with Pδ being the nonlinear matter power spectrum computed
in the Halofit formalism presented in Ref. [61], and later tuned
by Ref. [62] (we use the latter). The spectra from the HighRes
and LowRes tiles are within each other’s errorbars and agree
also with the Halofit prediction for ` . 2.0 × 103. The small
differences in between the two resolutions and with the Halofit
prediction can be attributed to cosmic variance. The latter can
be particularly important in weak lensing studies with small
opening angles (compared to full sky), as observed for in-
stance in the full-sky analysis of Ref. [24].

For ` & 2 × 103, the Halofit prediction is above our code
predictions. This result can be associated with at least two
factors. The first one relates to the adaptive smoothing effect
that is caused by our interpolation scheme from cell centers
to cell vertices (to use Eq. (38)), and which works to suppress
the power below a given angular scale (recall the discussion at
the end of Sec. III H). The second factor relates to the accuracy
with which Halofit describes the three-dimensional clustering
in our simulations. Figure 10 compares the Halofit prediction
for Pδ with the nonlinear matter power spectrum measured
from our simulations at a number of epochs, as labelled. The
figure shows that the clustering power in our HighRes and
LowRes simulations is lower than what Halofit predicts for
κ & 4 h/Mpc and κ & 1 h/Mpc, respectively. These dif-
ferences naturally propagate into the two-dimensional conver-
gence power spectrum on small angular scales, which helps to
explain why our simulations underpredict the Halofit result
in Fig.9. This also explains why the suppression in power
is more pronounced in the LowRes case. Although we do not
explicitly test for that, we note that the agreement between our
code results and Eq. (48) is expected to improve if instead of
using Halofit to compute Pδ , one uses directly the nonlinear
matter power spectrum measured from our simulations (see
e.g. Refs. [22, 63]).

D. Comparison of different integration methods

Figure 11 compares the results from different ray integra-
tion methods for the PDF of κ (left panel) and its power spec-
trum (right panel). The three methods shown are method
A, method B and method B (NGP), as labelled. Recall that
method A and method B make use of Eq. (38) and method
B (NGP) uses Eq. (37). The three integration methods are

23 We have used the publicly available CAMB Sources software
(http://camb.info/sources/) to compute this integral. Note that we are as-
suming the Limber approximation, which is valid for small fields of view
like ours (compared to full sky). Morevoer, for small fields of view, the
assumption of a flat sky is a good approximation, which in practice means
that Fourier and spherical harmonic transforms give equivalent results.
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FIG. 8. Lensing convergence maps and κ probability distribution functions (PDFs). The color maps show the κ field obtained for a realization
of the HighRes and LowRes tiles without any smoothing and with a Gaussian smoothing with width 2′ ≈ 0.03 deg, as indicated in the panel
titles. The right panels show the PDFs of the κ field displayed in the color maps and for four other independent tile realizations with and
without Gaussian smoothing, as labelled. These results correspond to integration Method A with Eq. (38).

overall in good agreement in their PDF results, for both the
unsmoothed and the smoothed cases. One notes that the PDFs
of the two maps from method B are slightly shifted to higher
values of κ, compared to the method A result. This could
be attributed to differences in the detailed implementation of
methods A and B (cf. Sec. IV D). Nevertheless, we stress that
these are only small differences, which are in fact smaller than
spread of the five method A realizations shown in Fig. 8. This
agreement between the different integration methods is a reas-
suring result that can be regarded as a check of the consistency
of our ray tracing implementation for lensing.

For the case of the convergence power spectrum, integra-
tion methods A and B are also in very good agreement for all
the scales shown, which once again demonstrates the robust-
ness of our ray tracing modules (any observed difference is
much smaller than the spread due to cosmic variance shown
in Fig. 9). The integration method B (NGP) agrees also very
well with method A and B for ` . 5 × 103, but for larger
values of ` the shape of its power spectrum agrees better with
the Halofit prediction. This is due to the adaptive smooth-
ing effects of our interpolation scheme from cell centers to
cell vertices that affects methods A and B, but does not affect
method B (NGP). In particular, the shape of the curve from
method B (NGP) agrees with Halofit up to ` ∼ 2 × 104. A
more detailed assessment of the behavior of the convergence

power spectrum on small scales would benefit from ray trac-
ing simulations with higher resolution than those used for this
paper, and hence we defer such investigations for future work.

