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Abstract. Random domino tilings of the Aztec diamond shape exhibit interesting features and
some of the statistical properties seen in random matrix theory. As a statistical mechanical model it
can be thought of as a dimer model or as a certain random surface. We consider the Aztec diamond
with a two-periodic weighting which exhibits all three possible phases that occur in these types of
models, often referred to as solid, liquid and gas. To analyze this model, we use entries of the inverse
Kasteleyn matrix which give the probability of any configuration of dominoes. A formula for these
entries, for this particular model, was derived by Chhita and Young (2014). In this paper, we find
a major simplication of this formula expressing entries of the inverse Kasteleyn matrix by double
contour integrals which makes it possible to investigate their asymptotics. In a part of the Aztec
diamond, where the asymptotic analysis is simpler, we use this formula to show that the entries
of the inverse Kasteleyn matrix converge to the known entries of the full-plane inverse Kasteleyn
matrices for the different phases. We also study the detailed asymptotics of the inverse Kasteleyn
matrix at both the ‘liquid-solid’ and ‘liquid-gas’ boundaries, and find the extended Airy kernel in
the next order asymptotics. Finally we provide a potential candidate for a combinatorial description
of the liquid-gas boundary.
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1. Introduction

1.1. Overview. Tiling models of bounded lattice regions have been extensively researched during
the last twenty years. These tiling models are equivalent to dimer coverings of a bipartite graph G,
where one considers a subset of edges of G so that each vertex is incident to exactly one edge while
each edge present is referred to as a dimer.

The two most commonly studied examples of these tilings are lozenge tilings, where one tiles
rhombi on part of the hexagonal mesh, and domino tilings, where one tiles dominoes (2 by 1
rectangles) on part of the square grid. In this paper, we study domino tilings on the Aztec diamond,
where an Aztec diamond of size n is all the squares of the square lattice whose centers satisfy
|x|+ |y| ≤ n. This model was first introduced in [15].

To each edge, one assigns a multiplicative weight which allows one to consider random dimer
coverings: a covering is picked with probability proportional to the product of the edge weights of
the dimer covering. This defines a discrete probability space called the dimer model. For bipartite
graphs G, each dimer covering encodes a three dimensional surface where the third co-ordinate is
derived from the specific dimer covering and is called the height function [34]. In this way, one gets
a certain class of models of a random surface. The height function observes much of the large-scale
behavior of the random dimer covers: for random dimer covers of large bounded graphs G, the
height function tends to a deterministic limit shape [13, 21]. In particular, it is expected that the
different phases that can occur in the model are encoded into the height function [22]. Three types
of limiting Gibbs measures for the dominoes/dimers are possible, often called solid, liquid or gas.
The difference between the three types of phases is seen in the behavior of the correlations between
dominoes. They have deterministic, polynomial or exponential decay respectively in the distance
between dominoes. Note that these names for the types of phases are technical terms and the phases
do not represent the physical states of matter.
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Uniform domino tilings of the Aztec diamond contain solid and liquid phases and they are sep-
arated by a boundary curve, the solid-liquid boundary, which in the limit converges to an ellipse
(arctic ellipse). In [17] a two-particle system, which gives a good description of the microscopic
solid-liquid boundary, was used to investigate the fluctuations of this boundary. It was shown that
the size of fluctuations are of order n1/3 for an Aztec diamond of order n. Furthermore, under a
suitable re-scaling, the boundary path converges to the Airy process. Similar situations have been
observed for lozenge tilings [4, 27, 2, 29]. In particular in [4], the authors introduced a general setting
for a large class of models via a general particle process (with dynamics). Among other things they
studied the height fluctuations in the liquid region and proved that they are given by the Gaussian
free field [32]. These models belong to a class of processes originally formulated in [27] called Schur
processes and they form a class of determinantal point processes where it is possible to give explicit
formulas for the correlation kernel. This class of point processes has recently been generalized to
the so-called Macdonald processes [3] where one leaves the determinantal framework. Here, we
stay within the class of determinantal point processes, but move away from the class of Schur and
Macdonald processes, by looking at a different assignment of weights to the Aztec diamond model
which we call the two-periodic Aztec diamond. This model exhibits all three phases [21] and has
two boundaries, one between the liquid and solid phases and one between the liquid and gas phases.
Since we are able to give formulas for the inverse Kasteleyn matrix for this model that are useful
for asymptotic analysis, we have the possibility of studying the microscopic statistical behavior of a
random tiling/dimer model at a liquid-gas boundary. To our knowledge this is the first model where
this is possible. In terms of the height function, the gas and solid phases correspond in the limit to
facets, flat parts of the limiting height function, whereas the liquid region corresponds to a curved
surface. Before the limit, the curved surface is rough, it is expected to converge to a Gaussian free
field, the facets coming from the solid region are microscopically flat, perfect facets, whereas the
facet coming from the gas region is not completely flat but has bounded almost uncorrelated height
fluctuations. Hence, the results of this paper also opens up the possibility of studying the boundary
between the rough random surface and a facet with small fluctuations.

1.2. Definition of the model. In order to define the weights for the two-periodic Aztec diamond,
we first describe (the dual of) the Aztec diamond which will be referred to as the Aztec diamond
graph. Let

W = {(i, j) : i mod 2 = 1, j mod 2 = 0, 1 ≤ i ≤ 2n− 1, 0 ≤ j ≤ 2n}
and

B = {(i, j) : i mod 2 = 0, j mod 2 = 1, 0 ≤ i ≤ 2n, 1 ≤ j ≤ 2n− 1}
denote white and black vertices. The union, B ∪ W denotes the vertex set of the Aztec diamond
graph with the edges given by b− w = ±(1, 1),±(−1, 1) for b ∈ B and w ∈ W. For an Aztec diamond
of size n = 4m with m ∈ N, define the two-periodic Aztec diamond to be an Aztec diamond with
edge weights a for all edges surrounding the faces (i, j) with (i + j) mod 4 = 2 and edge weights
b for all the edges surrounding the faces (i, j) with (i+ j) mod 4 = 0; see the left figure in Fig. 1.
In other words, the face weights, that is the alternating product of the edge weights around each
face, are given by 1, b2/a2, 1 and a2/b2 for the faces (i, j − 1), (i + 1, j), (i, j + 1) and (i − 1, j) for
(i, j) ∈ W with i+ j mod 4 = 3.

1.3. The Kasteleyn Approach. To study fine asymptotic properties of tiling models, often, one
tries to find the correlation functions associated with the model in the finite setting and analyze these
functions as the system size gets large. The approaches to find the correlation functions considered
in [17, 4, 5, 6, 29] and many other tiling models are similar in many ways: by mapping to a particle
system, one computes the correlation kernel of the particle system by finding the inverse of the
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Figure 1. The left figure shows the two-periodic Aztec diamond graph for n = 4
with the edges weights given by a (or b) if the edge is incident to a face marked a
(respectively b). The right figure shows the limit shape when a = 0.5 and b = 1.

Karlin-McGregor-Lindstrom-Gessel-Viennot matrix, and using this inverse in the Eynard Mehta
theorem — see [7] for a descriptive overview of this technique. For Schur processes, the KMLGV
matrix can be taken to be an infinite Toeplitz matrix, thus, an explicit inverse is computable using
a Wiener-Hopf factorization of the symbol. For the two-periodic Aztec diamond, the outlined
approach of mapping to a particle system and using the techniques developed from random matrix
theory is mathematically complicated. The main obstacle is finding a suitable inversion formula for
a block Toeplitz matrix since the symbol is a two by two block matrix and Wiener-Hopf techniques
are not obvious to apply. An alternate approach for tiling models is to use the so-called vertex
operators [27] via various commutation relations which gives methods to compute the partition
function and correlation functions, as explained recently in [9, 8]. It is not clear (at least to us),
how to find a formula for the correlation functions for the two-periodic Aztec diamond using the
above outlined methods.

A third approach to compute correlation kernels for tiling models, and the classical approach to
dimer models, is via the Kasteleyn matrix. For bipartite graphs, the Kasteleyn matrix, [18], can be
heuristically thought of as a signed weighted adjacency matrix whose rows and columns are indexed
by black and white vertices respectively. The sign is chosen according to a Kasteleyn orientation of
the graph. This means assigning a sign (or imaginary unit) to each edge weight so that the product
of the edge weights around each face is negative. The inverse of the Kasteleyn matrix, which we
will refer to as the inverse Kasteleyn matrix can be used to compute the correlations of dominoes
using the local statistics formula for dimers on bipartite graphs found in [19], an idea dating back
to the early investigations of dimer models, e.g. [25]. The correlation kernel of the particles can be
explicitly computed once the inverse Kasteleyn matrix is determined, compare [11].

A derivation of the inverse Kasteleyn matrix for the two-periodic Aztec diamond considered in
this paper is given in [12]. There, the authors compute a four variable generating function whose
coefficients are the entries of the inverse Kasteleyn matrix. Two of the variables of the generating
function mark the position of the white vertex associated to the inverse Kasteleyn matrix while
the other two variables mark the position of the black vertex. Although elementary, this derivation
is computationally intensive but its main attraction is that it leads to a formula that is explicit
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in terms of elementary functions. We remark that the reason behind finding a formula is due to
the fact that the specific choice of edge weights, which we call two-periodic in this paper, have
periodicity under four iterations of the shuffling algorithm [12].

1.4. Informal description of our results. Here, we give a brief intuitive description of the model
and our results. Precise statements are found in the following section.

Random simulations of domino tilings of large two-periodic Aztec diamonds, if drawn using an
appropriate choice of colors, are visually striking, since they feature all three phases. For the model
studied in this paper, the limit shape governing the separation between these phases are a family
of 8th degree algebraic curves. These curves can be obtained from the general machinery of Kenyon
and Okounkov [21], have also recently been determined in [14], and are also obtained from our
formulas below in the standard way; e.g. see below or [27] for details. The right figure in Fig. 1
shows these algebraic curves while Fig. 2 shows a simulation of the two-periodic Aztec diamond
with two different color schemes.

In this paper, we give a double contour integral formula for the inverse Kasteleyn matrix of
the two-periodic Aztec diamond which follows from a major simplification of the result in [12].
This enables us to compute the leading asymptotics, as n goes to infinity, of the inverse Kasteleyn
matrix in each of the three regions along the main diagonal of the third quadrant of the Aztec
diamond. We restrict the analysis to this line since it is technically simpler but still allows us to
investigate several of the important features of the model. As a consequence of this result it would
be possible to deduce convergence to the limiting translation invariant Gibbs measures which have
been characterized in [22]. However, we omit this argument in order not to make the paper longer
than it already is. Furthermore, we are able to find the subleading asymptotics of the inverse
Kasteleyn matrix at both the liquid-solid and liquid-gas boundaries. At the liquid-gas boundary we
find that the dominant part is given by the inverse Kasteleyn matrix for an infinite gas region plus
a correction term involving the extended Airy kernel. This shows that we have strong correlation
at distances of order n2/3 in the direction tangent to the limiting boundary curve, and n1/3 in the
orthogonal direction, see Theorem 2.7 and Corollary 2.8. We get similar results at the liquid-solid
boundary, Theorem 2.9 and Corollary 2.10, but here the dominant, “background part”, is instead
given by a coupling function for an infinite solid region.

It is possible to introduce a particle description of the tiling in a similar way as in [11] so that the
liquid-solid boundary has a precise microscopic description in terms of last particles on appropriate
lines (or, in terms of dominoes, the first domino breaking the regular brick wall pattern). In this way
it should be possible, using the results of this paper, to show that again, in an appropriate scaling
limit, the liquid-solid boundary is given by an Airy process. At the liquid-gas boundary however, the
situation is less clear. It is not immediate how to define a microscopic boundary although one has
some indication that there is a boundary from the simulations; see the bottom figure in Fig. 2. At
the liquid-gas boundary, the “background” is a gas phase, which is nontrivial and any configuration
can occur, although its probability may be small. Hence just looking locally it is not clear how we
should define a microscopic liquid-gas boundary. Still, we see from the behavior of the correlations
between dominoes that the behavior is in some ways very similar at the two boundaries with the
same scales and the extended Airy kernel appearing. Perhaps, at these appropriate scalings, the
behavior is in some sense the same irrespective of whether the background is a gas phase or a solid
phase. A reasonable conjecture would therefore be that with a natural and good definition of the
microscopic liquid-gas boundary close to the features that we see in the pictures, we would still have
convergence to an Airy process. In the last section we define a set of lattice paths which we think
separate the gas and liquid phases and discuss some of their properties. These paths are global in
nature and hence it is not clear how to analyze their statistical properties just using information of
the inverse Kasteleyn matrix.
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Figure 2. Two different drawings of a simulation of a domino tiling of the two-
periodic Aztec diamond of size 200 with a = 0.5 and b = 1. The top figure contains
eight different colors, highlighting the solid and liquid phases. The bottom figure
contains eight different gray-scale colors to accentuate the gas phase.
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It is worth mentioning that models with three phases of the type studied here are well-known
to both the mathematics and physics community. Note that these phases have different names in
the literature. We have adopted the terminology used by Kenyon, Okounkov and Sheffield [22].
The solid region is also known as the flat phase, the liquid phase is often referred to as the rough
or disordered phase and the gas phase is sometimes called the facet domain. As far as we aware,
Nienhuis, Hilhorst and Blöte in [26] were the first to discover a model containing all three phases
through a particular solid-on-solid model. Since then, it is expected that three phases occur for
the three-periodic lozenge tilings, the six-vertex model with domain wall boundary conditions away
from the so-called free fermion line [1] (see [31] for more details), and a specific parameterization in
the Carroll-Peterson-Speyer grove model [28, 10] as observed by Kenyon and Pemantle [23]. In all of
these models, there have been no analysis (rigorous or numerical) of the behavior at the liquid-gas
boundary.

1.5. Organization. The rest of the paper is organized as follows: in Section 2 we introduce the
notation and background material. In Section 2.4, we state Theorem 2.3 which gives the result for
the simplified formula for entries of the inverse Kasteleyn matrix. Theorem 2.6 which gives the
asymptotic entries of the inverse Kasteleyn matrix along a particular line which passes through the
three phases and their boundaries is stated in Section 2.5. Theorem 2.7 and Theorem 2.9 which
gives the asymptotic formulas for K−1

a,1 at the liquid-gas and solid-liquid boundary respectively, are
stated in Section 2.6. Corollaries 2.8 and 2.10 which gives the covariance between dominoes at each
of these boundaries are also stated in Section 2.6. We give the proofs of Theorem 2.6, Theorems 2.7
and 2.9 and Corollaries 2.7 and 2.9 in Section 3. In Section 4, we give the proofs of the technical
results we required for Section 3. The proof of Theorem 2.3 is given in Section 5. We give our
candidate for the paths which separate the liquid-gas boundary in Section 6. Please note that many
of our computations used computer algebra, a Mathematica file with these computations, called
reviewfile.nb, is available on the arXiv.

Acknowledgements. We thank Carel Faber for interesting and helpful discussions about the
geometry of the octic curve. At various stages in this project, we have also benefited from discussions
with Alexei Borodin, Cédric Boutillier, Jérémie Bouttier, Maurice Duits, Carel Faber, Patrik Ferrari,
Vadim Gorin, Martin Hairer, Richard Kenyon, Pierre van Moerbeke, Herbert Spohn and Craig
Tracy. We would also like to thank the referee for suggestions which resulted in an improved
manuscript.

2. Background and results

In this section, we provide the background material for the model and give precise statements of
our results.

2.1. Notation. For the two-periodic Aztec diamond, there are two types of white vertices and two
types of black vertices seen from the two possibilities of edge weights around each white and each
black vertex. To distinguish between these types of vertices, we define for i ∈ {0, 1}

Bi = {(x1, x2) ∈ B : x1 + x2 mod 4 = 2i+ 1}

and

Wi = {(x1, x2) ∈ W : x1 + x2 mod 4 = 2i+ 1}.

There are four different types of dimers having weight a with (Wi, Bj) for i, j ∈ {0, 1} and a further
four types for dimers having weight b with (Wi, Bj) for i, j ∈ {0, 1}.
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The Kasteleyn matrix for the two periodic Aztec diamond of size n = 4m with parameters a and
b, denoted by Ka,b, is given by

(2.1) Ka,b(x, y) =


a(1− j) + bj if y = x+ e1, x ∈ Bj
(aj + b(1− j))i if y = x+ e2, x ∈ Bj
aj + b(1− j) if y = x− e1, x ∈ Bj
(a(1− j) + bj)i if y = x− e2, x ∈ Bj
0 if (x, y) is not an edge

where i2 = −1, and we set e1 = (1, 1) and e2 = (−1, 1). For the rest of the paper, we denote H to
be the upper half-plane and set H+ to be the first quadrant, that is

H+ = {x+ yi : x > 0, y > 0}.
We also denote Iy=x to be equal to 1 if y = x and 0 otherwise.

2.2. K−1 and statistical information. Dimers on bipartite graphs form a determinantal point
process with the correlation kernel written in terms of the inverse of the Kasteleyn matrix. Here,
we state that result for the Kasteleyn matrix given in (2.1).

Suppose that E = {ei}ni=1 are a collection of distinct edges with ei = (bi, wi), where bi and wi
denote black and white vertices.

Theorem 2.1 ([19]). The dimers form a determinantal point process on the edges of the Aztec
diamond graph with correlation kernel given by

L(ei, ej) = Ka,b(bi, wi)K
−1
a,b (wj , bi)

where Ka,b(b, w) = (Ka,b)bw and K−1
a,b (w, b) = (K−1

a,b )wb.

