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Abstract

In view of future high-precision large-scale structure surveys, it is important to quantify the percent and subpercent
level effects in cosmological N-body simulations from which theoretical predictions are drawn. One such effect
involves deciding whether to zero all modes above the one-dimensional Nyquist frequency, the so-called “corner”
modes, in the initial conditions. We investigate this effect by comparing power spectra, density distribution
functions, halo mass functions, and halo profiles in simulations with and without these modes. For a simulation
with a mass resolution of m,, ~ 101yt M., we find that at z > 6, the difference in the matter power spectrum is
large at wavenumbers above ~80% of kyy, reducing to below 2% at all scales by z ~ 3. Including corner modes
results in a better match between low- and high-resolution simulations at wavenumbers around the Nyquist
frequency of the low-resolution simulation, but the effect of the corner modes is smaller than the effect of particle
discreteness. The differences in mass functions are 3% for the smallest halos at z = 6 for the m, ~ 10! h=! M,
simulation, but we find no significant difference in the stacked profiles of well-resolved halos at z < 6. Thus
removing power at [k| > kyy in the initial conditions of cosmological simulations has a small effect on small scales
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and high redshifts, typically below a few percent.

Key words: dark matter — large-scale structure of universe — methods: numerical

1. Introduction

The growth of structure in the universe is a highly nonlinear
process, making it difficult to calculate precise theoretical
predictions for the late-time distribution of large-scale structure.
Cosmological N-body simulations have revolutionized our under-
standing of large-scale structure in the universe by numerically
solving for the nonlinear gravitational collapse of matter, enabling
us to both test and rule out cosmological theories and to calibrate
analysis methods used in observations (for reviews, see,
Efstathiou et al. 1985; Bertschinger 1998). As computer hardware
and numerical algorithms have improved over the past few
decades, cosmological simulations have been able to simulate
larger volumes and higher resolutions and include non-standard
cosmological models and complex baryonic physical processes,
increasing the accuracy with which we can model the formation of
structure in the universe.

As future cosmological surveys push their measurements in
order to achieve higher and higher precision (e.g., Euclid,
WFIRST, DESI, LSST, and SKA), it is important that
theoretical predictions taken from numerical simulations do
not significantly contribute to the error in the derived
cosmological parameters. This means that the numerical codes
must be pushed to achieve higher accuracy and that previously
minor processes must be taken into account. Authors of
numerical codes perform their own consistency checks on
problems with known analytical solutions; nevertheless, small,
but measurable differences remain in full cosmological
N-body simulations (Heitmann et al. 2008, 2010; Schneider
et al. 2016). Even if different numerical codes agreed, pushing
simulations to achieve higher accuracy requires taking into
account effects such as, for example, how the initial conditions
are generated (Crocce et al. 2006; L’Huillier et al. 2014), the
choice of starting redshift (Heitmann et al. 2010;

Reed et al. 2013; McCullagh et al. 2016), the force soft-
ening (Smith et al. 2014), general relativistic effects (Christo-
pherson et al. 2016; Thomas et al. 2015), and baryonic
effects (van Daalen et al. 2011).

Here we focus on the generation of initial conditions. Many
methods and publicly available codes exist (e.g., Bertschinger 1995;
Pen 1997; Bertschinger 2001; Sirko 2005; Crocce et al. 2006;
Jenkins 2010; Hahn & Abel 2011; Jenkins 2013), some of which
are designed to work with a specific N-body code. Generating
initial conditions involves first calculating the spectrum of density
perturbations at some high redshift, given a background
cosmological model. If the primordial density fluctuations are
Gaussian, which they are in the simplest models of inflation, then
their statistics are fully specified by the power spectrum, P(k). The
cosmic variance from realization to realization consists of different
sets of Fourier phases and amplitudes consistent with P(k). The
power spectrum can be written as the product of a power law
spectrum (with power given by ny, the spectral index after inflation)
with random phases and the transfer function that represents the
linear evolution of each mode. The transfer function can be
calculated numerically (e.g., LINGER (Ma & Bertschinger 1995),
CMBFast (Seljak & Zaldarriaga 1996), CAMB (Lewis et al.
2000), or CLASS (Blas et al. 2011)), or calculated using
approximate analytical expressions (e.g., Eisenstein & Hu 1998).
This random phase realization of a given power spectrum must
then be discretized to a grid of some resolution, depending on the
requirements of the simulation. Dark matter particle positions and
velocities at a (chosen) high redshift are obtained by perturbing the
discretized initial power spectrum from either a uniform grid or a
force-neutral “glass” configuration, according to first order (the
Zel’dovich approximation, Zel’dovich 1970) or second order
Lagrangian perturbation theory (2LPT).
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Each step in the generation of initial conditions involves
choices that affect the numerical accuracy of the high redshift
density field or power spectrum and can propagate to lower
redshifts. For example, the real space density field can either be
calculated by taking the inverse Fourier transform of the
Fourier space transfer function or by convolving the white
noise field with the real space transfer function, and this
choice affects whether the power spectrum or the correlation
function is more accurately modeled in a finite box (Pen 1997;
Sirko 2005; Hahn & Abel 2011). Another choice is between
grid and glass initial conditions: particle positions at low
redshift retain their grid-like structure in voids when initialized
on a uniform grid, which some may think has aesthetic
drawbacks; on the other hand, the density field from glass
initial configurations contains spurious clustering on small
scales at high redshift, though this does not grow (L’Huillier
et al. 2014). In this paper we investigate the effect of a
particular choice—whether power for [k| modes greater than the
one-dimensional Nyquist frequency, which we call “corner
modes,” are retained or zeroed.