On scales ` & 2.0× 104, the three curves exhibit an upturn
that is caused by ray shot noise. We have checked that de-
creasing the number of rays traced makes the spurious effects
of shot noise more noticeable at lower ` (not shown, but see
e.g. Ref. [21]).

E. Halo lensing

Figure 12 shows the lensing signal around dark matter
haloes found in the middle box of a HighRes tile (we call
this Box 3) at z = 0.5. The halo catalogue was built us-
ing the Rockstar code [64]. We applied a mass24 cut
M200 > 1014 M�/h and considered only haloes with shape
parameters c/a > 0.55 and b/a > 0.75, where a > b > c

24 Our mass definition isM200 = (4π/3) ρc(z)200R3
200, whereR200 is the

halo radius defined as the radial distance to the halo center within which
the mean density is equal to 200 times the critical density in the Universe
ρc(z).
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FIG. 9. Lensing convergence power spectrum from the maps con-
structed with integration method A (with Eq. (38)) for the HighRes
(blue) and LowRes (green) tiles. The dots indicate the median and
the errorbars indicate the 25% and 75% percentiles of the distribution
of the 3125 tile realizations for each particle resolution. The black
line indicates the semi-analytical prediction based on the Halofit for-
malism (Eq. (48)).

are the three ellipsoidal axis. We have also kept only haloes
with fsub < 0.1, where fsub is the fraction of halo mass as-
sociated with resolved substructure. The ten haloes shown are
those which lie within the field of view. The color maps of
Fig. 12 show the κ field zoomed into a 0.2× 0.2 deg2 region
around the halo center determined by Rockstar. The profile
panels below each color map show the corresponding spheri-
cally averaged convergence profile around the halo center 25.
The blue points correspond to the profiles obtained using the
maps from the full tile, whereas the green ones show the pro-
files obtained from the signal computed by Box 3 alone. This
helps to separate the contribution from the halo itself and from
foreground and background structures. The solid red lines
show the analytical Navarro-Frenk-White (NFW) [65] result
(see e.g. Refs. [66–68]) computed with the mass and concen-
tration (M200, c200) values given by Rockstar. The angular
size associated with R200 is depicted by the yellow dashed
lines in the color maps and by the vertical dashed lines in the

25 The points at each angular scale show the mean κ at a number of points that
sample a circle around the halo center with that angular size. The errorbars
show the standard deviation around this mean. We evaluate the values of κ
from the map via bilinear interpolation given the values of κ at each pixel.

FIG. 10. Matter power spectrum measured from the HighRes (dots)
and LowRes (triangles) simulations. For each redshift shown (dif-
ferent colors, as labelled), the symbols indicate the mean and the
errorbars the standard deviation of the five realizations of the boxes
that will trace the rays right after those redshifts. For example, the
result for z = 0.25 was measured in the last boxes (those that have
the observer), z = 0.43 in the second-to-last boxes, and so on. The
dashed lines indicate the prediction using the Halofit formalism.

profile panels.
The fact that κ peaks in our maps coincide with the halo an-

gular positions determined by another independent code con-
stitutes another consistency check of our ray tracing imple-
mentation for lensing. Furthermore, for all ten haloes shown
and despite some expected differences, Fig. 12 shows that
there is good agreement between our code results and the
NFW analytical prediction for the amplitude and shape of
the κ profiles. The observed differences can be caused by
a variety of effects. For instance, despite our attempt to se-
lect the haloes that are the "most spherical" (c/a > 0.55 and
b/a > 0.75) and devoid from substructure (fsub < 0.1), they
are naturally still not perfectly spherical nor have perfectly
smooth mass distributions. The nonsphericity and irregular
shape of haloes leaves room for projection effects that are
known to induce a bias between concentration and mass val-
ues estimated from lensing and those estimated from the 3D
mass distribution in the simulations (see e.g. Refs. [69–71].
Moreover, owing also to projection effects and substructure,
there can be offsets between the angular position of the halo
center (around which we compute our lensing profiles) and of
the κ peaks, which can lead to some differences to the NFW
analytical prediction. Some of these differences are particu-
larly noticeable for the second halo from the left in the upper
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FIG. 11. Comparison of integration methods A, B and B (NGP). Method A and Method B make use of Eq. (38), whereas Method B (NGP)
uses Eq. (37). The left panel shows the PDF obtained from unsmoothed and smoothed maps for the three methods, as labelled. The right panel
shows the convergence power spectrum of (unsmoothed) maps obtained with the three integrations methods. In this panel, the Halofit curve
was scaled down to facilitate comparisons between the shape of the curves at high-`. All these results correspond to the same realization of a
HighRes tile.

