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We write down a theory for non-Abelian superfluids with a partially broken (semisimple) Lie group. We
adapt the off-shell formalism of hydrodynamics to superfluids and use it to comment on the superfluid
transport compatible with the second law of thermodynamics. We find that the second law can be also used
to derive the Josephson equation, which governs dynamics of the Goldstone modes. In the course of our
analysis, we derive an alternate and mutually distinct parametrization of the recently proposed
classification of hydrodynamic transport and generalize it to superfluids.
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I. INTRODUCTION

Hydrodynamics is the study of universal low energy
fluctuations of a quantum system near thermodynamic
equilibrium. Any quantum system in this regime, called
a fluid, can be characterized by a set of transport coef-
ficients such as pressure, viscosity and conductivity. When
a part of the global symmetry of the microscopic theory is
spontaneously broken in the ground state, low energy
fluctuations can also contain massless Goldstone modes
[1] corresponding to the broken symmetry. Therefore, the
associated fluid, commonly known as a superfluid [2–4],
contains many new transport coefficients in its spectrum.
Superfluidity with a broken U(1) was first observed in
liquid 4He [5,6], which since then has been well explored in
the literature, at least up to first order in derivatives (see e.g.
Refs. [7,8]). In recent years, non-Abelian superfluids have
also started to attract some attention (see Ref. [9] and
references therein) in relation to p-wave superfluidity
observed in liquid 3He [10,11].
The goal of this paper is to set up a theory for superfluids

with an arbitrarily broken internal symmetry, which has not
been formalized before, and explore the constraints imposed
upon it by the second law of thermodynamics. We will also
show how a mild modification to the local statement of the
second law leads to a derivation of the Josephson equation,
which governs dynamics of the Goldstone modes. This
equation has been imposed by hand in most previous
treatments of superfluids. While addressing these questions,
wewill propose a natural andmutually distinct classification
of the entire (super)fluid transport, which in the ordinary
fluid limit gives a refined parametrization of the classification
proposed by Refs. [12,13].

II. SPONTANEOUS SYMMETRY BREAKING

Let us start with a quick recap of spontaneous symmetry
breaking; details can be found in Sec. 19 of Ref. [14].

Consider a microscopic theory invariant under spacetime
translations and action of a spacetime invariant semisimple
Lie group G (with Lie algebra ig). Let ψ be a field in the
theory transformingunder some unitary representationDðGÞ
ofG, i.e. under a g ∈ G transformationψ → DðgÞψ .ψ is said
to spontaneously break the symmetry from G to its Lie
subgroupH ⊂ G (with Lie subalgebra ih ⊂ ig), if its ground
state expectation value hψi is only invariant under H; i.e.
DðhÞhψi ¼ hψi if and only if h ∈ H. DðgÞhψi with g ∉ H
are “other” ground states the system could have sponta-
neously chosen from. Around hψi, the field ψ can be
expressed as group transformation of a reference field ~ψ ,
i.e. ψ ¼ DðγÞ ~ψ , defined by

~ψ†DðXÞhψi ¼ ~ψ†hψi; ∀ X ∈ g: ð1Þ

Roughly speaking, γ corresponds to fluctuations of ψ which
takes us to the nearby ground states with no energy cost,
while ~ψ contains genuine excitations ofψ . Note that Eq. (1) is
invariant under ~ψ → DðhÞ ~ψ with h ∈ H and hence deter-
mines γ only up to a coset equivalence γ ∼ γh. Let us pick a
representative from each coset γ ¼ γðφÞ parametrized by a
field φ living in the Lie algebra quotient g=h, which can be
identified as the Goldstone modes of the broken symmetry.
Under a g ∈ G transformation,

