
THE REGULAR REPRESENTATIONS OF GLN OVER FINITE

LOCAL PRINCIPAL IDEAL RINGS

ALEXANDER STASINSKI AND SHAUN STEVENS

Abstract. Let o be the ring of integers in a non-Archimedean local �eld with
�nite residue �eld, p its maximal ideal, and r ≥ 2 an integer. An irreducible
representation of the �nite group Gr = GLN (o/pr), for an integer N ≥ 2,
is called regular if its restriction to the principal congruence kernel Kr−1 =

1 + pr−1 MN (o/pr) consists of representations whose stabilisers modulo K1

are centralisers of regular elements in MN (o/p).
The regular representations form the largest class of representations of Gr

which is currently amenable to explicit construction. Their study, motivated
by constructions of supercuspidal representations, goes back to Shintani, but
the general case remained open for a long time. In this paper we give an
explicit construction of all the regular representations of Gr.

1. Introduction

Let F be a non-Archimedean local �eld with ring of integers o, maximal ideal
p and �nite residue �eld Fq of characteristic p. The known explicit constructions
of complex supercuspidal representations of GLN (F ) are closely related to con-
structions of representations of the maximal compact subgroup GLN (o). These
constructions go back to Shintani [19], Gérardin [7], Kutzko [13, 14], Shalika [18],
Howe [10], Carayol [4], culminating in the complete construction of supercuspidal
representations by Bushnell and Kutzko [2]. All of these constructions are based
on induction from compact mod centre subgroups of GLN (F ), and as any compact
subgroup is contained in a conjugate of GLN (o), these constructions can also be
seen as giving representations of GLN (o). This connection goes further, because it
has been shown that every supercuspidal representation determines a unique type
on GLN (o), and two supercuspidals determine the same type if and only if they
di�er by twisting by an unrami�ed character; see [1, Appendix] and [17].

While the smooth representations of GLN (F ) have been studied extensively, less
is known about the representations of GLN (o). The purpose of the current paper is
to give a construction of a large class of smooth complex representations of GLN (o)
called regular representations, which we now de�ne. For any integer r ≥ 1 write
or for the �nite local principal ideal ring o/pr. We will use p to denote also the
maximal ideal in or. For any integer r ≥ 2, let Gr = GLN (or). Every smooth, or
equivalently, continuous, representation of GLN (o) factors through some group Gr.
For any integer i such that r ≥ i ≥ 1, let Gi = GLN (oi), let ρr,i : Gr → Gi be the
homomorphism induced by the canonical map or → oi, and let Ki = Ker ρr,i be the
i-th principal congruence kernel inGr. Let gi = MN (oi) denote the algebra ofN×N
matrices over oi. We then have Ki = 1 + pigr. To any irreducible representation π
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of Gr we can associate an adjoint orbit (i.e., conjugation orbit, or similarity class) in
g1 = MN (Fq) ∼= Kr−1, via Cli�ord's theorem. The representation π is called regular

if the orbit consists of regular elements (i.e., the centraliser in GLN (Fq), where Fq
is an algebraic closure of Fq, of any element in the orbit has minimal dimension N).
This is equivalent to the condition that the centraliser in G1 of any element in the
orbit is abelian. The main reason for focussing on regular representations is that
their construction lends itself well to the methods of Cli�ord theory. In particular,
the regular representations form the largest family of representations which has so
far been constructed explicitly for all Gr.

The study of regular representations of Gr goes back to Shintani [19], and inde-
pendently and later, Hill [8], who constructed all the regular representations when r
is even. The general case where r is odd is much more di�cult, requires new ideas,
and remained incomplete until the present paper. Assume now that r is odd. In [9]
Hill constructed all the cuspidal representations (i.e., the orbit has irreducible char-
acteristic polynomial), and in [8] he gave a construction of so-called split regular
representations (i.e., the orbit has all its eigenvalues in Fq). However, it was noted
by Takase [23] that the results in [8] do not give all the split regular representations,
and in any case, there exist many non-split non-cuspidal regular representations.
While the present work was in preparation, Krakovski, Onn and Singla [12] gave a
construction of the regular representations of Gr when the residue characteristic p
is not 2. In the present paper we complete the picture by giving a construction of
all the regular representations of Gr. For a somewhat more detailed comparative
account of the development of constructions of representations of Gr, see [22].

In the present paper we give an explicit construction of all the regular represen-
tations of Gr, without any assumption on the residue characteristic of o. Just like
the other constructions mentioned above, our approach is based on Cli�ord theory
and orbits. A distinguishing feature is that it is in some ways similar to the con-
struction of types on GLN (o) by Bushnell and Kutzko mentioned above. The latter
goes beyond regular representations but in a certain sense only deals with semisim-
ple elements, while we need to deal directly with, for instance, regular nilpotent
elements. Focussing on regular elements has several technical advantages, but al-
lowing non-semisimple elements brings new phenomena, such as the non-triviality
of the radical of the form on J1

m/H
1
m (see Lemmas 4.4 and 4.5). Since several of

our lemmas hold also for non-regular elements (but with more di�cult proofs), it
would be interesting to know if the construction could be pushed further to encom-
pass both the regular representations and the supercuspidal types on GLN (o) of
Bushnell and Kutzko.

Although there are many irreducible representations of Gr which are not regular,
the regular representations are generic in the sense that the regular elements in
MN (Fq) are dense. In particular, for GL2(or) all the irreducible representations
are either regular or pull-backs from GL2(or−1). Moreover, as noted by Lusztig, it
is likely that the higher level Deligne-Lusztig representations ±RGT (θ), for θ regular
and in general position, constructed in [16] and [20] are regular in the case of
GLN (or), and are therefore subsumed in the construction of the present paper.
That this is the case when r is even is proved in [5].

Organisation of the paper. In Section 2 we de�ne parahoric subalgebras and
associated �ltrations of subgroups of Gr, using �ags of or-modules in gr. These are
�nite versions of the subgroups associated to lattice chains in [2, Section 1]. The
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particular subalgebra Am, determined by the characteristic polynomial of a regular
element in gr plays a central role in our construction. In Section 3, we describe
characters of certain abelian groups de�ned earlier, and record well-known results
about the existence of �Heisenberg lifts�. In Section 4 we give the construction
of regular representations of Gr. The reader who would like a quick overview of
the steps of the construction, illustrated by a diagram, may look at the discussion
preceding Lemma 4.1. Our main theorem summarises the consequences of the con-
struction for the description of representations and appears Theorem 4.10. Finally,
Section 5 collects a few concluding remarks.

Notation and conventions. If G is a �nite group, we will write Irr(G) for the set
of isomorphism classes of complex irreducible representations ofG. For convenience,
we will always consider an element π ∈ Irr(G) as a representation, rather than
an equivalence class of representations, that is, we identify π ∈ Irr(G) with any
representative in its isomorphism class. One can view Irr(G) as the set of irreducible
characters of G, but we prefer to consider representations. If G is abelian, we will
often refer to a one-dimensional representation of G as a character. If H ⊆ G is a
subgroup and π is any representation of G we write π|H for the restriction of π to
H. If, moreover, σ is a representation of H, we will write Irr(G | σ) for the subset
of Irr(G) consisting of representations which have σ as an irreducible constituent
when restricted to H.