A Gaussian random field sampled on a lattice can be written as
the convolution of white noise with the transfer function
(Efstathiou et al. 1985; Salmon 1996; Bertschinger 2001):

6(x) = (ExT)(x) = fd3x’ ENT (lx — %', 1)

where £(x) is Gaussian white noise. Setting up initial
conditions is thus a problem of representing a random phase
realization of a given power spectrum by a discrete set of
particles in a simulation volume. This can be carried out by
computing the transfer function and white noise field in Fourier
space, followed by an inverse Fourier transform, or by
convolving an inverse transformation of 7(k) with the white
noise field as in Equation (1). Though P(k) is isotropic, because
of the Cartesian discretization of k-space, the initial conditions
are set for 0 < (k,, ky, k;) < kny, where kny = TN/L is the
Nyquist frequency, N is the cube root of the total number of
particles, and L is the length of the cubic box. This means that
there is non-zero power at modes whose moduli are larger than
the Nyquist frequency, |k| > kny, in the corners of the k-space
cube, i.e., corner modes.

One can choose to remove corner modes in the initial
conditions by applying some additional filtering, such as the
spherical Hanning filter used by Bertschinger (2001), or by
explicitly zeroing the power for |k| > kyy. Note that if the
transfer function is sampled in real space, the choice of whether
to remove corner modes or not is not explicit, but, e.g., the
finite-difference approach of Hahn & Abel (2011) has similar
filtering properties to the Hanning filter, with a relatively sharp
cutoff in k-space. This results in the damping of small-scale
power (below kyny), which can be corrected, though these
corrections will lead to spectral leakage and associated spurious
oscillations (Hahn & Abel 2011). Corner modes are often
removed in initial conditions generators, but not always, and
there is not always a mention of the choice. For example, they
are kept in an early version of GRAFIC in order to retain all the
power present in the initial density field (Bertschinger 1995),
but they are removed in GRAFIC2 with a note that the effect of
the “anisotropy” needs to be studied (Bertschinger 2001). So
far, the effects of the choice of whether to keep or zero corner
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Figure 1. We illustrate the effect of the corner mode removal through
displaying the envelope of the power for a flat, white noise power spectrum.
The grids shown are in Fourier space, and the grids outside the central grid
show the power that is mirrored to higher frequencies. From the figure on the
left, one can see that the power spectrum after the removal of the corner modes
is anisotropic, whereas the figure on the right shows that preserving the corner
modes also preserves isotropy.

modes have not been studied in detail, which we aim to do in
this paper.

One argument for removing corner modes is that it enforces
isotropy and spherical symmetry in Fourier space, but we argue
here that this is not the case for a discretely sampled density
field in a periodic box.

First, suppose we have a continuous sinusoidal signal of
f (x) = sin(kgx) in one dimension, which is sampled at regular
intervals, a. The discrete sampled signal g(x) can be written as

g@) =f @) 6(x — ma). 2)

It turns out that there are infinite frequencies that give exactly
the same set of samples. With k; = 27/a, the signal
f,, @) = sin((ko + nk,)x) sampled the same way gives

8, () = £, ()Y _8(x — ma) = sin((ko + nk,yma) = g(x).

3

This shows that the frequency spectrum contains an infinite
series of replicas of the original frequency spectrum shifted by
ks, a property known as spectral replication. This periodic
replication of the spectrum is entirely due to the discrete
sampling.