γðφÞ → gγðφÞhðφ; gÞ−1; ~ψ → Dðhðφ; gÞÞ ~ψ ; ð2Þ

for some hðφ; gÞ ∈ H, such that ψ → DðgÞψ and Eq. (1)
remains invariant. From these transformation properties, it is
clear that the theory cannot contain a mass term for φ,
rendering it massless. It follows that φ substantially affects
the low energy fluctuations of the theory and must be
taken into account in the superfluid description. A quick
comparison can be made with the Abelian case, where
G ¼ Uð1Þ is broken down to H ¼ f1g, with γðφÞ ¼ e−iφ.
Under a eiΛ ∈ Uð1Þ transformation, φ → φ − Λ, which is
well known for Abelian symmetry breaking.
For further analysis, it is helpful to introduce a set of

generators ftαg ¼ fti; tag of G such that the subset ftig*akash.jain@durham.ac.uk; ajainphysics@gmail.com
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generates H. We normalize these generators by choosing
tα · tβ ¼ 2Tr½tαtβ� ¼ ηαβ, where ηαβ is a diagonal matrix
with entries �1. We define the action of a g ∈ G on these
generators as tα → AdgðtαÞ ¼ ðAdgÞβαtβ ¼ gtαg−1.
While dealing with partially broken symmetries, we are

confronted with an obstacle: the quotient g=h is not a Lie
Algebra and hence φ does not transform “nicely” under the
action of G, which poses a difficulty while formulating
superfluids. We find that this problem can be circumvented
by introducing a pair of projection operators P; P̄∶ g → g
defined as

PðtαÞ ¼ Pβαtβ ¼ ððAdγÞβiðAdγ−1ÞiαÞtβ;
P̄ðtαÞ ¼ P̄βαtβ ¼ ðδβα − PβαÞtβ: ð3Þ

They covariantly project out components of X ∈ g along or
against the residual symmetry respectively. Using P̄, we can
rebundle the information in φ into a “covariant derivative”
~∂μφ ¼ P̄ði∂μγðφÞγðφÞ−1Þ ∈ g. Alternatively, we can use
the Maurer-Cartan form on G=H to define this covariant
derivative. Introducing the operators P, P̄, however, will
also simplify the notation in the following non-Abelian
superfluid analysis, resulting in a pleasant resemblance
with the better known Abelian results. Additionally, we can
revert back to the ordinary fluids at any point by setting
P̄ ¼ 0, P ¼ idg (identity in g).

A. Example

Consider the group G ¼ SUð2Þ generated by
ftα ¼ 1

2
σαg, where σα are the Pauli matrices, which is

broken down to H ¼ Uð1Þ spanned by ft1g. A convenient
choice of Goldstone modes is γðφÞ ¼ e−iφ

2t2e−iφ
3t3 . Under

an infinitesimal transformation g ¼ eiΛ
ata ∈ SUð2Þ, the

Goldstone modes transform noncovariantly,

φ2 → φ2 − Λ2 þ tanφ3ðΛ1 cosφ2 − Λ3 sinφ2Þ;
φ3 → φ3 − Λ3 cosφ2 − Λ1 sinφ2; ð4Þ

with hðφ; gÞ ¼ ei secφ
3ðΛ1 cosφ2−Λ3 sinφ2Þt1 . On the other hand,

we can check that the covariant derivative

~∂μφ ¼

0
B@

− 1
2
sinð2φ3Þ cosφ2∂μφ

2 þ sinφ2∂μφ
3

cos2φ3∂μφ
2

1
2
sinð2φ3Þ sinφ2∂μφ

2 þ cosφ2∂μφ
3

1
CA ð5Þ

transforms covariantly, i.e. ~∂μφ → Adgð ~∂μφÞ.

III. SUPERFLUID DYNAMICS

We are interested in studying low energy fluctuations of
a theory with a spontaneously broken internal symmetry.
As eluded before, any such description must contain the

Goldstone modes φ as a dynamical field, with dynamics
provided by some dimðg=hÞ-component equation,

K ¼ 0 ∈ P̄ðgÞ: ð6Þ

Allowing for an arbitrary dynamical equation for φ is a
novel feature of our formalism, which in the conventional
treatment of superfluids is taken to be the “Josephson
equation” by hand (see e.g. Ref. [7]). An exception to this is
Ref. [15], where authors derive the equilibrium version of
the Josephson equation using an effective action. Here,
however, we will show that it follows naturally by imposing
the second law of thermodynamics.
A theory invariant under spacetime translations and G

transformations must also contain an associated conserved
energy-momentum tensor Tμν and a g-valued charge
current Jμ in its spectrum. To probe these observables,
we couple the theory to a slowly varying metric gμν and a
gauge field Aμ. The covariant derivative associated with the
Levi-Cività connection Γλ