Depending on the context, we use the notation MN (or), gr or E, respectively,
to denote the algebra of N × N matrices over or. The notation E appears (only)
in Section 2 where the algebra is seen as the endomorphisms of oNr , and gr appears
in the rest of the paper, where it plays the role of the or-points of the Lie algebra
of GLN .

We use $ to denote a �xed choice of generator of p ⊂ or.
We will make free use of some well known results from Cli�ord theory (see [21,

Section 2]).

Acknowledgement. The �rst author was supported by EPSRC grant EP/K024779/1.
The second author was supported by EPSRC grant EP/H00534X/1. We wish to
thank Uri Onn for alerting us to several typos in a previous version of this paper.

2. parahoric subalgeberas and filtrations of subgroups

The main goal of this section is to attach to any element in MN (Fq) a para-
horic subgroup of Gr together with a natural �ltration. These �ltrations are �nite
versions of the ones de�ned by lattice chains in [2, Section 1].

Let V be a free or-module of rank N , and let V = V ⊗or Fq ∼= V/pV (an N -

dimensional vector space over Fq). Let ρr,1 : V → V denote the canonical map.

Let E = Endor (V ) and E = Endk(V ) ∼= E ⊗or Fq. Let

V = V0 ⊃ V1 ⊃ · · · ⊃ Ve = 0

be a �ag of or-modules with e ≥ 1 an integer, and such that Vi is free for 0 ≤ i ≤
e−1. Let V = V 0 ⊃ V 1 ⊃ · · · ⊃ V e = 0 be the �ag of Fq-vector spaces obtained by

setting V i = Vi ⊗or Fq ∼= Vi/pVi. We have rankor Vi = dimFq V i for 0 ≤ i ≤ e− 1.

Lemma 2.1. Let notation be as above. We then have inclusions of or-modules

V = L0 ⊃ L1 ⊃ · · · ⊃ Le ⊃ · · · ⊃ Ler = 0,



REGULAR REPRESENTATIONS OF GLN 4

where Li+ej = pjρ−1r,1(V i) = pj(Vi + pV ), for 0 ≤ i ≤ e− 1 and 0 ≤ j.
Proof. The only thing that requires proof is that all the inclusions are strict. If
0 ≤ i ≤ e− 1 and 0 ≤ j ≤ r − 1 then multiplication by pj induces an isomorphism
Li/Li+1

∼= Li+ej/Li+ej+1, while the map ρr,1 induces an isomorphism Li/Li+1
∼=

V i/V i+1; in particular, Li+ej/Li+ej+1 is non-zero. �

We put Ni = rankor
Vi, for i = 0, . . . , e, so that N = N0 > N1 > · · · >

Ne = 0. Since or is a self-injective ring (cf. [15, 3.12]), a free submodule of a
free or-module is a direct summand. Hence a basis for a free submodule of V
can always be extended to a basis for V , and so there exists a basis {x1, . . . , xN}
for V such that {x1, . . . , xNi} is a basis for Vi, for i = 0, . . . , e. Then the image
{x1 + pV, . . . , xN + pV } of this basis under the map V → V is a basis for V such
that {x1 + pV, . . . , xNi

+ pV } is a basis for V i, and the or-module Li+ej has basis
consisting of (the non-zero elements in)

(2.1) {$jx1, . . . , $
jxNi

, $j+1xNi+1, . . . , $
j+1xN},

for 0 ≤ i ≤ e− 1 and 0 ≤ j.
We de�ne the or-algebras

P = {x ∈ E | xVi ⊆ Vi for all 0 ≤ i ≤ e},
P = {x ∈ E | xVi ⊆ Vi for all 0 ≤ i ≤ e}.

Algebras of this form are called parabolic subalgebras of E and E, respectively.
Similarly, we de�ne the algebra

A = {x ∈ E | xLi ⊆ Li for all 0 ≤ i ≤ er},
and an algebra of this form is called a parahoric subalgebra of E. The algebra P
has a (two-sided) ideal I given by

I = {x ∈ E | xVi ⊆ Vi+1 for all 0 ≤ i ≤ e− 1},
and the analogous ideal I in P is de�ned in the obvious way. Similarly, the algebra
A has an ideal P given by

P = {x ∈ E | xLi ⊆ Li+1 for all 0 ≤ i ≤ er − 1}.
We have Ie = Ie = Per = 0, so the ideals are nilpotent. We remark that, since we
have the periodicity relation Li+ej = pjLi, we also have

A = {x ∈ E | xLi ⊆ Li for all 0 ≤ i ≤ e− 1},
P = {x ∈ E | xLi ⊆ Li+1 for all 0 ≤ i ≤ e− 1}.

Using the basis {x1, . . . , xN} above to identify V with oNr , whence E with MN (or),
these algebras and ideals have convenient matrix pictures. For example, writing
the matrix of a ∈ E with respect to this basis as (ajk), we see that a ∈ P if and
only if ajk = 0 whenever there is an integer 0 ≤ i ≤ e − 1 such that j > Ni ≥ k.
Thus P is the algebra of block upper-triangular matrices, with block sizes N ′1 :=
Ne−1−Ne, . . . , N ′e := N0−N1, while I is its ideal of strictly block upper-triangular
matrices. Similarly, the fact that (2.1) gives a basis for Li implies that A is the
algebra of block matrices which are block upper-triangular modulo p, with the same
block sizes, while P is its ideal of matrices which are strictly block upper-triangular
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modulo p. Writing Mm×n(R) for the set of m × n matrices over a ring R (not
necessarily with identity), we have

A =

MN ′1(or) MN ′1×N ′2(or) MN ′1×N ′e(or)

MN ′2×N ′1(p)

MN ′e−1×N ′e(or)

MN ′e×N ′1(p) MN ′e×N ′e−1
(p) MN ′e(or)







,

P =

MN ′1(p) MN ′1×N ′2(or) MN ′1×N ′e(or)

MN ′2×N ′1(p)

MN ′e−1×N ′e(or)

MN ′e×N ′1(p) MN ′e×N ′e−1
(p) MN ′e(p)







.

Since, with respect to the basis {x1 + pV, . . . , xN + pV } of V , the parabolic algebra
P also consists of block upper-triangular matrices with the same block-sizes, the
map ρr,1 : E → E induces surjections P → P , I → I, and we get:

Lemma 2.2.

(i) A = ρ−1r,1(P ) = P + pE,

(ii) P = ρ−1r,1(I) = I + pE.

We remark that Lemma 2.2 implies that A/P ∼= P/I, which is semisimple, so
that P is the Jacobson radical of A.

Although we always have a surjection ρr,1 : Im → Im, in general Pm is not equal
to Im + pE, for m ≥ 2. However, we can use the matrix description of P above
to obtain a similar description of Pm, by multiplying elementary matrices with
respect to the basis {x1, . . . , xN}. Indeed, a straightforward induction shows that,
for m ≥ 0, the ideal Pm consists of block matrices whose (i, j)-block has entries in
pd(m+i−j)/ee, where dye denotes the least integer greater than or equal to y.

Lemma 2.3. For m ≥ 0 and 0 ≤ k ≤ e(r − 1) + 1−m, we have:

(i) PmLi = Li+m, for any i ≥ 0,
(ii) Pm = {x ∈ E | xLi ⊆ Li+m for all k ≤ i ≤ k + e− 1},
(iii) Pm = {x ∈ E | xPk ⊆ Pk+m}.