Now consider a density field sampled on a cubic grid with a
Nyquist frequency of kny. For simplicity, let us use an
uncorrelated (white noise) random process to populate the
density in a box of size N°. The Fourier transform of this field
will have independent modes with N degrees of freedom, i.e.,
the corners are filled. As we sample this cubic volume at a
regular rate along all three axes, the Fourier space is replicated
in a way similar to how periodic boundary conditions behave in
configuration space. This spectral replication is a consequence
of the axis-parallel, regular sampling.

This three-dimensional spectral replication is illustrated in
Figure 1. We show the replicated envelope of the power
spectrum in the cases when the corner modes are removed (left)
and cases when the corner modes are left intact (right). It is
apparent that the replicated pattern is not isotropic when the
corner modes are removed, while the Fourier modes fill the
available space uniformly when the corner modes are kept.
Though the pattern of mirror frequencies occurs on scales
smaller than those that were initially resolved, these modes will
become relevant at lower redshifts as structure forms on scales
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Figure 2. Visual differences between initial-conditions density fields with and without corner modes. The density fields were extrapolated in Eulerian linear theory to
z = 0, and the panels are square, 62.5 4~' Mpc on a side. These density fields have essentially the properties of the initial conditions of the 512 particle simulation

below, although the realization is different.

smaller than the inter-particle separation. Indeed, as we will
show, even if corner modes are removed in the initial
conditions, modes at |k| > ky, emerge naturally through
nonlinear mode-mode coupling and grow as the simulation
evolves. Note also that the corner and non-corner modes are
entirely independent; there is no aliasing of modes above the
Nyquist frequency to lower frequencies since spectral replica-
tion only occurs parallel to each axis.

In Figure 2 we visually show the difference that corner
modes make in the initial conditions for a realization of a
Gaussian random field, generated with the same initial power
spectrum as used below, linearly extrapolated to z = 0. Here,
we show a 2D, 32% slice of a 32° grid of pixels spaced by
% h~'Mpc (the same spacing as in the 512° particle
simulation used below). Zeroing the corner modes visibly
smooths the density field; the difference field, essentially a
Gaussian field with only corner modes, has visible fluctuations
as well.

In this paper we determine the effect of including versus
removing corner modes in the initial conditions of cosmolo-
gical simulations. In Section 2, we describe the set of
simulations used for this test, and in Section 3 we measure
the effect of these corner modes on the matter power spectra,
one-point density distribution functions, halo mass functions,
and halo density profiles at several redshifts. Conclusions and a
discussion are presented in Section 4.

2. Simulations

To determine the effect of including or removing corner
modes in the initial conditions of simulations, we run two full
cosmological dark matter N-body simulations where the only
difference is whether these modes are present. The simulations
were run using the L-Gad§et2 code (Springel 2005) with a box
length of 1 h~! Gpc, 1024° particles, and WMAP7 cosmological
parameters () = 0.272, Oy = 0.728, h = 0.704, o3 = 0.81,
and ng; = 0.967) (Komatsu et al. 2011). Each dark matter particle
has a mass of m, = 7.031 x 104~ M., and the Nyquist
frequency of the simulation is kxy = 7N/L = 3.2h Mpc~'. The
initial conditions are generated using IC_2lpt_Gen (Jen-
kins 2013), and both simulations have the same random phases.
The starting redshift is z = 127 and was generated using 2nd
order Lagrangian perturbation theory, sampled on a grid; 64

snapshots are saved down to z = 0. These simulations were run
as part of Indra, a suite of 512 simulations with the same box
size, particle number, and cosmological parameters with the goal
of beating down cosmic variance in large-scale structure studies
(B. Falck et al. 2017, in preparation). This means that the box
size and resolution are chosen to give good statistics on large
scales instead of resolving very small scales.

Even if a difference is found between the simulation where
these corner modes are present in the initial conditions and
where they are zeroed, it would be unclear which is “correct.”
To address this, and to disentangle the effects of corner modes
and resolution, we also run downgraded versions of both
simulations (with and without corner modes) with the same box
size of 1 h~! Gpe: one set with only 512 particles, and one set
with 10243 particles, but for which the initial conditions were
defined up to the Nyquist frequency of a 512° simulation. In
this way, we can separately vary only the particle resolution or
only the resolution of the initial modes when we do our
comparison to determine whether the presence of corner
modes has an effect on how well, and at what scales, the
lower resolution simulation converges to the “truer” higher
resolution simulation. The 512° particle simulations (with
and without corner modes) have a dark matter particle mass
of 5.62 x 10"h~" M, and a Nyquist frequency of kyy =
1.61 h Mpc~!. Unless otherwise specified, results will be
presented for the 1024° simulation; at a given z and k/kny,
the differences between including and removing corner modes
will be smaller/larger for a higher/lower resolution simulation,
due to the differences in the onset of nonlinear evolution that
washes out the effect of removing corner modes (as we
will show).

