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Abstract 25 

Dementia with Lewy bodies (DLB) is a serious age-dependent human neurodegenerative disease, 26 

with multiple debilitating symptoms, including dementia, psychosis and significant motor deficits, 27 

but with little or no effective treatments. This comparative ligand autoradiographical study has 28 

quantified histamine H3 receptors (H3R) in a series of major cortical and basal ganglia structures in 29 

human DLB and Alzheimer’s (AD) post-mortem cases using the highly selective radioligand, [
3
H] 30 

GSK189254. 31 

 In the main, the levels of H3 receptor were largely preserved in DLB cases when compared with 32 

aged-matched controls. However, we provide new evidence showing variable levels in the globus 33 

pallidus, and, moreover, raised levels of Pallidum H3 correlated with positive psychotic symptoms, 34 

in particular delusions and visual hallucinations, but not symptoms associated with depression. 35 

Furthermore, no correlation was detected for H3 receptor levels to MMSE or IUPRS symptom 36 

severity.  37 

This study suggests that H3R antagonists have scope for treating the psychotic symptomologies in 38 

DLB and other human brain disorders.  39 

 40 

 41 
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1. Introduction 46 

 47 

Dementia with Lewy bodies (DLB) is the second most prevalent human dementia. This is a 48 

seriously debilitating human disease, with multiple prevalent symptoms, including dementia, 49 

psychosis (hallucinations and fluctuating consciousness) and significant motor deficits, but with 50 

little or no effective treatments [1]. The histaminergic system plays an important role in central 51 

nervous system regulation and behaviour through its role as an autoreceptor, regulating the 52 

synthesis and release of histamine and as a heteroreceptor, negatively regulating the release of a 53 

variety of other key neurotransmitters including acetylcholine, dopamine, glutamate and gamma-54 

aminobutyric acid [2,3,4]; reviewed in [5]. Given its widespread distribution and influence upon 55 

multiple neurotransmitter systems, H3 antagonists are promising clinical candidates for the 56 

treatment of age-related dementias, such as DLB [6,7,8]. 57 

 58 

There are indications that histamine deficits are present in dementias, such as Alzheimer’s Disease 59 

(AD), however it is unknown whether these are specific to certain brain regions, changes in 60 

histamine receptor numbers, or are specific for AD amongst other neurodegenerative disorders. The 61 

importance of the histaminergic system in AD is difficult to assess due to a number of conflicting 62 

reports. For example, histamine levels in AD brains have been reported to be increased in temporal 63 

and frontal cortex, basal ganglia and hippocampus [9]. However, other studies have shown 64 

decreases in histamine content in the hypothalamus, hippocampus and temporal cortex [10, 11]. 65 

Histaminergic cell bodies are also located in the TMN, where neurofibrillary tangles (NFTs) are 66 

also found. NFTs are particularly concentrated in the region containing histaminergic perikarya 67 

compared with surrounding areas [12,13] and together with cholinergic basal forebrain nuclei, the 68 

TMN has been described as an early affected subcortical nucleus for the presence of NFT [14]. The 69 

number of histaminergic cell bodies in the TMN was shown to be similar to that of normal brains 70 

[12]. In contrast, another group showed a significant reduction in large-sized histamine containing 71 

neurons in the TMN where numerous NFTs were found, indicative of a central histaminergic 72 

dysfunction [13]. Histamine decarboxylase (HDC) activity, also a common marker of the 73 

histaminergic system, has been shown to be decreased in AD compared with elderly controls [15]. 74 

Whilst there are conflicting data about the histamine content in the brain of AD patients, one recent 75 

study using a highly selective H3R ligand had shown the level of H3R expression to be unaltered in 76 

the late stages of human AD compared to age matched controls, as well as in TASTPM mice (a 77 

mouse model of AD) compared with wild type mice [6, 16].  78 

 79 
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Understanding the molecular structure of the H3R has increased considerably and a number of H3R 80 

antagonists have been identified and a few (pitolisant and GSK189254) have entered advanced 81 

clinical development focusing on narcolepsy, cognitive and psychotic disorders [8, 18, 19]. The 82 

histaminergic system innervates several structures that are known to be involved in cognition such 83 

as the basal forebrain, cerebral cortex, cingulate cortex, amygdala and thalamus [20]. High levels of 84 

H3R have been shown to be expressed in the cerebral cortex [21], which is densely innervated by 85 

cholinergic neurons. In neuropsychiatric disorders such as AD, attention deficit hyperactivity 86 

disorder (ADHD) and schizophrenia, cognitive deficits play a major role in the disease [22]. 87 