Proof. Given the description of Pm above, it is straightforward to check that the
image of the basis (2.1) of Li under elementary matrices in Pm contains the ba-
sis (2.1) of Li+m, and (i) follows. Similarly, it is straightforward to check that the
matrix description of

{x ∈ E | xLi ⊆ Li+m for all 0 ≤ i ≤ e− 1}
is the same as that for Pm above. Now (ii) follows since xLi ⊆ Li+m if and only if
xLi+e ⊆ Li+e+m, whenever 0 ≤ i ≤ e(r − 1)−m. Finally, for (iii), suppose x ∈ E
is such that xPk ⊆ Pk+m so that xPkLi ⊆ Li+k+m, for i = 0, . . . , e− 1. But then
(i) implies xLi+k ⊆ Li+k+m, for i = 0, . . . , e− 1, and (ii) implies x ∈ Pm. �

As an immediate corollary, we get:
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Corollary 2.4.

(i) pA = Ap = Pe,
(ii) Pm = Pm+1 if and only if m ≥ er.

Note also that we havePe(r−1) = pr−1P andPe(r−1)+1 = pr−1I. Let tr : E → or
denote the trace map.

Lemma 2.5. Let x ∈ E, and let m be an integer such that 0 ≤ m ≤ e(r − 1) + 1.
Then tr(Pmx) = {0} if and only if x ∈ Pe(r−1)+1−m.

Proof. Note that one implication is clear, since Pe(r−1)+1 ⊆ I so tr(Pe(r−1)+1) = 0.
We �rst prove the opposite implication for m = 0, so we assume that x ∈

E is such that tr(Ax) = {0}. It is easy to show (e.g. using elementary matrix
considerations) that the trace form E × E → or given by (α, β) 7→ tr(αβ) is non-
degenerate. Similarly, it is also easy to show that for γ ∈ E, the condition tr(Pγ) =
{0} implies that γ ∈ I. Hence, since pE ⊂ A, the condition tr(Ax) = {0} implies
that x ∈ pr−1E. Furthermore, since P ⊂ A, the condition tr(Ax) = {0} implies
that x ∈ I ∩ pr−1E = pr−1I = Pe(r−1)+1, as required.

Now suppose x ∈ E is such that tr(Pmx) = {0}. Then tr(A(Pmx)) = {0} so
the case m = 0 implies that Pmx ⊆ Pe(r−1)+1. Now Lemma 2.3, (iii) implies that
x ∈ Pe(r−1)+1−m, as required. �

De�ne the groups

U = U0 = A×, Um = 1 + Pm, for m ≥ 1.

The group U is called a parahoric subgroup of E×. We have a �ltration

U ⊃ U1 ⊃ · · · ⊃ Uer−1 ⊃ Uer = {1},
where the inclusions are strict thanks to Lemma 2.4, (ii). We also de�ne U i = {1}
for i > er.

Since P is a (two-sided) ideal in A, each group Um is normal in U . Moreover, if
1 + x ∈ Um, and 1 + y ∈ Un, then

(1 + x)(1 + y) ≡ 1 + x+ y ≡ (1 + y)(1 + x) (mod Pm+n),

so we have the commutator relation

[Um, Un] ⊆ Um+n.

Thus in particular, the group Um is abelian whenever m ≥ er/2, that is, when
m ≥ d er2 e.

For every m ≥ 1 we have an isomorphism

Um/Um+1 −̃→ Pm/Pm+1, (1 + x)Um+1 7−→ x+ Pm+1,

and since pPm ⊆ Pm+e ⊆ Pm+1, we have an action of or/p ∼= Fq on Pm/Pm+1,
for each m ≥ 0. This makes Pm/Pm+1 a �nite dimensional vector space over the
�nite �eld Fq, where the action of Fq is compatible with the group structure. Hence
Pm/Pm+1 is an elementary abelian group.

By choosing a basis, we may identify V with oNr , V with FNq , E with MN (or), E

with MN (Fq), and E× with Gr. These identi�cations will remain in force through-
out the rest of this paper. From now on, let Ωr ⊂ gr be an orbit under the adjoint
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(conjugation) action of Gr. Write Ω1 for the image of Ωr in g1. We will associate
a certain parahoric subalgebra to Ω1, which will be denoted by Am. Let

h∏

i=1

fi(x)mi ∈ Fq[x]

be the characteristic polynomial of Ω1 (i.e., the characteristic polynomial of any
element in Ω1), where the fi(x) are distinct and irreducible of degree di, for i =
1, . . . , h. This determines a partition of N :

λ = (dm1
1 , . . . , dmh

h ) = (d1, d1, . . . , d1︸ ︷︷ ︸
m1 times

, . . . , dh, dh, . . . , dh︸ ︷︷ ︸
mh times

).

We de�ne Am ⊆ gr to be the preimage of the standard parabolic subalgebra of g1
corresponding to λ (i.e., the block upper-triangular subalgebra whose block sizes
are given by λ, in the order given above). Moreover, we let AM = gr = MN (or) be
the full matrix algebra. Let Pm and PM be the corresponding Jacobson radicals
of Am and AM, respectively. Then Pm is the pre-image under ρr,1 : gr → g1 of the
strict block-upper subalgebra of Am, and similarly PM is the pre-image of 0, that
is, PM = pgr. For ∗ ∈ {m,M} we have the corresponding groups

U∗ = U0
∗ = A×∗ , U i∗ = 1 + Pi

∗, for i ≥ 1,

and the �ltrations

U∗ ⊃ U1
∗ ⊃ · · · ⊃ Ue∗r∗ = {1},

where e∗ = e(A∗) is the number of blocks of the algebra A∗ mod p. Note that
U iM = Ki and eM = 1, while em = m1 + · · ·+mh.

By de�nition, we have AM ⊇ Am, and the label m here stands for �minimal�,
while M stands for �maximal�. From the de�nitions, we have

Um/U
1
m
∼=

h∏

i=1

GLdi(Fq))mi , Am/Pm
∼=

h∏

i=1

Mdi(Fq)mi ,

UM/U
1
M = Gr/K

1 ∼= G1, AM/PM
∼= g1.

Note that if Ω1 has irreducible characteristic polynomial, then Am = AM = gr.
Given an element β ∈ gr we will denote its image in g1 by β̄. Similarly, if

β ∈ Ωr ∩ Am, we will let βm denote the image of β in Am/Pm. Note that by,
for example, the rational Jordan normal form, Ωr ∩ Am is non-empty. Up to Gr-
conjugation we can also arrange the diagonal irreducible blocks of β̄, and hence of
βm in any order. In particular, we can �nd a β ∈ Ωr ∩ Am such that

(2.2) βm = β1
m ⊕ · · · ⊕ β1

m︸ ︷︷ ︸
m1 times

⊕ · · · ⊕ βhm ⊕ · · · ⊕ βhm︸ ︷︷ ︸
mh times

,

where each βim ∈ Mdi(Fq) has irreducible characteristic polynomial fi(x).
There are several equivalent characterisations of regular elements in g1. One of

the simplest is that an element in g1 is regular if its centraliser in g1 has dimension
N (as Fq-vector space). One can also de�ne regular elements in gi for r ≥ i >
1, as those elements whose centraliser in gi has oi-rank N . A result of Hill [8,
Theorem 3.6] implies that an element in gi is regular if and only if its image in g1
is regular.