The above formula is sometimes referred to as Kenyon’s formula, but the computation of correla-
tion between dimers using the inverse Kasteleyn matrix goes back to the early days of the Kasteleyn
approach.

2.3. Gibbs measure and local statistics. In [22], the authors determine the translation invariant
Gibbs measure of any dimer model on a bipartite graph embedded on the plane, give techniques to
compute the full plane inverse Kasteleyn matrix, and show that the possible slopes of the associated
height function classify the Gibbs measures. Conjecturally, for tiling models on bounded domains,
the Gibbs measure that is seen in the limit at a certain point is determined by the slope of the
limiting height function at that point; see [22, 21]. This classification does not give any information
on the more detailed behavior at the boundaries between different regions, which can occur in tiling
models on bounded domains.

The results from [22] rely on using the smallest non-repeating unit of the graph called the funda-
mental domain. The graph considered in this paper, has a 2× 2 fundamental domain, that is, the
fundamental domain of the graph consists of two black and two white vertices. More precisely, let

W̃ = {(i, j) ∈ Z2 : i mod 2 = 1, j mod 2 = 0},

B̃ = {(i, j) ∈ Z2 : i mod 2 = 0, j mod 2 = 1},
and for i ∈ {0, 1}

B̃i = {(x1, x2) ∈ B̃ : x1 + x2 mod 4 = 2i+ 1}
and

W̃i = {(x1, x2) ∈ W̃ : x1 + x2 mod 4 = 2i+ 1}.
We choose the fundamental domain of the graph embedded on the plane to have vertices w,

w+ e1,w+ e2 and w+ e1 + e2 for w ∈ W̃0 with the same Kasteleyn orientation and weighting as chosen
for the Aztec diamond graph.
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i a a i 1

i 1
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Figure 3. The fundamental domain for the two-periodic Aztec diamond with the
edge weights and Kasteleyn orientation. We have the labeling wi ∈ Wi and bi ∈ Bi
for i ∈ {0, 1}.

To describe the Gibbs measure, the authors in [22] introduce magnetic coordinates. For the
fundamental domain considered here, we represent the magnetic coordinates by (B1, B2) where each
edge weight in the neighboring fundamental domain in the direction e1 (or resp. e2), is mulitplied
by eB1 (or eB2 resp.). Conversely, each edge weight in the neighboring fundamental domain in the
direction −e1 (or −e2 resp.) is multiplied by e−B1 (or e−B2 resp.). These magnetic coordinates
are related to the average slope, that is, the Gibbs measures are characterized by the magnetic
coordinates; see [22]. For example, B1 = 0 and B2 = 0 correspond to zero average slope in both
directions. Since our later results are stated for b = 1, we only consider the fundamental domain
for b = 1.

Let K(z, w) denote the Kasteleyn matrix for the above fundamental domain where 1/z is the
multiplicative factor when crossing to a fundamental domain in the direction e1 and 1/w is multi-
plicative factor when crossing to the fundamental domain in the direction e2; see Fig. 3. Explicitly,
we have

K(z, w) =

(
i(a+ w−1) a+ z
a+ z−1 i(a+ w)

)
.

Suppose that x ∈ W̃α1 and y ∈ B̃α2 for α1, α2 ∈ {0, 1} with the translation to get to the fundamental
domain containing y from the fundamental domain containing x given by ue1 + ve2. The whole
plane inverse Kasteleyn matrix for the entries x and y with magnetic coordinate (log r1, log r2) is
denoted by K−1

r1,r2(x, y). Using the techniques from [22], we have

(2.2) K−1
r1,r2(x, y) =

1

(2πi)2

∫
Γr1

dz

z

∫
Γr2

dw

w
[(K(z, w))−1]α1+1,α2+1z

uwv,

where Γr denotes a positively oriented contour around 0 with radius r. In the above formula,
(K(z, w))−1 is the inverse of K(z, w) and is given explicitly by

(K(z, w))−1 =
1

P (z, w)

(
i(a+ w) −(a+ z)
−(a+ z−1) i(a+ w−1)

)
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where

P (z, w) = −2− 2a2 − a

w
− aw − a

z
− az.

The function P (z, w) is called the characteristic polynomial [22].
Using the results of [22], it is worth noting that if the magnetic coordinates are given by (0, 0),

then the model is in the gas region while if the magnetic coordinates are given by (log r1, log r2) with
P (z, w) = 0 for some (z, w) ∈ Γr1 × Γr2 (from [22] the value of (z, w) ∈ Γr1 × Γr2 with P (z, w) = 0
is real), then the model is in the liquid region.

2.4. Double contour integral formula for K−1
a,1. In [12], the authors derive a four variable

generating function whose coefficients are entries of the matrix K−1
a,1 for n = 4m. Two variables

of the generating function mark the position of the white vertex while the remaining two variables
mark the position of the black vertex.

Our first main result, Theorem 2.3, is to derive a much simpler expression for the inverse Kasteleyn
matrix. We find that the formula of the inverse Kasteleyn matrix contains five double contour
integral formulas, four of which are related by symmetry while the remaining term is given by K−1

1,1.

The formula in [12] is long, and our derivation of a simpler formula primarily involves extracting
coefficients of the generating function using quadruple contour integrals. By exploiting symmetries
of the model, we greatly reduce the number of quadruple contour integrals we need to reduce to
double contour integrals. The reduction of the remaining quadruple integrals to double contour
integrals hinges on the expression

(2.3) c̃(u, v) = 2(1 + a2) + a(u+ u−1)(v + v−1)

which is related to the characteristic polynomial under a change of variables; see Eq. (4.11) for
details.

The second main result, Corollary 2.4, is to rewrite the four double contour integrals described
above into a form that is good for saddle point analysis. We give the prerequisite notation for these
results. Let

(2.4) c =
a

1 + a2
.

This expression in the parameter a will occur throughout the paper. The results in this paper
are stated and proved for a ∈ (0, 1) which means c ∈ (0, 1/2). However, similar results can be
formulated for a ∈ (1,∞). Define

(2.5)
√
ω2 + 2c = e

1
2

log(ω+i
√

2c)+ 1
2

log(ω−i
√

2c)

for ω ∈ C\i[−
√

2c,
√

2c] where the logarithm in the exponent has arguments in (−π/2, 3π/2). If we

write
√

1/ω2 + 2c we mean the same square root evaluated at 1/ω. The following function will play
an important role in many of our formulas and computations below. Set

(2.6) G(ω) =
1√
2c

(
ω −

√
ω2 + 2c

)
.

Recall that Γr represents a positively oriented circle around 0 with radius r. Define for s ∈ Z

(2.7) Fs(w) =
1

2πi

∫
Γ1

us

1 + a2 + aw(u+ u−1)

du

u
.

The above function appears when we integrate two of the integrals in the quadruple contour integrals
to get a double contour integral formula. Notice that, by the change of variables u 7→ u−1, F−s(w) =
Fs(w).
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Lemma 2.2. The function Fs(iω/
√

2c) is analytic in C\(i(−∞, 1/
√

2c] ∪ i[1/
√

2c,∞)) and

Fs

(
iω√
2c

)
=

i|s|

(1 + a2)ω
√

1/ω2 + 2c
G

(
1

ω

)|s|
for s ∈ Z.

Furthermore, for ν(u) = (u+ 1/u)/2

Fs(ν(u)) = 2
1

2πi

∫
Γ1

vs

c̃(u, v)

dv

v
for s ∈ Z.

where c̃(u, v) is defined in Eq. (2.3).

The proof of this lemma is given in Section 4. We set

(2.8) µ(u) = 1−
√

1 + c2(u− u−1)2 and s(u) = 1− µ(u),

with the sign chosen so that G(1/ω) = −µ(−ui)/(c(u+ 1/u)) if we set ui = G(ω).
We now state our theorem for the entries of K−1

a,1 .

Theorem 2.3. For n = 4m, x = (x1, x2) ∈ Wε1 and y = (y1, y2) ∈ Bε2 with ε1, ε2 ∈ {0, 1}, the
entries of K−1

a,1 are given by

K−1
a,1((x1, x2), (y1, y2)) = K−1

1,1((x1, x2), (y1, y2))−
(
Bε1,ε2(a, x1, x2, y1, y2)

− i

a
(−1)ε1+ε2 (B1−ε1,ε2(1/a, 2n− x1, x2, 2n− y1, y2) + Bε1,1−ε2(1/a, x1, 2n− x2, y1, 2n− y2))

+ B1−ε1,1−ε2(a, 2n− x1, 2n− x2, 2n− y1, 2n− y2)
)
,

(2.9)

where for a < r < 1/a, we have

Bε1,ε2(a, x1, x2, y1, y2) = − iε1+ε2+1

(2πi)2

∫
Γr

du1

u1

∫
Γr

du2

u2

Fx2
2

(ν(u1))F y1
2

(ν(u2))

u
x1−1

2
1 u

y2−1
2

2

×
(

1

4c2
u2

1u
2
2(2− µ(−iu1))2(2− µ(−iu2))2

)m 1∑
γ1,γ2=0

Y ε1,ε2
γ1,γ2 (u1, u2).

(2.10)

The function Y ε1,ε2
γ1,γ2 is defined in (3.1).

The proof of this result is given in Section 5. The proof, combined with the proof of [12, Theorem
6.2] gives a complete derivation of the double contour integral formulas for entries of K−1

a,1 .

In Eq. (2.10),
∑1

γ1,γ2=0 Y
ε1,ε2
γ1,γ2 (u1, v2) is a relatively long but explicit expression which is not

dependent on n. We postpone its definition. Roughly speaking, the formula for each entry of K−1
a,1

as given in (2.9) can be thought of as the formula for the inverse Kasteleyn matrix for the whole
plane gas region plus four parts which relate to the boundary of the Aztec diamond. The next
corollary gives formulas for Bε1,ε2 more suitable for asymptotic analysis. Define

(2.11) Hx1,x2(ω) =
ω2mG (ω)2m−x1

2

G (ω−1)2m−x2
2

,

where 0 < x1, x2 < n. We have

Corollary 2.4. For n = 4m, let x = (x1, x2) ∈ Wε1 and y = (y1, y2) ∈ Bε2 with ε1, ε2 ∈ {0, 1}.
Suppose that 0 < x1, x2, y1, y2 < n,

√
2c < p < 1 and Qε1,ε2γ1,γ2 is as given in (3.3). We have

(2.12)

Bε1,ε2(a, x1, x2, y1, y2) =
i
x2−x1+y1−y2

2

(2πi)2

∫
Γp

dω1

ω1

∫
Γ1/p

dω2
ω2

ω2
2 − ω2

1

Hx1+1,x2(ω1)

Hy1,y2+1(ω2)

1∑
γ1,γ2=0

Qε1,ε2γ1,γ2(ω1, ω2),
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1

a
B1−ε1,ε2(a−1, 2n− x1, x2, 2n− y1, y2) = − i

x1−x2−y1−y2
2

(2πi)2

×
∫

Γp

dω1

ω1

∫
Γ1/p

dω2
ω2

ω2
2 − ω2

1

Hx1+1,x2(ω1)

H2n−y1,y2+1(ω2)

1∑
γ1,γ2=0

(−1)ε2+γ2Qε1,ε2γ1,γ2(ω1, ω2),

(2.13)

1

a
Bε1,1−ε2(a−1, x1, 2n− x2, y1, 2n− y2) = − i

y2−y1−x2−x1
2

(2πi)2

×
∫

Γp

dω1

ω1

∫
Γ1/p

dω2
ω2

ω2
2 − ω2

1

Hx1+1,2n−x2(ω1)

Hy1,y2+1(ω2)

1∑
γ1,γ2=0

(−1)ε1+γ1Qε1,ε2γ1,γ2(ω1, ω2)

(2.14)

and

B1−ε1,1−ε2(a, 2n− x1, 2n− x2, 2n− y1, 2n− y2) = − i
y2+y1+x2+x1

2

(2πi)2

×
∫

Γp

dω1

ω1

∫
Γ1/p

dω2
ω2

ω2
2 − ω2

1

Hx1+1,2n−x2(ω1)

H2n−y1,y2+1(ω2)

1∑
γ1,γ2=0

(−1)ε1+γ1+ε2+γ2Qε1,ε2γ1,γ2(ω1, ω2).

(2.15)

The formulas in Corollary 2.4 contain the term Qε1,ε2γ1,γ2 which is independent of n and depends
on x, y only through ε1, ε2. We remark that the formulas given in Corollary 2.4 only hold for
0 < x1, x2, y1, y2 < n, that is, the third quadrant of the Aztec diamond. Similar formulas can be
found for the remaining quadrants of the Aztec diamond but we will not state them.

2.5. K−1
a,1 along the diagonal. To state the asymptotic results, we need some further notation

used throughout the paper. For ε1, ε2 ∈ {0, 1}, denote

(2.16) h(ε1, ε2) = ε1(1− ε2) + ε2(1− ε1).

For k, ` ∈ Z, we define

(2.17) S̃(k, `) =
i−k−`

2(1 + a2)(2πi)2

∫
ΓR

dω1

∫
ΓR

dω2
G(ω1)`G(ω2)k

(1− ω1ω2)
√
ω2

1 + 2c
√
ω2

2 + 2c
,

where R > 1. Define, for x = (x1, x2) ∈ Wε1 and y = (y1, y2) ∈ Bε2 ,

(2.18) S(x, y) = −i1+h(ε1,ε2)
(
aε2S̃(k1, `1) + a1−ε2S̃(k2, `2)

)
,

where
(2.19)

k1 =
x2 − y2 − 1

2
+ h(ε1, ε2) , `1 =

y1 − x1 − 1

2
, k2 =

x2 − y2 + 1

2
− h(ε1, ε2) , `2 =

y1 − x1 + 1

2
.

The function S(x, y) can be interpreted as an ‘inverse Kasteleyn matrix’ for a whole plane solid
phase which is seen from the following lemma.

Lemma 2.5. We have that

(2.20) S(x, y) = 0 if y1 − x1 > −1 or x2 − y2 > −1

Also, if f ∈ {±e1,±e2} and x ∈ Wε1, then S(x, x + f) 6= 0 only if f = e2, and then S(x, x + e2) =
−iaε1−1. This shows that S(x, y) can be thought of as an ‘inverse Kasteleyn matrix’ or a coupling
function for a frozen phase.

The proof of this lemma is given in Section 4.4.
To consider asymptotic results, we must rescale the Aztec diamond. The following condition

gives the first rescaling considered in this paper. Recall n = 4m.
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Condition 1. Rescale and center the Aztec diamond so that x = ([4m+ 2mξ1] +x1, [4m+ 2mξ2] +
x2) ∈ Wε1 and y = ([4m+ 2mξ1] + y1, [4m+ 2mξ2] + y2) ∈ Bε2 for ε1, ε2 ∈ {0, 1} and −1 < ξ1, ξ2 < 1

where x1, x2, y1, y2 are at most order m2/3 if (ξ1, ξ2) is on the liquid-gas or solid-liquid boundary

and at most order m1/2 otherwise.

In Condition 1, ξ1 and ξ2 are the asymptotic coordinates of the rescaled Aztec diamond. The
asymptotic results are based on asymptotic analysis of the integrals in Eqs. (2.12), (2.13), (2.14)
and (2.15). The asymptotic analysis of (2.12) uses the method of steepest descent. Under Condi-
tion 1, the saddle point function of the integral in Eq. (2.12) is given by

(2.21) gξ1,ξ2(ω) = logω − ξ1 logG (ω) + ξ2 logG
(
ω−1

)
.

This function has a critical point when

(2.22) ωg′ξ1,ξ2(ω) = 1 +
ω√

ω2 + 2c
ξ1 +

1

ω
√
ω−2 + 2c

ξ2 = 0.

The condition that gξ1,ξ2 has a double critical point leads to an equation for ξ1, ξ2, which is the

equation of the 8th degree curve written in Appendix A and is also depicted in Fig. 1. This curve
gives the boundaries of the different phases although we do not fully prove this here. If we think of
c as complex parameter it can be shown that the nonsingular model of the plane curve is a genus
one curve with a marked point, that is an elliptic curve. In addition, it has a marked point that is
of order 4 for the group structure. Varying c gives a one-parameter family of elliptic curves which
maps onto the moduli space of all elliptic curves (in fact onto that of elliptic curves with a point of
order 4) [16].

To make the analysis explicit, we only consider the asymptotic behavior on the line ξ1 = ξ2 = ξ
in the bottom left quadrant of the Aztec diamond, that is −1 < ξ < 0. In this case, we have a nice
explicit description of the critical points of gξ,ξ in H+ ∪ R>0 ∪ (

√
2c, 1/

√
2c)i:

(1) two roots of (2.22), ωc and −1/ωc with ωc ∈ i(
√

2c, 1) corresponds to the gas region,
(2) a double root of (2.22) at ωc = i corresponds to a liquid-gas boundary,
(3) a single root of (2.22), ωc ∈ H+, with |ωc| = 1 corresponds to the liquid region,
(4) a double root of (2.22) at ωc = 1 corresponds to the solid-liquid boundary and
(5) two roots of (2.22), ωc and 1/ωc with ωc ∈ (1,∞) corresponds to the solid region.

The three remaining integrals given in Eqs. (2.13), (2.14) and (2.15) will be shown to be exponen-
tially small in the bottom left quadrant of the Aztec diamond; see Lemma 3.6. Similar situations
happen for the remaining three quadrants of the Aztec diamond, that is, one of the integrals
in (2.12), (2.13), (2.14) or (2.15) give a contribution while the remaining three are negligible.

