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Abstract. Let fvs(G) and cfvs(G) denote the cardinalities of a minimum
feedback vertex set and a minimum connected feedback vertex set of
a graph G, respectively. The price of connectivity for feedback vertex
set (poc-fvs) for a class of graphs G is defined as the maximum ratio
cfvs(G)/fvs(G) over all connected graphs G ∈ G. We study the poc-fvs for
graph classes defined by a finite family H of forbidden induced subgraphs.
We characterize exactly those finite families H for which the poc-fvs for
H-free graphs is upper bounded by a constant. Additionally, for the case
where |H| = 1, we determine exactly those graphs H for which there
exists a constant cH such that cfvs(G) ≤ fvs(G) + cH for every connected
H-free graph G, as well as exactly those graphs H for which we can take
cH = 0.

1 Introduction

Numerous important graph parameters are defined as the cardinality of a smallest
subset of vertices satisfying a certain property. Well-known examples of such
parameters include the cardinality of a minimum vertex cover, a minimum
dominating set, or a minimum feedback vertex set in a graph. In many cases
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requiring the subset of vertices to be connected, that is, to induce a connected
subgraph defines a natural variant of the original parameter. The cardinality of a
minimum connected vertex cover or a minimum connected dominating set are just
two examples of such parameters that have received considerable interest from
both the algorithmic and structural graph theory communities. An interesting
question is what effect the additional connectivity constraint has on the value of
the graph parameter in question. The price of connectivity for a certain graph
property, for which a connected variant exists, and a class of graphs G is defined
as the worst-case ratio π′(G)/π(G) over all connected graphs G ∈ G, where π(G)
and π′(G) denote the smallest subset and smallest connected subset, respectively,
of the vertices of G satisfying the property.

Cardinal and Levy [6] coined the term “price of connectivity”. They did
this for vertex cover. Let vc(G) denote the vertex cover number, which is the
cardinality of a minimum vertex cover of a graph G. The connected variant of this
parameter is the connected vertex cover number, denoted by cvc(G) and defined
as the cardinality of a minimum connected vertex cover in G. Cardinal and
Levy [6] proved that the price of connectivity for vertex cover is at most 2/(1 + ε)
for graphs with average degree εn. Camby, Cardinal, Fiorini and Schaudt [4]
considered general graphs and proved that for every connected graph G, it holds
that cvc(G) ≤ 2 · vc(G)− 1, that is, the price of connectivity for vertex cover is
upper bounded by 2 for the class of all graphs. The same authors showed that
the bound of 2 is asymptotically sharp for the classes of all paths and all cycles.
Camby et al. [4] also provided forbidden induced subgraph characterizations of
graph classes for which the price of connectivity for vertex cover is upper bounded
by t, for t ∈ {1, 4/3, 3/2}.

Grigoriev and Sitters [8] proved that the price of connectivity for face hitting
set is at most 11 for planar graphs of minimum degree at least 3. This upper
bound was later reduced to 5 by Schweitzer and Schweitzer [10], who also proved
that their bound is tight.

For a graph G, the (connected) domination number is the size of a smallest
(connected) dominating set of G; we denote these numbers by ds(G) and cds(G),
respectively. Duchet and Meyniel [7] observed that cds(G) ≤ 3 · ds(G) − 2 for
every connected graph G. Hence, the price of connectivity for dominating set on
general graphs is upper bounded by 3. If a graph G has no induced subgraph
isomorphic to a graph in {H1, . . . ,Hp} then G is said to be (H1, . . . ,Hp)-free.
Zverovich [11] proved that for any graph G, it holds that cds(H) = ds(H)
for each connected induced subgraph H of G if and only if G is (P5, C5)-free.
Consequently, the price of connectivity for dominating set is exactly 1 for the class
of (P5, C5)-free graphs. Camby and Schaudt [5] proved that cds(G) ≤ ds(G) + 1
for every connected (P6, C6)-free graph G, and showed that this bound is best
possible. They also obtained an upper bound of 2 on the price of connectivity for
dominating set for (P8, C8)-free graphs, and showed that this bound is sharp even
for (P7, C7)-free graphs. Moreover, they showed that the general upper bound
of 3 is asymptotically sharp for (P9, C9)-free graphs.

2



Camby and Schaudt [5] also considered the problem of deciding whether the
price connectivity for dominating set is bounded by some integer r and proved
that this problem is PNP[log]-complete for every fixed constant 1 < r < 3.

1.1 Our Results

We initiate the study of the price of connectivity for feedback vertex set. A
feedback vertex set of a graph is a subset of its vertices whose removal yields
an acyclic graph, or equivalently, a forest. For a graph G = (V,E) and a set
S ⊆ V we let G[S] denote the subgraph of G induced by S. A feedback vertex
set S of a graph G is connected if G[S] is connected. We write fvs(G) and cfvs(G)
to denote the cardinalities of a minimum feedback vertex set and a minimum
connected feedback vertex set of a graph G, respectively. For a class of graphs
G, the price of connectivity for feedback vertex set (poc-fvs) for G is defined to
be the maximum ratio cfvs(G)/fvs(G) over all connected graphs G ∈ G. Graphs
consisting of two disjoint cycles that are connected to each other by an arbitrarily
long path show that the poc-fvs for general graphs, or even for planar graphs, is
not upper bounded by a constant.

Inspired by the work of Camby et al. [4], Zverovich [11], and Camby and
Schaudt [5], we focus on graph classes that are characterized by a finite family of
forbidden induced subgraphs. Recall that, for a family of graphs H, a graph G
is called H-free if for every H ∈ H, G is H-free, that is, if G has no an induced
subgraph isomorphic to H. The vast majority of well-studied graph classes have
forbidden induced subgraphs characterizations, and such characterizations can
often be exploited when proving structural or algorithmic properties of these
graph classes. In fact, for every hereditary graph class G, that is, for every graph
class G that is closed under taking induced subgraphs, there exists a family H
of graphs such that G is exactly the class of H-free graphs. Notable examples of
graphs classes that can be characterized using a finite family of forbidden induced
subgraphs include claw-free graphs, line graphs, split graphs and cographs.