Lemma 2.6. Let β ∈ Ωr ∩ Am. If β is regular, then CGr
(β) ⊆ A×m.
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Proof. If β is regular, we have CGr
(β) = or[β]×, so β ∈ Am implies that CGr

(β) ⊂
Am, since Am is an algebra. �

Lemma 2.7. We have

|CAm/Pm
(βm)| = qN = |Cg1

(β̄)|.

Proof. The isomorphism Am/Pm
∼=
∏h
i=1 Mdi(Fq)mi , induces an isomorphism

CAm/Pm
(βm) ∼=

h∏

i=1

CMdi
(Fq)(β

i
m)mi ,

so |CAm/Pm
(βm)| = ∏h

i=1 q
dimi = qN . The second equality follows by de�nition of

regularity of β̄. �

Set l = d r2e, l′ = b r2c, so that l + l′ = r. The relations AM ⊇ Am ⊇ Pm ⊇ PM

imply that for every i ≥ 1, Pi
M = pigr is a two-sided ideal in Am. For β ∈ Ωr ∩ A

and ∗ ∈ {m,M}, we can therefore de�ne the following groups

C = CGr (β),

J1
∗ = (C ∩ U1

∗ )Ue∗l
′

∗ ,

H1
∗ = (C ∩ U1

∗ )Ue∗l
′+1

∗ .

Note that J1
M = (C∩K1)Kl′ and H1

M = (C∩K1)Kl, and that both of these groups

are normalised by CKl′ , since C normalises both K1 and Kl′ , and [Kl′ ,K1] ⊆
Kl ⊆ Kl′ . Moreover, we de�ne the group

Jm,M = (C ∩ U1
m)Kl′ .

We have the following diagram of subgroups, where the vertical and slanted lines
denote inclusions (we have only indicated the inclusions which are relevant to us
and repeat the de�nitions of the groups, for the reader's convenience).

CKl′

Jm,M

J1
m J1

M

H1
m

H1
M

Kl

Jm,M = (C ∩ U1
m)K

l′ ,

J1
m = (C ∩ U1

m)U
eml′
m ,

H1
m = (C ∩ U1

m)U
eml′+1
m ,

J1
M = (C ∩K1)Kl′ ,

H1
M = (C ∩K1)Kl.
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We explain the non-trivial inclusions in the above diagram. We have Pm ⊇ PM,
and so U1

m ⊇ K1. By Corollary 2.4, we get

Ueml
′+1

m = 1 + pl
′
Pm ⊇ 1 + pl

′
PM = Kl;

thus H1
m ⊇ H1

M. Moreover,

Ueml
′

m = 1 + pl
′
Am ⊆ 1 + pl

′
AM = Kl′ ,

so Jm,M contains both J1
m and J1

M as subgroups.
The following lemma will be a crucial step in the construction of representa-

tions, and is the main reason why we work with the algebra Am and its associated
subgroups.

Lemma 2.8. Suppose that Ωr consists of regular elements. Then there exists a

β ∈ Ωr such that Jm,M is a Sylow p-subgroup of CKl′ .

Proof. By the rational Jordan normal form, there is a β ∈ Ωr ∩Am. Moreover, any
permutation of the diagonal blocks can be achieved by Gr-conjugation, so there is
a β ∈ Ωr ∩Am such that βm ∈ Am/Pm satis�es (2.2). Assume now that β is chosen
in this way. We have

[CKl′ : Jm,M] =
|CKl′ |/|Kl′ |
|Jm,M|/|Kl′ | =

|C/(C ∩Kl′)|
|(C ∩ U1

m)/(C ∩Kl′)| =
|C|

|C ∩ U1
m|
.

Thus we need to show that C ∩U1
m is a Sylow p-subgroup in C. Since β is regular,

C is abelian, and by Lemma 2.6 we have C ⊆ Um = A×m, so we have

C

C ∩ U1
m

=
C ∩ Um

C ∩ U1
m

.

Then the isomorphism Um/U
1
m
∼=
∏h
i=1 GLdi(Fq)mi induces an isomorphism

C ∩ Um

C ∩ U1
m

∼=
h∏

i=1

CGLdi
(Fq)(β

i
m)mi .

Each βim has irreducible characteristic polynomial over Fq, so Fq[βim]/Fq is a �eld
extension of degree di. Since CGLdi

(Fq)(β
i
m) = Fq[βim]×, we conclude that p does

not divide the order of CGLdi
(Fq)(β

i
m). Therefore, p does not divide the order of

C
C∩U1

m
, so Jm,M is a Sylow p-subgroup of CKl′ . �

We remark that the above lemma holds without the hypothesis that Ωr consists
of regular elements, but the proof is slightly easier in the case of a regular orbit.
Note also that when β is as in the above lemma, Jm,M is in fact normal in CKl′ ,
since C = C ∩ UM normalises Jm,M when C is abelian. Thus Jm,M is the unique

Sylow p-subgroup of CKl′ . We will not need this fact.

3. Characters and Heisenberg lifts

As in the introduction, F denotes the fraction �eld of o. Fix an additive character
ψ : F → C× which is trivial on o but not on p−1 (i.e., ψ has conductor o). For each
r ≥ 1 we can view ψ as a character of the group F/pr whose kernel contains or.
We will use ψ and the trace form (x, y) 7→ tr(xy) on gr to set up a duality between
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the groups Irr(Ki) and gr−i, for i ≥ r/2. For β ∈ MN (or), de�ne a homomorphism
ψβ : Ki → C× by

(3.1) ψβ(1 + x) = ψ($−r tr(β̂x̂)),

where x ∈ pigr, and β̂, x̂ ∈ MN (o) denote arbitrary lifts of β and x, respectively.

The value ψ($−r tr(β̂x̂)) is independent of the choice of lifts, since ψ is trivial
on o. For this reason, we will abuse notation slightly from now on and write

ψ($−r tr(βx)) instead of ψ($−r tr(β̂x̂)). The map β 7→ ψβ is a homomorphism
whose kernel is pr−igr, thanks to the non-degeneracy of the trace form. Hence it
induces an isomorphism

gr/p
r−igr −̃→ Irr(Ki),

where we will usually identify gr/p
r−igr with gr−i. For g ∈ Gr we have

ψgβg−1(1 + x) = ψ($−r tr(gβg−1x)) = ψ($−r tr(βg−1xg)) = ψβ(1 + g−1xg).

Let A,P, and Um,m ≥ 0 be the objects associated to an arbitrary �ag of length e, as
in Section 2. Let n andm be two integers such that e(r−1)+1 ≥ n > m ≥ n/2 > 0.
Then Um/Un is abelian, and we have an isomorphism

Pm/Pn −̃→ Um/Un, x+ Pn 7−→ (1 + x)Un.

Each a ∈ gr de�nes a character gr → C× via x 7→ ψ($−r tr(ax)), and this de�nes
an isomorphism gr → Irr(gr). For any subgroup S of gr, de�ne

S⊥ = {x ∈ gr | ψ($−r tr(xS)) = 1}.
Using the isomorphism gr → Irr(gr), we can identify S⊥ with the group of charac-
ters of gr which are trivial on S.