μν is denoted by∇μ, while the one
associated with Aμ and Γλ

μν is denoted by Dμ. In the
presence of these external sources, respective conservation
laws are

∇νTνμ ¼Fμν · Jνþ ξμ ·KþTμ⊥
H ; DμJμ ¼ J⊥H −K; ð7Þ

where we have allowed for φ to go off shell (K ≠ 0). Fμν ¼
2∂ ½μAν� − i½Aμ; Aν� ∈ g is the gauge field strength, and ξμ ¼
P̄ðAμÞ þ ~∂μφ ∈ P̄ðgÞ is called the superfluid velocity. The

Hall currents Tμ⊥
H and J⊥H represent the contribution from

possible gravitational and flavor anomalies in the micro-
scopic theory respectively. One way to derive the con-
servation laws (7) is to consider a field theory effective
action S½gμν; Aμ;φ� and parametrize its infinitesimal varia-
tion as

δS ¼
Z

fdxμg ffiffiffiffiffiffi
−g

p �
1

2
Tμνδgμν þ Jμ · δAμ þ K · ~δφ

�
; ð8Þ

where g ¼ det gμν and ~δφ ¼ P̄ðiδγðφÞγðφÞ−1Þ. Given this
setup, one can check that the conservation laws (7) are
merely the Ward identities corresponding to infinitesimal
diffeomorphisms and G gauge transformations.
The conservation laws (7) can provide dynamics for a

theory formulated in terms of the hydrodynamic fields:
normalized 4-velocity uμ (with uμuμ ¼ −1), temperature T,
and chemical potential μ ∈ g, in addition to the Goldstone
modes φ. It should be noted, however, that these are merely
some fields chosen to describe the system and, like in any
field theory, can admit an arbitrary redefinition; we will
return to this issue later.
In general, the observables Tμν, Jμ, and K appearing in

Eqs. (6) and (7) can have an arbitrary dependence on the
fields Ψ ¼ fuμ; T; μ; gμν; Aμ; ξμg. In hydrodynamics,
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however, we are only interested in the low energy fluctua-
tions of the constituent fields Ψ, which can be translated as
the configurations of Ψ that admit a perturbative expansion
in derivatives. This allows us to write down the most
generic allowed expressions for Tμν, Jμ, and K in terms of
Ψ truncated up to a finite order in derivatives, called the
superfluid constitutive relations. At a given order, con-
stitutive relations will contain all the possible tensor
structures allowed by symmetry (modulo field redefini-
tions) called data, multiplied with arbitrary scalars called
transport coefficients. The explicit functional form of these
transport coefficients depends on the underlying micro-
scopic theory, but we can put some stringent constraints on
them by imposing some physical requirements such as the
local second law of thermodynamics:
Given a set of constitutive relations Tμν, Jμ, and K, there

must exist an entropy current JμS of which the divergence is
non-negative, i.e. ∇μJ

μ
S ≥ 0, for all the superfluid configu-

rations satisfying the conservation laws (7).
It is worth pointing out that this statement is slightly

stronger than the one used previously in the superfluid
literature (e.g. Ref. [7]), as it is imposed even when φ is off
shell. This extra information fixes Eq. (6) to be the
Josephson equation, as we will now illustrate.