Increased brain histamine is also positively correlated with age and may play a role in decreasing 88 

acetylcholine uptake [23]. It is thought that H3R antagonists may be able to prevent the reduction in 89 

acetylcholine through its heteroreceptor characteristic [24, 25, 26]. H3Rs are also highly expressed 90 

in the basal ganglia in both rodent and human brains [27, 28,29].  91 

 92 

Ligand autoradiography is a very useful technique to define the topology and quantify receptors in 93 

post-mortem brain slices. GSK189254 is derived from a novel benzazepine series of H3R 94 

antagonists [6] that are structurally distinct from other recently described non-imidazole H3R 95 

antagonists. GSK18925 has been shown to significantly improve performance of rats in diverse 96 

cognition paradigms, including passive avoidance, water maze, object recognition and attentional 97 

set shift [4, 5]. The data thus far for H3R antagonists point to a possible therapeutic potential for 98 

diseases where cognitive deficits are already present such as AD and other dementias, including 99 

DLB. These complex brain diseases also display multiple symptoms in addition to dementia which 100 

may be targeted through the histaminergic system. In this present study, [
3
H] GSK189254 was 101 

utilised to quantify levels of cortical and basal ganglia H3Rs in normal human aged post-mortem 102 

brains, and in a series of DLB and AD cases (the latter for comparative purposes) with detailed 103 

connected clinical information.  104 

 105 

 106 

 107 

 108 

 109 

2. Materials & Methods 110 

 111 

2.1 Determining the working concentration of [
3
H] GSK189254 for autoradiography 112 

Saturation binding assays using [
3
H] GSK189254 were performed essentially as described 113 

previously [6], in 50 mM Tris-HCl, pH 7.7 containing 5mM EDTA and a concentration range of 114 
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0.01 – 8 nM for radioligand. Non-specific binding was determined using 1 µM R-α-115 

methylhistamine (RαMeH). The assay was terminated by rapid filtration through a Whatman GF/B 116 

filters pre-soaked in 10mM sodium phosphate dibasic pH 7.4, which were washed (3 X 3ml) using 117 

iced cold 10mM sodium phosphate dibasic pH 7.4, using a Brandell 24-place cell harvester. 118 

[
3
H] GSK189254 bound selectively to the hH3R Vs hH4R, and the two major hH3R isoforms, 119 

namely hH3 445 and hH3 365, transiently expressed in HEK293 cells [6],  displayed very similar KD 120 

values of 0.16 + 0.04 and 0.24 + 0.07 nM, respectively (Supplementary Figure 1). The 121 

concentration of radioligand used was, therefore, selected as approximately 2 x mean KD to ensure 122 

that each autoradiography run detected at least 65% of available receptor binding sites.  123 

 124 

2.2 Human case details and diagnostic criteria 125 

All human brain tissue were obtained from Newcastle Brain Tissue Resource Bank LREC 126 

(Newcastle and Tyneside) with full ethical approval (2002/295). Frozen tissue was collected at 127 

autopsy and 1 cm coronal slices from the left hemisphere were snap frozen in liquid Arcton (ICI) 128 

and stored at -70
o
C. The sections were then stored at -80

o
C. Prior to sectioning, tissue slices were 129 

warmed to 15
o
C and blocks containing the striatum were sub-dissected and mounted onto cryostat 130 

chucks with 8% carboxymethylcellulose. Coronal sections were cryostat sectioned at a thickness of 131 

20 µm using a Brights OTF cryostat onto Vectabond-coated glass slides, air dried for 1-2 hours and 132 

stored at -80
o
C prior to receptor autoradiography.  The right hemisphere was used for 133 

histopathological examination, following formalin fixation and paraffin embedding. Cortical and 134 

hippocampal neurofibrillary tangles were demonstrated using a modification of Palmgren’s silver 135 

technique [30] and the von Braunmühl silver impregnation technique [31] was used to identify 136 

senile plaques in 25 µm thick frozen sections cut from tissue blocks adjacent to those taken for 137 

paraffin processing. Counts of NFTs and neuritic plaque number were made from fields across the 138 

entire cortical ribbon, as described in [32]. Lewy-bodies in the substantia nigra were visualised by 139 

the use of haematoxylin and eosin staining, cortical Lewy-bodies and dystrophic neuritis were 140 

detected using ubiquitin immunohistochemistry on 5 µm thick paraffin embedded sections. 141 

Neurones in the substantia nigra were quantified following cresyl fast violet staining of 20 µm thick 142 

paraffin sections. 143 

Control cases had no history of psychiatric or neurological disorder and had no neuropathological 144 

indications of Lewy-body disease (DLB) or any other neurological disorder.  DLB cases were 145 

clinically diagnosed by the presence of a progressive cognitive impairment seen in conjunction with 146 

at least two of the following symptoms: recurrent visual hallucinations; fluctuating cognition with 147 

pronounced variations in attention and alertness; spontaneous motor features of parkinsonism [33]). 148 

DLB cases were distinguished from AD by the presence of brain stem and cortical Lewy-bodies, 149 
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Lewy neurites in the CA2/3 and endplate segments of the hippocampus [33], and by lower or 150 

moderate Alzheimer-type pathology with fewer NFT than found in AD.  151 

 152 

2.3 Human cases used 153 

The 43 cases selected for this study were cut at the level of the striatum (caudate nucleus and 154 

putamen) corresponding to coronal brain levels 9-15 using the Coronal Map of Brodmann Areas in 155 

the human Brain [34]. Of the 43 cases, 12 were control cases, 16 DLB cases and 15 AD cases 156 