part of the figure, whose lensing map reveals the presence of
several κ peaks inside R200. Similarly, the first halo from the
left in the lower part of the figure shows an offset between its
concentrated lensing peak and the center of the halo (center of
the dashed yellow circle).

Figure 12 shows also that the contribution from foreground
and background structures barely modifies the lensing profiles
in the inner regions, where the κ values are larger. This is in-
dicative that the rays that crossed the inner regions of the ten
haloes did not cross the inner regions of other haloes along
their trajectories, which would have otherwise induced a dif-
ference between the blue and green lines at small radii [72–
74]. At larger angular scales, the amplitude of the conver-
gence decreases, which makes the lensing signal there more
sensitive to the influence of intervening matter. Illustrative of
this situation is the first halo from the left in the upper part of
the figure. For this halo, rays that propagated through its out-
skirts picked up the lensing signal from matter that surrounds
the halo, but seemed to have travelled through mostly under-
dense regions (κ < 0) in the rest of their trajectory from the
source to the observer (which is why the blue dots are below
the green ones).

A more thorough study of halo lensing using our code could
involve applying more strict criteria to select haloes (based on
their relaxed state, shape, substructure, etc), choosing differ-
ent points around which to evaluate profiles (halo center, halo
density peaks, κ peaks) or studying the average lensing pro-
files of a stack of haloes [75, 76]. Our several tile realizations
can also be used in studies of the contamination to the lensing
signal along the line of sight. The latter may not be a critical
source of systematics in cluster lensing related work, but that
may not necessarily be the case for voids [77–80], which have
an intrinsically smaller lensing amplitude. We leave these in-

vestigations for future work.

VII. SUMMARY AND OUTLOOK

A. Summary

We have presented a ray tracing code to compute integrated
cosmological observables (cf. Eq. 1) that runs on the fly in
AMR N-body simulations. Our algorithm is based on the
original ideas of Refs. [36, 37], but we implemented it here
in the efficiently parallelised RAMSES AMR N-body code,
which makes it possible to reach the resolution levels that are
required by current and future observational surveys. The rou-
tines we described in this paper move the rays on a cell-by-cell
basis, from some source redshift until an observer at redshift
zero. The ray initialization routines (cf. Sec. III E) can self-
consistently handle cases where a light bundle is initialized
inside the simulation box or at its faces. This ensures that
one does not need to simulate a box that is large enough to
encompass the whole lightcone but can, instead, "tile" sev-
eral smaller boxes and let the rays move from one to the other
(cf. Sec. III B). The integral along the whole line of sight is
obtained by summing up the contribution from each crossed
cell (cf. Eq. (11)). The latter can be performed analytically
either by treating the field as constant inside each cell (called
NGP field, Eq. (13)) or by reconstructing it via trilinear in-
terpolation from the field values at cell vertices (cf. Eq. (18)).
The default RAMSES code does not evaluate the fields at cell
vertices, but at cell centers. For ease of our integration rou-
tines (namely those which employ Eq. (18)), we designed an
interpolation scheme from cell centers to cell vertices, which
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FIG. 12. Spherically averaged lensing signal around individual dark matter haloes. The color maps show the κ field zoomed into a 0.2 ×
0.2 deg2 region around the center of mass of haloes found at z = 0.5 in the middle box of a HighRes tile. This box, called Box 3, is the one
in which the redshift interval of the ray integration brackets z = 0.5. The dashed yellow lines depict the angular size of the haloes, R200. The
ten haloes shown are those which lie inside the lightcone geometry and have M200 > 1014 M�/h, c/a > 0.55, b/a > 0.75 and fsub < 0.1.
The panels below each color map show the corresponding spherically averaged κ profiles computed around the halo’s center of mass taking
into account the full lensing signal of the tile (blue) or just the contribution from Box 3 (green), where the haloes were found (the color maps
show the full lensing signal, and not just the contribution from Box 3). The points are obtained by taking the mean value of κ at a number of
points that sample a circle of a given angular scale around the cluster center. The errorbars show the standard deviation around that mean. The
solid red lines show the analytical NFW prediction computed using the halo mass and concentration values (upper right part of each panel)
determined by the Rockstar halo finder. The vertical dashed lines indicate the angular size of the haloes.