We generalise the de�nition of ψβ to allow β to lie in an appropriate power of

P. For any β ∈ Pe(r−1)+1−n de�ne a character ψβ : Um → C× by

ψβ(1 + x) = ψ($−r tr(βx)).

Lemma 3.1. Let e(r − 1) + 1 ≥ n > m ≥ n/2 > 0. Then

(i) For any integer i such that 0 ≤ i ≤ e(r − 1) + 1, we have

(Pi)⊥ = Pe(r−1)+1−i.

(ii) The map β 7→ ψβ induces an isomorphism

Pe(r−1)+1−n/Pe(r−1)+1−m −̃→ Irr(Um/Un).

Proof. Let ρr : o→ or be the canonical map. For any x ∈ gr the set$
−rρ−1r (tr(xPi))

is a fractional ideal of o, so by our choice of ψ we have

ψ($−r tr(xPi)) := ψ($−rρ−1r (tr(xPi)) = 1

if and only if $−rρ−1r (tr(xPi) ⊆ o. Thus x ∈ (Pi)⊥ if and only if tr(xPi) = 0 in
or, so (i) follows from Lemma 2.5. Moreover, (i) together with the isomorphism
Pm/Pn ∼= Um/Un implies (ii). �

Let G be a �nite group and N a normal subgroup, such that G/N is an elemen-
tary abelian p-group. Then the group G/N has a structure of Fp-vector space. Let
χ be a one-dimensional representation of N which is stabilised by G. De�ne an
alternating bilinear form

hχ : G/N ×G/N −→ C×, hχ(xN, yN) = χ([x, y]) = χ(xyx−1y−1).
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By bilinearity we simply mean that hχ(xN, yzN) = hχ(xN, yN)hχ(xN, zN) for all
x, y, z ∈ G, and similarly for linearity in the �rst variable. This follows from the
commutator relation [x, yz] = [x, y]y[x, z] and its analogue for the �rst variable.
Note that linearity with respect to scalar multiplication follows from this since for
n̄ ∈ Fp we have n̄(xN) = xnN , for any lift n ∈ Z of n̄.). An easy computation
shows that hχ is well-de�ned, thanks to the stability of χ under G. De�ne the
subspace

Rχ = {xN ∈ G/N | hχ(xN, yN) = 1 for all y ∈ G}.
This is the radical of the form hχ, and we say that hχ is non-degenerate if Rχ = 0.
We will make use of the following result (cf. [3, 8.3.3]):

Lemma 3.2. Assume that the form hχ is non-degenerate. Then there exists a

unique ηχ ∈ Irr(G | χ), and dim ηχ = [G : N ]1/2.

Note that if χ and χ′ are two representations of N such that ηχ = ηχ′ , then by
Cli�ord's theorem, the restriction ηχ|N = ηχ′ |N is a multiple of χ and of χ′, so we
must have χ = χ′.

We will encounter situations where the form hχ is not non-degenerate. In these
cases we will apply the following generalisation, which is a corollary of the above
lemma:

Corollary 3.3. Let G, N and Rχ be as above, and let Rχ be the inverse image

of Rχ under the map G → G/N . Then χ has an extension to Rχ, and for any
extension χ̃ of χ, there exists a unique ηχ̃ ∈ Irr(G | χ̃). Moreover,

dim ηχ̃ = [G : Rχ]1/2.

Proof. By de�nition, χ([Rχ, Rχ]) = 1, so Rχ/Kerχ is abelian and thus χ extends
to Rχ. Let χ̃ be an extension and x ∈ G. Then, for any r ∈ Rχ, we have [x, r] ∈ N ,
so

χ̃([x, r]) = χ([x, r]) = 1.

Hence χ̃(xrx−1) = χ̃(r), that is, x stabilises χ̃. Moreover, Rχ is normal in G since
for any x, y ∈ G, r ∈ Rχ, we have

χ([xrx−1, y]) = χ̃([xrx−1, y]) = χ̃(xrx−1yxr−1x−1y−1)

= χ̃(x−1y−1xrx−1yxr−1) = χ̃(x−1y−1xrx−1yx)χ̃(r−1)

= χ̃(r)χ̃(r−1) = 1.

We thus have a well-de�ned form hχ̃ on G/Rχ, which is non-degenerate. The
remaining statements now follow immediately from Lemma 3.2. �

In the situation of the above corollary, we call ηχ̃ a Heisenberg lift of χ.
We will apply the above results to the group J1

∗ and its normal subgroup H1
∗ ,

for ∗ ∈ {m,M}. We have an isomorphism

J1
∗/H

1
∗ ∼=

Ue∗l
′

∗
(C ∩ Ue∗l′∗ )Ue∗l

′+1
∗

,

and this is a quotient of Ue∗l
′

∗ /Ue∗l
′+1

∗ ∼= A∗/P∗ (where A∗ is the image of A∗
in g1, as in Section 2), with the latter isomorphism being induced by the map

1 + πl
′
x 7→ x̄ + P∗. Since A∗/P∗ is a product of additive groups of matrix rings

over Fq, it is an elementary abelian p-group (where as before p = charFq), and
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in fact has a structure of Fq-vector space. Thus J1
∗/H

1
∗ , being a quotient of an

elementary abelian group, is itself elementary abelian.

4. Construction of regular representations

For any x ∈ gr, let xi denote the image of x in gi, for r ≥ i ≥ 1. We also write x̄
for x1. Recall from the paragraph preceding Lemma 2.6 that a regular element in
gi can be de�ned by the property of having centraliser in gi of oi-rank N . A result
of Hill [8, Corollary 3.7] implies that if βi ∈ gi is regular, then CGi

(βi) = oi[βi]
×.

It follows that if β is regular, then C = CGr
(β) is abelian and the homomorphisms

ρr,i : C → CGi
(βi)

are surjective for every r ≥ i ≥ 1.
Suppose that π is an irreducible representation of Gr. By Cli�ord's theorem,

the restriction of π to the abelian group Kl de�nes an orbit of characters ψβ , and
hence by the results of Section 3, an orbit of elements in gr/p

r−lgr ∼= gl′ under the
conjugacy action of Gr (i.e., the adjoint action). We call π regular if this orbit in
gl′ consists of regular elements.

Fix an orbit Ωl′ ⊂ gl′ consisting of regular elements. We will construct all the
irreducible representations of Gr with orbit Ωl′ . When r is even, the construction
is well known and amounts to taking any β + pl

′
gr ∈ Ωl′ , extending ψβ to CKl′

and inducing to Gr. To show that ψβ extends to CKl′ is straightforward in this
case; see for example [8, Theorem 4.1].

From now on, assume that r ≥ 3 is odd, so that l′ = l − 1. We highlight the
hypotheses that will remain in force throughout this section:

(i) r ≥ 3 is odd,
(ii) β ∈ gr is regular,

(iii) β ∈ Am and the image βm ∈ Am/Pm
∼=
∏h
i=1 Mdi(Fq)mi is

βm = β1
m ⊕ · · · ⊕ β1

m︸ ︷︷ ︸
m1 times

⊕ · · · ⊕ βhm ⊕ · · · ⊕ βhm︸ ︷︷ ︸
mh times

,

where βim ∈ Mdi(Fq) have irreducible characteristic polynomial.