A. Ideal superfluids

Consider the most generic constitutive relations and
entropy current of a superfluid at zero derivative order,

Tμν ¼ ðϵþ PÞuμuν þ Pgμν þ ξμ · ρs · ξν;

Jμ ¼ quμ þ qs · ξμ; JμS ¼ suμ þ ss · ξμ; ð9Þ

along with a scalar K. We have fixed the ideal order
definition of uμ by eliminating a term like ϵs · ξðμuνÞ from
Tμν. On the other hand, ideal order definitions of T, μ are
fixed via the first law of thermodynamics,

dϵ ¼ Tdsþ μαDqα þ
1

2
fαβDðξμ;αξβμÞ; ð10Þ

where we have defined f ∈ P̄ðgÞ × symP̄ðgÞ (i.e. fαβ ¼ fβα

and Pγαfαβ ¼ 0). Using the conservation laws (7) and
imposing ∇μJ

μ
S ≥ 0, we can find the following constraints,

ϵ ¼ sT þ q · μ − P ðEuler relationÞ;

K ¼ −
1

T
α · ðuμξμ − P̄ðμÞÞ þ Dμðf · ξμÞ þ i½ξμ; f · ξμ�;

ss ¼ 0; ρs ¼ −qs ¼ f; μ · i½ξμ; f · ξμ� ¼ 0; ð11Þ

for some α ∈ P̄ðgÞ × P̄ðgÞ with positive eigenvalues.
Plugging these back in, we get the constitutive relations
of an ideal non-Abelian superfluid. The surviving coef-
ficients can be interpreted as pressure P, energy density ϵ,

charge density q, entropy density s, and superfluid density
f. Setting K ¼ 0, we get the Josephson equation extended
to ideal non-Abelian superfluids,

uμξμ ¼ P̄ðμÞ þ Tα0 · ðDμðf · ξμÞ þ i½ξμ; f · ξμ�Þ; ð12Þ

where α0 ∈ P̄ðgÞ is defined via α0 · α ¼ P̄. It says that a
change in φ in the direction of the flow is given
by the chemical potential μ, supplemented with some
derivative corrections. In equilibrium, Eq. (12) reduces
to Dμðf · ξμÞ þ i½ξμ; f · ξμ� ¼ 0, which was obtained by
Ref. [15] in the Abelian case using an equilibrium effective
action.
Finally, α can be interpreted as a first order transport

coefficient matrix, which contributes toward the production
of entropy through α0,

∇μJ
μ
S ¼ ðDμðf · ξμÞ þ � � �Þ · α0 · ðDμðf · ξμÞ þ � � �Þ: ð13Þ

Interestingly, we see that ideal superfluids, unlike
ordinary fluids, can cause dissipation but with the effect
being a higher derivative can be ignored at ideal order.

IV. OFF-SHELL FORMALISM FOR SUPERFLUIDS

Having worked out ideal superfluids, we can in principle
extend this procedure to constitutive relations with an
arbitrarily high number of derivatives. However, imple-
menting the second law becomes messier as we go higher
in the derivative expansion, because we are required to
recursively implement the lower order conservation laws
(see e.g. Ref. [16]). Fortunately, as realized by Ref. [17] for
ordinary fluids, it is possible to extend the second law to
cases where the conservation laws are not satisfied (i.e.
superfluid is kept in contact with an external bath), by
adding an arbitrary combination of the conservation laws
(7) to ∇μJ

μ
S, giving

∇μJ
μ
S þ βμð∇νTνμ − Fμν · Jν − ξμ · K − Tμ⊥

H Þ
þ ν · ðDμJμ þ K − J⊥HÞ ≥ 0: ð14Þ

Here, βμ and ν are some arbitrary fields. Let us define Nμ ¼
JμS þ βνTνμ þ ν · Jμ and N⊥

H ¼ βμT
μ⊥
H þ ν · J⊥H. In terms of

these, Eq. (14) can be recast in a more useful form,

∇μNμ − N⊥
H − Δ ¼ Φ · C; ð15Þ

where Δ is a positive definite quadratic form. To make the
notation compact, we have introduced

C¼ðTμν Jρ K Þ; Φ¼ð1
2
δBgμν δBAρ

~δBφÞ; ð16Þ

which are vectors in the composite space
V ¼ ðsym tensorÞ ⊕ ðg × vectorÞ ⊕ P̄ðgÞ. “δB” denotes
an infinitesimal diffeomorphism and gauge transformation
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with parameters B ¼ fβμ;Λβ ¼ ν − Aμβ
μg respectively.