Our first asymptotic result gives the leading order terms for the elements of the inverse Kasteleyn
matrix.

Theorem 2.6. Choose x and y as given in Condition 1 with ξ1 = ξ2 = ξ and −1 < ξ < 0. We find

K−1
a,1(x, y) =



K−1
1,1 ((x1, x2), (y1, y2)) +O(e−c1m) if − 1

2

√
1− 2c < ξ < 0,with c1 > 0

K−1
1,1((x1, x2), (y1, y2)) +O(m−1/3) if ξ = −1

2

√
1− 2c

K−1
r1,r2((x1, x2), (y1, y2)) +O(m−1/2) if − 1/2

√
1 + 2c < ξ < −1/2

√
1− 2c

S(x, y) +O(m−1/3) if ξ = −1/2
√

1 + 2c

S(x, y) +O(m−1/3) if ξ < −1/2
√

1 + 2c,

where r1 = 1 and r2 = 1/|G(ωc)|2 with ωc ∈ T equal to the solution in H+ of Eq. (2.22) with
ξ1 = ξ2 = ξ, and S(x, y) is defined in (2.18).

In the above theorem, we have that

(1) −1
2

√
1− 2c < ξ < 0 corresponds to the gas region,

(2) ξ = −1
2

√
1− 2c corresponds to the liquid-gas boundary,
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(3) −1
2

√
1 + 2c < ξ < −1

2

√
1− 2c corresponds to the liquid region,

(4) ξ = −1
2

√
1 + 2c corresponds to the solid-liquid boundary, and

(5) ξ < −1
2

√
1 + 2c corresponds to the solid region.

The proof of the above theorem is found in Section 3. The fact that it is easy to describe the
critical points in this case simplifies the analysis considerably and for this reason we restrict to this
case. We expect the behavior to be similar at all points in the interior of the four quadrants in the
Aztec diamond. Close to the boundary or when ξ1 = 0 or ξ2 = 0 the nature of the problem changes
and we will not discuss it here.

2.6. At the boundaries. Close to the liquid-gas and solid-liquid boundaries it is interesting to
investigate further the subleading asymptotics in Theorem 2.6. This enables us to study the corre-
lation of dominoes close to these boundaries. To state these results, we need a more precise scaling
than the one considered in Condition 1.

Condition 2. Rescale and center the Aztec diamond so that for vertices x = (x1, x2) and y =

(y1, y2) in the Aztec diamond graph, we have x1 = [4m + 4mξ − 2βxλ2(2m)2/3 + 2αxλ1(2m)1/3] +

u1, x2 = [4m + 4mξ + 2βxλ2(2m)2/3 + 2αxλ1(2m)1/3] + u2, y1 = [4m + 4mξ − 2βyλ2(2m)2/3 +

2αyλ1(2m)1/3] + v1, y2 = [4m+ 4mξ+ 2βyλ2(2m)2/3 + 2αyλ1(2m)1/3] + v2 where αx, αy, βx, βy ∈ R
and u1, u2, v1, v2 ∈ Z are fixed.

In the above condition, αx, αy, βx and βy are continuum variables in the scaling limit while
u1, u2, v1 and v1 are kept as discrete variables. The parities of (u1, u2) and (v1, v2) are the same as
the parities of (x1, x2) and (y1, y2) respectively. That is for ε1, ε2 ∈ {0, 1}, (x1, x2) ∈ Wε1 if and only
if we have (u1, u2) ∈ Wε1 and (v1, v2) ∈ Bε2 if and only if we have (y1, y2) ∈ Bε2 . The scale factors
λ1 and λ2 are dependent on the type of boundary and are determined later. We next define the
extended Airy kernel, introduced in [30] in its integral representation convenient for this paper.

Let C1 consist of the rays teπi/6 and te5πi/6 for t ≥ 0, oriented from right to left. Let C2 be C1

reflected in the x axis oriented from right to left. Denote the Airy function by Ai. Define

Ã((τ1, ζ1); (τ2, ζ2)) =

∫ ∞
0

e−λ(τ1−τ2)Ai(ζ1 + λ)Ai(ζ2 + λ)dλ

=
e

1
3

(τ32−τ31 )+ζ1τ1−ζ2τ2

i(2πi)2

∫
C1
dw

∫
C2
dz
e

i
3

(z3−w3)−τ2z2+τ1w2+iz(ζ2−τ22 )−iw(ζ1−τ21 )

z − w ,

(2.23)

and

φτ1,τ2(ζ1, ζ2) =

 1√
4π(τ2−τ1)

e
− (ζ1−ζ2)

2

4(τ2−τ1)
− (τ2−τ1)(ζ1+ζ2)

2
+

(τ2−τ1)
3

12 if τ1 < τ2

0 otherwise,

which we refer to as the Gaussian part of the extended Airy kernel. The extended Airy kernel,
A((τ1, ζ1); (τ2, ζ2)), is defined by

(2.24) A((τ1, ζ1); (τ2, ζ2)) = Ã((τ1, ζ1); (τ2, ζ2))− φτ1,τ2(ζ1, ζ2).

Note that

KAi(ζ1, ζ2) = Ã((τ, ζ1); (τ, ζ2))
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is the standard Airy kernel. Introduce the following notation

gε1,ε2 =



i(
√
a2+1+a)
1−a if (ε1, ε2) = (0, 0)√

a2+1+a−1√
2a(1−a)

if (ε1, ε2) = (0, 1)

−
√
a2+1+a−1√

2a(1−a)
if (ε1, ε2) = (1, 0)

i(
√
a2+1−1)

(1−a)a if (ε1, ε2) = (1, 1).

We have the following theorem for the asymptotics of K−1
a,1 at the liquid-gas boundary.

Theorem 2.7. Let x ∈ Wε1, y ∈ Bε2 for ε1, ε2 ∈ {0, 1}. Choose the scaling in Condition 2 with
ξ = −1

2

√
1− 2c,

c0 =
(1− 2c)

2
3

(2c(1 + 2c))
1
3

, λ1 =

√
1− 2c

2c0
and λ2 =

(1− 2c)
3
2

2cc2
0

.

If βx = βy = β, we have

K−1
a,1(x, y) = K−1

1,1(x, y)− iy1−x1+1|G(i)| 12 (−2−x1+x2+y1−y2)eβ(αx−αy)c0gε1,ε2

×KAi(αx + β2, αy + β2)(2m)−
1
3

(
1 +O

(
m−1/3

))
.

Otherwise, if βx 6= βy, we have

K−1
a,1(x, y) = −iy1−x1+1|G(i)| 12 (−2−x1+x2+y1−y2)eβxαx−βyαy+ 2

3
(β3
x−β3

y)c0gε1,ε2

×A((−βx, αx + β2
x); (−βy, αy + β2

y))(2m)−1/3
(

1 +O
(
m−

1
3

))
.

The proof is given in Section 3. As a corollary of this result, we are able to compute the joint
probabilities of dominoes at the liquid-gas boundary. We find that

Corollary 2.8. Let x, y ∈ W0 with the same scaling and scaling relations as in Theorem 2.7. Then,
if (αx, βx) = (αy, βy), the covariance between the two dimers (x, x+ e2) and (y, y + e2) is equal to

−a2K−1
1,1((u1, u2), (v1 − 1, v2 + 1))K−1

1,1((v1, v2), (u1 − 1, u2 + 1)) +O(m−1/3).

However, if αx 6= αy or βx 6= βy, then the covariance between the two dimers (x, x + e2) and
(y, y + e2) is equal to

(ag0,0c0)2

|G(i)|4 A((−βx, αx+β2
x); (−βy, αy+β2

y))A((−βy, αy+β2
y); (−βx, αx+β2

x))(2m)−
2
3

(
1 +O

(
m−

1
3

))
In the above corollary, we make a specific choice of dimers based on parity, that is we choose the

dimer (x, x + e2) for x ∈ W0. Out of the eight possible dimers, in the third quadrant of the Aztec
diamond this choice of dimer has the largest probability of being observed. This is also observed
from Fig. 2 — the dark grey lines in the bottom left corner of the Aztec diamond are mainly given by
dimers of the form (x, x+ e2) for x ∈ W0. An intuitive description of Theorem 2.7 and Corollary 2.8
is that at the liquid-gas boundary, we actually see is the gas phase, but the correlation between
distant dominoes is much greater than if we are really inside a gas phase, where correlations decay
exponentially with distance.
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We now turn to the solid-liquid boundary to compare with the results at the liquid-gas boundary.
Define

sε1,ε2 =



a−
√
a2+1

2(a+1) if (ε1, ε2) = (0, 0)
√
a2+1−a−1

2
√

2a(a+1)
if (ε1, ε2) = (0, 1)

√
a2+1−a−1

2
√

2a(a+1)
if (ε1, ε2) = (1, 0)

1−
√
a2+1

2a(a+1) if (ε1, ε2) = (1, 1).

We have the following theorem for the asymptotics of K−1
a,1 at the solid-liquid boundary.

Theorem 2.9. Let x ∈ Wε1, y ∈ Bε2 for ε1, ε2 ∈ {0, 1}. Choose the scaling in Condition 2 with
ξ = −1

2

√
1 + 2c,

c0 =
(1 + 2c)2/3

(2c(1− c))1/3
, λ1 =

√
1 + 2c

2c0
and λ2 =

(1 + 2c)3/2

2cc2
0

.

If βx = βy = β, we have

K−1
a,1(x, y) = S(x, y) + i

x2−x1+y1−y2
2 G(1)

1
2

(−2−x1+x2+y1−y2)c0

× sε1,ε2e
(αy−αx)βKAi(αx + β2, αy + β2)(2m)−1/3(1 +O(m−1/3)).

Otherwise, if βx 6= βy, we have

K−1
a,1(x, y) = i

x2−x1+y1−y2
2 G(1)

1
2

(−2−x1+x2+y1−y2)c0

× sε1,ε2e
αyβy−αxβx+ 2

3
(β3
y−β3

x)A((βx, αx + β2
x); (βy, αy + β2

x))(2m)−1/3(1 +O(m−1/3)).

The proof is given in Section 3. As a comparison to Corollary 2.8, we compute the joint proba-
bilities of dominoes at the solid-liquid boundary. We find that

Corollary 2.10. Let x, y ∈ W0 with the same scaling and scaling relations as in Theorem 2.9. Then,
the covariance between the two dimers (x, x− e2) and (y, y − e2) is equal to

(c0s0,0)2A((βx, αx + β2
x); (βy, αy + β2

y))A((βy, αy + β2
y); (βx, αx + β2

x))(2m)−
2
3

(
1 +O

(
m−

1
3

))
.

The proof is given in Section 3. The motivation behind the choice of dimers given in Corollary 2.10
is to choose dimers that are not present in the solid region and whose vertices are in (W0, B0).

We can compare the Airy expressions of both m−2/3 terms in Corollary 2.8 and Corollary 2.10
— both exhibit long range correlations but have opposite curvature which is apparent through the
parameters of the extended Airy kernel. Thus, the behavior at the two types of boundaries is in
some respect very similar. An important difference is that at the solid-liquid boundary the dominant
part are given by correlations in a solid phase, and since this phase has a trivial structure it is much
easier to identify the true microscopic boundary as discussed above.

2.7. Open problems. We have seen that it is not obvious to define a microscopic liquid-gas bound-
ary. In the last section, we propose a set of lattice paths which seem to separate the liquid-gas
boundary starting from the bottom or top boundaries and ending at the left or right boundaries.
We call these paths tree paths. These paths are constructed by using a modification of Temperley’s
bijection [33]. These paths are motivated by the long dark lines with ‘clumps’ of dominoes that
appear in Fig. 2. Is it possible to understand the asymptotic properties of these paths? Does the
path giving the liquid-gas interface converge to the Airy process after appropriate rescaling? In a
forthcoming article with V. Beffara, we partially answer both of these questions.

The result in Theorem 2.6 holds for the diagonal in the lower left corner of the Aztec diamond
graph. We expect that a similar result should also hold for the rest of the Aztec diamond graph with
the exception of the cusp and tangency points. An extension of Theorem 2.6 to the whole Aztec
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diamond should prove that the phase picture in Fig. 1 is true everywhere, not just the specific line
investigated here. In this paper, we have avoided the cusps and the tangency points. We expect that
the tangency points should have similar behavior to that observed in other tiling models. However,
the behavior of the cusp is intriguing since the background is given by the gas phase. Perhaps one
needs to analyze the tree paths at the cusp, in order to describe the full picture.

The liquid region exhibits polynomial decay of pairwise correlations between dominoes. Locally,
one expects that the height function fluctuations are given by the Gaussian free field. Heuristically,
as one is gluing all these local pieces of the liquid region together, and since the liquid region
is topologically an annulus, we expect that the height function fluctuations of the liquid region
converges to the Gaussian free field with conformal structure diffeomorphic to the annulus.

The derivation of the formula that we obtain for the elements of the inverse Kasteleyn matrix
in this paper is very long, complicated and not very intuitive. Since the final formula is not that
complicated it would be interesting to understand or derive it in a more direct way.

3. Asymptotic Computations

In this section, we give the bulk of the asymptotic computations for the paper and as a result, we
prove Theorems 2.6, 2.7 and 2.9 and Corollaries 2.8 and 2.10, assuming the results of Theorem 2.3
and Corollary 2.4.

These asymptotic computations require many prerequisite computations which we list and prove
later in the section or in Section 4. The organization of this section is as follows:

(1) in Section 3.1, we introduce the definitions that are required to state all the details of the
simplified version of K−1

a,1 given in Theorem 2.3 and Corollary 2.4. We will also introduce
definitions that are of importance for later computations considered in the section, including
some notation, as well as stating a result which relates the three macroscopic phases.

(2) In Section 3.2, we show that for particular choices of x and y in K−1
1,1(x, y) gives the Gaussian

part of the extended Airy kernel. An analogous statement holds for S(x, y).
(3) In Section 3.3, we state results that are required for the saddle point analysis. The proofs

of these results are suppressed either to the end of this section or to the following section.
We also highlight the ‘large n’ contribution in (2.12) and give details of the saddle point
function used in all the following asymptotic computations.

(4) We analyze (2.12) when sequentially moving the asymptotic (local) coordinate from the gas
region to the solid region. In each region or boundary, we perform a saddle point analysis.
These computations are given in Sections 3.4, 3.5, 3.6, 3.7 and 3.8 with each subsection
analyzing a specific region or boundary.

(5) In Section 3.9, we prove all the exponentially small estimates that are required in order
to conclude the proofs of Theorems 2.6, 2.7 and 2.9 and Corollaries 2.8 and 2.10. These
conclusions are drawn in Section 3.10.

3.1. Definitions and basic formulas. In this subsection, we expand the definitions that were
alluded to in Section 2.4, introduce the remaining notation used frequently throughout the rest of
the paper and state a result which relates all three macroscopic phases.

The following definition introduces the terms yε1,ε2γ1,γ2(a, b, u, v). These terms have many remarkable
symmetries which we extensively exploit to find the simplified formula given in Theorem 2.3 as
detailed in Section 5.

Definition 3.1. Let

fa,b(u, v) =
(
2a2uv + 2b2uv − ab

(
−1 + u2

) (
−1 + v2

))
×
(
2a2uv + 2b2uv + ab

(
−1 + u2

) (
−1 + v2

))
.
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Define the following rational functions:

y
0,0
0,0(a, b, u, v) =

1

4 (a2 + b2)2 fa,b(u, v)

(
2a7u2v2 − a5b2

(
1 + u4 + u2v2 − u4v2 + v4 − u2v4

)
−a3b4

(
1 + 3u2 + 3v2 + 2u2v2 + u4v2 + u2v4 − u4v4

)
− ab6

(
1 + v2 + u2 + 3u2v2

))
,

y
0,0
0,1(a, b, u, v) =

a
(
b2 + a2u2

) (
2a2v2 + b2

(
1 + v2 − u2 + u2v2

))
4 (a2 + b2) fa,b(u, v)

,

y
0,0
1,0(a, b, u, v) =

a
(
b2 + a2v2

) (
2a2u2 + b2

(
1− v2 + u2 + u2v2

))
4 (a2 + b2) fa,b(u, v)

and

y
0,0
1,1(a, b, u, v) =

a
(
2a2u2v2 + b2

(
−1 + v2 + u2 + u2v2

))
4fa,b(u, v)

.

For i, j ∈ {0, 1}, define y
0,1
i,j (a, b, u, v),y1,0

i,j (a, b, u, v) and y
1,1
i,j (a, b, u, v) by

y
0,1
i,j (a, b, u, v) =

y
0,0
i,j (b, a, u, v−1)

v2
,

y
1,0
i,j (a, b, u, v) =

y
0,0
i,j (b, a, u−1, v)

u2

and

y
1,1
i,j (a, b, u, v) =

y
0,0
i,j (a, b, u−1, v−1)

u2v2
.

When b = 1, we write yε1,ε2i,j (a, 1, u, v) = yε1,ε2i,j (u, v).