Halo catalogs are generated as the simulation runs using a
standard friends-of-friends algorithm (FOF; Davis et al. 1985),
with a linking length of b = 0.2 times the inter-particle
separation, L/N, and a minimum of 20 particles per halo. Post-
processing of the FOF halos is performed with SUBFIND
(Springel et al. 2001) to identify subhalos in phase space. For
the main FOF halo and any subhalos, centers are calculated as
the minimum of the potential well, defined by the position of
the most bound particle; we use these centers in the following
section to measure density profiles of the FOF halos.
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Figure 3. Visual differences between z = 0 particle positions with and without corner modes. The square panels, 50 4! Mpc on a side, show particles on the same 2D
initial-conditions sheet, taken from the 512° particle simulations, with initial inter-particle spacing of ~2A~! Mpc. On the right, small lines are drawn between

positions of particles with and without corner modes.

3. Results

First, in Figure 3, we visually show the difference in z = 0
particle positions between the simulations with and without
corner modes, from the degraded-resolution 5123-particle
simulations. The differences are small in voids and larger in
high-density regions. At high density, not only is nonlinearity
inherently stronger, but there are more close encounters among
the particles, giving increased opportunity for numerical noise.
Thus, it is not surprising that small initial differences are most
amplified in the final conditions at high densities.

In this 512°-particle simulation, the distribution of displace-
ments between z = 0 positions in the simulations with and
without corner modes has a median of 0.34 and a root mean
square (rms) of 0.61 #~! Mpc. If the displacement between
positions with and without corner modes were Gaussian in each
dimension, the distribution of squared distances would be a x?
with 3 degrees of freedom. Assuming this distribution, an rms
distance of 0.61 h~! Mpc would give a median distance of
~0.55 h~! Mpc, much larger than the measurement. This non-
Gaussianity in the displacements in each dimension accords
with the visual impression of Figure 3 that most displacements
are tiny (in low-density areas), with a heavy larger-displace-
ment tail (in high-density regions).

3.1. Power Spectra

In this section, we consider the differences in the power
spectra between the simulations with and without corner modes
over a range of redshifts. Power spectra were measured using
the POWMES code (Colombi et al. 2009), which interpolates
the particles to a grid and computes the spectrum using Fast
Fourier Transform (FFT). We used a cloud-in-cell (CIC)
density assignment scheme on a 1024° grid. POWMES
computes the raw power spectrum, as well as the spectrum
corrected for the CIC window function and aliasing effects. To
study the corner modes in detail, we slightly modified the
binning scheme in POWMES to ensure that the particle
Nyquist frequency is at the edge of a bin, so that there is no
mixing of the corner modes into the bin below the Nyquist
frequency.

Figure 4 shows power spectra at several redshifts for both
high-resolution (1024 particles) simulations, along with the
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Figure 4. Measured power spectra at a range of redshifts covering the
evolution of the simulation along with the theoretical input power spectrum.
Solid lines show simulations including corner modes and dashed lines show
simulations with corner modes zeroed.

initial linear theory power spectrum, computed using
CAMB (Lewis et al. 2000). There is good agreement with
the linear theory power spectrum for both simulations at
the starting redshift, z = 127; near the Nyquist frequency
(of both the particle distribution and the CIC density grid,
kny = 3.2 h Mpc™!), the power spectrum is enhanced above the
theoretical power spectrum as expected for a moderately
perturbed grid of particles such as is the case for very early
snapshots (Marcos et al. 2006; Joyce & Marcos 2007; Colombi
et al. 2009; Garrison et al. 2016). The simulations with and
without corner modes agree very well up to the Nyquist
frequency at all redshifts. For k at and just above kyy, at high
redshift the power spectrum abruptly cuts off in the simulation
where these modes are zeroed. The dramatic upturn in the high-
redshift power spectra at wavenumbers above kyy is due to the
window function correction and is not observed in the raw
power spectra. Modes just above kyy in the simulation with
corner modes removed are slowly restored as z — 0 via
nonlinear mode-mode coupling, until both power spectra agree
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Figure 5. Ratio of PS without corner modes to those with corner modes at a
few redshifts, focusing on the high-k deviation. The vertical dashed line shows
the Nyquist frequency, beyond which there is no power in the simulations
without corner modes. As redshift decreases, the ratio approaches 1 at all
scales.

well at all k around z = 3. Though we do not explicitly address
the growth rate of corner modes in this paper, note that the
growth rate of modes is suppressed as one approaches (and
exceeds) the one-dimensional Nyquist frequency (Garrison
et al. 2016).