Our first main result (Theorem 1 below) establishes a dichotomy between the
finite families H for which the poc-fvs for H-free graphs is upper bounded by
a constant cH and the families H for which such a constant cH does not exist.
In the case where |H| = 1, this dichotomy implies that the poc-fvs for H-free
graphs is bounded by a constant cH if and only if H is a linear forest, i.e., a
disjoint union of paths. Our second main result (Theorem 2 below) establishes a
more refined tetrachotomy result for the case |H| = 1. More precisely, for every
graph H, we determine which of the following cases holds:

(i) cfvs(G) = fvs(G) for every connected H-free graph G;

(ii) there exists a constant cH such that cfvs(G) ≤ fvs(G) + cH for every
connected H-free graph G;

(iii) there exists a constant cH such that cfvs(G) ≤ cH ·fvs(G) for every connected
H-free graph G;

(iv) none of the above three cases applies.
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In order to formally state our results, we need to introduce some terminology.
For two graphs H1 and H2, we write H1 +H2 to denote the disjoint union

of H1 and H2. We write sH to denote the disjoint union of s copies of H. For
any k ≥ 1, we write Pk to denote the path on k vertices, that is, the path of
length k − 1. For any r ≥ 3, we write Cr to denote the cycle on r vertices. For
any three integers i, j, k with i, j ≥ 3 and k ≥ 1, we define Bi,j,k to be the graph
obtained from Ci + Cj by choosing a vertex x in Ci and a vertex y in Cj , and
adding a path of length k between x and y; see Figure 1 for a picture of the
graph B5,9,4. We call a graph of the form Bi,j,k a butterfly.

x y

B5,9,4

Fig. 1. The butterfly B5,9,4.

It is clear that the price of connectivity for feedback vertex set for the
class of all butterflies is not bounded by a constant, since fvs(Bi,j,k) = 2 and
cfvs(Bi,j,k) = k + 1 for every i, j ≥ 3 and k ≥ 1. Roughly speaking, our first
main result states that the poc-fvs for the class of H-free graphs is bounded
by a constant cH if and only if the forbidden induced subgraphs in H prevent
arbitrarily large butterflies from appearing as induced subgraphs. To make this
statement more concrete, we use the following definition.

Definition 1. Let i, j ≥ 3 be two integers, H be a finite family of graphs, and
N = 2 ·maxH∈H |V (H)|+ 1. The family H covers the pair (i, j) if H contains an
induced subgraph of Bi,j,N . A graph H covers the pair (i, j) if {H} covers (i, j).

We are now ready to formally state our first main result, which we prove in
Section 2.

Theorem 1. Let H be a finite family of graphs. Then the poc-fvs for the class
of H-free graphs is upper bounded by a constant cH if and only if H covers the
pair (i, j) for every i, j ≥ 3.

By using Theorem 1 we are able to give obtain an explicit description of
exactly those families {H1, H2} for which the poc-fvs for {H1, H2}-free graphs
is upper bounded by a constant. For any k, p, q ≥ 1, let T p,q

k denote the graph
obtained from Pk + Pp + Pq by making a new vertex adjacent to one end-vertex
of each path. For any k ≥ 0 and r ≥ 3, let Dr

k denote the graph obtained from
Pk + Cr by adding an edge between a vertex of the cycle and an end-vertex of
the path; in particular, Dr

0 is isomorphic to Cr. See Figure 2 for a picture of the
graphs T 1

2,4 and D3
5.
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Fig. 2. The graphs T 1
2,4 and D3

5.

Corollary 1. Let H1 and H2 be two graphs, and let H = {H1, H2}. Then the
poc-fvs for H-free graphs is upper bounded by a constant cH if only if there exist
integers ` ≥ 0 and r ≥ 1 such that one of the following conditions holds:

– H1 or H2 is a linear forest;
– H1 and H2 are induced subgraphs of D3

` and 2T 1,1
r , respectively;

– H1 and H2 are induced subgraphs of 2D3
` and T 1,1

r , respectively.

We prove Corollary 1 in Section 3 after first proving a sequence of lemmas that
show exactly which graphs H cover which pairs (i, j). In fact we describe a
procedure that, given a positive integer k, yields an explicit description of all the
graph families H with |H| = k for which the poc-fvs for H-free graphs is upper
bounded by a constant (but we only give an explicit description for k = 2 as
stated in Corollary 1).

As every graph H that is an induced subgraph of both D3
` for some ` ≥ 0 and

of 2T 1,1
r for some r ≥ 1 is a linear forest, Corollary 1 implies that for any graph H,

the poc-fvs for the class of H-free graphs is upper bounded by a constant cH
if and only if H is a linear forest. Our second main result, which is proven in
Section 4, refines this statement.

Theorem 2. Let H be a graph. Then it holds that

(i) cfvs(G) = fvs(G) for every connected H-free graph G if and only if H is
an induced subgraph of P3;

(ii) there exists a constant cH such that cfvs(G) ≤ fvs(G) + cH for every
connected H-free graph G if and only if H is an induced subgraph of P5+sP1

or sP3 for some s ≥ 0;
(iii) there exists a constant cH such that cfvs(G) ≤ cH ·fvs(G) for every connected

H-free graph G if and only if H is a linear forest.

1.2 Future Work

A natural question to ask is whether Theorem 1 can be extended to families
H which are not finite, i.e., to all hereditary classes of graphs. Definition 1 and
Theorem 1 show that for any finite family H, the poc-fvs for H-free graphs is
bounded essentially when the graphs in this class do not contain arbitrarily large
induced butterflies. The following example shows that when H is infinite, it is

5



no longer only butterflies that can cause the poc-fvs to be unbounded. Let G
be a graph obtained from K3 by first duplicating every edge once, and then
subdividing every edge arbitrarily many times. Let G be the class of all graphs
that can be constructed this way. In order to make G hereditary, we take its
closure under the induced subgraph relation. Let G′ be the resulting graph class.
Observe that graphs in this class have arbitrarily large minimum connected
feedback vertex sets, while fvs(G) ≤ 2 for every graph G ∈ G′. Hence, the poc-fvs
for G′ is not bounded. However, no graph in this family contains a butterfly as
an induced subgraph.

Another natural question to ask is how to extend Theorem 2 to all finite
families of graphs H.

Also, instead of demanding that the graph obtained after removing some
subset of vertices is an independent set or a forest, as in the case of vertex cover or
feedback vertex set, respectively, we may impose other restrictions on the graph
induced by the remaining vertices. Recently, Hartinger et al. [9] obtained several
results for the price of connectivity in this direction but many open problems
remain (see [9] for details).

2 Proof of Theorem 1

In order to prove Theorem 1 we will make use of the following two observations.

Observation 1 Let i, j, k, ` be integers such that i, j ≥ 3 and ` ≥ k ≥ 1. A
graph on at most k vertices is an induced subgraph of Bi,j,k if and only if it is an
induced subgraph of Bi,j,`.

