
Bayesian Nonparametric System Reliability

using Sets of Priors

Gero Waltera, Louis J.M. Aslettb, Frank P.A. Coolenc

aSchool of Industrial Engineering, Eindhoven University of Technology, Eindhoven, NL
bDepartment of Statistics, University of Oxford, Oxford, UK

cDepartment of Mathematical Sciences, Durham University, Durham, UK

Abstract

An imprecise Bayesian nonparametric approach to system reliability with
multiple types of components is developed. This allows modelling partial or
imperfect prior knowledge on component failure distributions in a flexible
way through bounds on the functioning probability. Given component level
test data these bounds are propagated to bounds on the posterior predictive
distribution for the functioning probability of a new system containing com-
ponents exchangeable with those used in testing. The method further enables
identification of prior-data conflict at the system level based on component
level test data. New results on first-order stochastic dominance for the Beta-
Binomial distribution make the technique computationally tractable. Our
methodological contributions can be immediately used in applications by re-
liability practitioners as we provide easy to use software tools.

Keywords: System reliability, Survival signature, Imprecise probability,
Bayesian nonparametrics, Prior-data conflict

1. Introduction

System reliability analysis is concerned with estimating the lifetime Tsys

of complex systems. Usually, the goal is to determine the system reliability
function Rsys(t) = P (Tsys > t) based on the lifetime distributions of system
components.

A critique of the methodological approach to a reliability analysis may of-
ten encompass a few common concerns. First, in a parametric setting, there
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may be no particularly strong reason to believe that the small part of compo-
nent model space covered by a particular probability distribution necessarily
contains the ‘true’ component lifetime distribution. Further, Bayesian meth-
ods may be invoked in order to incorporate expert opinion or other knowledge
which falls outside the specific testing data under consideration. The classic
concern here is in whether one can truly express ones beliefs with the exact-
ness a prior distribution requires. Finally, it would be valuable in application
to have a means of identifying when the prior choice is having a strong ef-
fect and when not. Any method hoping to address these concerns must do
so whilst enabling realistic system models (with heterogeneous component
types) and remain computationally tractable.

Herein, we make steps toward addressing these concerns by developing a
nonparametric method which utilises imprecise probability [4, 27] to model
more vague or imperfect prior beliefs using upper and lower probabilities.
This overcomes the concern about component lifetimes being outside a par-
ticular parametric family, uses a more flexible prior modelling framework and
leads to an easy method of detecting conflicts between prior assumptions and
observed failure times in test data. In the general context of Bayesian meth-
ods, this phenomenon is known as prior-data conflict, see, e.g., [17] or [9].

Furthermore, the method is based on the survival signature [11], a recent
development which naturally accommodates heterogeneous component types
laid out in any arbitrary manner. By separating the (time-invariant) system
structure from the time-dependent failure probabilities of components, it
allows straightforward and efficient computation of Rsys(t).

Our imprecise probability approach provides bounds for Rsys(t) by com-
puting, for each t in an arbitrarily fine grid of time points T , the posterior
predictive probability interval for the event Tsys > t. Assuming the number
of functioning components for each type and time t as binomially distributed,
the intervals are derived from an imprecise Bayesian model using sets of con-
jugate Beta priors which allow to specify weak or partial prior information in
an intuitive way. The width of the resulting posterior predictive probability
intervals reflects the precision of the corresponding probability statements: a
short range indicates that the system functioning probability can be quanti-
fied quite precisely, while a large range will indicate that our (probabilistic)
knowledge is indeterminate. In particular, prior-data conflict leads to more
cautious probability statements: When there is not enough data to over-
rule the prior, it is unclear whether to put more trust to prior assumptions
or to the observations, and posterior inferences clearly reflect this state of
uncertainty by larger ranges.

Our approach extends the literature on reliability with imprecise prob-
ability [for an overview see 26] by integrating the learning of component
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reliabilities based on test data, in combination with the use of the sur-
vival signature. Approaches to system reliability based on generalizations
of Bayesian networks like evidential networks [24] and credal networks [1] do
usually not include test data in the model. Doing so is certainly possible
in these frameworks, but this would add further to the complexity of the
Bayesian network representation, in which updating (i.e., calculating poste-
rior reliabilities) for each time t is generally NP-hard [20]. While determining
the survival signature is also NP-hard, this has to be done only once in our
approach. Furthermore, new results on first-order stochastic dominance for
the Beta-Binomial distribution keep the need for numerical optimization in
our model to a minimum.

In Section 2 we review the survival signature and in Section 3 we review
the nonparametric approach to Bayesian reliability analysis upon which our
work builds [3]. Section 4 details the reparametrisation of that approach
which enables the natural formulation of the system reliability bounds, lead-
ing to nice closed form results in some later theory. Section 5 lays the ground
work to incorporate imprecise probability, culminating in the main results
and contributions of this work, detailed in Section 6. Section 7 provides
details on the software contributions of this work and shows two worked
examples demonstrating the practicality and usefulness of the method.

2. Survival Signature

In the mathematical theory of reliability, the main focus is on the func-
tioning of a system given the functioning, or not, of its components and the
structure of the system. The mathematical concept which is central to this
theory is the structure function [5]. For a system with m components, let
state vector x = (x1, x2, . . . , xm) ∈ {0, 1}m, with xi = 1 if the ith component
functions and xi = 0 if not. The labelling of the components is arbitrary
but must be fixed to define x. The structure function φ : {0, 1}m → {0, 1},
defined for all possible x, takes the value 1 if the system functions and 0
if the system does not function for state vector x. Most practical systems
are coherent, which means that φ(x) is non-decreasing in any of the compo-
nents of x, so system functioning cannot be improved by worse performance
of one or more of its components. The assumption of coherent systems is
also convenient from the perspective of uncertainty quantification for system
reliability. It is further logical to assume that φ(0) = 0 and φ(1) = 1, so the
system fails if all its components fail and it functions if all its components
function.

For larger systems, working with the full structure function may be com-
plicated, and one may particularly only need a summary of the structure
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function in case the system has exchangeable components of one or more
types. We use the term ‘exchangeable components’ to indicate that the fail-
ure times of the components in the system are exchangeable [16]. Coolen
and Coolen-Maturi [11] introduced such a summary, called the survival sig-
nature, to facilitate reliability analyses for systems with multiple types of
components. In case of just a single type of components, the survival signa-
ture is closely related to the system signature [22], which is well-established
and the topic of many research papers during the last decade. However,
generalization of the signature to systems with multiple types of components
is extremely complicated (as it involves ordering order statistics of different
distributions), so much so that it cannot be applied to most practical sys-
tems. In addition to the possible use for such systems, where the benefit
only occurs if there are multiple components of the same types, the survival
signature is arguably also easier to interpret than the signature.

Consider a system with K ≥ 1 types of components, with mk components
of type k ∈ {1, . . . , K} and

∑K
k=1mk = m. Assume that the random failure

times of components of the same type are exchangeable [16]. Due to the
arbitrary ordering of the components in the state vector, components of the
same type can be grouped together, leading to a state vector that can be
written as x = (x1,x2, . . . ,xK), with xk = (xk1, x

k
2, . . . , x

k
mk

) the sub-vector
representing the states of the components of type k.

The survival signature for such a system, denoted by Φ(l1, . . . , lK), with
lk = 0, 1, . . . ,mk for k = 1, . . . , K, is defined as the probability for the event
that the system functions given that precisely lk of its mk components of
type k function, for each k ∈ {1, . . . , K} [11]. Essentially, this creates a K-
dimensional partition for the event Tsys > t, such that Rsys(t) = P (Tsys > t)
can be calculated using the law of total probability:

P (Tsys > t) =

m1∑
l1=0

· · ·
mK∑
lK=0

P (Tsys > t | C1
t = l1, . . . , C

K
t = lK)

× P
( K⋂

k=1

{Ck
t = lk}

)
=

m1∑
l1=0

· · ·
mK∑
lK=0

Φ(l1, . . . , lK)P
( K⋂

k=1

{Ck
t = lk}

)
, (1)

where Ck
t ∈ {0, 1, . . . ,mk} denotes the random number of components of

type k functioning at time t.
For calculating the survival signature based on the structure function,

observe that there are
(
mk

lk

)
state vectors xk with

∑mk

i=1 x
k
i = lk. Let Sk

lk
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denote the set of these state vectors for components of type k and let Sl1,...,lK

denote the set of all state vectors for the whole system for which
∑mk

i=1 x
k
i = lk,

k = 1, . . . , K. Due to the exchangeability assumption for the failure times
of the mk components of type k, all the state vectors xk ∈ Sk

lk
are equally

likely to occur, hence [11]

Φ(l1, . . . , lK) =

[
K∏
k=1

(
mk

lk

)−1
]
×

∑
x∈Sl1,...,lK

φ(x) . (2)

It should be emphasized that when using the survival signature, there are
no restrictions on dependence of the failure times of components of different
types, as the probability P (

⋂K
k=1{Ck

t = lk}) can take any form of depen-
dence into account, for example one can include common-cause failures quite
straightforwardly into this approach [12]. However, there is a substantial sim-
plification if one can assume that the failure times of components of different
types are independent, and even more so if one can assume that the failure
times of components of type k are conditionally independent and identically
distributed with CDF Fk(t). With these assumptions, we get

Rsys(t) =

m1∑
l1=0

· · ·
mK∑
lK=0

[
Φ(l1, . . . , lK)

K∏
k=1

((
mk

lk

)
[Fk(t)]mk−lk [1− Fk(t)]lk

)]
.