(Table 1). For each case 5 replicates were used to measure 3 total and 2 non-specific radioligand 157 

binding.  158 

 159 

Table 1 160 

Summary of 43 human cases:  161 

 n = 

Total  Females  Males 

Age (years) 

Range    Mean    SD 

PM Delay (hours) 

Range   Mean   SD 

Control 

DLB 

AD 

  12           7              5 

  16           8              8 

  15           9              6 

70-91     80.92     6.97 

64-87     77.13     7.19 

74-91     83.27     4.53 

10-96    42         22.44 

 4-60    31.56    18.18 

 4-82    33.40    21.69 

 162 

Summary of the 43 human cases chosen for the study. PM delay = post mortem delay, that is, time 163 

between death and freezing of the tissue to allow for post-mortem examination.  164 

 165 

No significant differences were seen with age or PM delay in these cases (p > 0.05). No gross 166 

significant differences were seen between the male and female cases in respective groups (p >0.05 167 

(not shown) 168 

 169 

2.4 In vitro Autoradiography of human brain tissue using [
3
H] GSK189254  170 

The autoradiography method used was essentially as described previously [6]. In brief, human brain 171 

sections were left to equilibrate to room temperature for 1 hour before the protocol commenced. 172 

Human sections were incubated in (50mM Tris, 5mM EDTA pH 7.7) containing 2 X KD 173 

(approximately 0.5 nM) [
3
H] GSK189254 (specific activity = 81Ci/mmol, stored at -20

o
C, gift from 174 

Dr Medhurst (GSK, Harlow, UK) for 1 hour at RT, until equilibrium is reached. Non-specific 175 

binding was defined using 10 µM unlabelled RαMHA. The reaction was terminated by five 3 176 

minute washes in 50 mM Tris, 5 mM MgCl pH 7.7, at 4
o
C and a final wash in dH2O at 4

o
C. 177 

Sections were left to dry in a stream of cold air for 1 – 2 hours. The sections were then transferred 178 

to X-ray cassettes, each including tritium autoradiographical microscale as calibration standards, 179 
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and exposed against tritium-sensitive hyperfilm for 6 weeks at 4
o
C.  The exposed films were then 180 

developed in D-19 developer (Kodak, UK) for 5 minutes at RT, fixed for 6 minutes in Unifix 181 

(Kodak, UK), washed under running water for 20 minutes and air-dried.   182 

 183 

2.5 Image Analysis 184 

The resulting brain images on the film were captured using a Dage 72 MTI CCD72S video camera 185 

and were quantitatively analysed by computer-assisted densitometry using Microcomputer Imaging 186 

Device (MCID Elite) version 7.0 software from imaging research Inc., Ontario, Canada. The 187 

radioactive Tritium standards were used to calculate a standard curve for each autoradiogram, 188 

which allowed the conversion from optical density values to units of concentrations for each brain 189 

region analysed. Non-specific binding tissue sections were present on the same film as each of the 190 

corresponding total binding tissue sections for the same case. Specific binding was determined by 191 

subtracting mean non-specific binding from mean total binding. Brain structures were identified by 192 

reference to the atlas of the Human Brain [34] and the mean and standard deviations for each brain 193 

structure in each section were calculated. Inter-assay variability was reduced by using ligand 194 

concentrations that were at least twice the ligand affinity, using ligand from the same batch for each 195 

autoradiographical run, and by standardising each film using calibration microscales. All sections 196 

were then re-analysed and results confirmed by digital autoradiography using a Beta-Imager 2000 197 

instrument (Biospace, Paris, France), radioactivity was measured by counting the number of β 198 

particles from delineated areas and the results are expressed  as mean specific binding counts per 199 

minute per square millimetre (cpm/mm
2
; n = 12-16 cases per group). 200 

 201 

2.6 Symptom Analysis 202 

2.6.1 The Mini Mental State Examination (MMSE) 203 

The MMSE, validated and widely used since its creation in 1975, is an effective tool for assessing 204 

cognitive mental status. The MMSE is used to detect cognitive impairment and monitor response to 205 

treatment. It is an eleven question test covering five areas of cognitive function: orientation, 206 

attention/ calculation, recall and language, and the ability to follow simple verbal and written 207 

commands [35]. A score of 23 or below, from a possible 30 is indicative of cognitive impairment. 208 

The test is effective but does have limitations, for example, patients who are hearing and visually 209 

impaired or who have low English literacy, or with communication disorders may perform poorly 210 

even when cognitively intact [35]. The test provides a total score that places the individual on a 211 

scale of cognitive function. The values used in this were those taken at the last assessment before 212 

death of the patient.  213 

 214 
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2.6.2 Unified Parkinson Disease Rating Scale (UPDRS)    215 

The UPDRS is a rating tool to follow the longitudinal course of PD. It is made up of the 1) 216 