Observation 2 Let G be a connected graph that is not a cycle. Then G has a
minimum feedback vertex set F such that each vertex in F lies on a cycle and
has degree at least 3 in G.

We are now ready to present the proof of Theorem 1, which we restate below.

Theorem 1. Let H be a finite family of graphs. Then the poc-fvs for for the class
of H-free graphs is upper bounded by a constant cH if and only if H covers the
pair (i, j) for every i, j ≥ 3.

Proof. First suppose there exists a pair (i, j) with i, j ≥ 3 such that H does
not cover (i, j). For contradiction, suppose there exists a constant cH as in
the statement of the theorem. By Definition 1, H does not contain an induced
subgraph of Bi,j,N , and hence Bi,j,N is H-free. As a result of Observation 1,
Bi,j,k is H-free for every k ≥ N . In particular, the graph Bi,j,N+2cH is H-free.
Note that fvs(Bi,j,N+2cH) = 2 and cfvs(Bi,j,N+2cH) = N + 2cH + 1. This implies
that cfvs(Bi,j,N+2cH) > cH · fvs(Bi,j,N+2cH), yielding the desired contradiction.

Now suppose that H covers the pair (i, j) for every i, j ≥ 3. Let G be a connected
H-free graph. Observe that cfvs(G) = fvs(G) if G is a cycle or a tree, so we
assume that G is neither a cycle nor a tree. We also assume without loss of
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generality that G does not contain any vertex of degree 1. This can be seen as
follows. Suppose G has a vertex u of degree 1. Let G′ be the graph obtained from
G after removing u. Then fvs(G′) = fvs(G) and cfvs(G′) = cfvs(G), because u
is contained neither in any minimum feedback vertex set nor in any minimum
connected feedback vertex set of G and adding u to G′ creates no cycles.

Below, we will prove that G has diameter at most 4N , that is, the distance
in G between any two vertices is at most 4N . To see why this suffices to prove
the theorem, observe that we can transform any feedback vertex set S of G into
a connected feedback vertex set of G of size at most 4N · |S| = 4N · fvs(G) by
choosing an arbitrary vertex x ∈ S and adding, for each y ∈ S \ {x}, all the
internal vertices of a shortest path between x and y.

For contradiction, suppose that the diameter of G is at least 4N + 1. Pick
two vertices x and y that are of maximum distance from each other in G. Let A
and B be the sets that consist of all vertices of G that are of distance at most N
of x and y, respectively. Note that A ∩B = ∅. We distinguish three cases.

Case 1. Both G[A] and G[B] contain a cycle.
Let C be an induced cycle in G[A] and D be an induced cycle in G[B]. Let
P = u1 · · ·up be a shortest path between a vertex u1 ∈ C and a vertex up ∈ D.
Note that p ≥ 2N . Because P is a shortest path, no vertex of {u3, . . . , up−1} is
adjacent to a vertex of C∪D. Moreover, we may assume without loss of generality
that u1 is the only neighbour of u2 on C and that up is the only neighbour of
up−1 on D. In order to see this, suppose this does not hold for u2. We let v ∈ C
be the neighbour of u2 closest to u1 on C. Then we can replace C by a cycle C ′

that consists of u1, u2, v and a path between u1 and v on C. We conclude that
the vertices on C, D and P together induce a butterfly Bi,j,N ′ for some i, j ≥ 3
and N ′ ≥ N . Since H covers the pair (i, j), there exists a graph H ∈ H such that
H is an induced subgraph of Bi,j,N by Definition 1. Due to Observation 1, H is
also an induced subgraph of Bi,j,N ′ and hence also of G. This contradicts the
assumption that G is H-free.

Case 2. Both G[A] and G[B] are trees.
Since G does not contain any vertex of degree 1, every leaf of G[A] is at distance
exactly N from x. Since x has degree at least 3, we conclude that G[A] contains

an induced TN,N
N . By the same arguments, G[B] contains an induced TN,N

N .
Since H covers the pair (2N, 2N), there exists a graph H ∈ H such that H is
an induced subgraph of B2N,2N,N . This graph H has at most N vertices, which
implies that H has no cycle. However, then H is an induced subgraph of G[A∪B],
and thus of G, yielding the same contradiction as in Case 1.

Case 3. Cases 1-2 do not apply.
Then, as G[A] and G[B] are connected, we may assume without loss of generality
that G[A] contains a cycle and G[B] is a tree. By the arguments of the previous
two cases we find that G contains an induced Di

3N for some i ≥ 3. Since H
covers the pair (i, 3N), there exists a graph H ∈ H such that H is an induced
subgraph of Bi,3N,N . Since |V (H)| ≤ N , we find that H contains at most one
cycle, and this cycle, if it exists, is of length i. Hence, H is an induced subgraph
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of G[A ∪B] and thus of G. With this contradiction we have completed the proof
of Theorem 1. ut

3 Proof of Corollary 1

Recall that by Definition 1 a graph H covers a pair (i, j) if and only if H is an
induced subgraph of Bi,j,N , where N = 2 · |V (H)|+ 1. In particular, if a graph H
is not an induced subgraph of a butterfly, then H does not cover any pair (i, j).
For convenience, we describe all the possible induced subgraphs of Bi,j,N in the
following observation.

Observation 3 Let H be a graph, let N = 2 · |V (H)|+ 1, and let i, j ≥ 3 be two
integers. Then H is an induced subgraph of Bi,j,N if and only if H is isomorphic
to the disjoint union of a linear forest (possibly on zero vertices) and at most one
of the following graphs:

(i) Di
` for some ` ≥ 0;

(ii) Dj
` for some ` ≥ 0;

(iii) Di
` +Dj

`′ for some `, `′ ≥ 0;
(iv) T p,q

k for some k, p, q ≥ 1 such that p+ q + 2 ≤ max{i, j};
(v) T p,q

k + T p′,q′

k′ for some k, p, q, k′, p′, q′ ≥ 1 such that p + q + 2 ≤ i and
p′ + q′ + 2 ≤ j;

(vi) Di
` + T p,q

k for some ` ≥ 0 and k, p, q ≥ 1 such that p+ q + 2 ≤ j;
(vii) Dj

` + T p,q
k for some ` ≥ 0 and k, p, q ≥ 1 such that p+ q + 2 ≤ i.