We will employ both assumptions in this paper, leading to Ck
t having a Beta-

Binomial distribution, giving us a closed form expression for P (Ck
t = lk) for

all t, k, and lk.
The main advantage of the survival signature, in line with this property

of the signature for systems with a single type of components [22], is that the
information about the system structure is fully separated from the informa-
tion about functioning of the components, which simplifies related statistical
inference as well as considerations of optimal system design. In particular
for study of system reliability over time, with the structure of the system,
and hence the survival signature, not changing, this separation also enables
relatively straightforward statistical inferences.

There are several relatively straightforward generalizations of the use of
the survival signature. The probabilities for the numbers of functioning com-
ponents can be generalized to lower and upper probabilities, as e.g. done by
Coolen et al. [14] within the nonparametric predictive inference (NPI) frame-
work of statistics [10], where lower and upper probabilities for the events
Ck = lk are inferred from test data on components of the same types as
those in the system. This is an approach that is also followed in the current
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paper, but with the use of generalized Bayesian inference instead of NPI. Like
Coolen et al. [14], we will utilize the monotonicity of the survival signature
for coherent systems to simplify computations.

While there are, as mentioned above, no restrictions on dependence of
failure times of components of different types that can be reflected by the
survival signature method, some possible dependencies will require thought-
ful consideration. For example, it may be the case that components that
are near to each other in the system have a stronger dependency of their
failure times than components that are further apart. If this is the case there
are several options, the two main ones are as follows. First, if there is de-
tailed knowledge about such dependence (as e.g. modelled in popular spatial
statistics approaches) then there are probably no components that can be
grouped, hence one has to use the full structure function. In practice, this
may be feasible for small systems, but for large systems one would proba-
bly still wish to make some exchangeability assumptions in order to enable
analysis, where it is understood that this is only approximate. The second
case results from this, namely that one can still define groups of components
which have exchangeable failure times and which are related in the same
way to other groups of components to facilitate the dependence modelling.
For example, one might consider components in a large electricity network
to have differing failure time characteristics depending on physical location,
e.g. windturbines near hills or at sea, while apart from the location aspect
one would consider their failure times exchangeable. In such cases, these are
represented by different groups in the survival signature approach.

3. Nonparametric Bayesian Approach for Component Reliability

Let us denote the random failure time of component number i of type
k by T k

i , i = 1, . . . ,mk. The failure time distribution can be written in
terms of the cdf F k(t) = P (T k

i ≤ t), or in terms of the reliability function
Rk(t) = P (T k

i > t) = 1 − F k(t), also known as the survival function. For
a nonparametric description of Rk(t), we consider a set of time points t,
t ∈ T = {t1, . . . , tmax}.

At each time point t, the operational state of a single component of type
k is Bernoulli distributed (functioning: 1, failed: 0) with parameter pkt , so
that

P
(
I(T k

i > t) = 1
)

= pkt ,

P
(
I(T k

i > t) = 0
)

= 1− pkt ,

That is, I(T k
i > t) ∼ Bernoulli(pkt ), i = 1, . . . ,mk, t ∈ T .

6



The set of probabilities {pkt , t ∈ T } defines a discrete failure time distri-
bution for components of type k through

Rk(tj) = P (T k > tj) = pktj , tj = t1, . . . , tmax .

We can also express this failure time distribution through the probability
mass function (pmf) and discrete hazard function,

fk(tj) = P
(
T k ∈ (tj, tj+1]

)
= pktj − p

k
tj+1

,

hk(tj) = P
(
T k ∈ (tj, tj+1] | T k > tj

)
=
fk(tj)

Rk(tj)
.

The time grid T can be chosen to be appropriately dense for the application at
hand, where a simple extension between grid points can be made by taking
Rk(·) to be the right continuous step function induced by the grid values,
Rk(t) = pktj , t ∈ [tj, tj+1), or by taking pktj and pktj+1

as upper and lower

bounds for Rk(t), t ∈ [tj, tj+1).
The independence assumption for components of the same type imme-

diately implies that the number of functioning components of type k in the
system is binomially distributed, Ck

t =
∑mk

i=1 I(T k
i > t) ∼ Binomial(pkt ,mk).

The sequence of pkt ’s can, in theory, be directly chosen to arbitrarily
closely approximate any valid lifetime pdf on [0,∞), for example matching
a bathtub curve for the corresponding hazard rate hk(tj). Naturally, pktj ≥
pktj+1

should hold (assuming no repair). However, such direct specification is
non-trivial, neglects any inherent uncertainty in the particular choice, and
cannot be easily combined with test data. To account for the uncertainty, one
can express knowledge about pkt through a prior distribution. A convenient
and natural choice is pkt ∼ Beta(αk

t , β
k
t ), particularly because in a Bayesian

inferential setting this is the conjugate prior which leads to a Beta posterior.
Let the lifetime test data collected on component k be tk = (tk1, . . . , t

k
nk

).
At each fixed time t ∈ T , this corresponds to an observation from the Bi-
nomial model described above, skt =

∑nk

i=1 I(tki > t). The posterior is then
pkt | skt ∼ Beta(αk

t + skt , β
k
t + nk − skt ). The combination of a Binomial obser-

vation model with a Beta prior is often called Beta-Binomial model.
The posterior predictive distribution for the number of components sur-

viving at time t in a new system, based on the lifetime data and the prior
information, is then given by a so-called Beta-Binomial distribution, Ck

t |
skt ∼ Beta-Binomial(mk, α

k
t + skt , β

k
t + nk − skt ). That is, we have

P (Ck
t = lk | skt ) =

(
mk

lk

)
B(lk + αk

t + skt ,mk − lk + βk
t + nk − skt )

B(αk
t + skt , β

k
t + nk − skt )

,
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where B(·, ·) is the Beta function. This posterior predictive distribution is
essentially a Binomial distribution where the functioning probability pkt takes
values in [0, 1] with the probability given by the posterior on pkt .

Consequently, in order to calculate the system reliability according to
(1), for each component type k we need lifetime data tk, and have to choose
2× |T | parameters to specify the prior distribution for the discrete survival
function of T k

i . In total, values for 2× |T | ×K parameters must be chosen.

4. Reparametrisation of the Beta Distribution

The parametrisation of the Beta distribution used above is common, and
allows αk

t and βk
t to be interpreted as hypothetical numbers of functioning and

failed components of type k at time t, respectively. However, as recognized
by [27, §5.3], when we generalise to sets of priors in the sequel, it is useful to
consider a different parametrisation.

For clarity of presentation we will temporarily drop the super- and sub-
script k and t indices for component type and time. Instead of α and β, we
consider the parameters n(0) ∈ [0,∞) and y(0) ∈ [0, 1], where

n(0) = α + β and y(0) =
α

α + β
, (3)

or equivalently, α = n(0)y(0) and β = n(0)(1 − y(0)). The upper index (0) is
used to identify these as prior parameter values, in contrast to their posterior
values n(n) and y(n) obtained after observing n failure times (see below). n(0)

and y(0) are sometimes called canonical parameters, identified from rewriting
the density in canonical form; see for example [8, pp. 202 and 272f], or [29,
§1.2.3.1]. This canonical form gives a common structure to all conjugacy
results in exponential families.

From the properties of the Beta distribution, it follows that y(0) = E[p] is
the prior expectation for the functioning probability p, and that larger n(0)

values lead to greater concentration of probability measure around y(0), since

Var(p) = y(0)(1−y(0))
n(0)+1

. Consequently, n(0) represents the prior strength and
moreover can be directly interpreted as a pseudocount, as will become clear.
Indeed, consider the posterior given that s out of n components function: by
conjugacy p | s is Beta distributed with updated parameters

n(n) = n(0) + n , y(n) =
n(0)

n(0) + n
· y(0) +

n

n(0) + n
· s
n
. (4)

Thus, after observing that s out of n components function (at time t), the
posterior mean y(n) for p is a weighted average of the prior mean y(0) and
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s/n (the fraction of functioning components in the data), with weights pro-
portional to n(0) and n, respectively. Therefore n(0) takes on the same role
for the prior mean y(0) as the sample size n does for the observed mean s/n,
leading to the notion of it being a pseudocount.

Reintroducing time and component type indices, the posterior predictive
Beta-Binomial probability mass function (pmf) can be written in terms of
the updated parameters as

P (Ck
t = lk | skt ) =

(
mk

lk

)
B(lk + n

(n)
k,t y

(n)
k,t ,mk − lk + n

(n)
k,t (1− y(n)

k,t ))

B(n
(n)
k,t y

(n)
k,t , n

(n)
k,t (1− y(n)

k,t ))
, (5)

with the corresponding cumulative mass function (cmf) given by

FCk
t |skt (lk) = P (Ck

t ≤ lk | skt ) =

lk∑
jk=0

P (Ck
t = jk | skt ) . (6)

The parameterisation in terms of prior mean and prior strength (or pseu-
docount) makes clear that in this conjugate setting, learning from data corre-
sponds to averaging between prior and data. This form is attractive not only
because it enhances the interpretability of the model and prior specification,
but crucially it also makes clear what should be a serious concern in any
Bayesian analysis: when observed data differ greatly from what is expressed
in the prior, this conflict is simply averaged out and is not reflected in the
posterior or posterior predictive distributions.