we used to ensure that the reconstructed fields from trilinear
interpolation vary continuously when crossing cell boundaries
and are mass conserving (cf. Sec. III H).

Since it runs on the fly in the N-body simulation, our code
can produce maps of the integrated observables without re-
quiring large amounts of data (or even any) to be stored and
further post-processed for ray tracing. Furthermore, our code
takes full advantage of the time and spatial resolution avail-
able in the N-body run, which is not the case in standard ray
tracing numerical studies. These constitute two of the main
improvements of our code over more conventional ray tracing
methods.

We have tested our ray tracing implementation by applying
it to gravitational lensing. We have explained how the lens-
ing convergence, κ, in our code can be computed in two dif-
ferent ways. The first one involves direct integration of the

two-dimensional transverse Laplacian of the lensing poten-
tial (which we call Method B, Eq. (34)), whereas the second
makes use of the three-dimensional Poisson equation to re-
late the transverse derivatives of the potential to the density
field and a series of other integral and surface terms that de-
pend on the radial gradient of the potential (called Method
A, Eq. (43)). These two methods make use of Eq. (18) (or
Eq. (38)). We have also computed the lensing signal with
a method we called Method B (NGP), which is the same
as Method B but using Eq. (13) (or Eq. (37)) instead. The
lensing shear field can be obtained by integrating directly the
corresponding combination of second derivatives of the po-
tential (cf. Eqs. (35) and (36)) or indirecly via the κ result
from Method A using Eq. (46). We have tested the numerical
solutions of our code by comparing them with the solutions
from an independent numerical integrator for lensing through
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a fixed Gaussian potential (cf. Sec. V).
As an illustration of the application of our code, we have

used it to perform cosmological simulations of weak gravita-
tional lensing. We tracedNray = 20482 rays in a 10×10 deg2

field of view from zs = 1. We simulated a ΛCDM model on
five boxes with size L = 512 Mpc/h to encompass that light-
cone. We considered two particle resolutions: Np = 10243

(HighRes) and Np = 5123 (LowRes). For each resolution
setting, we simulated each of the five boxes in the tile using
five realizations of the initial conditions. In total, this allows
us to build 55 = 3125 different lensing maps. We have anal-
ysed 1- and 2-point statistics of the κmaps as well as the lens-
ing profiles around dark matter haloes. Our weak lensing re-
sults can be briefly summarised as follows:
• The sets of κ maps constructed with Method A from

both particle resolutions agree very well in their PDF results
(Fig. 8). There are some expected differences induced by the
difference in resolution. These disappear after the maps are
smoothed on a few arcmin scales, which is what is typically
done in observational studies (cf. Sec. VI B). The PDF results
obtained with method B and method B (NGP) are also in very
good agreement with method A (cf. Fig. 11), which consti-
tutes a validity check of the code implementation.