The expressions in Definition 3.1 appear in Theorem 2.3 and Corollary 2.4 in the following way:
we have
(3.1)

Y ε1,ε2
γ1,γ2 (u1, u2) = (1 + a2)2(−1)ε1ε2+γ1(1+ε2)+γ2(1+ε1)s(−iu1)γ1s(−iu2)γ2yε1,ε2γ1,γ2(−iu1,−iu2)uε11 u

ε2
2 ,

where s is defined in (2.8). Also, we set

(3.2) xε1,ε2γ1,γ2 (ω1, ω2) =
G (ω1)G (ω2)∏2

j=1

√
ω2
j + 2c

√
ω−2
j + 2c

yε1,ε2γ1,γ2 (G (ω1) , G (ω2))
(
1− ω2

1ω
2
2

)
,

where G(ω) is defined in (2.6) and then we define

Qε1,ε2γ1,γ2 (ω1, ω2) = (−1)ε1+ε2+ε1ε2+γ1(1+ε2)+γ2(1+ε1)s (G (ω1))γ1 s
(
G
(
ω−1

2

))γ2
×G (ω1)ε1 G

(
ω−1

2

)ε2
xε1,ε2γ1,γ2

(
ω1, ω

−1
2

)
,

(3.3)

which appears in (2.12). A small computation yields

(3.4) s (G (ω)) = ω
√
ω−2 + 2c and s

(
G
(
ω−1

))
=

1

ω

√
ω2 + 2c.

We remark that Qε1,ε2γ1,γ2 (ω1, ω2) is analytic on C\
(
(−∞,−1/

√
2c]i ∪ [−

√
2c,
√

2c]i ∪ [1/
√

2c,∞)i
)
.

This is seen by the fact that

1− ω2
1ω

2
2

fa,1(G(ω1), G(ω2))
=

1

4(1 + a2)2G(ω1)2G(ω2)2
,
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which follows from a computation. For convenience, we will use the notation

Zε1,ε2 (ω1, ω2) =
1∑

γ1,γ2=0

Qε1,ε2γ1,γ2 (ω1, ω2)(3.5)

and so that (2.12) is rewritten as

(3.6) Bε1,ε2(a, x1, x2, y1, y2) =
i
x2−x1+y1−y2

2

(2πi)2

∫
Γp

dω1

ω1

∫
Γ1/p

dω2
ω2

ω2
2 − ω2

1

Hx1+1,x2(ω1)

Hy1,y2+1(ω2)
Zε1,ε2(ω1, ω2).

We set

(3.7) Vε1,ε2 (ω1, ω2) =
1

2

(
Zε1,ε2 (ω1, ω2) + (−1)ε2+1Zε1,ε2 (ω1,−ω2)

)
.

By the choice of branch cut (2.5), we have

(3.8)
√

(−ω)2 + 2c = −
√
ω2 + 2c and

√
ω2 + 2c =

√
ω2 + 2c,

for ω ∈ C\i[−
√

2c,
√

2c] and we have the formulas

(3.9) G (−ω) = −G (ω) and G (ω) = G (ω).

As a consequence of the first formula, we are able to write out Vε1,ε2(ω1, ω2) using the definitions
given in (3.5) and (3.7):

Vε1,ε2(ω1, ω2) =
1

2

1∑
γ1,γ2=0

(−1)ε1+ε2+ε1ε2+γ1(1+ε2)+γ2(1+ε1)

× s (G (ω1))γ1 s
(
G
(
ω−1

2

))γ2
G (ω1)ε1 G

(
ω−1

2

)ε2 (
xε1,ε2γ1,γ2

(
ω1, ω

−1
2

)
− xε1,ε2γ,γ

(
ω1,−ω−1

2

))
,

(3.10)

which follows from observing that s(G(ω)) and s(G(−ω)) are invariant under the map ω 7→ −ω,
directly seen from (3.4).

Using the fact that

ω2

ω2
2 − ω2

1

=
1

2

(
1

ω2 − ω1
+

1

ω2 + ω1

)
,

the integral in (3.6) becomes

Bε1,ε2(a, x1, x2, y1, y2) =
i(x2−x1+y1−y2)/2

2(2πi)2

∫
Γr

dω1

ω1

∫
Γ1/r

dω2

×
(

1

ω2 − ω1
+

1

ω2 + ω1

)
Zε1,ε2(ω1, ω2)

Hx1+1,x2(ω1)

Hy1,y2+1(ω2)
.

We split the above equation into two separate double integrals with the double integral containing
a term 1/(ω2 − ω1) and the other double integral containing the term 1/(ω2 + ω1). For the second
integral, we make the change of variables ω2 7→ −ω2. Since we have

Hy1,y2+1(−ω) = (−1)
y2+1−y1

2 Hy1,y2+1(ω) = (−1)ε2+1Hy1,y2+1(ω)

by using (2.11), (2.6), (3.8) and y2 + y1 mod 4 = 2ε2 + 1 for (y1, y2) ∈ Wε2 for ε2 ∈ {0, 1}. As a

result of this change of variables, we obtain, for
√

2c < r < 1,

(3.11) Bε1,ε2(a, x1, x2, y1, y2) =
i(x2−x1+y1−y2)/2

(2πi)2

∫
Γr

dω1

ω1

∫
Γ1/r

dω2
Vε1,ε2(ω1, ω2)

ω2 − ω1

Hx1+1,x2(ω1)

Hy1,y2+1(ω2)

by using (3.7). We use the above integral as the starting point of the asymptotics of Bε1,ε2(a, x1, x2, y1, y2).
The next lemma gives a remarkably simple formula for Vε1,ε2(ω, ω).
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Lemma 3.2. We have the following formula

Vε1,ε2(ω, ω) =
(−1)1+h(ε1,ε2)aε2G

(
ω−1

)h(ε1,ε2)
+ a1−ε2G (ω)G

(
ω−1

)1−h(ε1,ε2)

2(1 + a2)
√
ω2 + 2c

√
ω−2 + 2c

.

The formula will be proved in Section 4.2. Note that the coefficients gε1,ε2 and sε1,ε2 are built
from the above lemma; see Lemmas 3.16 and 3.25 respectively.

Let ωc = eiθc , θc ∈ [0, π/2] and let Γωc be the contour defined by

(3.12) Γωc : [θc, π − θc] ∪ [π + θc, 2π − θc] 3 θ → eiθ.

Note that Γ1 is the unit circle as before. For x = (x1, x2) ∈ Wε1 and y = (y1, y2) ∈ Bε2 we define

(3.13) Cωc(x, y) =
i(x2−x1+y1−y2)/2

2πi

∫
Γωc

Vε1,ε2(ω, ω)G(ω)
y1−x1−1

2 G(ω−1)
x2−y2−1

2
dω

ω
.

The next lemma in a sense relates the gas, liquid and solid phases.

Lemma 3.3. For x = (x1, x2) ∈ Wε1 and y = (y1, y2) ∈ Bε2 we have the identity

(3.14) K−1
1,1(x, y) = C1(x, y) + S(x, y).

Let ωc = eiθc, θc ∈ (0, π/2) and set r1 = 1, r2 = 1/|G(ωc)|2. Then

(3.15) K−1
r1,r2(x, y) = K−1

1,1(x, y)− Cωc(x, y)

and K−1
r1,r2(x, y) is the inverse Kasteleyn matrix for a liquid phase.

The proof of the above lemma is postponed to Section 4.3.

3.2. Gaussian limits. To get the Gaussian part of the extended Airy kernel we need some Gaussian
limits of K−1

1,1(x, y) and S(x, y). It is perhaps a little surprising that K−1
1,1(x, y) which is a gas inverse

Kasteleyn matrix is responsible for a part of the extended Airy kernel, since one would think that
it has nothing to do with the Airy asymptotics.

Propostion 3.4. Let x = (x1, x2) ∈ Wε1, y = (y1, y2) ∈ Bε2 and assume the scaling in Condition 2.
Also, assume that |αx − αy|+ |βx − βy| > 0. Then, for fixed ε1, ε2 ∈ {0, 1},

(3.16) lim
m→∞

(2m)1/3|G(i)|
x1−x2+y2−y1+2

2 K−1
1,1(x, y) = Iβx>βy i

y1−x1+1 gε1,ε2c0√
4π(βx − βy)

e
− (αx−αy)2

4(βx−βy)

We have a similar proposition for S(x, y).

Propostion 3.5. Let x = (x1, x2) ∈ Wε1, y = (y1, y2) ∈ Bε2 and assume the scaling in Condition 2.
Also, assume that |αx − αy|+ |βx − βy| > 0. Then, for fixed ε1, ε2 ∈ {0, 1},

(3.17) lim
m→∞

(2m)1/3|G(1)|
x1−x2+y2−y1+2

2 S(x, y) = −Iβx<βy
i
x2−x1+y1−y2

2√
4π(βy − βx)

sε1,ε2c0e
− (αx−α2)

2

4(βy−βx)

The proof of both propositions will be given in Section 4.4.

3.3. Results required for the saddle point analysis. In this section we state results and
partially analyze the saddle point equation which are required for our later asymptotic arguments.
The proofs of these results are given later in the paper. These results are as follows:

(1) informally, Lemma 3.6 says that when the asymptotic coordinate is located on the diagonal
in the third quadrant of the Aztec diamond, then (2.13), (2.14) and (2.15) are exponentially
small (in n). Consequently, in order to study asymptotics of K−1

a,1 , from Theorem 2.3 and

Corollary 2.4, we only need to analyze (2.12) in the form (3.11) and K−1
1,1(x, y).
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(2) We extract the saddle point function of (3.11) and Lemma 3.7 determines the number of
roots of the saddle point equation. In Lemma 3.8, we give the behavior of the imaginary
part of the saddle point function on ∂H+.

We now proceed in stating these results. Recall n = 4m.

Lemma 3.6. Under Condition 1 with −1 < ξ1 = ξ2 = ξ < 0, there are positive constants C1 and
C2 so that ∣∣∣∣1aB1−ε1,ε2(a−1, 2n− x1, x2, 2n− y1, y2)

∣∣∣∣ ≤ C1e
−C2n,

∣∣∣∣1aBε1,1−ε2(a−1, x1, 2n− x2, y1, 2n− y2)

∣∣∣∣ ≤ C1e
−C2n,

and

|B1−ε1,1−ε2(a, 2n− x1, 2n− x2, 2n− y1, 2n− y2)| ≤ C1e
−C2n.

The proof of this lemma is found in Section 3.9.
We begin the analysis of Bε1,ε2(a, x1, x2, y1, y2) as stated in (3.11), by identifying the main as-

ymptotic term in n in the integrand. Since Vε1,ε2(ω1, ω2) is independent of m, the m dependence in
Eq. (3.11) is contained in the factor

Hx1+1,x2(ω1)

Hy1,y2+1(ω2)
.

If we set x1 ∼ 4m+ 2mξ1, y1 ∼ 4m+ 2mξ1, x2 ∼ 4m+ 2mξ2, y2 ∼ 4m+ 2mξ2, where ∼ means the
terms of order m, (i.e. ignoring lower order terms in m, the integer part, etc.), then the first order
contribution in m in the above equation, ignoring constant terms, is given by

exp (2m(gξ1,ξ2(ω1)− gξ1,ξ2(ω2))) ,

where gξ1,ξ2 is given by (2.21), restated below for convenience

gξ1,ξ2(ω) = logω − ξ1 logG (ω) + ξ2 logG
(
ω−1

)
.

We refer to this as the saddle point function. Although we are free to choose any branch for the above
logarithm, we will keep the same convention chosen above, that is, the logarithm has arguments in
(−π/2, 3π/2). By differentiating this equation with respect to ω, setting the result equal to zero
and multiplying by ω we obtain (2.22), that is

1 +
ω√

ω2 + 2c
ξ1 +

1

ω
√
ω−2 + 2c

ξ2 = 0.

Lemma 3.7. Eq. (2.22) has at most four roots in C\(i[−∞,−1/
√

2c]∪ i[−
√

2c,
√

2c]∪ i[1/
√

2c,∞))
for −1 < ξ1, ξ2 < 0.

The proof of the above lemma is postponed to Section 4.1. For the rest of the paper, we set
ξ = ξ1 = ξ2. Our later analysis shows that this choice in parameters gives explicit solutions to
Eq. (2.22), which naturally splits the analysis into five cases coinciding with the three phases and
their boundaries. This choice of parameterization also ensures symmetry between the quadrants of
C. The next lemma gives the imaginary part of the saddle point function at the boundary of the
first quadrant which is useful for finding the contours of steepest ascent and descent.

Lemma 3.8. The behavior of Im gξ,ξ(ω) for ω ∈ ∂H+ is given by

(1) Im gξ,ξ(it) decreases from (1 + ξ)π2 to (1 + 2ξ)π2 for t increasing in (0,
√

2c),

(2) Im gξ,ξ(it) = (1 + 2ξ)π2 for t ∈ (
√

2c, 1/
√

2c),

(3) Im gξ,ξ(it) increases from (1 + 2ξ)π2 to (1 + ξ)π2 for t increasing in (1/
√

2c,∞),
(4) Im gξ,ξ(t) = 0 for t ∈ (0,∞),
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(5) Im gξ,ξ(ω) increases from 0 to (1 + ξ)π2 depending on the angle of approach as ω tends to 0,
(6) Im gξ,ξ(ω) decreases from (1 + ξ)π2 to 0 depending on the angle of approach as ω tends to

infinity.

The proof of this lemma is given in Section 4.1.

3.4. Gas region. We begin the asymptotic analysis of (3.11) by starting inside the gas phase. To
proceed with the analysis, we find the saddle points of (3.11) and the contours of steepest ascent
and steepest descent.

The next lemma identifies the saddle points of (3.11) inside the gas phase.

Lemma 3.9. The saddle point of the function gξ,ξ(ω) for ω ∈ H+ ∪ ∂H+ has two distinct saddle

points in the interval (
√

2c, 1/
√

2c)i (but not equal to i) if and only if −1/2
√

1− 2c < ξ < 0.
These saddle points are given by ωc ∈ (

√
2c, 1)i and −ω−1

c . We also have Regξ,ξ(ωc) < 0 and
Regξ,ξ(−ω−1

c ) > 0.

Proof. For ξ1 = ξ2 = ξ, it is immediate that if ωc = it for t ∈ (
√

2c, 1) is a root of Eq. (2.22), then
so are i/t, −i/t and −it. These are the four roots of (2.22) described by Lemma 3.7. By writing

ξ =
−1

ωc√
ω2
c+2c

+ ω−1
c√

ω−2
c +2c

= − 1
t√

t2−2c
+ t−1√

t−2−2c

,

observe that ξ is decreasing for increasing t ∈ (
√

2c, 1) which gives the interval−1/2
√

1− 2c < ξ < 0.
For the second condition, using the above parameterization of ξ and (2.22) we find

gξ,ξ(it) = log it− 1
t√

t2−2c
+ t−1√

t−2−2c

logG

(
1

it

)
+

1
t√

t2−2c
+ t−1√

t−2−2c

logG (it) .

Using the above equation, we can compute Regξ,ξ(it) because

G (it) =
i√
2c

(
t−
√
t2 − 2c

)
and G

(
1

it

)
= − i√

2c

(
1

t
−
√
t−2 − 2c

)
for t ∈ (

√
2c, 1/

√
2c). By using the above two equations, it follows that Regξ,ξ(it) is increasing for

t ∈ (
√

2c, 1), i.e. by differentiating. Since Regξ,ξ(i) = 0 (because |G(i)| = |G(1/i)|) the statement

Regξ,ξ(it) < 0 for t ∈ (
√

2c, 1) is immediate. The statement Regξ,ξ(−it−1) > 0 follows from an
analogous computation. �

We next state and prove a lemma which aides in determining the local behavior of the contours
of steepest ascent and descent around the saddle point.

Lemma 3.10. For −1
2

√
1− 2c < ξ < 0, choose ωc such that g′ξ,ξ(ωc) = 0 with ωc ∈ (

√
2c, 1)i, then

g′ξ,ξ(−ω−1
c ) = 0,

g′′ξ,ξ(ωc) < 0 and g′′ξ,ξ(−ω−1
c ) > 0.

Proof. From Lemma 3.9, it is immediate that g′ξ,ξ(−ω−1
c ) = 0. We differentiate ωg′ξ,ξ(ω) to obtain

(3.18) ωg′ξ,ξ(ω) + ω2g′′ξ,ξ(ω) = 2cξ

(
ω

(ω2 + 2c)3/2
− ω−1

(ω−2 + 2c)3/2

)
.

Since g′ξ,ξ(ωc) = 0 and ωc = it we find after simplification that

−t2g′′ξ,ξ(it) = 2cξ

(
it

(i
√
t2 + 2c)3

+
it−1

(−i
√
t−2 + 2c)3

)
,
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where ξ < 0. A computation gives

t

(
√
t2 + 2c)3

>
t−1

(
√
t−2 + 2c)3

for
√

2c < t < 1 and the reverse inequality holds for 1 < t < 1/
√

2c as required.
�

The next lemma describes the contours of steepest descent and steepest ascent.

Lemma 3.11. Assume the same conditions given in Lemma 3.10. Then there is a path of steepest
descent from ωc to 0 and a path of steepest ascent from −ω−1

c to infinity for Re gξ,ξ.