As a simple example, imagine that we expect pkt to be about 0.75 for

a certain k and t, so we choose y
(0)
k,t = 0.75, and that we value this choice

of mean functioning probability with n
(0)
k,t = 8, i.e., equivalently to having

seen 8 observations with a mean 0.75. If we observe nk = 16 components of
type k in the test data and skt = 12 function at time t, then skt /nk = 0.75

as we expect, so that the updated parameters are n
(n)
k,t = 24, y

(n)
k,t = 0.75.

However, in contrast, unexpectedly observing that no component functions
at time t instead leads to parameters n

(n)
k,t = 24, y

(n)
k,t = 0.25. The prior and

the posteriors based on these two scenarios are depicted in the left panels of
Figure 1, along with their corresponding predictive Beta-binomial pmf and
cmf for the case mk = 5 (right panels).

Due to symmetry, we see that both posteriors have the same variance,
although arising from two fundamentally different scenarios. Posterior 1 is
based on data exactly according to prior expectations; the increase in con-
fidence on pkt ≈ 0.75 is reflected in a more concentrated posterior density,
and the posterior predictive is changed only slightly. However, it may be

9



0

1

2

3

4

0.00

0.25

0.50

0.75

1.00

pdf
cdf

0.00 0.25 0.50 0.75 1.00

pt
k

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

0.0

0.1

0.2

0.3

0.00

0.25

0.50

0.75

1.00

pm
f

cm
f

0 1 2 3 4 5
lk

variable
Prior

Posterior 1

Posterior 2

Figure 1: Beta densities (top left) and cdfs (bottom left), with the corresponding Beta-
binomial predictive probability mass functions (top right) and cumulative mass functions

(bottom right), for a prior with n
(0)
k,t = 8, y

(0)
k,t = 0.75, and posteriors based on nk

t = 16

observations with skt = 12 (Posterior 1) and skt = 0 (Posterior 2), respectively. Data for
Posterior 1 confirm prior assumptions, while data for Posterior 2 are in conflict with the
prior. However, this conflict is averaged out, and Posterior 1 and Posterior 2 have the
same spread, both in the posterior pdf/cdf and the posterior predictive pmf/cmf, such
that Posterior 2 gives a false sense of certainty despite the massive conflict between prior
and data.

cause for concern to see the same degree of confidence in Posterior 2, which
is based on data that is in sharp conflict with prior expectations. Poste-
rior 2 places most probability weight around 0.25, averaging between prior
expectation and data, with the same variance as Posterior 1. Accordingly,
rather than conveying the conflict between observed and expected function-
ing probabilities with increased variance, Posterior 2 instead gives a false
sense of certainty.

To enable diagnosis of when this undesirable behaviour occurs, we pro-
pose to use an imprecise probability approach based on sets of Beta priors,
described in the following section.
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5. Sets of Beta Priors

As was shown by Walter and Augustin [30], we can have both tractability

and meaningful reaction to prior-data conflict by using sets of priors M(0)
k,t

produced by parameter sets Π
(0)
k,t = [n

(0)
k,t , n

(0)
k,t ]× [y(0)

k,t
, y

(0)
k,t ] (a detailed discus-

sion of different choices for Π
(0)
k,t is given in Walter [29, §3.1].) In our model,

each prior parameter pair (n
(0)
k,t , y

(0)
k,t ) ∈ Π

(0)
k,t corresponds to a Beta prior, thus

M(0)
k,t is a set of Beta priors. The set of posteriorsM(n)

k,t is obtained by updat-

ing each prior in M(0)
k,t according to Bayes’ Rule. This element-by-element

updating can be rigorously justified as ensuring coherence [27, §2.5], and was
termed “Generalized Bayes’ Rule” by Walley [27, §6.4]. Due to conjugacy,

M(n)
k,t is a set of Beta distributions with parameters (n

(n)
k,t , y

(n)
k,t ), obtained by

updating (n
(0)
k,t , y

(0)
k,t ) ∈ Π

(0)
k,t according to (4), leading to the set of updated

parameters

Π
(n)
k,t =

{
(n

(n)
k,t , y

(n)
k,t ) | (n(0)

k,t , y
(0)
k,t ) ∈ Π

(0)
k,t = [n

(0)
k,t , n

(0)
k,t ]× [y(0)

k,t
, y

(0)
k,t ]
}
. (7)

Examples for parameter sets Π
(0)
k,t and Π

(n)
k,t as in (7) are depicted in Fig-

ure 2. Such rectangular prior parameter sets Π
(0)
k,t have been shown to balance

desirable model properties and ease of elicitation (see Walter [29, pp. 123f]
or Troffaes et al. [25]). For each component type k and time point t, one

need only specify the four parameters n
(0)
k,t , n

(0)
k,t , y

(0)
k,t
, y

(0)
k,t (so in total 4 × |T |

parameters are needed to define the set of prior distributions on the survival
function of each component).

A desirable inference property arising from this setup is that the posterior
parameter set Π

(n)
k,t is not rectangular in the way that the prior parameter set

is. Indeed, the shape of Π
(n)
k,t depends on the presence or absence of prior-

data conflict, which is naturally operationalised as skt /nk 6∈ [y(0)
k,t
, y

(0)
k,t ]: that is,

prior-data conflict is defined to occur when, at time t, the observed fraction
of functioning components is outside its a priori expected range.

First, in the absence of prior-data conflict, Π
(n)
k,t shrinks in the yk,t di-

mension; how much it shrinks depending on n
(0)
k,t ∈ [n

(0)
k,t , n

(0)
k,t ], leading to the

so-called spotlight shape depicted in Figure 2 (left). Since y
(n)
k,t gives the pos-

terior expectation for the functioning probability pkt , shorter y
(n)
k,t intervals

mean more precise knowledge about pkt . Also, the variance interval for pkt
(not shown) will shorten and shift towards zero, as the Beta distributions in

M(n)
k,t will be more concentrated due to the increase of n

(0)
k,t to n

(n)
k,t .
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Figure 2: Prior parameter set Π
(0)
k,t = [1, 8] × [0.7, 0.8] and posterior parameter set Π

(n)
k,t

for data skt /nk = 12/16 (Posterior 1, left) and skt /nk = 0/16 (Posterior 2, right). For

no-conflict data (skt /nk ∈ [y
(0)
k,t , y

(0)
k,t ]), Π

(n)
k,t has the ‘spotlight’ shape (left); in case of prior-

data conflict (skt /nk 6∈ [y
(0)
k,t , y

(0)
k,t ]), Π

(n)
k,t has the ‘banana’ shape (right), leading to a large

degree of imprecision in the y
(n)
k,t dimension of Π

(n)
k,t , thus reflecting increased uncertainty

about the functioning probability pkt due to the conflict between prior assumptions and
observed data.

Alternatively, when there is conflict between prior and observed data
(i.e. skt /nk 6∈ [y(0)

k,t
, y

(0)
k,t ]), Π

(n)
k,t instead adopts the so-called ‘banana shape’,

arising from the intervals for y
(n)
k,t being shifted closer to skt /nk for lower n

(n)
k,t

values than for higher n
(n)
k,t values, see Figure 2 (right). Overall, this results

in a wider y
(n)
k,t interval compared to the no conflict case, reflecting the extra

uncertainty due to prior-data conflict. In other words, the posterior sets make
more cautious probability statements about pkt , as desired in this scenario.

Based on these shapes and (4), it is possible to deduce the following

expressions for the lower and upper bounds of y
(n)
k,t :

min
Π

(n)
k,t

y
(n)
k,t =

{(
n

(0)
k,ty

(0)
k,t

+ skt
)
/
(
n

(0)
k,t + nk

)
if skt /nk ≥ y(0)

k,t(
n

(0)
k,ty

(0)
k,t

+ skt
)
/
(
n

(0)
k,t + nk

)
if skt /nk < y(0)

k,t

,

max
Π

(n)
k,t

y
(n)
k,t =

{(
n

(0)
k,ty

(0)
k,t + skt

)
/
(
n

(0)
k,t + nk

)
if skt /nk ≤ y

(0)
k,t(

n
(0)
k,ty

(0)
k,t + skt

)
/
(
n

(0)
k,t + nk

)
if skt /nk > y

(0)
k,t

.