In order to prove Corollary 1 we will give a series of lemmas that, for each of
the induced subgraphs described in Observation 3, show exactly which pairs (i, j)
they cover. It is important to note that some induced subgraphs of Bi,j,N cover
more pairs than others. For example, as we will see in Lemma 6, a linear forest
covers all pairs (i, j) with i, j ≥ 3, but this is not the case for any induced
subgraph of Bi,j,N that is not a linear forest. At the end of the proof of each of
the lemmas, we refer to a table in which the set of covered pairs is depicted.

Lemma 1. Let H be a graph, let p ≥ 3, and let X be the set consisting of the
pairs (i, j) with i, j ≥ 3 and p ∈ {i, j}.

(i) If H is an induced subgraph of Dp
k for some k ≥ 0, then H covers all the

pairs in X .
(ii) If Dp

k is an induced subgraph of H for some k ≥ 0, then H does not cover
any pair that does not belong to X .

Proof. Let N = 2 · |V (H)|+ 1. Suppose H is an induced subgraph of Dp
k for some

k ≥ 0. Then H is also an induced subgraph of Bi,j,N for every i, j ≥ 3 such that
p ∈ {i, j}. Hence, by Definition 1, H covers the pairs (p, j) and (i, p) for every
i, j ≥ 3.

Now suppose Dp
k is an induced subgraph of H for some k ≥ 0. Then H

contains a cycle of length p. Hence it is clear that if H is an induced subgraph
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of a butterfly Bi,j,N , then we must have p ∈ {i, j}. This shows that H does not
cover any pair that does not belong to X .

See the left table in Figure 3 for an illustration of the pairs in X . ut

Lemma 2. Let H be a graph, let p, q ≥ 3, and let X = {(p, q), (q, p)}.

(i) If H is an induced subgraph of Dp
k +Dq

k for some k ≥ 0, then H covers all
the pairs in X .

(ii) If Dp
k +Dq

k is an induced subgraph of H for some k ≥ 0, then H does not
cover any pair that does not belong to X .

Proof. Let N = 2·|V (H)|+1. First suppose H is an induced subgraph of Dp
k+Dq

k

for some k ≥ 0. Then H is also an induced subgraph of Bp,q,N (use Observation 1
if k > |V (H)|). Hence, by Definition 1, graph H covers the pairs (p, q) and (q, p).

To prove (ii), suppose Dp
k +Dq

k is an induced subgraph of H for some k ≥ 0.
Then H contains a cycle of length p and a cycle of length q. Hence, from the
definition of butterflies and by Definition 1, it is clear that H is not an induced
subgraph of Bi,j,N for any i, j ≥ 3 such that {p, q} 6= {i, j}. This proves (ii).

See the right table in Figure 3 for an illustration of the pairs in X . ut

i

j
3 · · · · · · p · · · · · ·

3 X

.

.

. X

.

.

. X

p X X X X X X

.

.

. X

.

.

. X

i

j
3 · · · p · · · q · · ·

3

.

.

.

p X

.

.

.

q X

.

.

.

Fig. 3. The ticked cells represent the pairs (i, j) covered by H when H is isomorphic
to Dp

k for some k ≥ 0 (left table) and when H is isomorphic to Dp
k +Dq

k for some k ≥ 0
(right table).

Lemma 3. Let H be a graph, let p, q ≥ 1, and let X be the set consisting of the
pairs (i, j) with i, j ≥ 3 and max{i, j} ≥ p+ q + 2.

(i) If H is an induced subgraph of T p,q
r for some r ≥ 1, then H covers all the

pairs in X .
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(ii) If T p,q
r is an induced subgraph of H for some r ≥ 1, then H does not cover

any pair that does not belong to X .

Proof. Let N = 2 · |V (H)| + 1. Suppose H is an induced subgraph of T p,q
r for

some r ≥ 1. Then H is also an induced subgraph of the butterfly Bi,j,N for every
i, j ≥ 3 such that max{i, j} ≥ p+ q + 2. Hence H covers all the pairs in X due
to Definition 1.

For the converse direction, suppose T p,q
r is an induced subgraph of H for some

r ≥ 1. Then H is not an induced subgraph of Bi,j,N whenever max{i, j} < p+q+2.
This shows that H does not cover any pair that does not belong to X .

See the left table in Figure 4 for an illustration of the pairs in X . ut

Lemma 4. Let H be a graph, let p, q, p′, q′ ≥ 1 be such that p+q ≤ p′+q′, and let
X consist of all the pairs (i, j) with min{i, j} ≥ p+q+2 and max{i, j} ≥ p′+q′+2.

(i) If H is an induced subgraph of T p,q
r + T p′,q′

r for some r ≥ 1, then H covers
all the pairs in X .

(ii) If T p,q
r + T p′,q′

r is an induced subgraph of H for some r ≥ 1, then H does
not cover any pair that does not belong to X .

Proof. Let N = 2 · |V (H)|+ 1. Suppose H is an induced subgraph of T p,q
r +T p′,q′

r

for some r ≥ 1. Then H is also an induced subgraph of Bi,j,N for any i, j with
min{i, j} ≥ p+ q + 2 and max{i, j} ≥ p′ + q′ + 2. Hence H covers all the pairs
in X .

To prove (ii), suppose T p,q
r +T p′,q′

r is an induced subgraph of H for some r ≥ 1.
Then H is not an induced subgraph of Bi,j,N whenever min{i, j} < p+ q + 2 or
max{i, j} < p′ + q′ + 2. Hence, by Definition 1, H cannot cover any pair that
does not belong to X .

See the right table in Figure 4 for an illustration of the pairs in X . ut

Lemma 5. Let H be a graph, let p ≥ 3 and p′, q′ ≥ 1, and let X be the set
consisting of the pairs (i, j) with either p = i and j ≥ p′ + q′ + 2 or p = j and
i ≥ p′ + q′ + 2.

(i) If H is an induced subgraph of Dp
k + T p′,q′

r for some k ≥ 0 and r ≥ 1, then
H covers all the pairs in X .

(ii) If Dp
k + T p′,q′

r is an induced subgraph of H for some k ≥ 0 and r ≥ 1, then
H does not cover any pair that does not belong to X .

Proof. Let N = 2 · |V (H)|+ 1. Suppose H is an induced subgraph of Dp
k + T p′,q′

r

for some k ≥ 0 and r ≥ 1. Then H is an induced subgraph of Bi,j,N for every
i, j with either p = i and j ≥ p′ + q′ + 2 or p = j and i ≥ p′ + q′ + 2. Hence, by
Definition 1, H covers all the pairs in X .