Mentation, Behaviour and Mood, 2) Activities of Daily Living (ADL) and 3) Motor sections. These 217 

are evaluated by interview. Some sections require multiple grades assigned to each extremity. A 218 

total of 199 points are possible, where 199 represent the worst (total) disability, and 0 represents no 219 

disability [36]. The values used in this study were those taken at the last assessment before death of 220 

the patient. 221 

 222 

Estimated lines of best fit for MMSE and UPDRS correlations were produced using GraphPad 223 

Prism and are represented on each graph, indicating any changes in binding levels in each tissue 224 

with increasing clinical score. The significance of the regression was determined from the generated 225 

p value, where p<0.05 was considered to show a significant linear relationship between clinical 226 

score and binding level.  227 

 228 

1.6.3. Other Symptom Analysis 229 

Data relating to depression, delusions, dementia and visual hallucinations experienced by each 230 

subject in life were also studied. The severity of the symptoms experienced were measured on the 231 

following scale, 0 = none, 1 = mild, 2 = severe, and are indicative of the last assessment before 232 

death of the subject. In each case and in each tissue investigated, attempts were made to correlate 233 

the specific binding levels of [
3
H] GSK189254 data with a range of relevant clinical data scores. 234 

The depression, delusion and visual hallucination scores were displayed: 0 no symptoms and 1+ 235 

showing symptoms, giving the mean score + SD against binding levels in cpm/mm
2
.  236 

 237 

2.7 Statistical Analysis  238 

Statistical analysis performed involved correlation analysis and students unpaired t-test, to analyse 239 

individual regions of the brain. Graphs and one-way ANOVA with appropriate post-hoc test were 240 

constructed using GraphPad Prism version 4. Statistical significance was set at p<0.05.  241 

 242 

 243 

244 
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 245 

2. Results 246 

 247 

3.1 Human H3R Pharmacology of [
3
H] GSK189254 248 

 249 

 The selectivity of [
3
H] GSK189254 for the human H3R 445 in comparison to the closely related 250 

human H4R 390 subtype was investigated. No significant binding was observed for the hH4 receptor 251 

(Supplementary Figure 1) Moreover, very similar Kd values (ca. 0.3 nM) for [
3
H] GSK189254 252 

were observed with two of the most common, in cortical-striatal regions, human H3R isoforms, H3R 253 

445 and H3R 365 expressed alone or in combination in HEK293 cells (Supplementary Figure 1).  254 

A representative digital photographic examplar of specific [
3
H] GSK189254 binding shows the high 255 

levels of specific binding in the human brain slice. Very low non-specific binding (< 5%) was 256 

achieved with the methodology utilised in this study. High binding levels were detected in various 257 

cortical (insular, anterior cingulate) and striatal (caudate, putamen, globus pallidus, nucleus 258 

accumbens) regions (Supplementary Figure 1) all relevant to symptomology of DLB. 259 

 260 

3.2 Age-dependence of [
3
H] GSK189254 binding in control and dementias 261 

 262 

DLB cases were first examined for [
3
H] GSK189254 binding levels in the various cortical and 263 

striatal brain regions spanning an age range of 60-80 years. There were no significant age-264 

dependent changes in all brain regions analysed although individual variation was clear (p > 0.1 in 265 

all areas) (Figure 1). A similar lack of change was observed in both control and AD cases over the 266 

age-range explored (not shown) 267 

 268 
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Figure 1: Age-dependent specific binding of [
3
H] GSK189254 in DLB cases (n=16) in caudate, 270 

putamen, anterior cingulate cortex, insular cortex, nucleus accumbens and globus pallidus. No 271 

significant change in [
3
H] GSK189254 binding levels was see with the brain structures investigated 272 

(n = number of individual patient cases) 273 

 274 

3.3 [
3
H] GSK189254 binding levels in control and dementia cases 275 

 276 

As there were no clear changes in [
3
H] GSK189254 binding levels across the age-range, the data 277 

sets were pooled and a comparison made between controls and the two dementias. No significant 278 

differences were observed in the mean binding densities of [
3
H] GSK189254 binding in all brain 279 

regions analysed (Figure 2). The data were further analysed for gender differences (not shown), 280 

similar levels of binding was seen in both female and male cohorts in all brain regions, apart from 281 

minor changes in the globus pallidus, indicating little or no evidence for gender bias.  282 

 283 



 