Before presenting the details of the construction, we give an informal overview.
Schematically, the construction is illustrated by the following diagrams (dotted
lines are extensions, dashed are Heisenberg lifts, and the solid one between ηm and
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η is an induction):

CKl′

Jm,M

J1
m J1

M

H1
m

H1
M

Kl

η̂M

η

ηm ηM

θm

θM

ψβ

In
d

∃!

The diagram of representations on the right should be read from bottom to top.
We have seen in Lemma 2.8 that there exists a β ∈ Ωr such that Jm,M is a Sylow

p-subgroup of CKl′ , and �x one such β. We then show that the character ψβ of Kl

has an extension θM to H1
M and that θM extends further to θm on H1

m. Next, we use
Corollary (3.3) to show that there exists a unique representation ηM ∈ Irr(J1

M | θM),
as well as a (non-unique) representation ηm ∈ Irr(J1

m | θm). Moreover, we compute

the dimensions of ηM and ηm. Then we show that η := Ind
Jm,M

J1
m

ηm has the same

dimension as ηM, from which it follows that η is an extension of ηM. We can then
apply a general lemma to conclude that ηM has an extension η̂M to CKl′ . Finally,
we show that by choosing all possible extensions θM of ψβ and all possible extensions

η̂M of ηM, we have constructed all the representations in Irr(CKl′ | ψβ), without

redundancy. Since CKl′ = StabGr (ψβ), a standard result from Cli�ord theory
then yields all the irreducible representations of Gr with orbit Ωr by induction
from CKl′ .

We now give the details and proofs of the construction. Some of the steps can
be carried out for the groups arising from the algebras Am and AM simultaneously.
For this purpose, we will let A denote either Am or AM, and let P be the radical
in A, with e = e(A). The associated subgroups will be denoted by U i, H1, J1.

Lemma 4.1. The character ψβ has an extension θM to H1
M. Moreover, θM has an

extension θm to H1
m.

Proof. By Lemma 3.1 (ii), if we take

m = el′ + 1, n = 2m− 1 = e(r − 1) + 1,

then the coset β + Pel′ de�nes a character on Uel
′+1, trivial on Ue(r−1)+1 by the

same formula as the one de�ning ψβ . Since Pel′ = pl
′
A, we have a map

A/Pel′ −→ gr/p
l′gr,

which sends β+Pel′ to β+ pl
′
gr (note that this is neither surjective nor injective).

Thus the di�erent choices of lift of the latter coset give the di�erent choices of
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extension of ψβ to Uel
′+1. Our element β ∈ A therefore gives rise to an extension

(which we still denote by ψβ) of ψβ to Uel
′+1, de�ned by

ψβ(1 + x) = ψ($−r tr(βx)), for x ∈ Pel′+1.

We now show the existence of the extensions θM and θm. If c ∈ C ∩ U1 and

x ∈ Pel′+1, then

[c, 1 + x] ∈ c(1 + x)c−1(1− x+ Pe(r−1)+2)

= 1 + cxc−1 − x+ Pe(r−1)+2.

Since we have

(4.1) Ue(r−1)+1 ⊆ Kerψβ ,

we obtain

ψβ([c, 1 + x]) = ψ($−r tr(β(cxc−1 − x))) = ψ($−r tr(cβxc−1 − βx)) = 1,

where we have used that c commutes with β.
Thus C ∩ U1 stabilises the character ψβ on Uel

′+1, and since C ∩ U1 is abelian,

this implies that ψβ extends to H1 = (C ∩ U1)Uel
′+1. �

Remark 4.2. The extension θM can be written as a character θ0ψβ , where θ0 ∈
Irr(C ∩K1) is a character which agrees with ψβ on C ∩Kl and

θ0ψβ(zk) := θ0(z)ψβ(k),

for z ∈ C ∩K1 and k ∈ K1. We will use this later in the proof of Lemma 4.9. One
can write θm similarly, but we will not need that.

We �x arbitrary extensions θM and θm as in the above lemma. For ∗ ∈ {m,M},
we will now construct the irreducible representations η∗ of J1

∗ containing θ∗. In
particular, we will show that there exists a unique representation ηM of J1

M con-
taining θM. We will treat both cases simultaneously, denoting either θm or θM by θ.
We need to verify the hypotheses of Corollary 3.3. To this end, �rst note that θ is
stabilised by J1. Indeed, it is enough to show that Uel

′
stabilises θ. For x ∈ Pel′ ,

c ∈ (C ∩ U1) and y ∈ Pel′+1, we have

[1 + x, c(1 + y)] ∈ (1 + x)c(1 + y)(1− x+ x2 + Pe(r−1)+1)(1− y + Pe(r−1)+1)c−1

⊆ (c+ xc− cx+ cy)(1− y)c−1 + Pe(r−1)+1

⊆ 1 + x− cxc−1 + Pe(r−1)+1.

Hence, since ψβ is trivial on Ue(r−1)+1 (see (4.1)) and c commutes with β, we have

θ([1 + x, c(1 + y)]) = ψβ([1 + x, c(1 + y)]) = ψ($−r tr(cβxc−1 − βx)) = 1,

that is, θ is stabilised by the element c(1+y), hence by all of J1. We saw at the end
of Section 3 that J1/H1 is an elementary abelian p-group. De�ne the alternating
bilinear form

hβ : J1/H1 × J1/H1 −→ C×, hβ(xH1, yH1) = θ([x, y]) = ψβ([x, y]).

Let Rβ be the radical of the form hβ , and let Rβ denote the preimage of Rβ under
the map J1 → J1/H1. If we need to specify which parabolic subalgebra A∗ we are
working with, we will write Rβ,∗, Rβ,∗, for ∗ ∈ {m,M}. For our purposes, we need
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to determine the dimension of the unique representation η ∈ Irr(J1 | ψβ), which by

Corollary 3.3 equals [J1 : Rβ ]1/2 = [J1/H1 : Rβ ]1/2.
In order to determine the radical of the form hθ, we need the following result:

Lemma 4.3. Let x, y ∈ J1 and write x = z1(1 + s) and y = z2(1 + t), where

z1, z2 ∈ C ∩ U1 and s, t ∈ Pel′ . Then

θ([x, y]) = ψβ(1 + (st− ts)).

Proof. Note that for any s1, s2 ∈ Pel′ we have z1s1s2 ∈ s1s2 + Pe(r−1)+1 and

z1s1z2s2 ∈ z1(s1 + Pel′+1)s2 ⊆ z1s1s2 + Pe(r−1)+1 ⊆ s1s2 + Pe(r−1)+1.

Thus

[x, y] ∈ z1(1 + s)z2(1 + t)(1− s+ s2 + Pe(r−1)+1)z−11 (1− t+ t2 + Pe(r−1)+1)z−12

⊆ (z1z2 + z1sz2)(1 + t)(1− s+ s2)(z−11 z−12 − z−11 tz−12 + z−11 t2z−12 ) + Pe(r−1)+1

⊆ (1− z1z2sz−11 z−12 + z1z2tz
−1
1 z−12 − ts+ z1sz

−1
1 + st

− z2tz−12 + st− t2 − st+ t2) + Pe(r−1)+1

⊆ 1− z1z2sz−11 z−12 + z1z2tz
−1
1 z−12 + z1sz

−1
1 − z2tz−12 + st− ts+ Pe(r−1)+1.