To prove (ii), suppose Dp
k +T p′,q′

r is an induced subgraph of H for some k ≥ 0
and r ≥ 1. Suppose H covers a pair (i, j). By Definition 1, H is an induced
subgraph of Bi,j,N . Since H contains a cycle of length p due to the presence of
Dp

k as induced subgraph, it holds that p ∈ {i, j}. Suppose p = i. Since H contains
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i

j
3 · · · · · ·

p
+

q
+

2

· · · · · ·

3 X X X

.

.

. X X X

.

.

. X X X

p+ q+ 2 X X X X X X

.

.

. X X X X X X

.

.

. X X X X X X

i

j
3 · · ·

p
+

q
+

2

· · ·

p
′
+

q′
+

2

· · ·

3

.

.

.

p+ q+ 2 X X

.

.

. X X

p′+q′+2 X X X X

.

.

. X X X X

Fig. 4. The ticked cells represent the pairs (i, j) covered by H when H is isomorphic

to T p,q
r for some r ≥ 1 (left table) and when H is isomorphic to T p,q

r + T p′,q′
r for some

r ≥ 1 (right table).

T p′,q′

k as an induced subgraph, we must have that j ≥ p′ + q′ + 2. Similarly, if
p = j, then it holds that i ≥ p′ + q′ + 2. We conclude that (i, j) ∈ X , which
suffices to prove (ii).

See the left and right tables in Figure 5 and the table in Figure 6 for an
illustration of the pairs in X in the cases where p < p′ + q′ + 2, p > p′ + q′ + 2,
and p = p′ + q′ + 2, respectively. ut

Lemma 6. A graph H covers every pair (i, j) with i, j ≥ 3 if and only if H is a
linear forest.

Proof. If H is a linear forest, then H is an induced subgraph of a path on
2 · |V (H)| − 1 vertices. Hence H is also an induced subgraph of Bi,j,N for every
i, j ≥ 3, where N = 2 · |V (H)| + 1. By Definition 1, H covers every pair (i, j)
with i, j ≥ 3.

For the reverse direction, suppose H covers every pair (i, j) with i, j ≥ 3. For
contradiction, suppose H is not a linear forest. Then, as a result of Definition 1
and Observation 3, either H contains T p,q

r as an induced subgraph for some
p, q, r ≥ 1, or H contains Dp

k as an induced subgraph for some p ≥ 3 and k ≥ 0.
In the first case, it follows from Lemma 3(ii) that H does not cover the pair (3, 3).
In the second case, it follows from Lemma 1(ii) that H does not cover any pair
(i, j) with r 6∈ {i, j}. In both cases, we obtain the desired contradiction. ut

Consider the infinite table containing all the pairs (i, j) with i, j ≥ 3. From
Lemmas 3–5 and Tables 1–7, we can observe two important facts. First, the only
graphs H that cover the pair (3, 3) are induced subgraphs of 2D3

` for some ` ≥ 0.
Second, the only graphs H that cover infinitely many rows and columns of this
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i

j
3 · · · p · · ·

p
′
+

q′
+

2

· · ·

3

.

.

.

p X X

.

.

.

p′+q′+2 X

.

.

. X

i

j
3 · · ·

p
′
+

q′
+

2

· · · p · · ·

3

.

.

.

p′+q′+2 X

.

.

. X

p X X X X

.

.

. X

Fig. 5. The ticked cells represent the pairs (i, j) covered by H when H is isomorphic

to Dp
k + T p′,q′

r for some k ≥ 0 and r ≥ 1 in the case where p < p′ + q′ + 2 (left table)
and in the case where p > p′ + q′ + 2 (right table).

i

j
3 · · · · · · p · · · · · ·

3

.

.

.

.

.

.

p X X X X

.

.

. X

.

.

. X

Fig. 6. The ticked cells represent the pairs (i, j) covered by H when H is isomorphic

to Dp
k + T p′,q′

r for some k ≥ 0 and r ≥ 1 in the case where p = p′ + q′ + 2.

table are induced subgraphs of T p,q
r +T p′,q′

r for some r, p, q, p′, q′ ≥ 1. Hence, any
finite family H that covers all pairs (i, j) must contain at least one graph of both
types. Formally, we have the following observation.

Observation 4 Let H be a finite family of graphs. If the poc-fvs for H-free graphs
is upper bounded by a constant cH, then H contains an induced subgraph of 2D3

`

for some ` ≥ 0 and an induced subgraph of T p,q
r +T p′,q′

r for some r, p, q, p′, q′ ≥ 1.
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Suppose H is a family of graphs such that the poc-fvs for H-free graphs is
bounded by a constant. By Observation 4, H contains a graph H that is an
induced subgraph of T p,q

r +T p′,q′

r for some r, p, q, p′, q′ ≥ 1. If H is also an induced
subgraph of T p,q

r for some r, p, q ≥ 1, or if H contains another graph that is of
this form, then Lemma 3 and Table 3 show that there are only finitely many pairs
(i, j) that are not covered by H. These cells need to be covered by the remaining
graphs in H. Using Lemmas 3–5, we can determine exactly which combination of
graphs covers those remaining pairs.

Suppose H does not contain an induced subgraph of T p,q
r for any r, p, q ≥ 1.

Then Lemma 4 and Table 4 imply that there are finitely many rows and columns
in which no pair is covered by H. In particular, since p, q, p′, q′ ≥ 1, the pairs
(i, 3) and (3, j) are not covered for any i, j ≥ 3. From the lemmas in Section 3
and the corresponding tables, it it clear that the only graphs that cover infinitely
many pairs of this type are induced subgraphs of T p,q

r for some r, p, q ≥ 1 or of
D3

r′ + T p,q
r for some r′ ≥ 0 and p, q ≥ 1. Hence, H must contain a graph that is

isomorphic to such an induced subgraph. Similarly, if the pairs (i, 4) and (4, j)
are not covered for any i, j ≥ 3, then H must contain an induced subgraph of
T p,q
r for some r, p, q ≥ 1 or of D4

r′ + T p,q
r for some r′ ≥ 0 and p, q ≥ 1, and so on.

Once all rows and columns contain only finitely many pairs that are not covered
yet, we can determine all possible combinations of graphs that cover those last
pairs.

We are now ready to restate and prove Corollary 1, which can be seen as an
illustration of the above procedure for the case where |H| = 2.

Corollary 1. Let H1 and H2 be two graphs, and let H = {H1, H2}. Then the
poc-fvs for H-free graphs is upper bounded by a constant cH if only if there exist
integers ` ≥ 0 and r ≥ 1 such that one of the following conditions holds:

– H1 or H2 is a linear forest;
– H1 and H2 are induced subgraphs of D3

` and 2T 1,1
r , respectively;

– H1 and H2 are induced subgraphs of 2D3
` and T 1,1

r , respectively.