 11 

Caudate

Control AD DLB
0.0

0.2

0.4

0.6

0.8

1.0

n=11 n=15
n=16

Disease state

S
p

e
c
if

ic
 b

in
d

in
g

 c
p

m
/m

m
2

Putamen

Control AD DLB
0.0

0.2

0.4

0.6

0.8

1.0

n=12
n=14 n=16

Disease state

S
p

e
c
if

ic
 b

in
d

in
g

 c
p

m
/m

m
2

Cingulate Cortex

Control AD DLB
0.0

0.2

0.4

0.6

0.8

1.0

n=8 n=12 n=12

Disease state

S
p

e
c
if

ic
 b

in
d

in
g

 c
p

m
/m

m
2

 Insular Cortex

Control AD DLB
0.0

0.2

0.4

0.6

0.8

1.0

n=9
n=14 n=16

Disease state

S
p

e
c
if

ic
 b

in
d

in
g

 c
p

m
/m

m
2

external Globus Pallidus

Control AD DLB
0.0

0.2

0.4

0.6

0.8

1.0
n=7

n=8
n=10

Disease state

S
p

e
c
if

ic
 b

in
d

in
g

 c
p

m
/m

m
2

internal Globus Pallidus

Control AD DLB
0.0

0.2

0.4

0.6

0.8

1.0
n=6

n=6

n=9

Disease state

S
p

e
c
if

ic
 b

in
d

in
g

 c
p

m
/m

m
2

 284 

Nucleus Accumbens

Control AD DLB
0.0

0.2

0.4

0.6

0.8

1.0

n=5
n=7 n=6

Disease state

S
p

e
c
if

ic
 b

in
d

in
g

 c
p

m
/m

m
2

Globus Pallidus

Control AD DLB
0.0

0.2

0.4

0.6

0.8

1.0

n=10

n=8

n=7

Disease state

S
p

e
c
if

ic
 b

in
d

in
g

 c
p

m
/m

m
2

 285 

Figure 2: [
3
H] GSK189254 specific binding (cpm/mm

2
) densities (mean + SEM for n individual 286 

patient cases) for pooled Control, DLB and AD cases for (A) Caudate, (B) Putamen, (C) Cingulate 287 

cortex, (D) Insular cortex, (E) external Globus Pallidus, (F) internal Globus Pallidus. No significant 288 

differences in binding levels was observed in the brain structures investigated. 289 

 290 

 291 

3.4 Correlation of [
3
H] GSK189254 binding levels to cognitive and motor deficits 292 

A B
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 293 

The clinical data corresponding to DLB and AD cases summarised in Table 1 were further analysed 294 

to determine if there were any correlation between [
3
H]GSK189254 binding and MMSE (mini 295 

mental state examination) (Figure 3) and UPDRS scores (Unified Parkinson disease rating scale) 296 

(Figure 4). There was no significant correlation in the binding densities of [
3
H] GSK189254 with 297 

MMSE score (p > 0.5) in all areas in DLB cases. There was also no significant correlation in the 298 

binding densities of [
3
H] GSK189254 with MMSE score in AD cases analysed in parallel (p > 0.2 299 

in all areas) (Supplementary Figure 2). 300 
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 301 

Figure  3: MMSE Scale against specific binding cpm/mm
2
 of [

3
H] GSK189254 in DLB cases in 302 

(A) Caudate, (B) Putamen, (C) Cingulate cortex, (D) Insular cortex, (E) External globus pallidus, 303 
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(F) Internal globus pallidus. No significant relationship was see with the brain structures 304 

investigated (each point is an individual DLB patient case) 305 

 306 

Moreover, there were also no significant differences in the binding densities of [
3
H] GSK189254 307 

with increased UPDRS score in DLB (Figure 4) and AD cases (Supplementary Figure 3) 308 

 309 
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 310 

Figure 4 Unified Parkinson Disease Rating Scale against specific binding cpm/mm
2
 of [

3
H] 311 

GSK189254 in DLB cases in (A) Caudate, (B) Putamen, (C) Cingulate cortex, (D) Insular cortex, 312 

(E) External globus pallidus, (F) Internal globus pallidus. Each point is an individual DLB patient 313 

case. 314 

A B

 
A  

C D 

E F 



 

 14 

 315 

3.5 Correlation of [
3
H] GSK189254 binding levels to affective and psychotic deficits 316 

 317 

In many cases investigated, clinical information relating to depression and psychosis symptoms 318 

were recorded. There were no significant differences between the H3R binding densities in DLB 319 

(Figure 5) and AD cases (Supplementary Figure 3). with and without depression in all brain 320 

structures investigated  321 

 322 
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Figure 5: Correlation of Depression score against specific binding cpm/mm
2
 of [

3
H] GSK189254 in 334 

DLB cases in (G) Nucleus Accumbens, (H) combined Globus Pallidus. No significant correlation 335 

was observed between [
3
H] GSK189254 binding levels and depression scores in all brain structures 336 

investigated. N = number of individual Disease cases. 337 

 338 

Similarly, there were no significant differences between the H3R binding densities in DLB cases 339 

with and without severe delusions, except in the globus pallidus where a significant increase in H3R 340 

binding was observed in cases with severe delusions (p<0.01) (Figure 6).  341 
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Figure 6: Correlation of delusion score against specific binding cpm/mm
2
 of [

3
H] GSK189254 in 352 

DLB cases in (G) Nucleus Accumbens, (H) combined Globus Pallidus. A significant elevation of 353 