(8)

Note that the lower bound for y
(n)
k,t is always attained at y(0)

k,t
, the upper

bound at y
(0)
k,t . Also note that when skt /nk ∈ [y(0)

k,t
, y

(0)
k,t ], both the lower and

the upper bounds for y
(n)
k,t are attained at n

(0)
k,t , corresponding to the spotlight

12



0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

P
rior &

 P
osterior 1

P
rior &

 P
osterior 2

0.00 0.25 0.50 0.75 1.00

pt
k

cd
f

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●
● ●

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

P
rior &

 P
osterior 1

P
rior &

 P
osterior 2

0 1 2 3 4 5
lk

cm
f

Item2
●●●●

●●●●

Prior

Posterior

Figure 3: Sets of Beta pdfs (left) and Beta-Binomial cmfs (right, for mk = 5) corresponding
to the prior and posterior parameter sets in Figure 2. The sets are depicted as shaded
areas, with the distributions corresponding to the four corners of the prior parameter

set Π
(0)
k,t (or their posterior counterparts) as solid lines. The top row depicts the set of

prior cdfs/cmfs and the set of posterior cdfs/cmfs for the case where data confirm prior
assumptions (see left panel of Figure 2); the bottom row depicts the (identical) set of
prior cdfs/cmfs and the set of posterior cdfs/cmfs in case of prior-data conflict (see right
panel of Figure 2). The set of posterior cdfs and cmfs is much larger in case of prior-data
conflict: uncertainty due to this conflict is reflected through increased imprecision.

shape. However, when skt /nk 6∈ [y(0)
k,t
, y

(0)
k,t ], the banana shape indicates that

one of the bounds for y
(n)
k,t is attained at n

(0)
k,t .

The different locations and sizes of Π
(n)
k,t in the conflict versus no conflict

case are then, in turn, also reflected in the corresponding sets of Beta cdfs and
Beta-Binomial cmfs. As an example, those corresponding to the parameter
sets in Figure 2 are depicted in Figure 3.

In the no conflict case (Posterior 1, top row), the reduction of the y
(n)
k,t

range in Π
(n)
k,t leads to a much smaller set of Beta and Beta-Binomial distribu-

tions. For example, the range of predictive probabilities that two out of a set
of five components of type k function at time t has changed from [0.10, 0.28]
a priori to [0.11, 0.14] a posteriori. This reflects the gain in precision due to
test data in accordance with prior assumptions.

In contrast, for the prior-data conflict case (Posterior 2, bottom row),

13



the wide y
(n)
k,t range in Π

(n)
k,t leads to a set of Beta and Beta-Binomial dis-

tributions that is much larger than in the no conflict case. Here, the range
of posterior predictive probabilities that two out of a set of five components
of type k function at time t is now [0.86, 1.00] a posteriori, i.e., less precise
than in the no conflict case. Using sets of Beta priors, the resulting set of
posterior predictive Beta-Binomial distributions reflects the precision of prior
information, the amount of data, and prior-data conflict.

Furthermore, with sets of Beta priors it is also possible to express prior
ignorance by letting y(0)

k,t
→ 0 and y

(0)
k,t → 1 for some or all t ∈ T . Such models

are called near-noninformative or near-ignorance models in the imprecise
probability literature (see Walley [27, §5.3.2] for Beta priors, [28] for Dirichlet
priors, and Benavoli and Zaffalon [6, 7] for exponential family priors), as they
provide vacuous bounds only for a certain class of inferences, and the choice
for the prior strength parameter n

(0)
k,t influences posterior inferences. (Note

that it is not advisable to choose y(0)
k,t

= 0 and y
(0)
k,t = 1, as this can lead to

improper posterior predictive distributions. For example, at any t < min(tk),

we would have y
(n)
k,t = 1, leading to one argument of the Beta function in the

denominator of (5) being zero.) The limits y(0)
k,t
→ 0 and y

(0)
k,t → 1 imply we

are only prepared to give trivial bounds for the functioning probability and
do not wish to commit to any specific knowledge about pkt a priori. This
provides a more natural choice of ‘noninformative’ prior over [0, 1] than the

usual choice of a Beta prior with αk
t = βk

t = 1 (or n
(0)
k,t = 2, y

(0)
k,t = 0.5). Such

a prior for all t ∈ T actually reflects a belief that the component reliability
function is on average 1/2 for all t, which is not an expression of ignorance,
but rather a very specific (and arguably peculiar) prior belief.

In a near-noninformative setting, the choice of n
(0)
k,t is not relevant, because

(8) implies both lower and upper bound for y
(n)
k,t are obtained with n

(0)
k,t . In

particular, y(0)
k,t
> 0 and y

(0)
k,t < 1 can be chosen such that

skt
nk
∈ [y(0)

k,t
, y

(0)
k,t ] for

all t ∈
(

min(tk),max(tk)
)
. Naturally, one cannot have prior-data conflict in

cases of near prior ignorance.

6. Sets of System Reliability Functions

The elements reviewed and extended above culminate hereinafter in the
primary contribution of the current work, providing a framework in which
the nonparametric Bayesian system reliability approach developed in [3] is
extended to sets of system reliability functions by incorporating the sets of
priors approach of Walter and Augustin [30]. This allows for partial or vague
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specification of prior component reliability functions, and enables diagnosis
of prior-data conflict which is consequential at the system level.

6.1. Computation of bounds

To obtain the lower and upper bound for the system reliability func-
tion Rsys(t), we now need to minimise and maximise Equation (1) over

Π
(0)
1,t , . . . ,Π

(0)
K,t for each t, where the posterior predictive probabilities for Ck

t

are given by the Beta-Binomial pmf (5). We therefore have

Rsys(t | t1, . . . , tK)

= min
Π

(0)
1,t ,...,Π

(0)
K,t

Rsys(t | Π(0)
1,t , . . . ,Π

(0)
K,t, t

1, . . . , tK)

= min
Π

(0)
1,t ,...,Π

(0)
K,t

m1∑
l1=0

· · ·
mK∑
lK=0

Φ(l1, . . . , lK)
K∏
k=1

P (Ck
t = lk | y(0)

k,t , n
(0)
k,t , s

k
t )

= min
Π

(0)
1,t ,...,Π

(0)
K,t

m1∑
l1=0

· · ·
mK∑
lK=0

Φ(l1, . . . , lK)×

K∏
k=1

(
mk

lk

)
B(lk + n

(n)
k,t y

(n)
k,t ,mk − lk + n

(n)
k,t (1− y(n)

k,t ))

B(n
(n)
k,t y

(n)
k,t , n

(n)
k,t (1− y(n)

k,t ))

= min
Π

(0)
1,t ,...,Π

(0)
K,t

m1∑
l1=0

· · ·
mK∑
lK=0

Φ(l1, . . . , lK)×

K∏
k=1

(
mk

lk

)
B(lk + n

(0)
k,ty

(0)
k,t + skt ,mk − lk + n

(0)
k,t(1− y

(0)
k,t ) + nk − skt )

B(n
(0)
k,ty

(0)
k,t + skt , n

(0)
k,t(1− y

(0)
k,t ) + nk − skt )

,

(9)

and similarly maximising for Rsys(·). In doing so, we assume components

of the same type k to be exchangeable given Π
(0)
k,t [see 4, §3.4 on extending

exchangeability to imprecise probability], and components of different types
to follow strong independence [see 4, §3.2.4].

Note that Φ(·) is non-decreasing in each of its arguments l1, . . . , lK , thus if

there is first-order stochastic ordering on P (Ck
t = lk | y(0)

k,t , n
(0)
k,t , s

k
t ) for each k,

then this ordering can be used to determine the elements of Π
(0)
k,t which min-

imise and maximise the overall system reliability function without resorting
to computationally expensive exhaustive searches or numerical optimisation.

We therefore start by providing the following result, where indices are
suppressed for readability. We use ≥st to denote first-order stochastic domi-
nance.
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Theorem 1. Let βy denote the Beta-Binomial distribution with probability
mass function parameterised as:

p(l | y, n,m, s,N) ∝ B(l + ny + s,m− l + n(1− y) +N − s)
B(ny + s, n(1− y) +N − s)

,

with n,m, s, and N fixed and unknown.
Then βy ≥st βy ∀ y > y with y, y ∈ (0, 1).

The proof is provided in Appendix A, p.30.
Consequently, for each component, the posterior predictive Beta Binomial

distributions with larger prior functioning probability stochastically domi-
nate those with smaller prior functioning probability, providing rigorous proof
which accords with intuition. Applying this result to the sets of system re-
liability functions, together with the monotonicity in the survival signature,
means that Rsys(·) is attained when y

(0)
k,t = y(0)

k,t
and Rsys(·) is attained when

y
(0)
k,t = y

(0)
k,t for all possible n

(0)
k,t values.

The analogous result for n
(0)
k,t is more subtle, because stochastic domi-

nance is not guaranteed at a single value. The following Theorem provides
simple sufficient conditions under which an upper or lower limit has first-
order stochastic dominance and has virtually no computational overhead to
test.