δBgμν ¼ £βgμν ¼ 2∇ðμβνÞ;

δBAμ ¼ £βAμ þ ∂μΛβ − i½Aμ;Λβ� ¼ Dμνþ βνFμν;

~δBφ ¼ P̄ðiδBγðφÞγðφÞ−1Þ
¼ P̄ði£βγðφÞγðφÞ−1 þ ΛβÞ ¼ βμξμ − P̄ðνÞ:

One can check that the ideal order definitions of uμ, T, and
μ [given around Eq. (10)] imply the relations βμ ¼ uμ=T,
ν ¼ μ=T at ideal order. We fix the remaining ambiguity in
the fluid fields by assuming these relations to hold at all
orders in the derivative expansion. Having done that, the
allowed superfluid constitutive relations are the most
generic expressions for Tμν, Jμ, and K in terms of Ψ
which satisfy Eq. (15) for some Nμ and Δ ≥ 0.
Note that it is always possible to write down terms

Nμ
S ∈ Nμ of which the divergence is either zero or is

balanced by some counterterms ΔS ∈ Δ, i.e ∇μN
μ
S ¼ ΔS.

We refer to these terms as class S. They are not genuine
(super)fluid transport; instead, they parametrize the multi-
tude of entropy currents which satisfy the second law for
the same set of constitutive relations.
We split the tensor structures that can appear in the

constitutive relations into two sectors: “nonhydrostatic
data” (independent data that contain at least one instance
of “δB”) and “hydrostatic data” (the largest collection of
independent data with no nonhydrostatic linear combina-
tion). The second law, similar to the known results in
ordinary fluids [18,19], imposes strict equality constraints
in the hydrostatic sector, while in the nonhydrostatic sector,
it only gives a few inequalities at the first order in
derivatives and none thereafter. We will present a quick
proof of this statement; in the hydrostatic sector, we will
closely follow Ref. [13] with appropriate modifications for
superfluids, while in the nonhydrostatic sector, our pre-
sentation will be independent and simpler.

A. Hydrostatic sector

Consider the most generic constitutive relations C ¼
Chydrostatic which are solely made up of the hydrostatic data.
For these, every independent term in the rhs of Eq. (15) will
contain exactly one bare (which is not acted upon by a
derivative) δB. Hence, the associated Nμ also must contain
the hydrostatic data only; otherwise, ∇μNμ will either be
void of a bare δB or will contain multiple δB’s. The
most generic Nμ in the hydrostatic sector can therefore
be written as

Nμ
hydrostatic ¼ ðN βμ þ Θμ

N Þ þ Nμ; ð17Þ

where Nμuμ ¼ 0. N is the most generic scalar made out of
the independent hydrostatic data, modulo the total

derivative terms. Θμ
N is an N dependent nonhydrostatic

vector defined via

∇μðN βμÞ ¼ 1ffiffiffiffiffiffi−gp δBð
ffiffiffiffiffiffi
−g

p
N Þ ¼ Φ · CHS

−∇μΘ
μ
N ; ð18Þ

which ensures that ∇μðN βμ þ Θμ
N Þ has a bare δB.

Equation (18) also defines the constitutive relations CHS

associated with N , called class HS. Nμ on the other hand is
the most generic hydrostatic vector transverse to uμ, such
that ∇μNμ − N⊥

H has exactly one bare δB. This requirement
happens to completely determine Nμ up to some constants
[20,21], which turns out to be independent of φ and
includes the terms responsible for anomalies. Therefore,
we can directly import Nμ and the respective class HV∪A
constitutive relations CHV

þ CA from the ordinary fluid
literature [13], where class A is the contribution from
anomalies. Chydrostatic ¼ CHS

þ CHV
þ CA are therefore the

most generic hydrostatic constitutive relations compatible
with the second law. Comparing these to the most generic
expressions allowed by symmetry, we can read out the
equality constraints.
It is worth pointing out here that if we focus on

equilibrium superfluid configurations, where B ¼
fβμ;Λβg generates an isometry, then the hydrostatic con-
straints can also be obtained using an effective action [15]:

Seqb ¼
Z

fdxigð ffiffiffiffiffiffi
−g

p
Nt

hydrostaticÞeqb: ð19Þ

Here, we have chosen coordinates fxμg ¼ ft; xig to set
βμ ¼ ∂t. In this picture, Seqb can be seen as the most generic
scalar on a constant time slice involving gμν, Aμ, and φ.
Quite naturally, the equilibrium Josephson equation follows
from here by extremizing δSeqb=δφ ¼ 0.