Using the facts that z1 and z2 commute with β and that Ue(r−1)+1 ⊆ Ker θ, we get

θ([x, y]) = ψβ(1 + (−z1z2sz−11 z−12 + z1z2tz
−1
1 z−12 + z1sz

−1
1 − z2tz−12 + st− ts))

= ψβ(1 + (st− ts)).
�

Note that the above lemma implies that the value of the form hβ on the elements
x = z1(1 + s) and y = z2(1 + t) does not depend on z1, z2 ∈ C ∩ U1. Consider the
map

ρ : Uel
′ −→ Uel

′
/Uel

′+1 −̃→ A/P,

where the isomorphism is given by (1 + $l′x)Uel
′+1 7→ x + P. Let β + P be the

image of β in A/P under this map.

Lemma 4.4. We have

Rβ = (C ∩ U1) · ρ−1(CA/P(β + P)).

Proof. By de�nition, x ∈ Rβ if and only if θ([x, y]) = 1 for all y ∈ J1. Writing
x = z1(1 + s), y = z2(1 + t) as in Lemma 4.3, we have

θ([x, y]) = ψβ(1 + (st− ts)) = ψ($−r tr t(βs− sβ)),

so θ([x, y]) = 1 for all y ∈ J1 is equivalent to ψ($−r tr(Pel′(βs − sβ))) = 1,

that is, βs − sβ ∈ (Pel′)⊥ = Pel′+1 (see Lemma 3.1). The latter is equivalent to

ρ(1+s) ∈ CA/P(β+P) because if we write s = $l′s0, we have ρ(1+s) = s0+P and

βs−sβ ∈ Pel′+1 is then equivalent to βs0−s0β ∈ P, that is, s0+P ∈ CA/P(β+P).

Thus we have shown that x = z1(1 + s) ∈ Rβ if and only if 1 + s ∈ ρ−1(CA/P(β +
P)). �

Lemma 4.5. With notation as above, the following holds:

(i) [J1 : Rβ ] =
∣∣∣ A/P
CA/P(β+P)

∣∣∣.
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(ii) Suppose that A = AM. Then the form hβ on J1
M/H

1
M is non-degenerate.

Thus, for every θM, there exists a unique ηM ∈ Irr(J1
M | θM) and

dim ηM = qN(N−1)/2.

(iii) Suppose that A = Am. Then, for every extension θ̃m of θm to Rβ, there

exists a unique ηm ∈ Irr(J1
m | θ̃m) and

dim ηm =

h∏

i=1

qdimi(di−1)/2.

Proof. By Lemma 4.4, we have

J1/Rβ ∼=
Uel

′

(C ∩ Uel′)ρ−1(CA/P(β + P))
=

Uel
′

ρ−1(CA/P(β + P))

∼= Uel
′
/Uel

′+1

ρ−1(CA/P(β + P))/Uel′+1
∼= A/P

CA/P(β + P)
.

Next, suppose that A = AM = gr. We then have A/P = g1 and β + P = β̄. By
Lemma 4.4, we need to show that ρ−1(Cg1

(β̄)) ⊆ H1, and this holds if and only if
the map

(4.2) CKl′ (β) −→ Cg1
(β̄)

induced by ρ, is surjective. To show the latter, �rst note that the map CKl′ (β)→
Cgl

(βl), 1 + πl
′
x 7→ xl is easily seen to be an isomorphism. Now, Cgl

(βl) is an
ol-module so the map

Cgl
(βl) −→ Cg1

(β̄) ∼= Cgl
(βl)/pCgl

(βl)

given by x 7→ x̄ = x + P is surjective. Hence the map (4.2) is surjective, so the
form hβ is indeed non-degenerate on J1

M/H
1
M. By Lemma 3.2, there exists a unique

ηM ∈ Irr(J1
M | θM) and by (i) together with Lemma 2.7, its dimension is

dim ηM = [J1
M : Rβ,M]1/2 =

∣∣g1/Cg1
(β̄)
∣∣1/2 = qN(N−1)/2.

Finally, suppose that A = Am, and let θ̃m be an arbitrary extension of θm to Rβ .

By Corollary 3.3, there exists a unique ηm ∈ Irr(J1
m | θ̃m) and by (i) together with

Lemma 2.7, its dimension is

dim ηm = [J1
m : Rβ,m]1/2 =

∣∣∣∣
Am/Pm

CAm/Pm
(βm)

∣∣∣∣
1/2

=

(∏h
i=1 q

d2imi

qN

)1/2

=

h∏

i=1

q(d
2
imi)/2

h∏

i=1

q−dimi/2

=

h∏

i=1

qdimi(di−1)/2.

�

Remark 4.6. In the proof of the second part of the above lemma we used the fact
that the map C

U
eMl′
M

(β) −→ CAM/PM
(β̄) induced by ρ is surjective. We remark

that the corresponding map C
Ueml′

m
(β) −→ CAm/Pm

(βm) is not surjective in general.

Consequently, ηm is not the only representation containing θm. This will not matter
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for us, since we will only need the existence of an ηm. However, the uniqueness of
ηM expressed in the above lemma is crucial, because without it we would not be
able to deduce that the representation η de�ned below is an extension of ηM.

Note also that a quicker proof of the non-degeneracy of hβ in the second part of
the lemma is to observe that [J1

M : Rβ,M] = [J1
M : H1

M]. In the above proof, we have
emphasised the surjectivity of (4.2).

We now prove a series of lemmas whose purpose is to show the existence of an
extension of ηM to CKl′ . Once this is achieved, the construction is easily completed.

Lemma 4.7. Let

η := Ind
Jm,M

J1
m

ηm.

Then dim η = dim ηm and thus η is an extension of ηM.

Proof. We �rst need to determine the dimension of the induced representation
Given Lemma 4.5, we only need to compute the index [Jm,M : J1

m]. We claim that

C ∩Kl′ ⊆ Ueml′m . Indeed, we have the relations

C ∩Kl′ = 1 + pl
′
ρ−1r,l (Cgl

(βl)) ⊆ 1 + pl
′
Am,

where the inclusion follows from our assumption that β ∈ Am together with Lemma (2.6),
guaranteeing that ρl,1(Cgl

(βl)) ⊆ Am, and so ρ−1r,l (Cgl
(βl)) ⊆ ρ−1r,1(Am) = Am. We

now have

Jm,M/J
1
m
∼= Kl′

(C ∩Kl′)Ueml
′

m

=
Kl′

Ueml
′

m

,

where the equality follows from the above claim. Furthermore, the map

Kl′

Ueml
′

m

−→ g1/Am, (1 + πl
′
x)Ueml

′
m 7−→ x̄+ Am

(recall that Am is the image of Am in g1) is an isomorphism, and we have

∣∣g1/Am

∣∣ =
qN

2

qN2/2
∏h
i=1 q

d2imi/2
= qN

2/2
h∏

i=1

q−d
2
imi/2.

Thus, by Lemma 4.5, we have

dim η = dim ηm ·
∣∣g1/Am

∣∣ =

h∏

i=1

qdimi(di−1)/2qN
2/2

h∏

i=1

q−d
2
imi/2

= qN(N−1)/2 = dim ηM.