Proof. First suppose that the price of connectivity for feedback vertex set for
H-free graphs is bounded by some constant cH, and suppose that neither H1 nor
H2 is a linear forest. Due to Observation 4, we may without loss of generality
assume that H1 is an induced subgraph of 2D3

` for some ` ≥ 0 and H2 is an

induced subgraph of T p,q
r + T p′,q′

r for some r, p, q, p′, q′ ≥ 1. From Lemmas 1
and 2 and the assumption that H1 is not a linear forest, it follows that H1 does
not cover the pair (4, 4). Hence H2 must cover this pair. This, together with
Lemma 4, implies that p = q = p′ = q′ = 1, i.e., H2 is an induced subgraph of
2T 1,1

r for some r ≥ 1. If H1 is an induced subgraph of D3
`′ for some `′ ≥ 0, then

the second condition holds and we are done.
Suppose H1 is not an induced subgraph of D3

`′ for any `′ ≥ 0. Then H1 covers
only the pair (3, 3) due to Lemma 2. This means that all the pairs (i, j) with
i, j ≥ 3 and 3 ∈ {i, j}, apart from (3, 3), must be covered by H2. From Lemma 3
and 4 it is clear that this only holds if H2 is an induced subgraph of T 1,1

r′ for
some r′ ≥ 1. Hence the third condition holds.
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The converse direction follows by combining Theorem 1 and Lemma 6 if
the first condition holds, Lemmas 1 and 4 if the second condition holds, and
Lemmas 2 and 3 if the third condition holds. ut

4 Proof of Theorem 2

In order to prove Theorem 2 we start with the following lemma.

Lemma 7. For every integer s, there is a constant cs such that cfvs(G) ≤
fvs(G) + cs for every connected P5 + sP1-free graph G.

Proof. First suppose H is an induced subgraph of P5. Let G be a connected
H-free graph. In particular, G is P5-free. Hence, due to a result by Bacsó and
Tuza [3], there exists a dominating set D ⊆ V (G) such that D is a clique or D
induces a P3 in G. Let F be a minimum feedback vertex set of G. Note that
|D \ F | ≤ 2 if D is a clique and |D \ F | ≤ 3 if D induces a P3. Since D is a
connected dominating set in G, the set F ∪D is a connected feedback vertex set
of G of size at most |F |+ 3. Hence, we can take cH = 3.

Now suppose H is an induced subgraph of P5 + sP1 for some integer s. Let
G be a connected H-free graph. If G is P5-free, then we can take cH = 3 due to
the above arguments. Suppose G contains an induced path P on 5 vertices. Let
I be a maximal independent set in the graph obtained from G by deleting the
five vertices of P as well as all their neighbors in G. Since G is P5 + sP1-free,
we know that |I| ≤ s− 1. Note that V (P ) ∪ I is a dominating set of G. Recall
that Duchet and Meyniel [7] showed that, for every connected graph G, it holds
that cds(G) ≤ 3 · ds(G) − 2. Hence, there is a connected dominating set D in
G of size at most 3(|V (P )|+ |I|)− 2 ≤ 3s+ 10. Let S be a minimum feedback
vertex set in G. Then S ∪D is a connected feedback vertex set in G of size at
most |S|+ 3s+ 10. Hence, we can take cH = 3s+ 10. This completes the proof
of Lemma 7. ut

We can prove a similar lemma for the case when H = sP3 for some s ≥ 0. In
order to do this we need an additional lemma.

Lemma 8. Let s ≥ 1 be an integer and let G be a connected sP3-free graph
with a subset S ⊆ V (G) and an independent set U ⊆ V (G) \ S. If there exists a
connected component Z of G[S] that contains an induced copy of (s− 1)P3, then
there exists a set S′ with S ⊆ S′ of size at most |S|+ 2s− 2 such that

(i) G[S′] has a connected component Z ′ containing all vertices of V (Z)∪ (S′ \S);
(ii) every vertex of U ′ = U \ S′ is adjacent to at most one connected component

of G[S′] that is not equal to Z ′;
(iii) every connected component of G[S′] not equal to Z ′ is adjacent to at most

one vertex of U ′.

Proof. Let graph A be the union of the connected components of G[S] not equal
to Z that are adjacent to U . Note that all other connected components of G[S]
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not equal to Z are not relevant for satisfying the conditions of the lemma (as
they are not adjacent to U).

Let U1 ⊆ U be a minimum set of vertices in U such that every connected
component of A is adjacent to U1. By minimality, every vertex in U1 has a private
component in A, that is, a connected component of A not adjacent to other
vertices of U1. For every u ∈ U1, fix a private component of u in A, and let A1

be the union of all these private components. Consider the graph A2 = A−A1.
Every connected component of A2 is adjacent to U1 (since this is true for all
connected components of A). Let U2 be a minimum set of vertices in U1 such
that every connected component of A2 is adjacent to U2. By minimality, every
vertex in U2 has a private component in A2, that is, a connected component of
A2 not adjacent to other vertices of U2. We have that |U2| < s, as otherwise by
using the neighbours in the private components that each vertex in U2 ⊆ U1 has
in A1 and in A2, respectively, we find that there is an induced sP3 in G.

We now move U2 to Z. As each vertex u ∈ U2 is adjacent to a connected
component of A1 and to a connected component of A2, the sP3-freeness of G
implies that u is adjacent to Z. Hence moving U2 to Z maintains connectivity
of Z. Moreover, all connected components of A adjacent to U2 also move to Z.
Hence, as each component in A2 is adjacent to a vertex in U2, afterwards every
remaining connected component of A belongs to A1 and S increased in size by
at most s− 1. In particular all newly added vertices went to Z.

Consider now the remaining connected components of A1. Note that each
such connected component has a neighbour in U1 \ U2. Let U3 = U \ U1. It is
still possible that some remaining connected component of A1 is adjacent to a
vertex of U3 (besides its neighbour in U1 \ U2). Moreover, a vertex in U3 may
be adjacent to more than one remaining connected component of A1. Below we
explain how to handle this situation.

Let A3 be the union of those remaining connected components of A1 that
have at least one neighbour in U3. We pick a minimum set U4 of vertices in U3

such that each connected component of A3 is adjacent to U4. If |U4| ≥ s then
at least s vertices in U4 have private neighbours in A3 (private with respect to
other vertices in U4). In this case we find an induced sP3 in G (where each P3

has its middle vertex in A3, one end-vertex in U1 \ U2 and the other end-vertex
in U4), so this is not possible. Hence |U4| < s.