• The κ power spectrum results obtained from the
HighRes and LowRes tiles with method A are in good agree-
ment with each other and with the semi-analytical prediction
computed in the Halofit formalism for ` . 2×103 (cf. Fig. 9).
For larger values of ` (small angular scales), our method A re-
sults exhibit a suppression of power relative to the Halofit re-
sult. This can be attributed to the resolution limit of our simu-
lations and to the adaptive smoothing effects that follow from
interpolating the field values from cell centers to cell vertices
(cf. the discussion at the end of Sec. III H). The results from
method B and method B (NGP) are also in good agreement
with power spectrum obtained with method A. The lack of
small scale power in method B (NGP) is not as pronounced as
in the other two cases, which is related to the fact that method
B (NGP) is not affected by the adaptive smoothing caused by
the reconstruction of the fields at cell vertices.
• Our κ maps show amplitude peaks at the angular po-

sitions of haloes found in the box that is at the middle of
the tile. This constitutes a trivial (but successful) validation
test of our results (cf. Fig. 12). Furthermore, the spherically
averaged κ profiles in our maps exhibit the expected level
of agreement with the analytic prediction for NFW haloes
computed using the mass and concentration inferred from the
three-dimensional particle distribution.

B. Future code developments

We comment below on a list of possible ways to go beyond
the current implementation of the code.

Beyond tiling of simulation boxes: The cosmological weak
lensing results presented in this paper were obtained by run-
ning one N-body simulation for each box that makes up a tile
(although not all these simulations have to reach z = 0). We
note, however, that this is not necessary. For instance, when

the light bundle leaves a simulation box, instead of terminat-
ing that simulation and starting another box which is closer to
the observer, one can keep using the same box, but initializing
another bundle of rays for an observer at a different location.
This process of changing the position of the observer can con-
tinue until all rays reach z = 0. The consecutive positions
of the observer can be chosen to minimize the repetition of
structures, e.g., by having the rays crossing regions of the box
that had not been previously crossed or regions that had been
crossed but in different directions. Hence, if one needs Nbox

to encompass a given lightcone, then for Nsim sets of initial
conditions one has Nbox × Nsim map portions26 that can be
combined to build map realizations. If one uses each portion
only once, then one can build Nsim fully independent maps.
This number increases if different map realizations (no longer
fully independent) can share some map portions. The shared
portions can be appropriately chosen to minimize the effects
of structure repetition (e.g. repeat the portions close to the ob-
server or to the sources, where the lensing kernel is small).

Beyond first order approximations for lensing: The ray
tracing implementation for lensing that we presented in this
paper neglected the effects from second and higher order per-
turbations, which include the well known Born correction and
lens-lens coupling (see Ref. [53] for a thorough account of
higher order corrections in lensing). As a first step to go be-
yond this, the effects from these higher order terms can be
added to our code by following the strategy outlined in Ap-
pendices A1 and A2 of Ref. [37]. In particular, the effects
of lens-lens coupling (and other nonlinear couplings) can be
included in a perturbative manner along straight trajectories,
and in a way that still allows the relevant integrals to be com-
puted analytically. The high line-of-sight resolution of our
code can prove useful in clarifying the importance of first-
order approximations in lensing studies [81, 82]. To go be-
yond the Born approximation one can appropriately deflect
the rays every time they cross a cell. The integral that deter-
mines the deflection angle ~α inside a cell is evaluated analo-
gously to any other integral in the code (e.g. that of κ). For
these higher-order studies (specially beyond the Born approx-
imation), some difficulties may arise as it is no longer certain
that the rays all reach the observer at z = 0. The significance
of these issues and possible ways around it (e.g. construction
of lensing maps using only rays that are sufficiently close to
the observer or running the simulation backwards in time) is
the subject of ongoing work.

Ray-Ramses also as a post-processing tool: The applica-
tion of our code is not restricted to ray-tracing simulations on
the fly. Given a number of particle snapshots from some N-
body simulation, RAMSES can construct the appropriate AMR
grid structure, on which our routines can compute the inte-
grals. Note that this does not involve projections into planes
and the calculation will remain a three-dimensional one. The
ray-tracing algorithm remains essentially unchanged, except

26 We call a map portion the contribution coming from each single box cross-
ing.
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for the fact that the particle distribution is now static, and
hence, the ray trajectories are not constrained by the size of
code time steps (cf. Sec. III F 2). This can also facilitate the
implementation of non-straight ray trajectories, since rays can
be traced away from the observer location. These develop-
ments are currently ongoing.