Proof. Since gξ,ξ(ω) is analytic for ω ∈ H+ ∪ ∂H+\(i[0,
√

2c]∪ i[1/
√

2c,∞)) the contours of steepest
ascent and descent of Re gξ,ξ(ω) are the level lines of Im gξ,ξ(ω). For our steepest descent argument
we need the descent path from ωc (ω1-integral), and the ascent path from −ω−1

c (ω2-integral). By
Lemma 3.8 we have that Im gξ,ξ(ωc) = (1 + 2ξ)π2 . From Lemma 3.10 we see that the descent

path leaves ωc perpendicularly and goes into H+. The value (1 + 2ξ)π2 ( note −1
2 < ξ < 0 ) is

taken only in i[
√

2c, 1/
√

2c], at 0 and at infinity by Lemma 3.8 . Hence the descent path from ωc
has to go to 0 or infinity, whereas the ascent path goes along the imaginary axis. We also have
Im gξ,ξ(−ω−1

c ) = (1 + 2ξ)π2 and from Lemma 3.8 we see that the ascent path goes perpendicularly
into H+, and hence the descent path goes along the imaginary axis. Since the descent path from
ωc cannot cross the ascent path from −ω−1

c in H+, we see that the descent path from ωc goes to 0
and the ascent path from −ω−1

c goes to infinity.
�

Up to orientation, these contours are symmetric in both the real and imaginary axis. The orien-
tations are easily determined. The contours described in Lemma 3.11 feature an infinite contour.
In order to reduce our saddle point analysis to a local saddle point argument, we need an estimate
controlling the contribution of the contour outside of |ω| = R for R large. A crude estimate gives

(3.19)
1

|Hy1,y2+1(ω)| =
1

R2m(1+ξ)
(1 +O(1/R)).

Propostion 3.12. Under the assumptions given in Theorem 2.6 and with −1/2
√

1− 2c < ξ < 0,
we have

Bε1,ε2(a, x1, x2, y1, y2) = O(e−Cm),

where C > 0 is a constant.

Proof. For the proof, we use the form of Bε1,ε2(a, x1, x2, y1, y2) as stated in (3.11) and ignore
the integer parts because their effect is negligible. To this integral, we first take out a prefac-
tor of Hx1+1,x2(ωc)/Hy1,y2+1(−ω−1

c )) which decays exponentially fast to zero as m tends to in-
finity. This follows from Lemma 3.9 since the highest order term of this prefactor is given by

e2m(gξ,ξ(ωc)−gξ,ξ(−ω−1
c )). For the contour of integration with respect to ω1, deform to the contour of

steepest descent given in Lemma 3.11, and use symmetry to extend to the remaining three quad-
rants. For the contour of integration with respect to ω2, deform to the contour of steepest ascent
given in Lemma 3.11, and use symmetry to extend to the remaining three quadrants. The contours
do not cross under these deformations.

Standard saddle point arguments and the crude estimate given in (3.19) which controls the saddle
point function on the infinite length contour means that we only need to consider the local saddle
point contributions of Bε1,ε2(a, x1, x2, y1, y2). By symmetry, we only need to consider one pair of

saddle points; we choose the pair (ωc,−1/ωc) for ωc ∈ (
√

2c, 1)i. Write the local descent and ascent
contours in a neighborhood of the critical points as

ω1 = ωc + (2m)−
1
2w and ω2 = −ω−1

c + (2m)−
1
2 z,
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where |w|, |z| < mδ with 0 < δ < 1/6. Up to leading order, these contours are parallel to the real
axis.

In the neighborhood of the critical points, we apply a Taylor expansion to the exponential term
contained in the integrand in (3.11)

Hx1+1,x2(ω1)

Hy1,y2+1(ω2)
=

Hx1+1,x2(ωc)

Hy1,y2+1(−ω−1
c )

e
w2g′′ξ,ξ(ωc)−z

2g′′ξ,ξ(−ω
−1
c )

2
+f̃m(x1,x2,ωc)w−f̃m(y1,y2,−ω

−1
c )z+O(m−

1
2w3,m−

1
2 z3),

where f̃m(x1, x2, ω) = x1

(2m)
1
2
√
ω2+2c

+ x2

(2m)
1
2 ω2
√
ω−2+2c

. Using the above expansion, we have an

integral for the local contribution of Bε1,ε2(a, x1, x2, y1, y2) with an error term in the exponent

of the integrand. We use |et − 1| < |t|e|t| by setting t equal to the error term, and find that
Bε1,ε2(a, x1, x2, y1, y2) is equal to

Hx1+1,x2(ωc)

Hy1,y2+1(−ω−1
c )

4

(2π)2(2m)
1
2

(∫ mδ

−mδ
dw

∫ mδ

−mδ
dz

Vε1,ε2
(
ωc,−ω−1

c

)
ωc((−ω−1

c − ωc) + (2m)−1/2(w − z))

× e 1
2

(g′′ξ,ξ(ωc)w
2−g′′ξ,ξ(−ω

−1
c )z2)ef̃m(x1,x2,ωc)w−f̃m(y1,y2,−ω

−1
c )z +O(m−

1
2 )

)
.

where the error term in the above equation contains the lower order terms of the local contribution
and remaining global contribution. The singularity 1/(w − z) in the above integral is integrable
and by using the information for g′′ξ,ξ(ωc) and g′′ξ,ξ(−ω−1

c ) provided by Lemma 3.10, the integral in

the above equation is finite. Due to the prefactor
Hx1+1,x2 (ωc)

Hy1,y2+1(−ω−1
c )

and since the above integral is a

Gaussian integral which has a finite limit, we conclude that the local contribution of Bε1,ε2(a, x, y)
around its saddle point is exponentially small as required.

�

3.5. Liquid-gas boundary. We continue the analysis of the asymptotic behavior of (3.11) when
the asymptotic coordinate is at the liquid-gas boundary. We find the behavior of the saddle points,
the contours of steepest ascent and steepest descent. Finally, we compute asymptotics of the integral
in Eq. (3.11) at the liquid-gas boundary.

The next lemma gives the saddle point of the integral in Eq. (3.11) when the asymptotic coordi-
nate is at the liquid-gas boundary.

Lemma 3.13. The saddle point of the function gξ,ξ(ω) for ω ∈ H+ ∪ ∂H+ has a double critical

point at ω = i if and only if ξ = −1
2

√
1− 2c.

Proof. The system of equations {g′ξ,ξ(ωc) = 0, g′′ξ,ξ(ωc) = 0} have the solutions ωc = ±i for ξ =

−1/2
√

1− 2c. �

The next lemma determine the angles of approach of the contours of steepest ascent and steepest
descent at the double critical point.

Lemma 3.14. For ξ = −1
2

√
1− 2c, we have

g′′′ξ,ξ(i) = −4c(c+ 1)

(1− 2c)2
i.

Proof. We differentiate (3.18) and set g′ξ,ξ(ω) = g′′ξ,ξ(ω) = 0. After some computation, we find

g′′′ξ,ξ(ω) =
2c

ω2

(
ξ

2c− ω2

(ω2 + 2c)5/2
+ ξ

2c/ω2 − 2/ω4

(1/ω2 + 2c)5/2

)
.(3.20)

We can set ω = i in the above equation as required.
�
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Figure 4. The contours of steepest ascent and descent of gξ,ξ(ω) for ω ∈ H+∪∂H+

and a = 0.5 which means c = 0.4. The plots are made through a relief plot of
log |Im(gξ,ξ(ω)− gξ,ξ(ωc))| where the logarithm is used to sharpen the plot. The top
left figure has ωc = i corresponding to the liquid-gas boundary. The top right figure

has ωc = e
iπ
4 corresponding to the liquid region. The bottom left figure has ωc = 1

corresponding to the solid-liquid boundary. The bottom right figure has ωc = 0.8
corresponding to the solid region.

Lemma 3.15. For ξ = −1
2

√
1− 2c, there is a path of steepest descent leaving i at angle −π/6 going

to 0 for Re gξ,ξ and a path of steepest ascent leaving i at angle π/6 going to infinity for Re gξ,ξ.

Proof. Since gξ,ξ(ω) is analytic for ω ∈ H+ ∪ ∂H+\(i[0,
√

2c]∪ i[1/
√

2c,∞)) the contours of steepest
ascent and descent of Re gξ,ξ(ω) are the level lines of Im gξ,ξ(ω). From Lemma 3.14, we see that the
descent path (ω1-integral) leaves i at an angle −π/6 and goes into H+. From Lemma 3.14, we see
that the ascent path (ω2-integral) leaves i at an angle π/6 and goes into H+. The endpoints of these
contours follows by mirroring the argument given in the proof of Lemma 3.11 using Lemma 3.8.

�

The top left figure in Fig. 4 shows a realization of these contours. Up to orientation, these contours
are symmetric in both the real and imaginary axis. The orientations are easily determined.

The following lemma is required for the evaluation of the asymptotics of the integral in Eq. (3.11).

Lemma 3.16.

gε1,ε2 = −2iVε1,ε2(i, i)
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Proof. The proof follows setting ω = i in the formula for Vε1,ε2(ω, ω) given in Lemma 3.2 and

simplifying. Note that
√

1/i2 + 2c = −
√

i2 + 2c and G(1/i) = −G(i) which both follow from the

choice of branch cut. We have
√

i2 + 2c = i
√

1− 2c and G(i) = i√
2c

(1−
√

1− 2c) which also follow

from the choice of branch cut. �

We have the following proposition.

Propostion 3.17. Choose x and y as given in Theorem 2.7 with ξ = −1
2

√
1− 2c. Then, we have

Bε1,ε2(a, x1, x2, y1, y2) = iy1−x1+1|G(i)| 12 (−2−x1+x2+y1−y2)eβxαx−βyαy+ 2
3

(β3
x−β3

y)c0gε1,ε2

× Ã((−βx, αx + β2
x); (−βy, αy + β2

y))(2m)−1/3
(

1 +O
(
m−

1
3

))
.

where c0 and the scale factors λ1 and λ2 are given in the statement of Theorem 2.7.

Proof. For the proof, we use the form of Bε1,ε2(a, x1, x2, y1, y2) as given in (3.11) and ignore the
integer parts because their effect is negligible. For the contour of integration with respect to ω1,
deform to the contour of steepest descent given in Lemma 3.15, and use symmetry to extend to
the remaining three quadrants. For the contour of integration with respect to ω2, deform to the
contour of steepest ascent given in Lemma 3.15, and use symmetry to extend to the remaining three
quadrants. The contours do not cross under these deformations.

Standard saddle point arguments and the crude estimate given in (3.19) which controls the
saddle point function on the infinite length contour means that we only need to consider the local
saddle point contributions of Bε1,ε2(a, x1, x2, y1, y2). By the symmetry in the real axis for our
expressions, we only need to consider the local saddle point contribution at i since the local saddle
point contribution at −i has the same value.

Write the local descent and ascent contours in a neighborhood of the double critical point as

(3.21) ω1 = i + c0(2m)−1/3w and ω2 = i + c0(2m)−1/3z,

where |w|, |z| < mδ with 0 < δ < 1/12 and c0 is given in Theorem 2.7. This gives contours C1,m

and C2,m for the integral with respect to w and z respectively.
We apply an expansion of Hx1+1,x2(ω1) and Hy1,y2+1(ω2) for ω1 and ω2 chosen in (3.21) and x

and y taken from the statement of the proposition. After some computation we find that

Hx1+1,x2(ω1)

Hy1,y2+1(ω2)
=
G (i)−

x1+1
2 G

(
i−1
)− y2+1

2

G (i)−
x2
2 G (i−1)−

y1
2

exp

(
−2ic(1 + c)w3c3

0

3(1− 2c)2
+

2ic(1 + c)z3c3
0

3(1− 2c)2

−2iwc0αxλ1√
1− 2c

+
2izc0αyλ1√

1− 2c
− 2cw2c2

0βxλ2

(1− 2c)3/2
+

2cz2c2
0βyλ2

(1− 2c)3/2
+ Err.

)
by using the form of Hx1+1,x2 given in (2.11) and the exponential term follows by using a Taylor
series approximation of gξ,ξ(ωi) with the local change of variables (3.21). The term Err. in the above

equation is equal to m−1/3(z4Rm(z) + w4Sm(w)) where Rm(z) and Sm(w) tend to constants as m
tends to infinity for |z|, |w| < mδ. Using the definition of c0, λ1 and λ2 as given in the statement of
Theorem 2.7, we find that the right side of the above equation reduces to

G (i)−
x1+1

2 G
(
i−1
)− y2+1

2

G (i−1)−
x2
2 G (i)−

y1
2

e−
i
3

(w3−z3)−(βxw2−βyz2)−i(αxw−αyz)+Err..

We have G
(
i−1
)

= G (−i) = −G (i) by (3.8), which means that

Hx1+1,x2(ω1)

Hy1,y2+1(ω2)
= i

y1+y2−x1−x2
2 |G (i)|

−2+x2−x1+y1−y2
2 e−

i
3

(w3−z3)−(βxw2−βyz2)−i(αxw−αyz)+Err..
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The rest of the integrand in (3.11) under the change of variables in (3.21) is given by

i
x2−x1+y1−y2

2
Vε1,ε2(ω1, ω2)

ω1(ω2 − ω1)
= i

x2−x1+y1−y2
2

Vε1,ε2(i, i)

i(z − w)c0(2m)−
1
3

(1 +O(m−
1
3 ))

Using the above two equations, we find that the local contribution of Bε1,ε2(a, x1, x2, y1, y2) around
the double critical point i is given by

iy1−x1 |G (i)|
−2+x2−x1+y1−y2

2 c0(2m)−1/3(1 +O(m−
1
3 ))

× 1

(2πi)2

∫
C1,m

dw

∫
C2,m

dz
Vε1,ε2(i, i)

i

e−
i
3

(w3−z3)−(βxw2−βyz2)−i(αxw−αyz)+Err.

z − w .

In the local neighborhood of i, the curves C1,m and C2,m converge to C1 and C2 respectively. We
then use the symmetry in the real axis to find the contribution from the double critical point at −i
which gives the same contribution as above. Using Lemma 3.16, we find that

Bε1,ε2(a, x1, x2, y1, y2) = i−1iy1−x1+1c0(2m)−1/3 |G (i)|
−2+x2−x1+y1−y2

2 gε1,ε2

× 1

(2πi)2

∫
C1
dw

∫
C2
dz
e−

i
3

(w3−z3)−(βxw2−βyz2)−i(αxw−αyz)

z − w (1 +O(m−
1
3 )).

The result follows from Eq. (2.23).
�

3.6. Liquid region. We continue the asymptotic study of (3.11) by moving the asymptotic coor-
dinate into the liquid region. As above, we analyze the behavior of the saddle points and determine
the behavior of the contours of steepest descent and ascent before proceeding with the analysis.

The next lemma gives the behavior of the saddle points for (3.6) when the asymptotic coordinate,
ξ, is in (−

√
1 + 2c/2,−

√
1− 2c/2).

Lemma 3.18. The saddle point of the function gξ,ξ(ω) for ω ∈ H+ ∪ ∂H+ has a single critical

point ωc for −1/2
√

1 + 2c < ξ < −1/2
√

1− 2c. This single critical point is given by ωc = eiθc for
θc ∈ (0, π/2) where θc is defined by the value of ξ. Moreover, for ξ chosen so that g′ξ,ξ(ωc) = 0, we

have Regξ,ξ(ωc) = 0.

Proof. From setting ξ1 = ξ2 = ξ in Eq. (2.22), it is immediate that if ωc is a zero of (2.22), then
so are 1/ωc and −ωc and 1/ωc and their complex conjugates. If ωc ∈ H+ is a root of (2.22) with

ξ1 = ξ2 = ξ, then it follows that 1/ωc is also a root and in the same quadrant. Since there can only

be at most four roots of (2.22) by Lemma 3.7, it follows that ωc = 1/ωc which means that |ωc| = 1.
The condition −1/2

√
1 + 2c < ξ < −1/2

√
1− 2c is determined from

ξ =
−1

ωc√
ω2
c+2c

+ ω−1
c√

ω−2
c +2c

for ωc = eiθc with θc ∈ (0, π/2) . The last statement in the lemma follows immediately from the
fact that |G(eiθ)| = |G(e−iθ)|. �

We now find g′′ξ,ξ(ωc) where ωc is the single critical point.

Lemma 3.19. For −1
2

√
1 + 2c < ξ < −1

2

√
1− 2c, choose ωc = eiθc with 0 < θc < π/2 such that

g′ξ,ξ(ωc) = 0 and set s1, s2 ∈ R and φ1, φ2 such that

eiθc + (−1)k+1i
√

2c = ske
iφk
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for k ∈ {1, 2}, then

g′′ξ,ξ(ωc) =
4c|ξ|

(s1s2)3/2
ei(π/2−2θc) sin

(
3

2
(φ1 + φ2)− θc

)
.

Proof. For −1
2

√
1 + 2c < ξ < −1

2

√
1− 2c, the above definitions means that we can write√
ω2
c + 2c =

√
s1s2e

i(φ1+φ2)/2

and √
ω−2
c + 2c =

√
s1s2e

−i(φ1+φ2)/2.

From (3.18), setting g′ξ,ξ(ωc) = 0 and using the fact that(
ωc

(ω2
c + 2c)3/2

− ω−1
c

(ω−2
c + 2c)3/2

)
=

2i

(s1s2)3/2
sin

(
θ − 3

2
(φ1 + φ2)

)
we obtain

g′′ξ,ξ(ωc) =
4cξi

(s1s2)3/2
e−2iθc sin

(
θc −

3

2
(φ1 + φ2)

)
=

4c|ξ|
(s1s2)3/2

ei(π/2−2θc) sin

(
3

2
(φ1 + φ2)− θc

)
.

�

We now describe the contours of steepest ascent and descent. The top right figure in Fig. 4 shows
a realization of these contours. Up to orientation, these contours are symmetric in both the real
and imaginary axis. The orientations are easily determined.