B. Nonhydrostatic sector

This sector of hydrodynamics contains constitutive
relations C ¼ Cnon-hydrostatic which are purely made of the
nonhydrostatic data. Since all nonhydrostatic data have at
least one δB, it can be written as a differential operator
acting on Φ defined in Eq. (16). Introducing a symmetric
covariant derivative operator Dn ¼ Dðμ1…DμnÞ (antisym-
metric derivatives can be represented by curvature and field
strength), the most generic nonhydrostatic constitutive
relations can therefore be written in a compact form,

Cnonhydrostatic ¼ −
X∞
n¼0

1

2
½Cn · ðDnΦÞ þ DnðCn ·ΦÞ�: ð20Þ

Cn ∈ V ×V are matrices with additional n symmetric
indices to be contracted with Dn. The last term in Eq. (20) is
taken purely for convenience and can be absorbed into the
first via differentiation by parts. Let us factor Cnonhydrostatic
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into a dissipative (class D) and a nondissipative (class D̄)
part parametrized by

Dn ¼
1

2
ðCnþð−ÞnCT

nÞ; D̄n ¼
1

2
ðCn− ð−ÞnCT

nÞ ð21Þ

respectively. The nomenclature can be justified by multi-
plying Eq. (20) with Φ giving us (see also Refs. [18,19])

Φ · CD ¼ −ΔD þ∇μN
μ
D; Φ · CD̄ ¼ ∇μN

μ
D̄; ð22Þ

where Nμ
D, N

μ
D̄ are some vectors gained via successive

differentiation by parts. ΔD, however, is given as

ΔD ¼ ðϒΦÞ ·Dð0Þ
0 · ðϒΦÞ; ð23Þ

where ϒ ¼ P∞
d¼0ϒd∶V → V is a differential operator

defined by [DðnÞ
0 is the part of D0 with n number of

derivatives, and “†” denotes the conjugate of a differential
operator: Φ1 · ðOΦ2Þ ¼ ðO†Φ1Þ ·Φ2 þ∇μð� � �Þμ]

ϒdþ1

���∞
d¼1

¼ −ðDð0Þ
0 Þ−1 ·

�Xd−1
k¼1

ϒ†
k þ

1

2
ϒ†

d

�
ðDð0Þ

0 ·ϒdÞ;

ϒ0 ¼ 1; ϒ1 ¼
1

2
ðDð0Þ

0 Þ−1 ·
X∞
n¼1

ðDðnÞ
0 þDnDnÞ:

ð24Þ

Comparing Eqs. (22) and (15), we can see that class D̄
constitutive relations satisfy the second law with Nμ ¼ Nμ

D̄
and Δ ¼ 0, hence the name nondissipative. On the other
hand, dissipative class D constitutive relations satisfy the
second law with Nμ ¼ Nμ

D and Δ ¼ ΔD. The condition
Δ ≥ 0 implies that all the eigenvalues of the zero derivative

matrix Dð0Þ
0 ∈ V ×V are non-negative. It follows that the

only constraints imposed by the second law in the non-
hydrostatic sector are some inequalities in class D at the
first order in derivatives.
At the end of the day, we are only interested in describing

the superfluid and not its surroundings; hence, the con-
stitutive relations only differing by combinations of the
conservation laws must be identified. It can be verified that
for the constitutive relations satisfying Eq. (15) the con-
servation laws (7) are purely nonhydrostatic. Hence, with-
out loss of generality, we can use them to eliminate a vector
uμδBgμν and a g-valued scalar uμδBAμ from the non
hydrostatic data. The upshot of this is that we can drop
the respective terms from CD and CD̄. Had we eliminated
any other data using the conservation laws, the respective
constitutive relations would be related to the current ones,
at most, by a field redefinition.