All-sky lensing simulations: In this paper, we have re-
stricted our analysis for fields of view that are small enough
for the flat-sky approximation to hold. However, in studies
where the light source is the CMB (ISW, SZ, CMB lensing),
the field of view is normally the full celestial sphere (up to
masked areas), in which case the flat-sky approximation nat-
urally breaks down. Other surveys such as LSST [83] and
Euclid [84] are also expected to cover ever larger fractions of
the sky for lensing, which motivates extending our code for
larger fields of view. This can be done with a few steps. Per-
haps the most involved one is related to the initialization of
the rays, which would benefit from using the HEALPix [51]
pixelation on the sphere. The initial directions and positions
can be generated elsewhere and stored in a file that is read
by our code when it is time to initialize the rays. Other steps
should involve a careful determination of the box sizes used
in the tiles and the location of the observer. We note that the
routines that control the ray trajectories and integration would
remain as presented in this paper.

Source redshift distribution for lensing: Although this was
not tested in this paper, we note that it is possible to initialize
the different rays at different source redshifts. For instance,
it is straightforward to sample values of zs across the rays
using the source distribution for some observational survey
and only let each ray start the integration once the simulations
have reached the value of zs assigned to it. We note also that
it is possible to design ways to compute the lensing signal
for different source redshift distributions without having to re-
run the code. Consider, for instance, two source redshifts,
zas < zbs, with comoving distance χas < χbs. Taking the case
of lensing applications as an example, the signal associated
with zbs is given by the integral

I =
1

c2

∫ χb
s

0

χQdχ− 1

c2χbs

∫ χb
s

0

χ2Qdχ

=
1

c2
A− 1

c2χbs
B, (49)

where Q is the desired combination of second angular deriva-
tives of the lensing potential and the second equality serves to
define the integrals A and B. The above equation is the same
as the equations solved in this paper, but written in this way it
becomes clearer that χbs appears as a multiplicative term and
as the limit of integration, but not inside the integrand. The
integrals A and B are in the form of Eq. (10) and so they can
be solved using our routines. Focusing on the case of A, we
can decompose its calculation as

A = −
∫ χa

s

χb
s

χQdχ−
∫ 0

χa
s

χQdχ, (50)

where we have flipped the integration ranges, just to empha-
size that in our code, the integrations are done from the source

towards to observer. Hence, given the value of A computed
for χbs, we can get its value for χas , by subtracting the first
term on the right-hand side of Eq. (50). This term can be ob-
tained by letting the code output the convergence calculation
accumulated for each ray from zbs to zas . The same consider-
ations hold for the integral B. The final step to get the value
of I in Eq. (49) for zas is to replace χbs by χas in the second
term on the right-hand side. This reasoning can be generalized
to more source redshift values. This involves having to out-
put the accumulated integrals at a number of redshifts within
some range where one expects source galaxies to exist. Note,
however, that this is not very demanding from a data storage
point of view since the outputted lensing maps are relatively
light (compared with particle snapshots from simulations, for
instance). A scheme such as this can have interesting applica-
tions is assessing fairly quickly the impact of different source
redshift distributions on the lensing signal.

C. Code applications

To conclude our discussion, we comment briefly on a num-
ber of possible applications of our code.

Baryonic effects: The inclusion of baryon physics is rela-
tively straightforward as it involves simply turning on any hy-
drodynamical modules that are already existing or that can be
added to the RAMSES code. The degree of complexity of such
baryon physics recipes would depend on the exact application
in mind. For instance, Refs. [85–87] investigate the effects of
gas cooling, stellar feedback, AGN feedback, and others on
weak lensing observables. Still in the context of hydrodynam-
ical simulations, our code can also be used in studies of the
SZ effect. In practice, this would amount to associating the
quantity Q in Eq. (1) with neT for thermal SZ and nevb for
kinetic SZ effects, where ne is the electron gas density, T its
temperature and vb its bulk velocity.