Theorem 2. Let βn denote the Beta-Binomial distribution with probability
mass function parameterised as:

p(l | y, n,m, s,N) ∝ B(l + ny + s,m− l + n(1− y) +N − s)
B(ny + s, n(1− y) +N − s)

,

with y,m, s, and N fixed and unknown. Then,

y >
s+m− 1

N +m− 1
=⇒ βn ≥st βn

and
y <

s

N +m− 1
=⇒ βn ≤st βn

The proof is provided in Appendix A, p.31.
If s

N+m−1
< y < s+m−1

N+m−1
then Theorem 2 cannot determine stochastic

dominance. The following Lemma which is slightly more computationally
costly, but still much faster than an exhaustive search, may be able to deter-
mine first-order stochastic dominance in such situations.
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Lemma 3. Let βn denote the Beta-Binomial distribution as in Theorem 2.
Define

Ln,n(l) :=
p(l | y, n,m, s,N)

p(l | y, n,m, s,N)

Then,

Ln,n(0) ≤ 1

Ln,n(m) ≥ 1

}
=⇒ βn ≥st βn

and
Ln,n(0) ≥ 1

Ln,n(m) ≤ 1

}
=⇒ βn ≤st βn

The proof is provided in Appendix A, p.32. In the cases where neither
Theorem 2 or Lemma 3 apply, the entire posterior system reliability func-
tion must be optimised to find the minima/maxima. In practice, in the
examples to be presented in the sequel, Theorem 2 and Lemma 3 do provide
guarantees of first-order stochastic dominance for the vast majority of time
points, t, substantially lowering the computational costs of performing the
minimisation/maximisation involved in finding the sets of system reliability
functions compared to either numerical optimisation or an exhaustive grid
search (which would get exponentially slower in the number of different com-
ponents). Appendix B provides a detailed discussion of exactly how often
these bounds hold and how often one must resort to numerical optimisation.

Thus, due to Theorems 1, 2 and Lemma 3, (9) transforms to

Rsys(t | t1, . . . , tK)

= min
Π

(0)
1,t ,...,Π

(0)
K,t

m1∑
l1=0

· · ·
mK∑
lK=0

Φ(l1, . . . , lK)×

K∏
k=1

(
mk

lk

)
B(lk + n

(0)
k,ty

(0)
k,t + skt ,mk − lk + n

(0)
k,t(1− y

(0)
k,t ) + nk − skt )

B(n
(0)
k,ty

(0)
k,t + skt , n

(0)
k,t(1− y

(0)
k,t ) + nk − skt )

=

m1∑
l1=0

· · ·
mK∑
lK=0

Φ(l1, . . . , lK)×

K∏
k=1

(
mk

lk

)B(lk + ñ
(0)
k,ty

(0)
k,t

+ skt ,mk − lk + ñ
(0)
k,t(1− y(0)

k,t
) + nk − skt )

B(ñ
(0)
k,ty

(0)
k,t + skt , ñ

(0)
k,t(1− y

(0)
k,t) + nk − skt )

(10)

where
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ñ
(0)
k,t =


n

(0)
k,t if y(0)

k,t
<

skt
nk +mk − 1

∨
(
L

n
(0)
k,t ,n

(0)
k,t

(0) ≥ 1 ∧ L
n
(0)
k,t ,n

(0)
k,t

(m) ≤ 1
)

n
(0)
k,t if y(0)

k,t
>
skt +mk − 1

nk +mk − 1
∨
(
L

n
(0)
k,t ,n

(0)
k,t

(0) ≤ 1 ∧ L
n
(0)
k,t ,n

(0)
k,t

(m) ≥ 1
)

optimised otherwise

The result for Rsys(·) is completely analogous. It is interesting to note
that if mk = 1 the bounds are sharp on stochastic dominance. In particular,

when mk = 1, y(0)
k,t

<
skt
nk

indicates the lower bound is not in conflict with

the observed data, whilst y(0)
k,t
>

skt
nk

is in conflict since the observed empirical

probability of functioning at time t is below the prior lower bound. Conse-
quently, note that n

(0)
k,t is used only when the prior comes into conflict with

the data. Since n
(0)
k,t controls the prior certainty, this accords with the intu-

ition that the least certain prior bound is invoked when in a conflict setting
and the more certain prior bound used when the data agrees.

6.2. Prior parameter choice

In the following, we will give some guidelines on how to choose the pa-
rameter sets Π

(0)
k,1, . . . ,Π

(0)
k,tmax

which define the set of prior discrete reliability
functions for components of type k. We advocate that this is much easier in
terms of n(0) and y(0) than it would be in terms of α and β.

As mentioned in Section 3, the functioning probabilities pkt must satisfy
pktj ≥ pktj+1

.This naturally translates to conditions on the prior for pkt , so that

for example y
(0)
k,tj
≥ y

(0)
k,tj+1

and y(0)
k,tj
≥ y(0)

k,tj+1
should hold. Because skt /nk is

decreasing in t, the weighted average property of the update step in Equation
(4) for yk,t ensures that y

(n)
k,tj
≥ y

(n)
k,tj+1

and y(n)
k,tj
≥ y(n)

k,tj+1
. In situations where

one has a high degree of certainty about the functioning probability for low
t, but less certainty about what happens for larger t, then one can let y(0)

k,t

drop to (almost) 0, but clearly y
(0)
k,t should not increase.

It is inadvisable to express certainty in the expected functioning proba-
bilities with n

(0)
k,t bounds that vary substantially over the range of t. With

(strongly) differing n
(0)
k,t bounds, monotonicity of the y

(n)
k,t bounds cannot be

guaranteed. For example, if y
(0)
k,tj

= y
(0)
k,tj+1

, y(0)
k,tj

= y(0)
k,tj+1

, and sktj/nk ∈

[y(0)
k,tj
, y

(0)
k,tj

] (meaning there is no prior-data conflict), then should there be no

observed failures in [tj, tj+1], so that sktj+1
/nk = sktj/nk, then

n
(0)
k,tj

< n
(0)
k,tj+1

=⇒ y
(n)
k,tj

< y
(n)
k,tj+1

and
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n
(0)
k,tj

> n
(0)
k,tj+1

=⇒ y(n)

k,tj
< y(n)

k,tj+1

Again, this follows from (4), the weighted average property. It is possible to

construct similar examples with regard to the lower bound n
(0)
k,tj

. Therefore,

we advise taking the same n
(0)
k,t bounds for all t as far as possible. If they do

change, it must be very gradual and we recommend diagnosing any problems
as above.

Generally, the interpretation as pseudocount or prior strength should
guide the choice of bounds for n

(0)
k,t ; low values for n

(0)
k,t as compared to the test

sample size nk give low weight to the prior expected functioning probability
intervals [y(0)

k,t
, y

(0)
k,t ], and the location of posterior intervals [y(n)

k,t
, y

(n)
k,t ] will be

dominated by the location of skt /nk. Furthermore, the length of [y(n)
k,t
, y

(n)
k,t ]

is shorter for low n
(0)
k,t values. Specifically, in a no-conflict situation, when

n
(0)
k,t = nk then [y(n)

k,t
, y

(n)
k,t ] has half the length of [y(0)

k,t
, y

(0)
k,t ]. In contrast, high

values for n
(0)
k,t will lead to slower learning and wider y

(n)
k,t intervals, which

means more cautious posterior inferences. The difference betweeen n
(0)
k,t and

n
(0)
k,t determines the strength of the prior-data conflict sensitivity; as is clear

from Figure 2 and (8), the wider the n
(0)
k,t interval, the wider [y(n)

k,t
, y

(n)
k,t ] in case

of conflict. So it seems useful to choose n
(0)
k,t = 1 or n

(0)
k,t = 2, while choosing

n
(0)
k,t with help of the half-width rule as described above.

As mentioned in Section 5, it is not advisable to choose y(0)
k,t

= 0 and

y
(0)
k,t = 1. For any t 6∈

(
min(tk),max(tk)

)
, this can lead to improper posterior

predictive distributions. However, it is possible to choose values close to 0 and
1, respectively, and due to the linear update step (4) for y

(n)
k,t , posterior infer-

ences are not overly sensitive to whether y
(n)
k,t = 0.99 or y

(n)
k,t = 0.9999. Like-

wise, our nonparametric method does not cause unintuitive tail behaviour as
some parametric methods do; there is no problem, for example, with assign-
ing y

(n)
k,t near-zero for large t if prior knowledge suggests so.

While it is possible to set the bounds y(0)
k,t

and y
(0)
k,t for each t ∈ T in-

dividually, in practice this will be often too time-consuming when T forms
a dense grid. Switching to a coarser time grid will waste information from
data, as then failure times in the test data are rounded up to the next t ∈ T .
In the examples here we elicit bounds for a subset of T and fill up the time
grid with the least committal bounds, i.e., taking y

(0)
k,t equal to last (in the

time sequence) elicited y
(0)
k,t , and likewise y(0)

k,t
equal to next (in time sequence)

elicited y(0)
k,t

. A possible elicitation procedure in this vein could be to start
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Figure 4: Reliability block diagram for a ‘bridge’ system with three component types.

with eliciting y
(0)
k,t bounds for a few ‘central’ time points t, filling up the grid as

described above accordingly, and then to further refine the obtained bounds
as deemed necessary by the expert.

7. Practical Usage and Examples

7.1. Software

The methods of this paper have been implemented in the R [21] pack-
age ReliabilityTheory [2], providing an easy to use interface for relia-
bility practitioners. The primary function, which computes the upper and
lower posterior predictive system survival probabilities as in (10), is named
nonParBayesSystemInferencePriorSets(). The user specifies the times at
which to evaluate the bounds, the survival signature (Φ(·)), the component
test data (t1, . . . , tK), and the prior parameter set for each component type

and time (Π
(0)
k,t , via n

(0)
k,t , n

(0)
k,t , y

(0)
k,t , and y(0)

k,t
). All computations of Rsys and

Rsys at different time points are performed in parallel automatically when
the CPU has multiple cores and making automatic use of the theoretical re-
sults in Section 6 where applicable, performing exhaustive search in the few
cases they are not.