Figure 5 shows the ratio of power spectra in simulations
without corner modes to those where they are included, for the
same redshifts as Figure 4. At high-z the ratio is close to 1 up to
the Nyquist frequency, where it diverges, as expected. As
z — 0 the ratio flattens out, creating differences both above
and below kny, such that the simulation with no corner modes
in the initial conditions has less power than the simulation with
corner modes at frequencies above about 2.5k Mpc~!. The
deviations in the power spectra below the Nyquist frequency
arise from the coupling between the corner modes and lower
frequency modes as the simulations progress. By the lowest
redshift shown, z = 0.8, the power spectra from the two
simulations nearly agree, the differences that are present at high
redshift having become fully washed out by nonlinear
evolution.

We examine these differences in greater detail in Figure 6,
which is the same as Figure 5 but is zoomed-in to show small
percentage deviations at k > 1k Mpc~!. Interestingly, at
intermediate redshifts, there is an increase in power in the
simulation with no corner modes relative to the simulation with
corner modes for frequencies k < 2.5 h Mpc~!. The maximum
deviation is ~0.4% at k ~ 2 h Mpc~! at z = 2.8. The deviation
decreases below z = 2.8, and the ratio is again close to 1 for
z = 0.8. Note that for the lower particle resolution simulations,
these differences persist to lower redshifts due to the delayed
repopulation of the corner modes.

In order to determine whether including corner modes is
“better” than zeroing them out in the initial conditions, we
make two comparisons: in Figure 7 we plot power spectrum
ratios of the 1024° particle simulations, where the “512”
simulation has had initial modes defined up to the Nyquist
frequency of a 512° particle simulation, such that we are only
varying the resolution of the initial modes; and in Figure 8, we
plot power spectrum ratios of standard 512 particle simula-
tions to these downgraded simulations with 1024° particles,
such that we are only varying the resolution of the dark matter
particles. In both figures, the top panel shows the ratio for the
simulations with corner modes, and the bottom panel shows the
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Figure 7. Ratio of the PS of the high-resolution simulation with downgraded
initial modes to the PS of the high resolution simulation with all initial modes,
for simulations with (solid lines, upper panel) and without (dashed lines, lower
panel) corner modes.

ratio for simulations without corner modes. In Figure 7, the
ratios are near unity at low-k until the Nyquist frequency of the
simulation with the downgraded initial modes (given by the
vertical dashed line at k = 1.6 h Mpc~'). Above this frequency,
the ratio drops drastically at high redshifts when corner modes
are removed, and it drops gradually when they are retained.
Both ratios return to unity as the redshift decreases, remaining
closer to unity in the case where corner modes are retained.
This suggests that while retaining corner modes above the one-
dimensional Nyquist frequency does not result in an “exact”
power spectrum at these frequencies, it is better than imposing
a sharp-k cutoff, at least at high redshifts.

Now we turn to the question of particle resolution. In
Figure 8, for the earliest snapshots, both ratios are enhanced
above unity near the Nyquist frequency of the particles in the
lower-resolution simulation (given by the vertical dashed line
at k = 1.6 h Mpc™!). This is because the particles are on a
nearly uniform grid, as we discussed for the high-redshift
power spectra in Figure 4. The ratios in both cases, with and
without corner modes, show a sharp upturn at this frequency at
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Figure 8. Ratio of the PS of the 512° particle simulation to the PS of the 1024
particle simulation with 5123 initial modes, for simulations with (solid lines,
upper panel) and without (dashed lines, lower panel) corner modes.

high redshifts, and are slightly sharper in the case without
corner modes. The ratios dip below unity and then again
approach unity as redshift decreases, and the discontinuity
smooths out, in both cases.