ISW simulations: One of the possible applications of our
code is in studies of the ISW effect. This can be done by
setting Q in Eq. (1) to the physical time derivative of the
lensing potential Φ̇len. The latter can be computed implic-
itly in each cell via finite-differencing using values of the po-
tential at the current (Φcurr) and previous (Φprev) time steps:
Φ̇ = (Φcurr − Φprev) /∆t, where ∆t is the time step interval.
Our numerical implementation is particularly suited for ISW
studies since it allows to directly compute the time-derivative
of the potential on all scales, rather than making use of the
continuity equation to relate the velocity field in the simula-
tions to Φ̇. The latter approach is what is done in conventional
ISW studies [35, 39]. In a future work, we plan to use our ray
tracing code to study the ISW effect, particularly its impact on
nonlinear scales (also known as the Rees-Sciama effect [88]).

Modified gravity: An interesting application of our ray trac-
ing code can be in the context of theories of modified grav-
ity (see e.g. [89–91] for reviews). This is straightforward in
practice, as it amounts to installing the routines presented in
this paper for RAMSES into codes such as ECOSMOG [92–95]
and ISIS [96], which are themselves also modified versions
of RAMSES. For those theories that modify directly the lens-
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ing potential (e.g. Galileon [97–104], Nonlocal [105–107], K-
mouflage [108, 109] gravity, etc.) the time and spatial resolu-
tions along the line of sight have particular importance be-
cause of the time evolution of the modified gravity effects.
Moreover, appealing theories of modified gravity usually have
screening mechanisms to suppress the modifications to grav-
ity on small scales (like in the Solar System), which follow
from nonlinearities in the equations that govern the potential.
The nonlinearity implies that the superposition principle does
not hold, which means that it is not straightforward to use the
multiple lens-plane approximation to study lensing in these
theories (in the recent work of Ref. [110], the authors use the
multiple lens-plane approximation, but focus on models that
do not modify the lensing potential directly). Our code can
therefore also be seen as a platform where the lensing effects
of these theories of gravity can be studied self-consistently.

Other applications: In the context of lensing, other appli-
cations of our code may include the study of cosmic flexions
[111–115], which are lensing effects sensitive to third spatial
derivatives of the lensing potential, as well as the lensing ef-
fects associated with vector and tensor perturbations of the
metric [116, 117]. The ray-tracing machinery that we have
installed in RAMSES may also serve as a backbone to develop
a code for radiative transfer and cosmic reionization studies
[46–50].

In conclusion, the code we presented in this paper provides
a different way to compute integrated observables that is, in
general, subject to fewer approximations compared to conven-
tional ray tracing methods. One can also argue that it is more
practical to use, in the sense that the calculations are done
on the fly in the simulation and not at post-processing stages.
We believe that works performed with this code can provide a
valuable set of results that could complement those obtained
with other methods. This should yield a more robust theoret-
ical understanding of the physical processes that determine a
number of integrated cosmological observables, which could
help to plan better current and future observational missions.
In the future, we plan to widen up the range of applications
of Ray-Ramses and make the code publicly available to the
research community.
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Appendix A: The Dandelin sphere algorithm in the ray
initialization

In this appendix, we describe with more detail the algo-
rithm that is used in the initialization routines to narrow down
which ray IDs can be physically inside a given grid. Recall
that the initialization can always be performed by looping over
all grids, and for each, looping over all rays and checking
whether they lie in the volume covered by the grid. The goal
of this algorithm is to filter out the number of rays to loop for
each grid. This is a nontrivial exercise because the mesh struc-
ture is cubic and the ray positions are described in spherical
coordinates.

The first step consists of determining the smallest sphere
that contains the cubic grid. This is shown in the left panel of
Fig. 13, where the sphere is centered at point S, which is also
the center of the grid (not shown). Then, one identifies the
narrowest cone from the observer O that contains this sphere,
as illustrated also in the figure. Naturally, those rays whose
angular positions do not fall within the opening angles of the
cone cannot be in that grid. The problem is then reduced to
finding the rays that are inside the cone. To do so, we choose
to work within a plane that is perpendicular to the z-axis.