Note that computation of the system signature itself can be simplified
by expressing the structure of the system as an undirected graph using the
computeSystemSurvivalSignature() function in the same package, leaving
only data and prior to be handled. These publicly available functions have
been used in computing all the following examples for reproducibility. See
Appendix C for further details of how to use this software.

7.2. Examples

7.2.1. Toy example

As a toy example, consider a ‘bridge’ type system layout with three types
of components T1, T2 and T3, as depicted in Figure 4. The survival sig-
nature for this system is given in Table 1. All rows with T3 = 0 have
been omitted; without T3, the system cannot function, thus Φ = 0. For
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T1 T2 T3 Φ T1 T2 T3 Φ

0 0 1 0 0 1 1 0
1 0 1 0 1 1 1 0
2 0 1 0.33 2 1 1 0.67
3 0 1 1 3 1 1 1
4 0 1 1 4 1 1 1

Table 1: Survival signature for the bridge system from Figure 4, omitting all rows with
T3 = 0, since Φ = 0 for these.

t [0, 1) [1, 2) [2, 3) [3, 4) [4, 5)

y(0)
3,t

0.625 0.375 0.250 0.125 0.010

y
(0)
3,t 0.999 0.875 0.500 0.375 0.250

Table 2: Lower and upper prior functioning probability bounds for component type T3 in
the ‘bridge’ system example.

component types T1 and T2, we consider a near-noninformative set of prior
reliability functions. For components of type T3, we consider an informative
set of prior reliability functions as given in Table 2. This set could result
from eliciting prior functioning probabilities at times 0, 1, 2, 3, 4, 5 only, and
filling up the rest. These prior assumptions, together with sets of posterior
reliability functions resulting from three different scenarios for test data for
component type T3, are illustrated in Figures 5, 6 and 7; test data for com-
ponents of type T1 and T2 are invariably taken as t1 = (2.2, 2.4, 2.6, 2.8) and
t2 = (3.2, 3.4, 3.6, 3.8), respectively.

In Figure 5, test data for component type T3 is t3 = (0.5, 1.5, 2.5, 3.5), and
so in line with expectations. The posterior set of reliability functions for each
component type and the whole system is considerably smaller compared to
the prior set (due to the low prior strength intervals [n

(0)
1,t , n

(0)
1,t ] = [n

(0)
2,t , n

(0)
2,t ] =

[1, 2], [n
(0)
3,t , n

(0)
3,t ] = [1, 4]) and so giving more precise reliability statements.

We see that posterior lower and upper functioning probabilities drop at those
times t when there is a failure time in the test data, or a drop in the prior
functioning probability bounds. Note that the lower bound for the prior
system reliability function is zero due to the prior lower bound of zero for
T1; for the system to function, at least two components of type T1 must
function.

In Figure 6, test data of component type T3 is t3 = (0.6, 0.7, 0.8, 0.9),
and so earlier than expected. Compared to Figure 5, posterior functioning
intervals for T3 are wider between t = 1 and t = 3.5, reflecting additional
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Figure 5: Prior and posterior sets of reliability functions for the ‘bridge’ system and its
three component types, with failure times as expected for component type T3. Test data
failure times are denoted with tick marks near the time axis.

imprecision due to prior-data conflict. For t > 1, it is clearly visible how
y

(n)
3,t is halfway between y

(0)
3,t and s3

t/n3 = 0 (weights n
(0)
3,t = 4 and n3 = 4),

while y(n)
3,t

is one-fifth of y(0)
3,t

(weights n
(0)
3,t = 1 and n3 = 4). Note that the

posterior system functioning probability is constant for t ∈ [1, 2] because in
that interval the prior functioning probability is constant and there are no
observed failures.

In Figure 7, test data of component type T3 is t3 = (4.1, 4.2, 4.3, 4.4), and
so observed failures are later than expected. Here we see that for t ∈ [2, 4],
posterior functioning bounds for T3 are even wider than prior functioning
bounds. The width turns back to being half the prior width only after the
four failures. The imprecision carries over to the system bounds, where we
see wider bounds as compared to the other two scenarios especially between
t = 2 and t = 4. In particular, also note that at the system level posterior
bounds are a subset of prior bounds after t = 2.6, although prior-data conflict
for the individual component type T3 extends well beyond t = 4. This
demonstrates the power of this technique to identify prior-data conflict which
is actually consequential at the system level, not just the component level —
in other words, for mission times t > 2.6, we can diagnose that the prior-data
conflict need not be of elevated concern for this system viewed as a whole.
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Figure 6: Prior and posterior sets of reliability functions for the ‘bridge’ type system and
its three component types, with failure times earlier as expected for component type T3.

Nevertheless, the posterior system reliability bounds are wider than in the
no-conflict case for t ∈ [1, 4.4], signalising the general need for caution in this
scenario.

7.2.2. Automotive brake system

We also consider a simplified automotive brake system. The master brake
cylinder (M) activates all four wheel brake cylinders (C1 – C4), which in turn
actuate a braking pad assembly each (P1 – P4). The hand brake mechanism
(H) goes directly to the brake pad assemblies P3 and P4; the car brakes when
at least one brake pad assembly is actuated. All values for Φ 6∈ {0, 1} are
given in Table 3. The system layout is depicted in Figure 8, together with
prior and posterior sets of reliability functions for the four component types
and the complete system. Observed lifetimes from test data are indicated
by tick marks in each of the four component type panels, where nM = 5,
nH = 10, nC = 15, and nP = 20. We consider 301 evenly spaced time
points t on [0, 10], assume [n

(0)
M,t, n

(0)
M,t] = [1, 8] ∀t, and [n

(0)
k,t , n

(0)
k,t ] = [1, 2] for

k ∈ {H, C, P} and all t. Prior functioning probability bounds for M are
based on a Weibull cdf with shape 2.5 and scales 6 and 8 for the lower and
upper bound, respectively. The prior bounds for P can be seen as the least
committal bounds derived from an expert statement of y

(0)
P,t ∈ [0.5, 0.65] for
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Figure 7: Prior and posterior sets of reliability functions for the ‘bridge’ type system and
its three component types, with failure times later as expected for component type T3.

M H C P Φ M H C P Φ

1 0 1 1 0.25 1 0 2 1 0.50
1 0 1 2 0.50 1 0 2 2 0.83
1 0 1 3 0.75 1 0 3 1 0.75
0 1 0 1 0.50 1 1 0 1 0.50
0 1 0 2 0.83 1 1 0 2 0.83
0 1 1 1 0.62 1 1 1 1 0.62
0 1 1 2 0.92 1 1 1 2 0.92
0 1 2 1 0.75 1 1 2 1 0.75
0 1 2 2 0.97 1 1 2 2 0.97
0 1 3 1 0.88 1 1 3 1 0.88

Table 3: Survival signature values 6∈ {0, 1} for the simplified automotive brake system
depicted in Figure 8.
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Figure 8: Prior and posterior sets of reliability functions for a simplified automotive brake
system with layout as depicted in the lower right panel.

t = 5 only. For H, near-noninformative prior functioning probability bounds
have been selected; with the upper bound for P being approximately one for
t ≤ 5 as well, the prior upper system reliability bound for t ≤ 5 is close to
one, too, since the system can function on H and one of P3 and P4 alone.
Note that the posterior functioning probability interval for M is wide not
only due to the limited number of observations, but also because n

(0)
M,t = 8

and the prior-data conflict reaction.
Posterior functioning probability bounds for the complete system are

much more precise than the prior system bounds, reflecting the informa-
tion gained from component test data. The posterior system bounds can
be also seen to reflect location and precision of the component bounds; for
example, the system bounds drop drastically between t = 2.5 and t = 3.5
mainly due to the drop of the bounds for P at that time.

It is also interesting to note that the prior-data conflict which is conse-
quential at the system level occurs over roughly the same range in t as there
is prior-data conflict for component type P. Indeed, this occurs despite there
being prior-data conflict in both M and C over much larger ranges, giving
valuable insight into which prior requires further expert attention — thus the
technique avoids wasted time addressing prior-data conflict in components
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which may not be relevant when propagated to the uncertainty in the whole
system.

In this example, the theory presented in Section 6 enabled avoiding nu-
merical optimisation in 91.9% of cases for Rsys(·) and in 95.7% of cases for

Rsys(·). Further detail is in Appendix B.3.

8. Conclusions

In this paper we have contributed an imprecise Bayesian nonparamet-
ric approach to system reliability with multiple types of components. The
approach allows modelling partial or imperfect prior knowledge on compo-
nent failure distributions in a flexible way through bounds on the functioning
probability for a grid of time points, and combines this information with test
data in an imprecise Bayesian framework. Component-wise predictions on
the number of functioning components are then combined to bounds for the
system survival probability by means of the survival signature. New results
on first-order stochastic dominance for the Beta-Binomial distribution enable
closed-form solutions for these bounds in most cases and avoid exponential
growth in the complexity of computing the estimate as the number of compo-
nents grows. The widths of the resulting system reliability bounds reflect the
amount of test data, the precision of prior knowledge, and crucially provide
an easily used method to identify whether these two information sources are
in conflict in a way which is of consequence to the whole system reliability
estimate.