These results suggest that including corner modes in a lower
mode-resolution simulation results in a power spectrum that is
closer to its higher mode-resolution counterpart. However,
these effects are much smaller than particle resolution effects,
which cause the power spectra in both cases to differ from the
high resolution case by as much as 20%, even after the particles
are sufficiently displaced from the grid. Also, the particle
resolution affects a much wider range of wavenumbers
(0.6 < k < kny h Mpc™!) than the corner modes, which only
affect the power spectra very close to and above the one-
dimensional Nyquist frequency.

3.2. One-point Probability Distribution
Functions (PDFs) of Density

In this section we explore the effect of the corner modes on
the one-point probability distribution functions (PDFs) of the
overdensity at various redshifts. The PDF is the lowest-order
statistic of the matter-density field. It is sensitive to phase
correlations and therefore visual differences in the density
field (Neyrinck 2014). The PDF can be difficult to model, but
recently, spherical dynamics have been shown to be remarkably
accurate to model both a mass-weighted PDF (Neyrinck 2013)
and a volume-weighted PDF (Bernardeau et al. 2014; Uhlemann
et al. 2016). A matter-density PDF, if it can be inferred
observationally, would provide impressive cosmological con-
straints (Codis et al. 2016).

We compute the overdensity field using a CIC assignment
scheme with % ~ 1 h~! Mpc cells. The overdensity PDFs are
plotted in Figure 9 at several redshifts. To aid in the comparison,
we scale § with the inverse growth factor of [D(z = 0)/D(z)],
allowing us to compare just the shapes of the distributions. We
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Figure 9. Top: one-point distribution functions of the overdensity field using
CIC density assignment in 1 #~! Mpc cells from simulations with and without
corner modes, at several redshifts. Bottom: ratio of distribution functions
without corner modes to those with corner modes.

only show PDFs for z > 6.2 because the differences are
negligible at lower redshifts.

The bottom panel of Figure 9 shows the ratio of the PDFs in
the simulation without corner modes to that with corner modes.
The PDFs without corner modes are narrower, thus the ratio is
suppressed at low and high densities and enhanced near § = 0.
There is a strong redshift dependence at high densities:
removing corner modes suppresses high densities by 20% at
the initial redshift, reducing to ~5% at z = 16.7 and ~1% at
7 =06.2 as these modes become repopulated during the
evolution of the simulation.

To quantify the evolution of the difference in the density
distribution functions with redshift, we measure the variance of
the PDFs using both 1/4~! Mpc and 8 7~! Mpc CIC grid cells
at several redshifts. The ratios of these variances in the
simulations without corner modes to those with corner modes
are shown in Figure 10. Zeroing the corner modes reduces the
1h~!Mpc variance in the density field at high redshift
compared to leaving them, and this difference reduces to
~0.05% at z =1, while the difference in the 8A~! Mpc
variance is negligible.

Note that this variance ratio depends on the logarithmic slope
of the initial power spectrum at kny and therefore also on the
simulation resolution. If the slope is steep (at high resolution,
for a typical ACDM simulation), the fractional power removed
at the initial inter-particle scale by zeroing corner modes will be
less than that for a shallower slope. Assuming the same ACDM
linear power spectrum as that used in these simulations,
changing the simulation resolution by a factor of 10 changes
the effect of corner modes on the variance of the overdensity
PDF by a few percent.
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Figure 10. Ratio of the variance of the one-point PDF without corner modes to
that with corner modes as a function of redshift, using both 1 4~! Mpc cells
(dashed line) and 8 A~! Mpc cells (solid line).

3.3. Halo Mass Functions

In Figure 11 we plot halo total mass functions at 10 redshifts
from z = 6.2 to z = 0. Note that these are not mass functions
for virial masses or Mg, since we did not want our results to
depend on additional post-processing of the halos. There are
tiny differences in the cumulative mass functions of the
simulations with and without corner modes in the initial
conditions, mostly at the high-mass end. Though these
differences occur at all redshifts, they are not systematic—
sometimes mass functions from the simulation with corner
modes are higher than those without corner modes, sometimes
they are lower—and the differences are very small. This can be
seen in the bottom panel of Figure 11, which shows the ratio of
the mass functions from the simulation without corner modes to
the simulation with corner modes. The largest differences, up to
20% but mostly within 10%, are in the largest mass bins at a
given redshift, where statistics are poor.