[
3
H] GSK189254 binding sites in the globus pallidus was observed in DLB cases with severe 354 

delusion compared to cases lacking delusions (p < 0.05). No significant relationship was oberved 355 

with the other brain structures investigated. (n = number of individual patient cases). 356 

 357 

There were no significant differences between the H3R binding densities and severity of visual 358 

hallucinations, although there is an increased H3R binding in the globus pallidus associated with 359 

severe visual hallucinations. 360 
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Figure 7: Visual hallucination score against specific binding cpm/mm
2
 of [

3
H] GSK189254 in DLB 363 

cases in (G) Nucleus Accumbens, (H) combined Globus Pallidus. A significant elevation of [
3
H] 364 

GSK189254 in the globus pallidus was observed in DLB cases with visual hallucinations (p < 365 

0.05). No significant relationship was see with the other brain structures investigated (n = number 366 

of individual patient cases) 367 

 368 

 369 

Overall H3R binding in both AD and DLB cases does not show any correlation with MMSE, 370 

UPDRS, and depression symptoms in cortical or striatal structures in the human CNS. In contrast, 371 

increased H3R binding positively correlated with increased severity of psychotic symptoms 372 

(delusions and visual hallucinations) in the globus pallidus in both DLB and AD (Supplementary 373 

Figure 4 and 5) cases. 374 

 375 

3. Discussion and Conclusion 376 

 377 

The high affinity and selective H3R antagonist/inverse agonist [
3
H] GSK189254 provides an ideal 378 

tool to visualise and allow quantification of the human histamine H3R. The ligand displays a high 379 

affinity for two of the most common human H3R isoforms, and also very low non-specific binding 380 

properties, which makes it an ideal ligand autoradiographical tool and a vast improvement on 381 

previously utilised radioligands (eg. RαMethylhistamine and clobenpropit [37]. A range of brain 382 

structures implicated in the characteristic symptoms of DLB and AD were investigated. The 383 

striatum has a well-known role in planning and modulation of movement pathways, but is also 384 

involved in a variety of other cognitive processes involving executive function. The cerebral cortex 385 

is involved in many complex brain functions including memory processing, attention, perceptual 386 

awareness, language and consciousness. More specifically, the anterior cingulate cortex and globus 387 

pallidus are thought to be major neuroanatomical interface between emotion and cognition, and the 388 

insular cortex is believed to process convergent information to produce an emotionally relevant 389 

context for sensory experience. The main focus of this present study was to determine any changes 390 

in the H3R in relation to age and gender in control, DLB and AD cases, and relationship to specific 391 

symptoms displayed by the individuals. Several lines of evidence suggest that manipulation of the 392 

histamine system may alleviate some of the clinical symptoms of AD and DLB. H3R blockade with 393 

antagonist/ inverse agonists results in the up-regulation of several neurotransmitters which have 394 

been shown to have positive affects upon cognitive deficits in several animal models of dementia 395 

(reviewed in [8] and [11].  396 
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Previous ligand autoradiography studies using less selective H3R radioligands have reported high 397 

H3R densities in the internal and external segments of the globus pallidus, caudate, putamen and 398 

nucleus accumbens with moderate levels in the anterior cingulate and insular cortices [38,39] which 399 

concurs well with the present study. Furthermore, in this present study, no significant differences 400 

were observed with age although this was only over the restricted 60-80 age range; changes prior to 401 

60 years of age may have occurred and require further investigation. Using [
3
H] clobenpropit it was 402 

also reported that no significant age-related changes in H3R expression in the basal ganglia occurred 403 

in normal ageing, nor did receptor density differ significantly between male and female cases [37]. 404 

Therefore, H3R levels does not appear to be grossly altered in the latter stages of normal aging.  405 

 406 

H3R binding levels were next determined in DLB to establish whether disease state alters receptor 407 

levels.  H3R binding densities in both cortical and striatal regions in DLB human cases showed no 408 

significant differences in ligand binding with age, which supported previously published data 409 

suggesting that the H3R is preserved in two common age-related dementias, namely AD and 410 

vascular dementias, in other cortical and limbic regions [40]. This was also confirmed in this 411 

present study with different AD cases and different cortical brain structures. Overall, these data 412 

suggest that there is no gross decline in H3R population between control and disease cases, 413 

providing further evidence for H3R preservation across a range of neurodegenerative diseases. 414 

Preclinical trials have already alluded to the prospect of H3R antagonists as a treatment for 415 

cognitive impairment. We provide further evidence showing preservation of H3Rs in many cortical 416 

and striatal brain regions in AD but also in DLB, promoting the H3R as a viable general target in 417 

treating a range of human dementias. This has yet to be realised in the clinic.  418 