Consider the elliptical cross section obtained by cutting
through the cone with a plane perpendicular to the z-axis and
tangential to the lowest z-coordinate of the sphere (point F in
Fig. 13). In this case, the sphere is called a Dandelin sphere
and has the property that point F is one of the two foci of the
ellipse, whose center is point E. Then the question reduces to
determining which rays lie inside the ellipse, which is parallel
to the x-y plane. In the right panel of Fig. 13, we show this
ellipse projected onto the x-y plane. Points E, F , and O lie
on a line that makes an angle ϕ with the x-axis. In our algo-
rithm, one finds the smallest rectangle that contains the ellipse
and whose sides are parallel to the x- and y-axes. As shown
in the figure, the rectangle is tangential to the ellipse at four
points, which are, repectively, the maximum and minimum
x-coordinates (xmax and xmin) and y-coordinates (ymax and
ymin) of the ellipse. The rays that lie inside the sphere must
have xray ∈ [xmin, xmax] and yray ∈ [ymin, ymax]. Given
these ranges, it is then straightforward to use Eqs. (3) and (4)
to determine which rayid values need to be checked (note
that x, y are related to θx, θy in Sec. III E).

Using straightforward geometry, one can determine the
boundaries of the rectangle as

xmin = xF −
a(1− e2) cos ξ

1− e cos(ϕ− ξ)
,
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FIG. 13. Dandelin sphere construction used in the ray initialization routines. The left diagram shows the narrowest cone from the observer that
contains a sphere, which is the smallest sphere that contains a given cubic grid. The point S is the center of the sphere and of the grid (the grid
is not shown to keep the plot less busy). In the left diagram, poins E and F are, respectively, the center and one of the foci of the ellipse that
results from cutting the cone perpendicularly to the z axis and through the point of lowest z-coordinate of the sphere (which is point F ). The
right diagram shows this ellipse projected onto the x-y plane. The crosses illustrate the positions of rays crossing the x-y plane. Those that do
not fall inside the rectangle that encompasses the ellipse (circled crosses) can be left out from the loops in the initialization routine.

xmax = xF +
a(1− e2) cos ξ

1 + e cos(ϕ− ξ)
,

ymin = yF −
a(1− e2) sin ζ

1− e cos(ϕ− ζ)
,

ymax = yF +
a(1− e2) sin ζ

1 + e cos(ϕ− ζ)
, (A1)

where (xF , yF ) is the coordinate of the focus of the ellipse in
the (projected) x-y plane, a, e are respectively the length of
the semi-long axis and the eccentricity of the ellipse, and

ξ = sin−1(e sinϕ),

ζ = cos−1(e cosϕ). (A2)

To exemplify, we show in the right panel of Fig. 13 a num-
ber of rays (crosses) that cross the plane containing the ellipse
(note that all rays are equally spaced in x and y). The rays that
fall outside the rectangles are circled, which means that they
certainly do not cross the grid, and as a result, do not need to
be looped over. For most applications, for each grid, the ma-
jority of the rays lies outside of the rectangle, which is why
this algorithm speeds up substantially the initialization of the
ray data structure.

Appendix B: dN expressions in Eq. (17)

The dN coefficients in Eq. (17) that are used in the trilinear
interpolation inside cells are given by

d1 = α1 +
1

h

(
α2a+ α3b+ α4c

)
+

1

h2

(
α5ab+ α6bc+ α7ac

)
+

1

h3
α8abc (B1)

d2 =
1

h

(
α2sinθcosϕ+ α3sinθsinϕ+ α4cosθ

)
,

+
1

h2

(
[α6c+ α5a] sinθsinϕ+ [α7c+ α5b] sinθcosϕ+ [α7a+ α6b] cosθ

)
+

1

h3

(
α8bcsinθcosϕ+ α8abcosθ + α8acsinθsinϕ

)
, (B2)

d3 =
1

h2

(
α5sin2θcosϕsinϕ+ α7sinθcosϕcosθ + α6sinθsinϕcosθ

)
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+
1

h3

(
α8asinθsinϕcosθ + α8bsinθcosϕcosθ + α8csin

2θcosϕsinϕ
)
, (B3)

d4 =
α8

h3

(
sin2θcosθcosϕsinϕ

)
, (B4)

where h is the cell size.
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