There is also a small difference in the number of small halos
with total masses less than 3 x 10'24~! M. Note that the
smallest halos, containing 20 particles, have masses of
1.3 x 10" h~!' M. At z = 6.2, there are 3% more small halos
in the simulation without corner modes; this difference reduces
as z — 0 and is less than 1% by z = 2.8. Interestingly, the ratio
dips slightly below zero at z = 2 and continues to decrease,
such that by z = 0 there are 0.7% fewer small halos in the
simulation without corner modes than with corner modes.
Recall that the ratio of power spectra without corner modes to
those with corner modes is also increased between k = 1 and
k = 2.5h Mpc~! until z ~ 2 (see Figure 6), so this seems to be
also reflected in the low end of the mass functions.

Given these differences in the low end of the mass functions,
we would like to have some idea of whether including or
removing corner modes is “better” independent of the particle
resolution, as we did with Figure 7. In Figure 12 we plot
the mass functions of both 1024° particle simulations, where
the “512” simulation was initialized with modes only up to the
Nyquist frequency of a 512° particle simulation, as described in
Section 2. Due to the suppressed small-scale initial power of
the “512” simulation, there are fewer halos at high redshift, so
we start at z = 4. The mass functions without (left) and with
(right) corner modes are shown in the upper panels, and the
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Figure 11. Top panel: total mass functions of FOF halos fromz = 6.2toz =0
for the simulation with (solid lines) and without (dashed lines) corner modes.

Bottom panel: ratio of mass functions without corner modes to those
with them.

An/ng,

bottom panels show the ratios of the lower to higher resolution
mass functions. The mass functions and ratios are qualitatively
similar for both simulations with and without corner modes,
and the largest differences are in the highest-mass bins where
there are only a few halos.

It is interesting to note how the lack of initial power in the
“512” simulations leads to a suppression of the high end of the
mass functions at low redshifts, as seen in the bottom panels;
however, this behavior is similar in both simulations with and
without corner modes, so we find that removing corner modes
has no significant effect on the mass functions of dark matter
halos. This can be understood if the onset of nonlinear structure
formation washes out the effect of removing corner modes by
repopulating them, which happens at the same redshift as halo
formation, regardless of simulation resolution.

3.4. Halo Profiles

As seen in Figure 9, the largest difference in the density one-
point PDF is at high densities, thus it may be that the presence
or absence of corner modes has some effect on the inner
regions of halos. To test this, we measure stacked profiles of all
halos (in different mass bins) at several redshifts. Halo centers
are measured in SUBFIND for the FOF parent halos as the
position of the most bound particle, i.e., the center of the
potential well. The density profiles of each halo are measured
using all halo particles and then stacked in logarithmic radial
bins. Error bars show the standard deviation of the mean halo
profile in each radial bin. Though all halos have at least 20
particles, we stack profiles in two bins of particle number (and
therefore total mass): 30 to 100 particles (or 2.11 x 10'2 to
7.03 x 102~ M), and greater than 100 particles. The
minimum radius of the stacked profile is set to the largest
minimum radius of the individual profiles of both simulations.
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Figure 12. Total mass functions of FOF halos from z = 4.2 to z = 0 for the simulations without corner modes (left) and the simulation with corner modes (right), with
10243 particles and full initial k-modes (solid lines) and with low-resolution initial k-modes defined on a 5 123 grid (dashed lines). All simulations have 10243 particles
in a 1 h~! Gpc box. Bottom panels: ratio of mass functions with low-resolution initial <-modes to those with full-resolution initial k-modes.
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Figure 13. Halo density profiles at z = 6.2, 5.3, 4.2, and 3.1 for halos with
greater than 30 particles and fewer than 100 particles.

Figure 13 shows the stacked density profiles of halos with 30
to 100 particles at 4 redshifts from z = 6.2 to z = 3.1. There is
very little difference between stacked profiles from simulations
with and without corner modes in the initial conditions. As the
redshift decreases, there are more halos and the profiles probe
smaller radii. The ratios of the profiles from the simulation
without corner modes to that with them are shown in Figure 14,
for the same profiles as in Figure 13. The differences are clearly
greater for the inner regions of the profiles, but this is where the
profiles are not well resolved, and the differences are within the
scatter given by the error bars. Note that at redshifts higher than
z = 6.2, most of the halos have only 20 particles, and at
redshifts lower than z = 3.1 the differences are even smaller.