The data set produced was further interrogated with respect to selective symptoms present in the 419 

dementia cohorts prior to death and relationship to H3R expression.  The H3R binding levels were 420 

correlated with symptom severity scores from various validated clinical tests. There was no 421 

correlation between H3R binding levels and MMSE or UPDRS scores in both DLB and AD cases, 422 

indicating that the H3R expression levels in the brain structures investigated do not influence the 423 

severity of cognitive and mobility impairment, respectively. The latter is in contrast with reported 424 

higher H3R binding levels observed in the motor loop structures, substantia nigra and ventral 425 

striatum in PD animal studies (eg. [41]). These translational discrepancies highlight the importance 426 

of promoting more human postmortem and live imaging brain studies. There was a modest overall 427 

increase in H3R binding sites with decrease in MMSE score indicative of cognitive function. The 428 

increase in H3R binding maybe acting as a compensatory mechanism to counteract changes seen 429 

elsewhere in the histaminergic system in severe AD and DLB such as a decrease in frontal cortex 430 

H1R in AD [42], and reduced H2R expression in the hippocampus in both AD and DLB cases [35]. 431 
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The functional consequence of increased H3R density could be a further decrease in cognitive 432 

neurotransmitters and hence further exacerbation of cognitive deficits, and so would not be a 433 

positive compensatory effect.  Alternatively, the increase in H3R binding in brains of individuals 434 

with more severe dementia could be simply related to loss of cholinergic neurons. Loss of 435 

cholinergic neurons in the basal forebrain is one of the most prominent and consistent events 436 

occurring in AD [43]. These data support previous literature indicating that higher H3R binding 437 

correlated with more severe dementia (MMSE) in AD [16], but this was more pronounced in the 438 

pre-frontal cortex.  439 

 440 

Now to consider other symptoms present in many of the cases studied. There was no correlation 441 

between H3R binding and severity of depression in DLB and AD cases, suggesting that the H3R 442 

does not play a major role in depression symptoms associated with AD and DLB. This is consistent 443 

with recent studies in depressed and bipolar patients [44, 45]. This lack of correlation held for most 444 

brains studied herein in terms of the psychotic symptoms. However, an interesting exception was 445 

the globus pallidus, where H3R binding levels positively correlated with presence of significant 446 

psychotic symptoms, particularly levels of delusion and, to a lesser extent visual hallucinations, in 447 

both DLB and AD cases.  DLB cases with moderate to high delusion and visual hallucination scores 448 

displayed approximately 40% and 22% higher globus pallidus H3R binding densities, respectively, 449 

in comparison to cases lacking such psychotic symptoms. A similar trend was present in AD cases 450 

with moderate to high delusion and visual hallucination scores displayed approximately 37% and 451 

14% higher H3R binding densities, respectively in comparison to cases lacking such psychotic 452 

symptoms. It has been previously reported that the globus pallidus is spared of pathology in Lewy 453 

body diseases, DLB and PDD [46]. However, the volume of the human globus pallidus has also 454 

been positively correlated with the severity of global psychotic symptoms, as measured by both the 455 

Scale for the Assessment of Negative Symptoms and Positive Symptoms [47], which may account 456 

for this apparent increase in the H3R.  This finding was more profound in the DLB cases than AD 457 

cases and this is to be expected since DLB cases have generally more pronounced psychotic 458 

symptomology than AD cases. H3R expression has been shown to be altered in patients with 459 

Schizophrenia and is thought to be involved in the underlying neuropathology [48]. The study 460 

showed significantly higher histamine H3R radioligand binding sites in the prefrontal cortex of the 461 

schizophrenic group and bipolar subjects with psychotic symptoms, and higher H3R binding 462 

correlated with psychotic symptoms, as seen in this present study [48]. H3Rs in the human 463 

prefrontal cortex is thought to be involved in the modulation of cognition and emotional behaviours, 464 

and this is supported by findings in animals that H3R antagonists enhance prepulse inhibition and 465 

cognitive performance [49-51]. Early promise with pitolisant, a H3R antagonist/inverse agonist for 466 
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the psychotic symptoms in schizophrenic patients [18, 19], has not been confirmed with another 467 

H3R antagonist, ABT-288 [17], with a distinct pharmacokinetic profile. Such studies are still 468 

lacking, however, in Lewy body dementia patients, DLB and PDD. The main limitation common to 469 

this type of study lies in the relatively small number of cases investigated. The quality of the case 470 

tissue and respective clinical information from a leading DLB brain bank centre is a strength of this 471 

study, but naturally, further studies are required to confirm these interesting findings utilizing cases 472 

from other international brain banks. Furthermore, future studies are also required to probe other 473 

key brain structures implicated in psychotic symptoms in DLB and PDD cases. 474 

In conclusion, the key novel findings were the general preservation or elevated levels of the H3R in 475 

both normal ageing humans and in the two major human dementia disorders in a variety of cortical 476 

and striatal brain structures. This study reports, for the first time, the globus pallidus as a potential 477 

new player in the neuropathology of Dementias, particularly those with psychotic symptomologies 478 

such as DLB, and as a potentially new target for histaminergic clinical manipulation. 479 
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Figure 1: Age-dependent specific binding of [
3
H] GSK189254 in DLB cases (n=16) in 

caudate, putamen, anterior cingulate cortex, insular cortex, nucleus accumbens and globus 

pallidus. No significant change in [
3
H] GSK189254 binding levels was see with the brain 

structures investigated (n = number of individual patient cases) 
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Figure 2: [
3
H] GSK189254 specific binding (cpm/mm