Lemma 3.20. Assume the same conditions given in Lemma 3.19. There is

• a contour of steepest ascent leaving ωc at an angle θc − π/4 ending at infinity,
• a contour of steepest descent leaving ωc at an angle θc + π/4 ending at a cut and a descent

contour ending at i/
√

2c traveling via the cut i[1/
√

2c,∞),
• a contour of steepest ascent leaving ωc at an angle θc + 3π/4 ending at a cut and an ascent

contour ending at i
√

2c traveling via the cut i[0,
√

2c] and
• a contour of steepest descent leaving ωc at an angle θc − 3π/4 ending at zero.

for Re gξ,ξ.

Proof. Since gξ,ξ(ω) is analytic for ω ∈ H+ ∪ ∂H+\(i[0,
√

2c]∪ i[1/
√

2c,∞)) the contours of steepest
ascent and descent of Re gξ,ξ(ω) are the level lines of Im gξ,ξ(ω). The local analysis of the contours
around ωc as given in the statement of the lemma follows from Lemma 3.19. Indeed, one can show
that both φ1 +φ2 and φ1 +φ2− θc are increasing for θc ∈ (0, π/2) which means that 3

2(φ1 +φ2)− θc
is also increasing in θc and takes values in (0, π), hence sin(3

2(φ1 + φ2)− θc) > 0.

Along the curve eiθ for θ ∈ (0, π/2), we have Re gξ,ξ(e
iθ) = 0. We find that Im gξ,ξ(e

iθ) is increasing
for increasing θ at θ = 0+ which is found by computing the derivative (that is, by analyzing the
arguments of G(1 + iδ) and G(1/(1 + iδ)) for δ > 0). We also find that Im g(eiθ) is decreasing
for increasing θ at θ = π

2
− which is found by computing the derivative (that is, by analyzing the

arguments of G(i + δ) and G(1/(i + δ)) for δ > 0). There is exactly one saddle point along the
quarter circle eiθ for θ ∈ (0, π/2), because Re gξ,ξ(e

iθ) = 0 on this quarter circle. We deduce that

the Im gξ,ξ(e
iθ) is maximized at θ = θc and so Im gξ,ξ(e

iθc) > max(Im gξ,ξ(1), Im gξ,ξ(i)).
The paths of ascent and descent travel to the origin, infinity or to either of the cuts, because

the imaginary part of gξ,ξ(ω) in each of these regions is larger than max(Im gξ,ξ(1), Im gξ,ξ(i)); see
Lemma 3.8 to compare the Im gξ,ξ in each of these regions. The contour terminating at infinity is
an ascent path (ω2-integral) and since the contour cannot cross the unit circle (because it would
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force a descent path to cross the unit circle which contradicts Re gξ,ξ(e
iθ) = 0), it follows that the

contour leaving ωc at an angle θc − π/4 is a contour of steepest ascent terminating at infinity. The
contour terminating at zero is a descent path (ω1-integral), it follows that the contour leaving ωc at
an angle θc − 3π/4 is a contour of steepest descent terminating at zero. Since the contours cannot
intersect, the remaining path of steepest ascent from ωc must pass into the cut [0,

√
2c]i while the

remaining path of steepest descent from ωc must pass into the cut [1/
√

2c,∞)i, ensuring that Im gξ,ξ
is constant along both of these contours. We continue the path along the cut to i/

√
2c. It remains

to show that this is a descent path.
Suppose that l is a point in the cut [1/

√
2c,∞)i such that Im gξ,ξ(ω) = Im gξ,ξ(l). To show that

there is a descent path traveling from a point l to 1/
√

2ci, it suffices to show that Re gξ,ξ(it) is

increasing for t increasing in [1/
√

2c,∞). From (2.5), we have

lim
δ→0+

G(it+ δ) =
t−
√
t2 − 2c√
2c

i and lim
δ→0+

G
(
(it+ δ)−1

)
= − t

−1i +
√

2c− t−2

√
2c

and so

lim
δ→0+

Re gξ,ξ(it+ δ) = log t− ξ log
t−
√
t2 − 2c√
2c

,

which means that Re gξ,ξ(it) is increasing for t increasing in [1/
√

2c,∞). An analogous argument
holds for the remaining cut.

�

Propostion 3.21. Under the assumptions given in Theorem 2.6 and with −1
2

√
1 + 2c < ξ <

−1
2

√
1− 2c, we have

Bε1,ε2(a, x1, x2, y1, y2) = (K−1
1,1 −K−1

r1,r2)((x1, x2), (y1, y2)) +O(m−1/2),

where r1 and r2 are given in Theorem 2.6.

Proof. We use the formula (3.11) for Bε1,ε2(x, y),
√

2c < r < 1. Move Γr and Γ1/r to the steepest
descent and descent contours respectively for the saddle points ±ωc, ±ωc. Since the ω2-contour
has to pass over the ω1-contour we pick up a single integral contribution which equals Cωc(x, y).
The new double contour integral with the steepest descent and ascent contours can be shown to be
O(n−1/2) by an argument similar to that used in [27]. We omit the details. Thus

Bε1,ε2(x, y) = Cωc(x, y) +O(m−1/2) = K1,1(x, y)−Kr1,r2(x, y) +O(m−1/2),

by Lemma 3.3. �

3.7. Solid-liquid boundary. We continue the asymptotic study of (3.11) by moving to the solid-
liquid boundary. Similar to the liquid-gas boundary, we determine the behavior of the saddle point,
the contours of steepest ascent and steepest descent and find an expansion of the expressions found
in (3.11) at the saddle point.

The next lemma determines the behavior of the saddle point of (3.11) at the solid-liquid boundary.

Lemma 3.22. The saddle point of the function gξ,ξ(ω) for ω ∈ H+ ∪ ∂H+ has a double critical

point at w = 1 if and only if ξ = −1/2
√

1 + 2c.

Proof. The system of equations {g′ξ,ξ(ωc) = 0, g′′ξ,ξ(ωc) = 0} have the solutions ωc = ±1 for ξ =

−1/2
√

1 + 2c. �

Since g′ξ,ξ(1) = g′′ξ,ξ(1) = 0 because 1 is a double critical point, to characterize the local nature of

the contours of steepest ascent and descent, we must first ascertain g′′′ξ,ξ(1).
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Lemma 3.23. For ξ = −1
2

√
1 + 2c, we have

g′′′ξ,ξ(1) =
4(1− c)
1 + 2c

.

Proof. From (3.20), we can set ω = 1 to obtain the result. �

We now describe the contours of steepest ascent and descent.

Lemma 3.24. For ξ = −1/2
√

1 + 2c, there is a contour of steepest descent leaving 1 at angle π/3
finishing at a cut and a descent path finishing at i/

√
2c traveling via the cut [1/

√
2c,∞)i, and a

contour of steepest ascent leaving 1 at angle 2π/3 finishing at a cut and an ascent path ending at
i
√

2c traveling via the cut [0,
√

2c]i for Re gξ,ξ.

Proof. Since gξ,ξ(ω) is analytic for ω ∈ H+∪∂H+\(i[0,
√

2c]∪ i[1/
√

2c,∞)), the contours of steepest
ascent and descent of Re gξ,ξ(ω) are the level lines of Im gξ,ξ(ω). From Lemma 3.23, the contours
which enter H+ from 1 are a descent path (ω1-integral), leaving 1 at an angle π/3; and an ascent
path (ω2-integral), leaving 1 at an angle −π/3. Since there are also contours of steepest descent and
ascent traveling along the real axis, the contours which enter H+ cannot end at 0 or infinity. Since
Im gξ,ξ(1) = 0 and by noting the value of Im gξ,ξ(ω) for ω in both i[0,

√
2c] and i[1/

√
2c,∞) from

Lemma 3.8 for ξ < −1/2, it is clear that the contours which enter H+ from 1 travel to the cuts. Since
the steepest ascent and descent contours do not intersect, the contour of steepest ascent travels to
the cut [0,

√
2c]i and the contour of steepest descent travels to the cut [1/

√
2c,∞)i. Following the

argument given in Lemma 3.20, we see that we can get contours ending at the desired endpoints.
�

The bottom left figure in Fig. 4 shows a realization of these contours. Up to orientation, these
contours are symmetric in both the real and imaginary axis. The orientations are easily determined.

The following lemma is required for the evaluation of the asymptotics of the integral in (3.11)

Lemma 3.25.

sε1,ε2 = 2Vε1,ε2(1, 1)

Proof. The proof follows setting ω = i in the formula for Vε1,ε2(ω, ω) given in Lemma 3.2 and

simplifying. Here, we use the fact that G(1) = (1−
√

1 + 2c)/
√

2c.
�

We have the following proposition.

Propostion 3.26. Choose x and y as given in Condition 2 and suppose further that x ∈ Wε1,
y ∈ Bε2 for ε1, ε2 ∈ {0, 1} and ξ = −1

2

√
1 + 2c. Then we have

Bε1,ε2(a, x1, x2, y1, y2) = K−1
1,1(x, y)− S(x, y)−G(1)

1
2

(−2−x1+x2+y1−y2)

× c0i
x2−x1+y1−y2

2 sε1,ε2e
αyβy−αxβx+ 2

3
(βy−βx)A((βx, αx + β2

x), (βy, αy + β2
y))2m)−1/3(1 +O(m−1/3)),

where c0 and the scale factors λ1 and λ2 are given in the statement of Theorem 2.9.

Proof. For the proof, we start with the Bε1,ε2(a, x1, x2, y1, y2) as given in (3.11) and we ignore the
integer parts since these are negligible. Deform the contour with respect to ω1 to the contour of
steepest descent given in Lemma 3.24 and use symmetry to extend to the remaining three quadrants.
Deform the contour with respect to ω2 to the contour of steepest ascent given in Lemma 3.24
and use symmetry to extend to the remaining three quadrants. Let ISLε1,ε2(a, x1, x2, y1, y2) be the
double contour integral which has the same integrand as Bε1,ε2(a, x1, x2, y1, y2) but has contours
of integration described by the above deformations. A consequence of these contour deformations
means that the contours cross completely and we pick up an additional single integral contribution
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from the residue at ω2 with respect to ω1. This single contour integral contribution is given by
C1(x, y). Using Lemma 3.3, we obtain

Bε1,ε2(a, x1, x2, y1, y2) = K−1
1,1(x, y)− S(x, y) + ISLε1,ε2(a, x1, x2, y1, y2).

Standard saddle point arguments means that we only need to consider the local saddle point contri-
butions of ISLε1,ε2(a, x1, x2, y1, y2). By the symmetry of our expressions in the imaginary axis, we only
need to consider the local saddle point contribution at 1 since the local saddle point contribution
at −1 has the same value.

Write the local descent and ascent contours in a neighborhood of the double critical point as

(3.22) ω1 = 1 + c0(2m)−1/3w and ω2 = 1 + c0(2m)−1/3z,

where |w|, |z| < mδ with 0 < δ < 1/12 and c0 is given in Theorem 2.9. This gives contours C̃1,m

and C̃2,m for w and z respectively.
We apply an expansion of Hx1+1,x2(ω1) and Hy1,y2+1(ω2) for ω1 and ω2 chosen in (3.22) and x

and y taken from the statement of the theorem. After some computation we find that

Hx1+1,x2(ω1)

Hy1,y2+1(ω2)
=
G (1)−

x1+1
2 G (1)−

y2+1
2

G (1)−
x2
2 G (1)−

y1
2

exp

(
2c(1− c)w3c3

0

3(1 + 2c)2
− 2c(1− c)z3c3

0

3(1 + 2c)2

−2wc0αxλ1√
1 + 2c

+
2zc0αyλ1√

1 + 2c
− 2cw2c2

0βxλ2

(1 + 2c)3/2
+

2cz2c2
0βyλ2

(1 + 2c)3/2
+ Err.

)
by using the form Hx1,x2 given in (2.11) and the exponential term follows by using a Taylor series
approximation in gξ,ξ with the local change of variables given in (3.22). The term Err. is equal to

m−1/3(z4Rm(z) + w4Sm(w)) where Rm(z) and Sm(w) tend to constants as m tends to infinity for
|w|, |z| < mδ. Using the definition of c0, λ1 and λ2 as given in the statement of Theorem 2.9, the
right side of the above equation reduces to

G (1)−
x1+1

2 G (1)−
y2+1

2

G (1)−
x2
2 G (1)−

y1
2

exp

(
1

3
(w3 − z3)− (βxw

2 − βyz2)− (αxw − αyz) + Err.

)
.

We can write the above equation as

G (1)
−2+x2−x1+y1−y2

2 exp

(
1

3
(w3 − z3)− (βxw

2 − βyz2)− (αxw − αyz) + Err.

)
.

We also have under the change of variables (3.22)

Vε1,ε2(ω1, ω2)

ω1(ω2 − ω1)
=

Vε1,ε2(1, 1)

c0(z − w)(2m)−
1
3

.

Using the above two local contributions, we find that the contribution of ISLε1,ε2(a, x1, x2, y1, y2)
around the double critical point 1 is given by

i
x2−x1+y1−y2

2 c0(2m)−1/3Vε1,ε2(1, 1)G(1)
−2+x2−x1+y1−y2

2

(2πi)2

∫
C̃1,m

dw

∫
C̃2,m

dz

× exp
(

1
3(w3 − z3)− (βxw

2 − βyz2)− (αxw − αyz) + Err.
)

z − w .

To the above integral, we apply the change of variables w 7→ wi and z 7→ zi which means that the
contours C̃1,m and C̃2,m are mapped C1,m and C2,m respectively, which are both defined in the proof
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of Proposition 3.17. Under these change of variables, the above equation is equal to

− i
x2−x1+y1−y2

2 c0(2m)−1/3Vε1,ε2(1, 1)G(1)
−2+x2−x1+y1−y2

2

i(2πi)2

∫
C1,m

dw

∫
C2,m

dz

× exp
(
− i

3(w3 − z3) + (βxw
2 − βyz2)− i(αxw − αyz) + Err.

)
z − w .

In the local neighborhood of i, the curves C1,m and C2,m converge to C1 and C2 respectively. We use
the symmetry in the imaginary axis to find the contribution from the double critical point at −1
which gives an extra factor of 2. Using Lemma 3.25, we find

ISLε1,ε2(a, x1, x2, y1, y2) = − i
x2−x1+y1−y2

2 c0(2m)−1/3sε1,ε2G(1)
−2+x2−x1+y1−y2

2

i(2πi)2

∫
C1
dw

∫
C2
dz

× exp
(
− i

3(w3 − z3) + (βxw
2 − βyz2)− i(αxw − αyz) + Err.

)
z − w .

The result follows from Eq. (2.23).
�

3.8. Solid region. We continue the asymptotic study of (3.11) by moving the asymptotic coordi-
nate into the solid region. Similar to the previous cases, we determine the behavior of the saddle
points and the contours of steepest ascent and steepest descent.

Lemma 3.27. The saddle point of the function gξ,ξ(ω) for ω ∈ H+ ∪ ∂H+ has two distinct real

positive saddle points in the interval (not equal to 1) if and only if −1 < ξ < −1/2
√

1 + 2c. These
saddle points are given by ωc ∈ (1,∞) and ω−1

c . We also have Regξ,ξ(ωc) < 0 and Regξ,ξ(ω
−1
c ) > 0

Proof. From setting ξ1 = ξ2 = ξ in Eq. (2.22), it is immediate that if ωc is a root of (2.22), then
so are 1/ωc and −ωc and −1/ωc which give the four possible roots of (2.22) as characterized by
Lemma 3.7. By writing

ξ =
−1

ωc√
ω2
c+2c

+ ω−1
c√

ω−2
c +2c

we can set ωc = t for t ∈ (1,∞) and observe that ξ is decreasing in t, giving the interval −1 < ξ <
−1/2

√
1 + 2c.

For the second condition, using the above parameterization of ξ and (2.22) we find

gξ,ξ(ωc) = logωc −
logG

(
1
ωc

)√
2c+ 1

ω2
c
ωc
√

2c+ ω2
c√

2c+ 1
ω2
c
ω2
c +

√
2c+ ω2

c

+
logG (ωc)

√
2c+ 1

ω2
c
ωc
√

2c+ ω2
c√

2c+ 1
ω2
c
ω2
c +

√
2c+ ω2

c

.

Using the above equation it can be checked after some computation that Regξ,ξ(ωc) is decreasing
for ωc = t for t ∈ (1,∞), i.e. by differentiating. It can be easily checked that Regξ,ξ(1) = 0. This

gives Regξ,ξ(ωc) < 0 and Regξ,ξ(−ω−1
c ) > 0 follows by a similar computation. �

To determine the nature of the contours of steepest ascent and steepest descent, we need the
following lemma:

Lemma 3.28. For −1 < ξ < −1
2

√
1 + 2c, choose ωc such that g′ξ,ξ(ωc) = 0 with ωc ∈ (1,∞), then

g′ξ,ξ(ω
−1
c ) = 0,

g′′ξ,ξ(ωc) < 0 and g′′ξ,ξ(ω
−1
c ) > 0.
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Proof. It is immediate from Lemma 3.27 that g′ξ,ξ(ω
−1
c ) = 0. In Eq. (3.18), we set g

(1)
ξ,ξ (ω) = 0 and

ω = t to find

g′′ξ,ξ(t) =
2cξ

t2

(
t

(
√
t2 + 2c)3

− t−1

(
√

1/t2 + 2c)3

)
.