As G is sP3-free, every vertex in U4 with at least two connected components
in A3 is adjacent to Z. We put these vertices in a set W . Then the number of
connected components of A3 not adjacent to W is equal to |U4| − |W |, as each
such a connected component is adjacent to a vertex in U4 that is not adjacent to
any other connected component of A3 (as otherwise we would have placed the
vertex in W ). Moreover, each such a connected component is adjacent to a vertex
in U1 \ U2. Hence, we find an induced P3, so at least one of the two neighbours
in U1 \ U2 or U4, respectively, must be adjacent to Z (due to the sP3-freeness of
G). We put that vertex in W as well. Then W has the following properties: W
has size at most s− 1, each vertex of W is adjacent to Z, and each connected
component of A3 is adjacent to a vertex of W .
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We now move all vertices of W to Z. This operations maintains connectivity
of Z. Afterwards, all components of A3 belong to Z as well. Hence, in the end
every remaining vertex of U is adjacent to at most one component of A, and
every remaining component of A is adjacent to at most one vertex of U . So,
conditions (ii) and (iii) are satisfied. As all the new vertices went to Z, condition
(i) is also satisfied. Moreover, also our last operation made S increase in size by
at most s− 1. Hence the total increase of S is at most 2s− 2, as required. ut

We can now prove the following lemma.

Lemma 9. For every integer s, there is a constant cs such that cfvs(G) ≤
fvs(G) + cs for every connected sP3-free graph G.

Proof. We prove the lemma by induction on s. The lemma trivially holds if s = 1,
since a connected P3-free graph is a complete graph and we can simply take
s1 = 0. Let G = (V,E) be a connected sP3-free graph for some s ≥ 2. If G
is (s − 1)P3-free, then cfvs(G) ≤ fvs(G) + cs−1 for some constant cs−1 by the
induction hypothesis. Suppose G contains an induced subgraph H isomorphic
to (s− 1)P3, and let v1, . . . , vs−1 ∈ V (H) be the vertices of degree 2 in H. Let
Y ⊆ V be the set obtained from V (H) by adding, for i = 2, . . . , s − 1, all the
vertices of a shortest path in G from v1 to vi. Since the assumption that G is
sP3-free implies that G is P4s−1-free, the total number of vertices in Y is at most
|V (H)|+ (s− 2)(4s− 4) ≤ 3(s− 1) + (s− 2) · 4s ≤ 4s2 − 4s. The graph G[Y ] is
connected by construction.

Let S be a minimum feedback vertex set of G, and let S′ = S ∪ Y . Then we
find that

|S′| ≤ |S|+ 4s2 − 4s.

We note the following. Since G is sP3-free and G[S′] contains (s − 1)P3 as
an induced subgraph, every connected component of G[S′], apart from the
connected component that contains Y , is a complete graph. Moreover, the graph
G − S′ = G[V \ S′] is a forest due to the fact that S′ is a feedback vertex set.
We now prove the following claim.

Claim 1: The forest G−S′ has at most 4s2 vertices of degree at least 3 in G−S′.
To prove Claim 1, we first root each connected component of G − S′ at an
arbitrary vertex. Let T be the set of vertices in G−S′ that have degree at least 3,
but have no descendant of degree at least 3. Each vertex v ∈ T , together with
two of its descendants, induces a P3 in G. Since T forms an independent set in G,
these |T | copies of P3 are mutually induced in G, that is, the union of the vertex
sets of these |T | copies induce a |T |P3 in G. As G is sP3-free, this implies that
|T | ≤ s− 1. The only other possible vertices in G−S′ that have degree at least 3
in G− S′ are ancestors of vertices in T . Hence, any vertex of degree at least 3
in G − S′ lies on a path from a vertex in T to the root of the corresponding
connected component. There are at most |T | ≤ s− 1 such paths, each of which
contains at most 4s − 2 vertices due to the fact that G is sP3-free and hence
P4s−1-free. We conclude that there are at most (s− 1)(4s− 2) ≤ 4s2 vertices of
degree at least 3 in G− S′. This completes the proof of Claim 1.
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Starting from the feedback vertex set S′, we now construct a connected feedback
vertex set of G as follows. First, we add to S′ all the vertices of G− S′ that have
degree at least 3 in G− S′. By Claim 1, this increases the size of S′ by at most
4s2. After this step, the graph G− S′ is a linear forest. This linear forest cannot
contain more than 4s vertices of degree 2, as otherwise G− S′ would contain an
induced subgraph isomorphic to sP3. We now add to S′ all vertices of G − S′
that have degree 2 in G− S′. This increases the size of S′ by at most 4s. After
this step, we have that

|S′| ≤ |S|+ 4s2 − 4s+ 4s2 + 4s = |S|+ 8s2.

Moreover, every connected component of the graph G − S′ is isomorphic to
either K1 or K2. We partition the vertices of G− S′ into two (possibly empty)
independent sets U1 and U2 as follows: U1 contains exactly one vertex from
each connected component of G− S′ that is isomorphic to K2, and U2 contains
all other vertices of G − S′. Observe that every vertex of U1 has at most one
neighbour in U2 and vice versa.

Now let Z denote the vertex set of the connected component of G[S′] that
contains Y . Our goal is to show that we can reduce the number of connected
components of G[S′ \ Z] to zero by adding vertices to S′ that connect those
connected components to G[Z], such that in the end Z is a connected feedback
vertex set. For this purpose we may also swap some vertices in S′ with vertices
outside S′ as long as in the end we have added at most f(s) vertices, where f is
some function that only depends on s.

As a first step in obtaining the above goal, we apply Lemma 8 twice, once
with respect to U1 and once with respect to U2. As a result, the set S′ increases
in size by at most 4s− 4 vertices; by Lemma 8 all these extra vertices went to Z.
We now have that

|S′| ≤ |S|+ 8s2 + 4s− 4 = |S|+ 8s2 + 4s− 4.

Let U ′1 ⊆ U1 and U ′2 ⊆ U2 be the vertices of U1 and U2, respectively, that did not
get added to Z and let A denote the set of all connected components of G[S′ \Z].
By the definition of U1 and U2 and Lemma 8, the following four properties hold:

1. both U ′1 and U ′2 are independent sets;
2. every vertex of U ′1 has at most one neighbour in U ′2 and vice versa;
3. for i = 1, 2, every vertex in U ′i is adjacent to at most one connected component

of A and vice versa.