At 7z = 6.2 and z = 5.3, there are very few halos with more
than 100 particles, so in Figure 15 we show the stacked profiles
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Figure 14. Ratio of stacked halo density profiles of the simulation without
corner modes to that with corner modes, at z = 6.2, 5.3, 4.2, and 3.1 for halos
with greater than 30 particles and fewer than 100 particles.

atz = 4.2 and z = 3.1, respectively, for halos with greater than
100 particles (Mi; > 7.031 x 102 h~' M). In the bottom
panels we plot the ratio of profiles from the simulation without
corner modes to that with corner modes. At both redshifts, the
profile from the simulation with the corner modes included is
enhanced with respect to the profile with no corner modes in
the smallest radial bin. This difference appears to be more
significant for z = 4.2 than for z = 3.1, which supports the
findings of the previous sections that the effect of including or
zeroing the corner modes washes out as redshift decreases;
however, there are significant caveats.

One caveat is that for all of these profiles, it is important to
note that the inner regions may not be sufficiently resolved to
make strong comparisons between the simulations with and
without corner modes. For one thing, at higher redshifts, where
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Figure 15. (Top) Stacked halo density profiles and (bottom) ratio of halo
density profiles in the simulation with corner modes to those in the simulation
without corner modes, at z = 4.2 (left) and z = 3.1 (right) for halos with
greater than 100 particles.

the differences in the power spectra are greater, there are no
halos in our simulations with a sufficient number of particles to
resolve the density profiles to the precision suggested by, e.g.,
Power et al. (2003). Another caveat is that the small scales that
exhibit differences due to the presence of corner modes (e.g.,
Figure 4), probed by the inner regions of the halos, are smaller
than the force softening of the simulations, ¢ = 0.04 h~! Mpc,
below which the mass profile may not be converged (Power
et al. 2003). However, these convergence studies were
performed for individual halos, not for the stacked halo profiles
we show in the figures, which can perhaps be trusted more than
individual halo profiles.

In any case, we find that for simulations at or below a
resolution of L/N = 0.98 h~—! Mpc, the effect of corner modes
on halo profiles can be neglected.

4. Conclusion

A common practice in generating initial conditions of
cosmological N-body simulations is to set the power spectrum
to zero at |k| > kny, which can be non-zero off the axes of the
simulation cube’s window function (dubbed “corner modes”).
We have run simulations with and without these corner modes
to determine the effect of removing them on statistical
measures of large-scale structure such as the power spectrum,
density one-point PDF, halo mass function, and halo profiles.

We find that though the difference between the power
spectra is largest at high redshift, even at z = 3 the difference is
at the level of 2% above ~80% of kyy and 0.5% at
k=2hMpc™' for a simulation with kyy = 3.2h Mpc™'.
These differences become smaller as z — 0 because the corner
modes are repopulated during the evolution of the simulation.
Since comparing simulations with and without corner modes
does not give us an idea of which is “right,” we also compare
power spectra from simulations with the same particle
resolution, but with a different resolution of initial modes, in
order to determine whether including or removing these modes
results in a better agreement between the low- and high-
resolution simulations. To separate the effect of corner modes
from that of particle resolution, we also compare power spectra
of simulations with different particle resolution, but with the
same initial modes. We find that including corner modes results
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in a better agreement between low- and high-resolution power
spectra, but the effects of particle resolution are larger than the
effects of the corner modes.

The effect of removing corner modes is greatest at high
redshift, high density, and small scales. Zeroing corner modes
in initial conditions results in density distribution functions that
are narrower with a suppressed high density tail. This
difference at high densities is greatest at high redshift, reducing
to ~1% at z=6. The variance of the 1A~ !Mpc CIC
overdensity PDF is suppressed by a factor of 2% at z = 10
when the corner modes are removed compared to when they
are included, reducing to <1% at z = 1. On the other hand,
there is no difference between the variance of 8 ~~! Mpc CIC
overdensity PDFs.

Though there are few halos at very high redshift in our
simulations, removing corner modes in initial conditions does
affect the halo mass function by 3% at z = 6 for the smallest
halos, with fewer than 50 particles. We found no effect on the
correspondence between mass functions in the low- and high-
resolution simulations at z < 4. Similarly, though removing
corner modes does affect the inner regions of halo density
profiles at high redshift, we did not find these differences to be
significant.

Removing corner modes in the initial conditions results in a
suppression of power below the Nyquist frequency and a
reduced variance in the one-point density PDF until these
corner modes are repopulated as the simulation evolves via
nonlinear mode-mode coupling. The effect of corner modes is
quite small, typically below the level of resolution and
discreteness effects; it would be interesting to test the effect
of removing corner modes using an initial conditions code that
explicitly addresses discreteness effects (e.g., Garrison
et al. 2016). Subpercent effects will need to be considered for
future surveys such as Euclid, DESI, WFIRST, and SKA.
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