A computation shows that

t

(
√
t2 + 2c)3

<
t−1

(
√

1/t2 + 2c)3

for 0 < t < 1 and the reverse inequality holds for 1 < t < ∞. The formula for g′′ξ,ξ(ω) has been

given in (3.18) in the proof of Lemma 3.10.
�

Lemma 3.29. Assume the same conditions given in Lemma 3.28. There is a contour of steepest
descent from ωc to a cut and a descent path ending at i/

√
2c traveling via the cut [1/

√
2c,∞)i, and

a contour of steepest ascent from ω−1
c to a cut and an ascent path ending at i

√
2c traveling via the

cut [0,
√

2c]i for Re gξ,ξ.

Proof. Since gξ,ξ(ω) is analytic for ω ∈ H+ ∪ ∂H+\(i[0,
√

2c] ∪ [1/
√

2c,∞)) the contours of steepest
ascent and descent of Re gξ,ξ(ω) are the level lines of Im gξ,ξ(ω). From Lemma 3.28, the contour
from ωc is a descent path (ω1-integral) and enters H+ perpendicularly. Similarly, from Lemma 3.28,
the contour from ω−1

c is an ascent path (ω2-integral) and enters H+ perpendicularly. Since there
are contours of steepest descent and ascent traveling along the real axis (compare with the proof of
Lemma 3.11), the two contours which enter H+ cannot end at zero or infinity. It follows that these
contours travel to their desired endpoints; see the proofs of Lemmas 3.20 and 3.24 for details. �

The bottom right figure in Fig. 4 shows a realization of these contours. Up to orientation, these
contours are symmetric in both the real and imaginary axis.

Propostion 3.30. Under the assumptions given in Theorem 2.6 and with −1 < ξ < −1
2

√
1 + 2c,

we have

Bε1,ε2(a, x1, x2, y1, y2) = K−1
1,1(x, y)− S(x, y) +O(e−Cm),

where C > 0 is a positive constant.

Proof. For the proof, we use the form of Bε1,ε2(a, x1, x2, y1, y2) as stated in (3.11) and ignore the
integer parts. Deform the contour with respect to ω1 to the contour of steepest descent given in
Lemma 3.29 and use symmetry to extend to the remaining three quadrants. Deform the contour
with respect to ω2 to the contour of steepest ascent given in Lemma 3.29 and use symmetry to
extend to the remaining three quadrants. Let ISε1,ε2(a, x1, x2, y1, y2) be the double contour integral
which has the same integrand as Bε1,ε2(a, x1, x2, y1, y2) but has contours of integration described by
the above deformations. A consequence of the above contour deformations means that the contours
cross completely and we pick up an additional single integral contribution from the residue at ω2

with respect to ω1. This single contour integral contribution has been computed in the first equation
of Lemma 3.3 and is given by K−1

1,1(x, y)− S(x, y) which means that

Bε1,ε2(a, x1, x2, y1, y2) = K−1
1,1(x, y)− S(x, y) + ISε1,ε2(a, x1, x2, y1, y2).

The rest of the proof is based on showing that ISε1,ε2(a, x1, x2, y1, y2) is exponentially small. To

this integral, we first take out a prefactor of Hx1+1,x2(ωc)/Hy1,y2+1(ω−1
c ) which decays exponentially

fast to zero as m tends to infinity. This follows from Lemma 3.9 since the highest order term of

this prefactor is given by e2m(gξ,ξ(ωc)−gξ,ξ(ω−1
c )). Standard saddle point arguments means that we

only need to consider the local saddle point contributions of ISε1,ε2(a, x1, x2, y1, y2). By symmetry,
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we only need to consider one pair of saddle points; we choose the pair (ωc, 1/ωc) for ωc ∈ (1,∞).
Write the local descent and ascent contours in a neighborhood of the critical points as

ω1 = ωc + (2m)−1/2w and ω2 = ω−1
c + (2m)−1/2z

for |w|, |z| < mδ for 0 < δ < 1/6. Up to leading order, these contours are parallel to the imaginary
axis.

Using these change of variables, we apply a Taylor expansion to the exponential term contained
in the integrand in (3.11)

Hx1+1,x2(ω1)

Hy1,y2+1(ω2)
=

Hx1+1,x2(ωc)

Hy1,y2+1(ω−1
c )

e
w2g′′ξ,ξ(ωc)−z

2g′′ξ,ξ(ω
−1
c )

2
+f̃m(x1,x2,ωc)w−f̃m(y1,y2,ω

−1
c )z+O(m−

1
2w3,m−

1
2 z3),

where f̃m(x1, x2, ω) = x1

(2m)
1
2
√
ω2+2c

+ x2

(2m)
1
2 ω2
√
ω−2+2c

. Using the above expansion, we have an inte-

gral for the local contribution of ISε1,ε2(a, x1, x2, y1, y2) with an error in the exponent of the integrand.

We use |et − 1| < |t|e|t| by setting t equal to this error term, and find that ISε1,ε2(a, x1, x2, y1, y2) is
equal to

Hx1+1,x2(ωc)

Hy1,y2+1(ω−1
c )

4

(2π)2(2m)
1
2

(∫ mδ

−mδ
dw

∫ mδ

−mδ
dz

Vε1,ε2
(
ωc, ω

−1
c

)
ωc(ωc − ω−1

c + 2m−1/2(w − z))
e

1
2

(g′′ξ,ξ(ωc)w
2−g′′ξ,ξ(ω

−1
c )z2)

× ef̃m(x1,x2,ωc)w−f̃m(y1,y2,ω
−1
c )z +O(m−

1
2 )

)
,

where the error term in the above equation contains the lower order terms of the local contribution
and remaining global contribution. The singularity 1/(w − z) in the above integral is integrable
and by using the information for g′′ξ,ξ(ωc) and g′′ξ,ξ(ω

−1
c ) provided by Lemma 3.28, the integral in

the above equation is finite. Due to the prefactor
Hx1+1,x2 (ωc)

Hy1,y2+1(ω−1
c )

and since the above integral is a

Gaussian integral which has a finite limit, we conclude that ISε1,ε2(a, x1, x2, y1, y2) is exponentially
small as required.

�

3.9. Proof of Lemma 3.6.

Proof of Lemma 3.6. We will only give the argument for the first estimate in the lemma since the
remaining estimates follow by slight modifications as explained below. For the integral with respect
to ω2 in Eq. (2.13), deform the contour so that it surrounds the cut i(−∞,−1/

√
2c] and the cut

i[1/
√

2c,∞) and travels through infinity. Call this contour D. For −1 < ξ < 0, find the critical
point ωc ∈ H+ ∪ (1,∞) ∪ (

√
2c, 1)i (see Lemmas 3.9, 3.13, 3.18, 3.22 or 3.27). For the integral

with respect to ω1 remove a prefactor of Hx1+1,x2(ωc). For the contour with respect to ω1, deform
the contour as given for the appropriate value of ξ (see Lemmas 3.11, 3.15, 3.20, 3.24 or 3.29) in
H+. If the contour is supposed to travel via the cut to the branch point i/

√
2c, then deform the

contour so that it now travels at distance δn away from the cut (that is, the contour remains in H+)
until it terminates at i/

√
2c, where δn tends slowly to 0 as n tends to infinity. Extend this contour

to the remaining quadrants by symmetry. For the rest of the computation, we only consider the
liquid region; the other regions follow from similar estimates. With this choice of contour for ω1,
it follows that the Regξ,ξ(ω1) is decreasing when ω1 travels close to the cut until it terminates at

i/
√

2c. Indeed, when the contour with respect to ω1 is close to the cut, we take a series expansion
by selecting the real part, we find that

Regξ,ξ(it+ δn) = Regξ,ξ(it) + δn
−1√

2ct2 − 1
+O(δ2

n).



DOMINO STATISTICS OF THE TWO-PERIODIC AZTEC DIAMOND 35

Both expressions on the right side of the above equation are increasing for t ∈ [1/
√

2c,∞); see the
proof of Lemma 3.20 for details verifying this statement for the first term.

For convenience, we take x1, x2, y1 and y2 to be equal to zero — these parameters have no effect
on the exponential bound. As determined in Lemma 3.18, for ξ in the liquid region there is a
single critical point ωc ∈ H+. Standard saddle point techniques, since min(ω1 − ω2) > δn for the
above choice of contours and provided we bound above by 1/δn, we only need to estimate the local
contribution of the integral with respect to ω1. To do so, we approximate the leading order terms
by the change of variables ω1 = ωc + n−1/2wκ, where κ is the direction of the contour of steepest
descent at ωc. Using a Taylor expansion in the exponent of the integrand, we find that the local
contribution of the integral at the single critical point is given by∣∣a−1B1−ε1,ε2(a−1, 2n− x1, x2, 2n− y1, y2)

∣∣ = δ−1
n

∣∣∣∣∣ 1

(2πi)2n1/2

∫
D
dω2

Hx1+1,x2(ωc)

H2n−y1,y2+1(ω2)

ω2

ω2
2 − ω2

c

×

∫ nδ

−nδ

dw

ωc
eg

(2)
ξ,ξ(ωc)

κ2w2

2

1∑
γ1,γ2=0

(−1)ε2+γ2Qε1,ε2γ1,γ2(ωc, ω2) +O(n−1/2+2δ)

∣∣∣∣∣,
where the error term is found by using |et−1| ≤ |t|e|t| where t is the error from the Taylor expansion.
By extending the contours of integration with respect to w to infinity, the integral with respect to
w is a Gaussian integral and has a finite limit. Note that |Hx1+1,x2(ωc)| = 1, since we are in the
liquid region. We now estimate the contribution from the integral with respect to ω2. We want to
find the minimum of |H2n−y1,y2+1(ω2)| for ω2 ∈ D. By symmetry, it suffices to consider the integral

on one side of one of the cuts — we restrict the contour D to the right side of the cut i[1/
√

2c,∞)
and compute the corresponding square roots. For ω2 = ε+ it and for t > 1/

√
2c, we have√

ω2
2 + 2c→

{
i
√
t2 − 2c if ε→ 0+

i
√
t2 − 2c if ε→ 0−

and

√
ω−2

2 + 2c→
{ √

2c− t−2 if ε→ 0+

−
√

2c− t−2 if ε→ 0−.

From the above limits, it is clear that |G((it)−1)| = 1. Since

1

H2n−y1,y2+1(ω2)
∼ e−2m(log it+ξ logG(it)+ξ logG((it)−1))

we need to show that the minimum of

log |it|+ ξ log |G(it)|+ ξ log |G((it)−1)| = log t+ ξ log
t−
√
t2 − 2c√
2c

is positive for t ∈ (1/
√

2c,∞). It is easy to check that (t−
√
t2 − 2c)/

√
2c is decreasing for increasing

t ∈ (1/
√

2c,∞) and is less than 1. Since ξ is negative, it follows that the right side of the above
equation is bounded below by log 1/

√
2c > 0. This means that∣∣∣∣ 1

H2n−y1,y2+1(ω2)

∣∣∣∣ < C1e
−C2n

for ω2 ∈ D and for positive constants C1 and C2 which concludes the proof of the first estimate in
Lemma 3.6.

For the second estimate given in the lemma, we use (2.14) and follow an adaptation of the above
argument where we use saddle point analysis to bound the integral with respect to ω2 and deform
the contour of integration with respect to ω1 to the inner cut. For the third estimate given in the
lemma, we use (2.15) and deform the contour of integration with respect to ω1 to the inner cut
and the contour of integration with respect to ω2 to D and use the arguments above to get the
exponential decay bound.

�
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3.10. Conclusion of the proofs Theorems 2.6, 2.7 and 2.9. We first complete the proof of
Theorem 2.6.

Proof of Theorem 2.6. For −1 < ξ < 0, Lemma 3.6 implies that the only asymptotic contribution
for the formula K−1

a,1(x, y) in Theorem 2.3 is from Bε1,ε2(a, x1, x2, y1, y2), described in (2.12), and

K1,1(x, y). Thus, we only need to consider

K−1
a,1(x, y) = K−1

1,1(x, y)− Bε1,ε2(a, x1, x2, y1, y2) +O(e−Cn),

where C > 0 is some constant. Asymptotic expansions of the term Bε1,ε2(a, x1, x2, y1, y2) have been
given for the required degree of accuracy in the gas, liquid and solid regions in Propositions 3.12, 3.21
and 3.30. We directly substitute these results into the above equation. More precise results for
Bε1,ε2(a, x1, x2, y1, y2) at the liquid-gas and solid-liquid boundaries are given in Propositions 3.17
and 3.26. It is enough to set αx = αy = βx = βy = 0 in each of these propositions and substitute
these expressions into the above equation.

�

We now give the proof of Theorem 2.7.

Proof of Theorem 2.7. We first extract the term |G(i)|1/2(−2−x1+x2+y1−y2) from the formula for K−1
a,1

given in Theorem 2.3. We obtain

K−1
a,1(x, y) = |G(i)|

−2−x1+x2+y1−y2
2

(
|G(i)|−

−2−x1+x2+y1−y2
2 K−1

1,1(x, y)

− |G(i)|−
−2−x1+x2+y1−y2

2
(
Bε1,ε2(a, x1, x2, y1, y2) +O(e−Cm)

))
where the last error term follows from the result in Lemma 3.6. The term |G(i)|−1/2(−2−x1+x2+y1−y2)

grows at most at rate eCm
2/3

for some C > 0 provided that βx − βy > 0, is order 1 when βx = βy

and decays at rate e−Cm
2/3

for some C > 0 for βx − βy < 0. Thus, we obtain

K−1
a,1(x, y) = |G(i)|

−2−x1+x2+y1−y2
2

(
|G(i)|−

−2−x1+x2+y1−y2
2 K−1

1,1(x, y)

− |G(i)|−
−2−x1+x2+y1−y2

2 Bε1,ε2(a, x1, x2, y1, y2) +O(e−Cm)

)
From the above equation, the case βx = βy follows immediately from Proposition 3.17.

Using Proposition 3.4, Proposition 3.17 and the above equation, we have

K−1
a,1(x, y) = (2m)−1/3(1 +O(m−1/3))× iy1−x1+1|G(i)| 12 (−2−x1+x2+y1−y2)c0gε1,ε2

×
(

Iβx>βy√
4π(βx − βy)

e
− (αx−αy)2

4(βx−βy) − eβxαx−βyαy+ 2
3

(β3
x−β3

y)Ã((−βx, αx + β2
x); (−βy, αy + β2

y))

)
.

Using a substitution, we find that

Iβx>βy√
4π(βx − βy)

e
− (αx−αy)2

4(βx−βy) e−βxαx+βyαy− 2
3

(β3
x−β3

y) = φ−βx,−βy(αx + β2
x, αy + β2

y)

which means that

K−1
a,1(x, y) = iy1−x1+1|G(i)| 12 (−2−x1+x2+y1−y2)c0gε1,ε2e

βxαx−βyαy+ 2
3

(β3
x−β3

y)

×
(
φ−βx,−βy(αx + β2

x, αy + β2
y)− Ã((−βx, αx + β2

x); (−βy, αy + β2
y))
)

(2m)−1/3(1 +O(m−1/3)).

and the result follows immediately from (2.24). �
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We now give the proof of Theorem 2.9.

Proof of Theorem 2.9. We first extract the term |G(1)|1/2(−2−x1+x2+y1−y2) from the formula for K−1
a,1

given in Theorem 2.3. We obtain

K−1
a,1(x, y) = |G(1)|

−2−x1+x2+y1−y2
2

(
|G(1)|−

−2−x1+x2+y1−y2
2 K−1

1,1(x, y)

− |G(1)|−
−2−x1+x2+y1−y2

2
(
Bε1,ε2(a, x1, x2, y1, y2) +O(e−Cm)

))
where the last error term follows from the result in Lemma 3.6. The term |G(1)|−1/2(−2−x1+x2+y1−y2)

grows at most at rate eCm
2/3

for some C > 0 provided that βx − βy > 0, is order 1 when βx = βy

and decays at rate e−Cm
2/3

for some C > 0 for βx − βy < 0. Thus, we obtain

K−1
a,1(x, y) = |G(1)|

−2−x1+x2+y1−y2
2

(
|G(1)|−

−2−x1+x2+y1−y2
2 K−1

1,1(x, y)

− |G(1)|−
−2−x1+x2+y1−y2

2 Bε1,ε2(a, x1, x2, y1, y2) +O(e−Cm)

)
From the above equation, the case βx = βy follows immediately from Proposition 3.26.

Using Proposition 3.5, Proposition 3.26 and the above equation, we have

K−1
a,1(x, y) = (2m)−1/3(1 +O(m−1/3))× i

x2−x1+y1−y2
2 |G(1)| 12 (−2−x1+x2+y1−y2)c0sε1,ε2

×
(
e−βxαx+βyαy− 2

3
(β3
x−β3

y)Ã((βx, αx + β2
x); (βy, αy + β2

y))− Iβy>βx√
4π(βy − βx)

e
− (αx−αy)2

4(βy−βx)

)
.

Using a substitution, we find that

Iβy>βx√
4π(βy − βx)

e
− (αy−αx)2

4(βy−βx) eβxαx−βyαy+ 2
3

(β3
x−β3

y) = φβx,βy(αx + β2
x, αy + β2

y)

which means that

K−1
a,1(x, y) = i

x2−x1+y1−y2
2 |G(1)| 12 (−2−x1+x2+y1−y2)c0sε1,ε2e

−βxαx+βyαy− 2
3

(β3
x−β3

y)

× (Ã((βx, αx + β2
x); (βy, αy + β2

y))− φβx,βy(αx + β2
x, αy + β2

y))(2m)−1/3(1 +O(m−1/3))

and the result follows immediately from (2.24). �

We now give the proofs of Corollary 2.8 and 2.10.