Let F be the graph induced by the union of all vertices in A and U ′1 ∪ U ′2,
that is, let F = G− Z. Suppose F has a connected component X that contains
an induced P3. If X contains vertices from more than one connected component
of G[U ′1 ∪ U ′2], then there is an induced path in X containing all the vertices of
all such connected components due to properties 1–3 mentioned earlier. This,
together with the fact that G (and hence X) is P4s−1-free, implies that X contains
at most 4s−2 vertices of U ′1∪U ′2. Moreover, as G[Z] contains an induced (s−1)P3
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and X contains an induced P3, there is a vertex in X that is adjacent to Z. We
now add all the vertices of X to Z, and we do the same with all the vertices of
any other connected component of F that contains an induced P3; note that the
total number of connected components in F that contain an induced P3 is at
most s− 1 due to the sP3-freeness of G. Hence, the size of S′ is increased by at
most (4s− 2)(s− 1) = 4s2 − 6s+ 2, so we now have that

|S′| ≤ |S|+ 8s2 + 4s− 4 + 4s2 − 6s+ 2 = |S|+ 12s2 − 2s− 2

while the connectivity of Z is maintained. For notational convenience, we use
U ′1 and U ′2 to refer to the vertices of U ′1 and U ′2, respectively, that have not
been added to Z during this procedure. Since G is connected and there are no
components in F anymore that contain an induced P3, we find that every A ∈ A
is now adjacent to a unique connected component of G[U ′1∪U ′2], which we denote
by BA. Moreover, for each BA the following holds: A is the unique connected
component of A to which BA is adjacent, and due to this and the connectivity
of G we find that BA is adjacent to Z.

In fact, because we got rid of all connected components of F that contain
an induced P3, we have arrived at the situation where G[V (A) ∪ V (BA)] is a
complete graph for every connected component A ∈ A. Let A ∈ A, let x ∈ V (A),
and let y be a vertex of BA that is adjacent to Z. Since NG[x] ⊆ NG[y], we
find that the set S′′ := (S′ \ {x}) ∪ {y} is a feedback vertex set of G, such that
|S′′| = |S′| = |S|+ 12s2 − 2s − 2 and the number of connected components in
G[S′′] is one less than the number of connected components in G[S′]. Therefore,
by repeatedly swapping a vertex of a connected component A ∈ A with a vertex
of BA that is adjacent to Z, we reduce the number of connected components of
G[S′] to 1. As desired, this leads to a connected feedback vertex set of G of size
|S|+ 12s2 − 2s− 2 ≤ fvs(G) + 12s2 − 2s− 2, so we can take cs = 12s2 − 2s− 2.
This completes the proof of Lemma 9. ut

We are now ready to prove Theorem 2, which we restate below.

Theorem 2. Let H be a graph. Then it holds that

(i) cfvs(G) = fvs(G) for every connected H-free graph G if and only if H is
an induced subgraph of P3;

(ii) there exists a constant cH such that cfvs(G) ≤ fvs(G) + cH for every
connected H-free graph G if and only if H is an induced subgraph of P5+sP1

or sP3 for some s ≥ 0;
(iii) there exists a constant cH such that cfvs(G) ≤ cH ·fvs(G) for every connected

H-free graph G if and only if H is a linear forest.

Proof. Statement (iii) follows immediately from Corollary 1 by taking H1 = H2

(as we already observed in see Section 1). Before proving (i) we first prove (ii).
Due to Lemmas 7 and 9 we are left to show that if H is not an induced subgraph
of P5 + sP1 or sP3 for any integer s, then there is no constant cH such that
cfvs(G)− fvs(G) + cH for every connected H-free graph G.
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Let H be a graph that is not an induced subgraph of P5 + sP1 or sP3 for any
integer s. First suppose H is not a linear forest. Then, by Theorem 2 (iii) proven
above, there does not exist a constant c such that cfvs(G) ≤ c · fvs(G) for every
connected H-free graph G. This implies that there cannot exist a constant cH
such that cfvs(G) ≤ fvs(G) + cH for every connected H-free graph G.

Now suppose H is a linear forest. Since H is not an induced subgraph of
P5 + sP1 or sP3 for any integer s, it contains P6 or P4 + P2 as an induced
subgraph. Consequently, the class of H-free graphs is a superclass of the class of
(P6, P4+P2)-free graphs. Hence, it suffices to find some subclass G of (P6, P4+P2)-
free graphs for which there exists no constant cH such that cfvs(G) ≤ fvs(G)+cH
for every connected G ∈ G. Below we describe such a class G.

x

y1 y2 yk

Fig. 7. The graph Lk, defined for every k ≥ 1.

The hourglass is the graph consisting of two triangles meeting in exactly one
vertex. For every integer k ≥ 1, let Lk be the graph obtained from k disjoint copies
of the hourglass by adding a new vertex x that is made adjacent to all vertices
of degree 2; see Figure 7 for an illustration. Note that Lk is (P6, P4 + P2)-free
for every k ≥ 1. For every k ≥ 1, the unique minimum feedback vertex set in
Lk is the set {x, y1, y2, . . . , yk}, so fvs(Lk) = k + 1. Every minimum connected
feedback vertex set in Lk contains the set {x, y1, y2, . . . , yk}, as well as exactly
one additional vertex for each of the vertices yi to make this set connected. Hence,
cfvs(Lk) = 2k + 1 = fvs(Lk) + k. Hence, the family {Lk} is our desired example.

We are left to prove (i). Let H be a graph. First suppose that H is an induced
subgraph of P3. Then cfvs(G) = fvs(G) for every connected H-free graph G, as
any such graph is a complete graph.

Now suppose H is not an induced subgraph of P3. If H is not an induced
subgraph of P5 + sP1 or sP3 for any integer s then there is no constant cH
such that cfvs(G) ≤ fvs(G) + cH for every connected H-free graph G due to
Theorem 2 (ii) proven above. Assume that H is an induced subgraph of P5 + sP1

or sP3 for some integer s. As H is not an induced subgraph of P3, it suffices to
consider the cases H = P1+P2 or H = 3P1. If H = P1+P2, then we let G = K3,`

(the complete bipartite graph with partition classes of size 3 and `, respectively)
for some ` ≥ 3. We observe that G is an H-free graph with cfvs(G) = 3 and
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fvs(G) = 2. If H = 3P1, then we let G be the 6-vertex graph obtained from
taking two non-adjacent vertices u and v that we both connect to all vertices of a
P4. We observe that G is an H-free graph with cfvs(G) = 3 and fvs(G) = 2. ut
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