V. EXAMPLE: FIRST ORDER SUPERFLUIDS

For an illustration of the off-shell formalism developed
above, we briefly outline the (non-Abelian) parity-even
superfluids up to first order in derivatives. Let us start with
the hydrostatic sector. For class HS, the scalarN is made of
Lorentz scalars

N ¼ Pþ 1

T
fα1ξ

μ
α∂μT þ Tfα2βξ

μ
αDμν

β þ f3γξ
μ
αξν;αDμξ

γ
ν

þ ðf½αβ�5 Dμuν þ f½αβ�6γ Fγ
μν þ fhαβi7γ Dμξ

γ
νÞξμαξνβ: ð25Þ

Here, we have avoided a total derivative term Dμξ
μ
α, which

is the sole member of class S with Nμ
S ¼ ∇νðfα4u½μξν�α Þ and

does not contribute to the constitutive relations. The term
coupling to f3γ can be removed by redefining φ. The
remaining coefficients characterize the hydrostatic super-
fluid transport. The results for classes HV and A can be
taken directly from Ref. [13], which, being parity odd, can
be ignored for this example.
Finally, the nonhydrostatic classes D and D̄ at first order

are characterized by an ideal order matrix Cð0Þ
0 ,

Cð0Þ
0 ¼

0
BB@

ημνρσ χμνρα xμνα

χ0μρσβ σμραβ yμαβ

x0ρσβ y0ραβ ααβ

1
CCA; ð26Þ

where the components are the most generic uμ-transverse
tensors written in terms of the fluid and background fields.

The antisymmetric part D̄ð0Þ
0 ¼ Cð0Þ

0 jassym characterizes

class D̄, while the symmetric part Dð0Þ
0 ¼ Cð0Þ

0 jsym with
positive eigenvalues belongs to class D. The respective
constitutive relations can be obtained trivially from here
using Eqs. (18) and (20).

VI. OUTLOOK

This completes our analysis of the (non-Abelian) super-
fluid constitutive relations compatible with the second law
of thermodynamics. Similar to an ordinary fluid, we find
that the second law gives no constraints in the nondissi-
pative nonhydrostatic sector, while it only gives inequalities
at the first derivative order in the dissipative sector. In the
hydrostatic sector, however, we get equality-type con-
straints at every derivative order, which can be worked
out using an equilibrium effective action. In addition, the
second law also gives us the Josephson equation which
governs motion of the Goldstone modes corresponding to
the broken symmetry.
In the quest of finding the constraints using offshell

formalism, we have classified the entire (super)fluid trans-
port into five mutually distinct classes: A, HS, HV , D and D̄
along with a class S worth of arbitrariness in the entropy
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current. This is in contrast with the recent, heavily
redundant, classification of ordinary hydrodynamics in
Ref. [12]. An added benefit of working in the offshell
formalism is that it provides a natural setting to write down
an effective action describing (super)fluids. As a prototype,
constitutive relations in Class HS and their dynamical
equations can be obtained from an effective action SHS

¼Rfdxμg ffiffiffiffiffiffi−gp
N (see Ref. [13] for related details). For the

remaining classes, writing down an effective action needs
working in the Schwinger-Keldysh formalism [13,22–27],
which we leave for future explorations.
In this paper, we concentrate on fluids with broken

internal symmetries. The procedure can also be extended to
the breaking of spacetime symmetries, interpreted as
introducing spacetime boundaries/surfaces in the (super)
fluid [28,29]. It will be interesting to see how the second
law constrains the surface transport coefficients in (super)
fluids and if there is a natural extension of the presented
classification to surface transport.

Finally, all of the results presented here can easily be
extended to nonrelativistic superfluids using the null fluid
formalism of Refs. [30–32]. In a companion paper [33], we
use “null superfluids” to work out the constraints on
Abelian nonrelativistic superfluid transport up to first order
in the derivative expansion.
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