2
) densities (mean + SEM for n 

individual patient cases) for pooled Control, DLB and AD cases for (A) Caudate, (B) 

Putamen, (C) Cingulate cortex, (D) Insular cortex, (E) external Globus Pallidus, (F) internal 

Globus Pallidus. No significant differences in binding levels was observed in the brain 

structures investigated. 
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Figure  3: MMSE Scale against specific binding cpm/mm
2
 of [

3
H] GSK189254 in DLB cases 

in (A) Caudate, (B) Putamen, (C) Cingulate cortex, (D) Insular cortex, (E) External globus 

pallidus, (F) Internal globus pallidus. No significant relationship was see with the brain 

structures investigated (each point is an individual DLB patient case) 
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Figure 4 Unified Parkinson Disease Rating Scale against specific binding cpm/mm
2
 of [

3
H] 

GSK189254 in DLB cases in (A) Caudate, (B) Putamen, (C) Cingulate cortex, (D) Insular 

cortex, (E) External globus pallidus, (F) Internal globus pallidus. Each point is an individual 

DLB patient case. 
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Figure 5: Correlation of Depression score against specific binding cpm/mm
2
 of [

3
H] 

GSK189254 in DLB cases in (G) Nucleus Accumbens, (H) combined Globus Pallidus. No 

significant correlation was observed between [
3
H] GSK189254 binding levels and depression 

scores in all brain structures investigated. N = number of individual Disease cases. 
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Figure 6: Correlation of delusion score against specific binding cpm/mm
2
 of [

3
H] 

GSK189254 in DLB cases in (G) Nucleus Accumbens, (H) combined Globus Pallidus. A 

significant elevation of [
3
H] GSK189254 binding sites in the globus pallidus was observed in 

DLB cases with severe delusion compared to cases lacking delusions (p < 0.05). No 

significant relationship was oberved with the other brain structures investigated. (n = number 

of individual patient cases). 
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Figure 7: Visual hallucination score against specific binding cpm/mm
2
 of [

3
H] GSK189254 

in DLB cases in (G) Nucleus Accumbens, (H) combined Globus Pallidus. A significant 

elevation of [
3
H] GSK189254 in the globus pallidus was observed in DLB cases with visual 

hallucinations (p < 0.05). No significant relationship was see with the other brain structures 

investigated (n = number of individual patient cases) 
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Table 1 

Summary of 43 human cases:  

 n = 

Total  Females  Males 

Age (years) 

Range    Mean    SD 

PM Delay (hours) 

Range   Mean   SD 

Control 

DLB 

AD 

  12           7              5 

  16           8              8 

  15           9              6 

70-91     80.92     6.97 

64-87     77.13     7.19 

74-91     83.27     4.53 

10-96    42         22.44 

 4-60    31.56    18.18 

 4-82    33.40    21.69 

 

Summary of the 43 human cases chosen for the study. PM delay = post mortem delay, that is, 

time between death and freezing of the tissue to allow for post-mortem examination.  
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Supplementary Figure 1 

A. Selective binding to hH3R. [3H] GSK189254 (1 nM) binding to mock transfected 

HEK293 cells, hH3R and hH4R respectively. Non-specific binding was defined using 

10µM R-α-methylhistamine 

B. Representative autoradiograms of human brain slices (87 years, female). (A) Total 

binding [3H] GSK189254 (0.5 nM), (B) Non-specific binding [3H] GSK189254. Non-

specific binding defined using 10µM R-α-methylhistamine. 
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Supplementary Figure 2: Mini mental state examination score against specific binding 

cpm/mm2 of [3H] GSK189254 in AD cases in (A) Caudate, (B) Putamen, (C) Cingulate cortex, 

(D) Insular cortex, (E) external Globus Pallidus, (F) internal Globus Pallidus. No significant 

relationship was seen with the brain structures investigated. Each point is an individual patient 

case. 
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Supplementary Figure 3  Unified Parkinson Disease Rating Scale data against specific 

binding cpm/mm2 of [3H] GSK189254 in AD cases in (A) Caudate, (B) Putamen, (C) Cingulate 

cortex, (D) Insular cortex, (E) external Globus Pallidus, (F) internal Globus Pallidus. No 

significant relationship was see with the brain structures investigated. Each point is an 

individual patient case. 
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Supplementary Figure 4: Depression score against specific binding cpm/mm2 of [3H] 

GSK189254 for AD cases in (A) Caudate, (B) Putamen, (C) Cingulate cortex, (D) Insular 

cortex. No significant differences were observed. 
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Supplementary Figure 5: Correlation of depression, delusions and Visual hallucination scores 

against specific binding [3H] GSK189254 binding for AD cases in Globus Pallidus (n = 2-6 

individual cases). There was a trend for elevated levels related to delusions, but not formally 

analysed due to small numbers of cases.  
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