These methodological contributions can be immediately used in applica-
tions by reliability practitioners as we provide easy to use software tools.

An important next step is to extend the model to include right-censored
observations which are common in the reliability setting. In particular, this
allows to use component failure observations from a running system to cal-
culate its remaining useful life. We see two potential approaches. First,
to obtain lower and upper system reliability bounds one can assume that a
component either fails immediately after censoring or continues to function
during the entire time horizon. This minimal assumption will be simple to
implement but will lead to high imprecision. Alternatively, one can assume
exchangeability with other surviving components at the moment of censor-
ing. This approach will be more complex to accommodate but will lead to
less imprecision. Indeed, this assumption lies at the core of the Kaplan-Meier
estimator [18], and has already been adopted by Coolen and Yan [15] in an
imprecise probability context.

Upscaling the survival signature to large real-world systems and networks,
consisting of thousands of components, is a major challenge. However, even
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for such systems the fact that one only needs to derive the survival signature
once for a system is an advantage, and also the monotonicity of the survival
signature for coherent systems is very useful if one can only derive it partially.

The survival signature and its use for uncertainty quantification for sys-
tem reliability can be generalized quite straightforwardly, mainly due to the
simplicity of this concept. For example, one may generalize the system struc-
ture function from a binary function to a probability [see 13], to reflect un-
certainty about system functioning for known states of its components, with
a further generalization to imprecise probabilities possible.
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Appendix

A. Proofs

Proof of Theorem 1, p16. Consider the likelihood ratio for the two Beta
Binomial distributions βy and βy,

L(l) :=
p(l | y, n,m, s,N)

p(l | y, n,m, s,N)

=
B(l + ny + s,m− l + n(1− y) +N − s)B(ny + s, n(1− y) +N − s)
B(ny + s, n(1− y) +N − s)B(l + ny + s,m− l + n(1− y) +N − s)

=
Γ(l + ny + s)Γ(m− l + n(1− y) +N − s)Γ(ny + s)Γ(n(1− y) +N − s)
Γ(l + ny + s)Γ(m− l + n(1− y) +N − s)Γ(ny + s)Γ(n(1− y) +N − s)

=



∏m−1
x=0 (x+ n(1− y) +N − s)∏m−1
x=0 (x+ n(1− y) +N − s)

for l = 0∏l−1
x=0(x+ ny + s)

∏m−l−1
x=0 (x+ n(1− y) +N − s)∏l−1

x=0(x+ ny + s)
∏m−l−1

x=0 (x+ n(1− y) +N − s)
for 0 < l < m∏m−1

x=0 (x+ ny + s)∏m−1
x=0 (x+ ny + s)

for l = m

since Γ(x+ 1) = xΓ(x).
Thus,

L(l + 1)

L(l)
=

(l + ny + s)(m− l − 1 + n(1− y) +N − s)
(l + ny + s)(m− l − 1 + n(1− y) +N − s)

> 1 when 0 ≤ y < y ≤ 1
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Hence, L(·) is monotone increasing for 0 < y < y < 1, so that βy is larger
than or equal to βy in monotone likelihood ratio order (βy ≥lr βy). But,
βy ≥lr βy =⇒ βy ≥st βy ([23, Theorem 1.C.1, p.43]) giving the required
result.

Proof of Theorem 2, p16. Consider the likelihood ratio for the two Beta
Binomial distributions βn and βn,

L(l) :=
p(l | y, n,m, s,N)

p(l | y, n,m, s,N)

=
B(l + ny + s,m− l + n(1− y) +N − s)B(ny + s, n(1− y) +N − s)
B(ny + s, n(1− y) +N − s)B(l + ny + s,m− l + n(1− y) +N − s)

=
Γ(l + ny + s)Γ(m− l + n(1− y) +N − s)
Γ(l + ny + s)Γ(m− l + n(1− y) +N − s)

× Γ(ny + s)Γ(n(1− y) +N − s)Γ(n+N)Γ(m+ n+N)

Γ(ny + s)Γ(n(1− y) +N − s)Γ(n+N)Γ(m+ n+N)

=



∏m−1
x=0 (x+ n(1− y) +N − s)

∏m−1
x=0 (x+ n+N)∏m−1

x=0 (x+ n(1− y) +N − s)
∏m−1

x=0 (x+ n+N)
for l = 0∏l−1

x=0(x+ ny + s)
∏m−l−1

x=0 (x+ n(1− y) +N − s)∏l−1
x=0(x+ ny + s)

∏m−l−1
x=0 (x+ n(1− y) +N − s)

×
∏m−1

x=0 (x+ n+N)∏m−1
x=0 (x+ n+N)

for 0 < l < m∏m−1
x=0 (x+ ny + s)

∏m−1
x=0 (x+ n+N)∏m−1

x=0 (x+ ny + s)
∏m−1

x=0 (x+ n+N)
for l = m

since Γ(x+ 1) = xΓ(x).
Thus,

L(l + 1)

L(l)
=

(l + ny + s)(m− l − 1 + n(1− y) +N − s)
(l + ny + s)(m− l − 1 + n(1− y) +N − s)

However, unlike the case for the y parameter in Theorem 1, neither βn
nor βn can be guaranteed to dominate for all possible values for the other
parameters, so that necessary conditions for monotonicity (either increasing
or decreasing) must be established. We require,

(l + ny + s)(m− l − 1 + n(1− y) +N − s)
(l + ny + s)(m− l − 1 + n(1− y) +N − s)

> 1

After extensive routine algebra, this can be conveniently expressed as

(n− n)[y(N +m− 1)− s]− l(n− n) > 0.
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This limit is hardest to satisfy for l = m − 1 since n − n > 0 (note l 6= m
since we are evaluating L(l + 1)/L(l), so m − 1 is the maximal value l can
take). Thus, for monotonicity to hold for all l, we require

(n− n)[y(N +m− 1)− s]− (m− 1)(n− n) > 0

=⇒ (n− n)[y(N +m− 1)− s−m+ 1] > 0

Since n− n > 0 by definition, we have a monotonically increasing likelihood
ratio only when

y(N +m− 1)− s−m+ 1 > 0.

By a similar argument, the likelihood ratio is only monotonically decreasing
when

y(N +m− 1)− s < 0.

Thus,

y >
s+m− 1

N +m− 1
=⇒ βn ≥lr βn =⇒ βn ≥st βn (A.1)

and
y <

s

N +m− 1
=⇒ βn ≤lr βn =⇒ βn ≤st βn (A.2)

by [23, Theorem 1.C.1, p.43]. In the intermediate case,

s

N +m− 1
< y <

s+m− 1

N +m− 1

standard likelihood ratio ordering theory cannot definitively state the stochas-
tic ordering on βn and βn.

Proof of Lemma 3, p17. (A.1) and (A.2) are sufficient but not necessary
conditions. Using theory in [19] we can sharpen these conditions to provide
first-order stochastic dominance conditions for a larger range of parameter
values.

Proposition 2.1, p.399 of [19] proves that half-monotone likelihood ratio
ordering — i.e. monotonicity of L(l+ 1)/L(l) — together with left and right
tail conditions on L(·) imply first order stochastic dominance.

Half-monotonicity of L(·)
Although there exist parameters for which L(·) is not monotone, it is

half-monotone. That is, L(l + 1)/L(l) is itself monotone. For simplicity,
write

L(l + 1)

L(l)
=

(l + ψ)(η − l)
(l + ψ)(η − l)

where


ψ = ny + s

ψ = ny + s

η = m− 1 + n(1− y) +N − s
η = m− 1 + n(1− y) +N − s
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Then,

L(l + 2)/L(l + 1)

L(l + 1)/L(l)
=

(ψ + l)(ψ + l + 1)(η − l − 1)(η − l)
(ψ + l + 1)(ψ + l)(η − l)(η − l − 1)

< 1

⇐⇒
ψ + l

ψ + l
·
η − l − 1

η − l − 1
<
ψ + l + 1

ψ + l + 1
·
η − l
η − l

But, ψ > ψ > 0, η > η > 0, l > 0, so it is trivial to prove

ψ + l

ψ + l
<
ψ + l + 1

ψ + l + 1
and

η − l − 1

η − l − 1
<
η − l
η − l

∀ l ∈ {0, . . . ,m}

Thus we can conclude that L(·) is half monotone decreasing.

Tail conditions on L(·)
It is not difficult to derive the same loose bounds as in Theorem 2 using

the tail conditions. However, it is also easy to see that these are sufficient
but not necessary. Sharpening these bounds in terms of the other parameter
values involves seemingly intractable algebra, so we leave the tail condition
as the alternative slightly more costly numerical check when the conditions
of Theorem 2 are not satisfied. Evaluation of L(·) at two values is still orders
of magnitude less costly than reevaluation of Rsys(·) or Rsys(·).

B. Theory versus optimisation

The above theory substantially reduces the amount that numerical op-
timisation must be used. Herein, we examine more carefully precisely how
often the theory cannot be applied, resulting in numerical optimisation being
used.