By construction, the representation η contains θM on restriction to H1
M. Hence,

the representation η|J1
M

contains θM on restriction to H1
M. By Lemma 4.5 (ii) ηM

is the unique representation of J1
M which contains θM, so it follows that η contains

ηM on restriction to J1
M. The equality of dimensions dim η = dim ηM then forces

η|J1
M

= ηM, so that η is an extension of ηM. �

Lemma 4.8. Let G be a �nite group, N a normal p-subgroup of G, and P a Sylow
p-subgroup of G. Suppose that χ ∈ Irr(N) is stabilised by G and that χ has an
extension to P . Then χ has an extension to G.
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Proof. By [11, (11.31)], χ will extend to G if it extends to every H ⊆ G such that
H/N is a Sylow subgroup of G/N . By assumption, χ has an extension, say χ̃, to
P , so if Q is any other Sylow p-subgroup of G, then Q = gPg−1 for some g ∈ G,
and so gχ̃ is an extension of χ to Q, because gχ = χ. Suppose now that P ′ ⊆ G is
a subgroup such that P ′/N is a Sylow p′-subgroup of G/N , for some prime p′ 6= p.
Then p does not divide the index [P ′ : N ], so by a theorem of Gallagher (see [6,
Theorem 6] or [11, (8.16)]) χ extends to P ′. Thus χ extends to G. �

Lemma 4.9. We have CKl′ = StabCKl′ (ηM).

Proof. Recall that we saw in Section (2) that H1
M and J1

M are normal in CKl′ .

Let g ∈ CKl′ . Since ηM is the unique representation in Irr(J1
M | θM), we have

g ∈ StabCKl′ (ηM) if and only if g ∈ StabCKl′ (θM), so we need to show that g

stabilises θM. To this end, write g = zu with z ∈ C, u ∈ Kl′ , and x = z′v with
z′ ∈ C ∩K1, v ∈ Kl. Then

gxg−1 = z′ · z([z′−1, u](uvu−1))z−1,

where z([z′−1, u](uvu−1))z−1 ∈ Kl. Write θM = θ0ψβ as in Remark 4.2. Then

θM(gxg−1) = θ0(z′)ψβ(z([z′−1, u](uvu−1))z−1)

= θ0(z′)ψβ([z′−1, u])ψβ(v)

= θM(x)ψβ([z′−1, u]),

where the second equality follows since CKl′ stabilizes ψβ . To show that θM is
stabilized by g it thus remains to show that ψβ([z′−1, u]) = 1. To this end, write

u = 1 + s, with s ∈ pl
′
gr and observe that

[z′−1, u] = z′−1(1 + s)z′(1− s+ s2) = z′−1(1 + s)z′ − s,
where we have used that z′−1sz′s = s2. Thus ψβ([z′−1, u]) = ψ($−r trβ(z′−1sz′ −
s)) = ψ($−r tr(z′−1(βs)z′ − βs)) = 1, as required. �

Theorem 4.10. Suppose that the orbit Ωl′ consists of regular elements and let
β ∈ Ωr ∩ Am. Then, for any extension θM of ψβ, the representation ηM has an

extension η̂M to CKl′ , where C = CGr
(β). Any representation in Irr(Gr | ψβ) is

of the form

π(θM, η̂M) := IndGr

CKl′ η̂M,

for some θM and η̂M, and if another representation π(θ′M, η̂
′
M) ∈ Irr(Gr | ψβ) is

isomorphic to π(θM, η̂M), then θM ∼= θ′M and η̂M ∼= η̂′M.

Proof. The �rst assertion follows from Lemma 4.8, using Lemma 2.8, Lemma 4.9
and Lemma 4.7.

Choose β ∈ Ωr. If G is a �nite group with a normal subgroup N , such that G/N
is abelian and χ ∈ Irr(N) has an extension to G, then any representation in Irr(G |
χ) is an extension of χ; see [11, (6.17)]. Thus, any representation in Irr(H1

M | ψβ) is
of the form θM (i.e., an extension), any representation in Irr(J1

M | θM) is isomorphic

to ηM (by construction) and any representation in Irr(CKl′ | ηM) is of the form η̂M
(i.e., an extension). Thus any representation in Irr(CKl′ | ψβ) is of the form η̂M.
By a standard result from Cli�ord theory of �nite groups [11, (6.11)], this means
that any representation in Irr(Gr | ψβ) is of the form π(θM, η̂M).
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Suppose that π(θM, η̂M) and π(θ′M, η̂
′
M) are isomorphic. By [11, (6.11)] we must

have η̂M ∼= η̂′M. Thus the corresponding representations ηM and η′M are isomorphic,
and since these uniquely determine θM and θ′M, respectively, we must have θM ∼=
θ′M. �

Note that even though η is an extension of ηM to Jm,M and η̂M is an extension of

ηM to CKl′ , we do not know, and do not need to know, whether η̂M is an extension
of η.

5. Concluding remarks

The obstruction to extending a representation in Irr(Kl′ | ψβ) to CKl′ is given
by an element in the Schur multiplier H2(Fq[β̄]×,C×). Takase conjectured that for
p = charFq large enough, this element is trivial; see [23, Conjecture 4.6.5]. Using
our main result, we deduce a strong form of Takase's conjecture, valid for any prime
p (this is also proved, for p 6= 2, in [12]).

Corollary 5.1. Suppose β ∈ gr is regular. Every representation in Irr(Kl′ | ψβ)

extends to CKl′ , and hence Takase's conjecture [23, Conjecture 4.6.5] holds for Fq
of arbitrary characteristic.

Proof. Let σ ∈ Irr(Kl′ | ψβ). It is straightforward (cf. [8, Proposition 4.2]) that the

bilinear form hβ on Kl′/Kl de�ned by ψβ has radical (CGr
(β) ∩Kl′)Kl/Kl. We

have

|(CGr
(β) ∩Kl′)Kl/Kl| = |Cg1

(β̄)| = qN ,

so that by Corollary 3.3, σ has dimension qN(N−1)/2. Let σ̃ ∈ Irr(CKl′ | σ) be a

constituent of IndCK
l′

Kl′ σ. By Theorem 4.10, any representation in Irr(CKl′ | ψβ),

so in particular σ̃, is an extension of some representation in Irr(J1
M | ψβ). Let

ηM ∈ Irr(J1
M | ψβ) be such that σ̃ is an extension of ηM. By Lemma 4.5 dim ηM =

qN(N−1)/2. Thus, σ̃ is an irreducible representation of dimension qN(N−1)/2 whose
restriction to Kl′ has a constituent σ of the same dimension. Thus σ̃ is an extension
of σ. �

In [21] the construction of split regular representations of GL2(or) appealed
to Hill's construction [8, Theorem 4.6]. Since Takase [23] has realised that this
construction does not produce all the split regular representations, one should view
the construction of the current paper as superseding that of [21], while at the same
time unifying the split regular case with the cuspidal.

In [12] the dimensions and multiplicities of the regular representations of GLN (or)
were determined for p 6= 2. This can also be done using Theorem 4.10, and our con-
struction implies that the dimension and multiplicity formulas there remain valid
for p = 2.
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