Given some unknown functioning probability p, which gives rise to the
observed data s, the probability that Theorem 2 does not apply is

P (y(N +m− 1)−m+ 1 < s < y(N +m− 1))

=

by(N+m−1)c∑
i=dy(N+m−1)−m+1e

(
N

i

)
pi(1− p)N−i

Likewise the probability that Lemma 3 does not apply is

P (Ln,n(0) Q 1 ∩ Ln,n(m) R 1) =
∑
s∈S

(
N

s

)
ps(1− p)N−s

where S =

{
s :

p(0 | y, n,m, s,N)

p(0 | y, n,m, s,N)
Q 1 ∩ p(m | y, n,m, s,N)

p(m | y, n,m, s,N)
R 1

}
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Figure B.9: Plots of the probability that numerical optimisation is required when N = 100,
m = 3, n = 1 and n = 5 for changing choices of prior, y, as a function of the unknown
functioning probability, p.
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Figure B.10: Plots of the probability that numerical optimisation is required when y = 0.1,
m = 3, n = 1 and n = 5 for changing amounts of test data, N , as a function of the unknown
functioning probability, p.
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Figure B.11: Plots of the probability that numerical optimisation is required when y = 0.4,
N = 100, n = 1 and n = 5 for differing numbers of components in the system, m, as a
function of the unknown functioning probability, p.
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Figure B.12: Plots of the worst case probability that numerical optimisation is required
for different choices of y, when m = 3 (left), N = 100 (right), n = 1 and n = 5. There are
some artefacts due to the underlying discrete Binomial probabilities.

B.1. Some example scenarios

With the prior value y (upper or lower) fixed, the above expressions de-
pend only on the unknown functioning probability p, which gives rise under
repeated experiments to an observed number of functioning components, s.

Thus, Figures B.9, B.10 and B.11 show how often optimisation would be
required under long term repeated use of this technique.

The worst case scenario is that the prior, y, is exactly equal to the true
unknown probability of functioning, p. Regardless of y, optimisation is re-
quired less frequently with larger test dataset sizes (increasing N), but offset
by increasing numbers of components of the same type in a system (increas-
ing m). Not shown is that n and n clearly do not affect the probability that
Theorem 2 does not apply, but also the impact on Lemma 3 is negligible.

B.2. Worst case scenario

Clearly the true functioning probability, p, is unknown. Figure B.12
therefore shows the worst case scenario for any choice of y — that is, where
the maximum of each curve from the previous subsection is taken.

Especially given the upper and lower choices of y, it may be reasonable
to suppose that it is unlikely that the prior probability will all that often
exactly equal the true failure probability (at least not for long stretches of
time). Therefore, a final pair of plots replicates the analysis in Figure B.12,
but where the worst case p is subject to the constraint |y − p| > 0.1. This is
shown in Figure B.13

Note that all these analyses are for evaluation of a single fixed time point
at which Rsys(·) or Rsys(·) is computed. Of relevance to the overall compute
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Figure B.13: Plots of the worst case probability that numerical optimisation is required
for different choices of y, when m = 3 (left), N = 100 (right), n = 1 and n = 5, subject
to the constraint |y − p| > 0.1. There are some artefacts due to the underlying discrete
Binomial probabilities.

time is the behaviour over time, and it seems unlikely that the worst case
scenario will occur for long runs of the times under analysis.

B.3. Theoretical analysis for brake system example

Such temporal aspects are now considered by analysing the brake system
example from Section 7.2.2. As noted in Section 7.2.2, the grid contains 301
time points and the system has 4 types of components, meaning stochastic
dominance must be verified via theory or optimisation 1, 204 times for each
of Rsys(·) and Rsys(·).

Figure B.14 shows the worst case probabilities (subject to |y − p| > 0.1)
as they change over time in the brake system example. Displayed are the
worst case probabilities that optimisation will be required for the choice of
prior and the values of m and N as in Section 7.2.2, but without using the
test data (which define s). Note in particular that when m = 1 (as is the
case for component types M and H), Lemma 3 always applies for y ∈ (0, 1)
and so optimisation is never required. This is true for all values of N and y.

For the test data as used in Section 7.2.2, theory could not determine
stochastic dominance in 98 (or 8.1%) of cases for Rsys(·), while it was in 52

(or 4.3%) of cases for Rsys(·).

C. Software details

Functions which make it easy to use the methods of this paper have been
added to the R package ReliabilityTheory [2]. There are two functions of
particular note: computeSystemSurvivalSignature and, implementing the
result from Appendix A above, nonParBayesSystemInferencePriorSets.
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Figure B.14: Plots of the worst case probability that numerical optimisation is required
over time in the brake example, subject to the constraint |y − p| > 0.1.

C.1. Computing the survival signature

The function computeSystemSurvivalSignature allows easy computa-
tion of the survival signature if the system is expressed as an undirected
graph with ‘start’ and ‘terminal’ nodes (which are not considered compo-
nents for survival signature computation). The system is considered to work
if there is a path from the start to the terminal node passing only through
functioning components.

Graph representations of systems are most simply defined by using the
graph.formula function. The ‘start’ node should be denoted s and the
‘terminal’ node should be denoted t and intermediate nodes (representing
actual components) should be numbered and connected by edges denoted by
-, where the numbering denotes physically distinct components. Component
numbers can be repeated to include multiple links. For example, to build a
simple three component series system:
sys <- graph.formula(s - 1 - 2 - 3 - t)

and to build a three component parallel system:
sys <- graph.formula(s - 1 - t, s - 2 - t, s - 3 - t)

There is an additional shorthand which indicates a link exists to a list of
multiple components separated by the : operator, so that the parallel system
can be also be expressed more compactly by:
sys <- graph.formula(s - 1:2:3 - t)

Therefore, the simple bridge system of Figure 4 can be constructed with:
sys <- graph.formula(s - 1 - 2 - 3 - t, s - 4 - 5 - 3 - t, 1:4 - 6 - 2:5)
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• s - 1 - 2 - 3 - t signifies the route from left to right entering the first
component going across the top of the system block diagram in Figure
4;

• s - 4 - 5 - 3 - t signifies the bottom route through the block diagram;

• 1:4 - 6 - 2:5 connects the top two components of type 3 to the bottom
two components of type 3, signifying the bridge.

Naturally such as expression is not necessarily unique, so that completely
equivalently one may write:
sys <- graph.formula(s - 1:4 - 6 - 2:5 - 3 - t, 1 - 2, 4 - 5)

With the structure defined and the individual components numbered, it
just remains to specify the types of each component. This can be done using
the setCompTypes function. This function takes the system graph and a
list of component type names (as the tag) and corresponding component
numbers (as the value). Thus, completing the example for Figure 4:
sys <- setCompTypes(sys, list("T1"=c(1,2,4,5), "T2"=c(6),

"T3"=c(3)))

Computing the survival signature then involves a simple function call:
survsig <- computeSystemSurvivalSignature(sys)

C.2. Computing sets of system survival probabilities

Once the system has been correctly described using an undirected graph
as above, the methods presented in Sections 3 – 6 can be used via the function
nonParBayesSystemInferencePriorSets.

The function prototype is:
nonParBayesSystemInferencePriorSets(at.times, survival.signature,

test.data, nLower=2, nUpper=2, yLower=0.5, yUpper=0.5)

Aside from the system design, which can be passed to the function via
the survival.signature argument, the remaining elements which must be
specified are the:

1. grid of times at which to evaluate the posterior, T = {t1, . . . , tmax}, via
the at.times argument.

2. component test data tk = (tk1, . . . , t
k
nk

) for k = 1, . . . , K, via the test.data
argument.

3. prior sets via the range of prior parameter sets Π
(0)
k,t = [n

(0)
k,t , n

(0)
k,t ] ×

[y(0)
k,t
, y

(0)
k,t ], via the nLower, nUpper, yLower and yUpper arguments.
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The grid of times, at.times, is specified as simply a vector of time points.
The test.data argument is a list of component type names (as the tag)

and corresponding lifetime data (as the value), for example a toy sized dataset
for each component would be expressed as:
test.data=list("T1"=c(0.19, 0.73, 1.87, 1.17),

"T2"=c(0.22, 0.27, 0.63, 1.80, 1.25, 1.95),

"T3"=c(1.33, 0.65, 1.59))

Finally, there are multiple options for specifying the prior parameter sets.
Each of the nLower, nUpper, yLower and yUpper arguments can be specified
as:

• a single value for a homogeneous prior across time and components.
e.g. nLower=2 =⇒ n

(0)
k,t = 2 ∀ k, t

• a vector of values of length |T | (length(at.times)), for a time inho-
mogeneous prior which is identical across component types.

• a data frame of size 1 × K, where each column is named the same
as in the survival.signature and test.data arguments, for a time
homogeneous prior which varies across component types.

• a data frame of size |T | × K, where each column is named the same
as in the survival.signature and test.data arguments, for a time
inhomogeneous prior which varies across component types.

With these arguments supplied, nonParBayesSystemInferencePriorSets
will then compute the posterior sets automatically in parallel across the cores
of a multicore CPU and return a list with two objects, named lower and
upper, containing respectively the lower and upper bound for the system
reliability function Rsys(t).
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