Proof of Corollary 2.8. Suppose that x and y are both in W0 as given in the statement of the corol-
lary. From Theorem 2.1, the covariance between the edges (x, x + e2) and (y, y + e2) is given
by

P [Edges at (x, x+ e2) and (y, y + e2)]− P [Edge at (x, x+ e2)]P [Edge at (y, y + e2)]

= Ka,1(x, x+ e2)Ka,1(y, y + e2)K−1
a,1(x, y + e2)K−1

a,1(x, y + e2) = −a2K−1
a,1(x, y + e2)K−1

a,1(x, y + e2)

since Ka,1(x, x + e2) = Ka,1(y, y + e2) = ai. The corollary immediate follows from inserting the

expansions of K−1
a,1 in Theorem 2.7 into the above formula.

�
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Proof of Corollary 2.10. Suppose that x and y are both in W0 as given in the statement of the
corollary. From Theorem 2.1, the covariance between the edges (x, x + e2) and (y, y + e2) is given
by

P [Edges at (x, x− e2) and (y, y − e2)]− P [Edge at (x, x− e2)]P [Edge at (y, y − e2)]

= Ka,1(x, x− e2)Ka,1(y, y − e2)K−1
a,1(x, y − e2)K−1

a,1(x, y − e2) = −K−1
a,1(x, y − e2)K−1

a,1(x, y − e2)

since Ka,1(x, x − e2) = Ka,1(y, y − e2) = i. The corollary immediate follows from inserting the

expansions of K−1
a,1 in Theorem 2.9 into the above formula.

�

4. Postponed proofs

In this section we will give the postponed proofs of some lemmas and propositions in Section 3.

4.1. Proof of Lemma 2.2. We will now give the proof of Lemma 2.2.

Proof of Lemma 2.2. Without loss of generality, we will assume that s ≥ 0 because Fs(w) = F−s(w)
seen by the change of variables u 7→ 1/u in Eq. (2.7). From (2.7), we make the change u 7→ ui and
set w = iω/

√
2c and after simplification, we find that

Fs

(
iω√
2c

)
=

is

(1 + a2)

1

2πi

∫
Γ1

us

1− ω
√

c
2(u− u−1)

du

u
.

We need to check that the choice of square root ensures that Fs(iω/
√

2c) is analytic. Observe that
Fs(iω/

√
2c) is analytic in ω unless 1− ω

√
c
2(u− u−1) has a zero for some |u| = 1. Since i(u− u−1)

is real for |u| = 1, we conclude that non-analyticity requires 1/(
√

2ciω) ∈ [−1, 1] which means that
ω ∈ Ω where we define Ω = i(−∞,−1/

√
2c] ∪ i[1/

√
2c,∞).

The roots of 1− ω
√

c
2(u− u−1) = 0 are given by

(4.1) u±(ω) =
1

ω
√

2c
±
√

1

2cω2
+ 1.

The square root must be defined so that we have analyticity in C \ Ω. Note that

1

G(ω)
= − 1√

2c
(ω +

√
ω2 + 2c).

Thus, u+(ω) = −1/G(1/ω) and u−(ω) = G(1/ω) are the solutions we want, since this implies

u+(ω)u−(ω) = 1 and u+(ω) + u−(ω) =
√

2/cω−1.

Notice that if |u−(ω)| = 1, that is u−(ω) = eiφ, then√
2

c

1

ω
= u+(ω) + u−(ω) = − 1

u−(ω)
+ u−(ω) = −e−iφ + eiφ = 2 sinφi,

which happens only in the cut. It follows that |u−(ω)| 6= 1 if ω 6∈ Ω. If ω = t > 0, then by the
choice of square root (2.5), we have

u−(t) = G(t−1) =
1√
2c

(
1

t
−
√

1

t2
+ 2c

)
= −

√
2c

t−1 +
√
t−2 + 2c

,

which means that |u−(t)| < 1. By continuity, we have |u−(ω)| < 1 for all ω ∈ C \ Ω. As a
consequence, by applying the residue theorem, we have

Fs

(
iω√
2c

)
=

−is

(1 + a2)ω

√
2

c

u−(ω)s

u−(ω)− u+(ω)

=
is

(1 + a2)ω
√
ω−2 + 2c

G(ω−1)s,
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which follows because u−(ω)− u+(ω) =
√

2/c
√
ω−2 + 2c. �

Changing ω to 1/ω in (4.1) and letting u = u−(1/ω), we see from the proof of Lemma 2.2 that

(4.2) ω = ω(u) =

√
c

2

(
u− 1

u

)
gives a bijection from {u ; |u| < 1} to C \ i[−

√
2c,
√

2c] with inverse u = G(ω). A computation
shows that

du

u
= − dω√

ω2 + 2c
.

This change of variables between u- and ω-variables is important in many computations.

4.2. Proof of Lemma 3.2. In this subsection, we give the proof of Lemma 3.2. It seems feasible
that one could determine an expression for Vε1,ε2(ω, ω) by directly ‘plugging in’ but we found that
the resulting expression hard to analyze due to its length and complexity. Instead, we exploit some
of the structure of the formulas. The steps listed below involve finding relations in terms of G which,
after computer algebra, gives more compact formulas of the expressions which make Vε1,ε2(ω, ω).
These relations are given below. Although this approach uses computer algebra, it seems to uncover
some of the structure behind the model.

Lemma 4.1. We have the following identity:

G (ω)2G
(
ω−1

)2
= −1 +G (ω)2 +G

(
ω−1

)2
+

2

c
G (ω)G

(
ω−1

)
.

It is worth noting that the spectral curve equation [22, 20] is extremely important relation for
these computations. The above lemma is equivalent to the spectral curve equation P (z, w) = 0.
This is seen by setting u1 = G(ω) and u2 = G(1/ω), using the change of variables u2 = wu1 where
u1 is fixed followed by the change of variables z = wu2

1.

Proof of Lemma 4.1. The lemma follows by expanding out the definition of G on both sides of the
equation and comparing the result of each expansion. �

We now list four relations which will be used to determine a good formula for Vε1,ε2(ω, ω).

Lemma 4.2. We have the following relations

(1 + a2)ωG (ω)
(
a−G (ω)G

(
ω−1

))
=

(
G
(
ω−1

)
+ aG (ω)

) (
a2 +G (ω)2

)
√
ω−2 + 2c

,

−(1 + a2)ωG (ω)
(
aG
(
ω−1

)
+G (ω)

)
=

(
−1 + aG

(
ω−1

)
G (ω)

) (
a2 +G (ω)2

)
√
ω−2 + 2c

,

(1 + a2)ωG (ω)
(
aG (ω) +G

(
ω−1

))
=

(
a−G

(
ω−1

)
G (ω)

) (
1 + a2G (ω)2

)
√
ω−2 + 2c

and

−(1 + a2)ωG (ω)
(
−1 + aG (ω)G

(
ω−1

))
=

(
aG
(
ω−1

)
+G (ω)

) (
1 + a2G (ω)2

)
√
ω−2 + 2c

.

Proof. The proof of these relations follows by simply expanding out both sides of each equation and
checking that the left side is equal to the right side.

�
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Proof of Lemma 3.2. The proof is based on the decomposition of Vε1,ε(ω1, ω2) defined in (3.7) when
setting ω1 = ω2, using the spectral curve given in Lemma 4.1, and using the relations given
in Lemma 4.2. Due to the length of the computations, we only give explicit computations for
Vε1,ε2(ω, ω) with (ε1, ε2) = (0, 0). The remaining values of (ε1, ε2) follow from similar computations.
We used computer algebra for these computations.

We first write out the equations x
ε1,ε2
γ1,γ2(ω1, ω2) for ε1, ε2, γ1, γ2 ∈ {0, 1}. Recall the definition of

fa,b(u, v) given in Definition 3.1. A simplification yields

(4.3)
(1− ω2

1ω
2
2)

fa,1 (G (ω1) , G (ω2))
=

1

4(1 + a2)2G (ω1)2G (ω2)2

and

(4.4)
(1− ω2

1ω
2
2)

f1,a (G (ω1) , G (ω2))
=

1

4(1 + a2)2G (ω1)2G (ω2)2 ,

which are both seen by using the change of variables u1 = G(ω1) and v1 = G(ω2), see (4.2),
and computing the left sides of the above equations. Using the definition of xε1,ε2γ1,γ2 given in (3.2),
the Eqs. (4.3) and (4.4) and the definition of yε1,ε2γ1,γ2 given in Definition 3.1, it is possible to write

out x
ε1,ε2
γ1,γ2(ω1, ω

−1
2 ) for ε1, ε2, γ1, γ2 ∈ {0, 1}. For γ1, γ2 ∈ {0, 1}, we will only write out the terms

x
0,0
γ1,γ2(ω1, ω

−1
2 ). The values of xε1,ε2γ1,γ2(ω1, ω2) for (ε1, ε2) 6= (0, 0) can be determined explicitly from

x
0,0
γ1,γ2(ω1, ω

−1
2 ) by using the relations given in Definition 3.1 for γ1, γ2 ∈ {0, 1} but we do not list

these terms here. We find that

x
0,0
0,0(ω1, ω

−1
2 ) =

1

16 (1 + a2)4G (ω1)G
(

1
ω2

)∏2
j=1

√
ω2
j + 2c

√
ω−2
j + 2c

×
(
− a

(
1 + a2 + a4 +

(
1 + 3a2

)
G (ω1) 2 + a4G (ω1) 4

)
+ a

(
−1− 3a2 +

(
−3− 2a2 − a4 + 2a6

)
G (ω1) 2 + a2

(
−1 + a2

)
G (ω1) 4

)
G

(
1

ω2

)
2

+ a3
(
−1 +G (ω1) 2

) (
a2 +G (ω1) 2

)
G

(
1

ω2

)
4

)
,

x
0,0
0,1(ω1, ω

−1
2 ) =

a
(
1 + a2G (ω1) 2

) (
1 +

(
1 + 2a2

)
G
(

1
ω2

)
2 +G (ω1) 2

(
−1 +G

(
1
ω2

)
2
))

16 (1 + a2)3G (ω1)G
(

1
ω2

)∏2
j=1

√
ω2
j + 2c

√
w−2
j + 2c

,

x
0,0
1,0(ω1, ω

−1
2 ) =

a
(

1 + a2G
(

1
ω2

)
2
)(

1 + 2a2G (ω1) 2 −G
(

1
ω2

)
2 +G (ω1) 2

(
1 +G

(
1
ω2

)
2
))

16 (1 + a2)3G (ω1)G
(

1
ω2

) ∏2
j=1

√
ω2
j + 2c

√
w−2
j + 2c

and

x
0,0
1,1(ω1, ω

−1
2 ) =

a
(
−1 +G

(
1
ω2

)
2 +G (ω1) 2

(
1 +

(
1 + 2a2

)
G
(

1
ω2

)
2
))

16 (1 + a2)2G (ω1)G
(

1
ω2

) ∏2
j=1

√
ω2
j + 2c

√
w−2
j + 2c

.

From the expressions for x
ε1,ε2
γ1,γ2(ω1, ω

−1
2 ), we are able to compute x

ε1,ε2
γ1,γ2(ω1,−ω−1

2 ) using (3.9) and
we find that

xε1,ε2γ1,γ2(ω1,−ω−1
2 ) = −xε1,ε2γ1,γ2(ω1, ω

−1
2 ).
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We proceed by evaluating the right side of (3.10) for ω1 = ω2 and (ε1, ε2) = (0, 0) term by term. We
apply the relation given in Lemma 4.1 to reduce each of the numerators of the following expressions
into simpler terms, that is, we apply a polynomial reduction under the spectral curve. We also use
the formula for s(·) given in (3.4). We find that

1

2
(x0,0

0,0(ω, ω−1)− x
0,0
0,0(ω,−ω−1)) =

(
aG
(

1
ω

)
+G(ω)

) (
G
(

1
ω

)
+ aG(ω)

) (
−1 + aG

(
1
ω

)
G(ω)

)
8 (1 + a2)2G

(
1
ω

)
G(ω)(ω2 + 2c)(ω−2 + 2c)

,

− 1

2
s(G(ω−1))(x0,0

0,1(ω, ω−1)− x
0,0
0,1(ω,−ω−1)) = −ω

(
aG
(

1
ω

)
+G(ω)

) (
1 + a2G(ω)2

)
8 (1 + a2)2G(ω)

√
ω2 + 2c(ω−2 + 2c)

,

− 1

2
s(G(ω))(x0,0

1,0(ω, ω−1)− x
0,0
1,0(ω,−ω−1)) = −

(
1 + a2G

(
1
ω

)2) (
G
(

1
ω

)
+ aG(ω)

)
8ω (1 + a2)2G

(
1
ω

)√
ω−2 + 2c(ω2 + 2c)

and

1

2
s(G(ω))s(G(ω−1))(x0,0

1,1(ω, ω−1)− x
0,0
1,1(ω,−ω−1)) =

−1 + aG
(

1
ω

)
G(ω)

8 (1 + a2)
√
ω2 + 2c

√
ω−2 + 2c

.

(4.5)

To the above four equations (and where appropriate), we apply the appropriate relations given in
Lemma 4.2. More precisely, for the last equation in (4.5), we apply no relations; for the penultimate
equation in (4.5), we apply the fourth equation in Lemma 4.2 with ω 7→ ω−1; for the second equation
in (4.5), we apply the last equation of Lemma 4.2 as written; for the first equation in (4.5), we apply
the first relation in Lemma 4.2 twice, once as written and for the second application with ω 7→ ω−1,
which gives

1

2
(x0,0

0,0(ω, ω−1)− x
0,0
0,0(ω,−ω−1)) =

(
a−G

(
1
ω

)
G(ω)

)2 (−1 + aG
(

1
ω

)
G(ω)

)
8
(
a2 +G

(
1
ω

)2)
(a2 +G(ω)2)

√
ω2 + 2c

√
ω−2 + 2c

=
−1 + aG

(
1
ω

)
G(ω)

8 (1 + a2)
√
ω2 + 2c

√
ω−2 + 2c

,

where the last line follows from applying a polynomial reduction under the spectral curve given in
Lemma 4.1 in both the numerator and denominator separately. Under the above simplications, we
sum up the block of four equations in (4.5), to arrive at

V0,0(ω, ω) =
−1 + aG

(
1
ω

)
G(ω)

2 (1 + a2)
√
ω2 + 2c

√
ω−2 + 2c

,

which is the expression we wanted. We apply a similar procedure for the remaining values of ε1 and
ε2.

�

4.3. Proof of Lemma 3.3. Before we can prove Lemma 3.3 we need some further notation and
results. Let γR, R < 1, be the ellipse in the ω-plane given by

ω =

√
c

2

(
Reiθ − 1

R
e−iθ

)
,

0 ≤ θ ≤ 2π. Note that the map (4.2) maps the circle ΓR in the u-plane to the ellipse −γR in the
ω-plane, where −γR denotes the contour γR with negative orientation.

For two contours γ, γ′ and k, ` ∈ Z we define

(4.6) D̃γ,γ′(k, `) =
i−k−`

2(1 + a2)(2πi)2

∫
γ
dω1

∫
γ′
dω2

G(ω1)`G(ω2)k

(1− ω1ω2)
√
ω2

1 + 2c
√
ω2

2 + 2c

provided the double contour integral is well-defined. Also, let

(4.7) Dγ,γ′(x, y) = −i1+h(ε1,ε2)
(
aε2D̃γ,γ′(k1, `1) + a1−ε2D̃γ,γ′(k2, `2)

)
,
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where ki, `i are given by (2.19). Furthermore, for k, ` ∈ Z we define

(4.8) C̃ωc(k, `) =
i−k−`

2(1 + a2)2πi

∫
Γωc

dω

ω

G(ω)`G(ω−1)k√
ω2 + 2c

√
1/ω2 + 2c

,

where Γωc is given by (3.12).

Lemma 4.3. Let R1 =
√
r1/r2 and R2 = 1/

√
r1r2. Then

(4.9) K−1
r1,r2(x, y) = − i1+h(ε1,ε2)

(2πi)2

∫
ΓR1

du1

u1

∫
ΓR2

du2

u2

aε2u
h(ε1,ε2)−1
2 + a1−ε2u1u

−h(ε1,ε2)
2

c̃(u1, u2)u
(x1−y1+1)/2
1 u

(y2−x2−1)/2
2

.

Proof. If we make the change of variables u2 → 1/u2 and use the identity

aε2u
1−h(ε1,ε2)
2 + a1−ε2u1u

h(ε1,ε2)
2 = a1−ε1u

1−h(ε1,ε2)
1 + aε1u

h(ε1,ε2)
1 u2

for ε1, ε2 ∈ {0, 1}, we see the equation (4.9) is equivalent to

(4.10) K−1
r1,r2(x, y) = − i1+h(ε1,ε2)

(2πi)2

∫
ΓR1

du1

u1

∫
Γ1/R2

du2

u2

a1−ε1u
1−h(ε1,ε2)
1 + aε1u

h(ε1,ε2)
1 u2

c̃(u1, u2)u
(x1−y1+1)/2
1 u

(x2−y2+1)/2
2

.

We will only verify (4.9) for (ε1, ε2) = (0, 0) and (0, 1). The remaining two cases are analogous.
We first take the change of variables u2 = wu1 in (4.10), where u1 is fixed followed by the change
of variables z = wu2

1. For the second integral, the range of integration is doubled but this is
compensated by the Jacobian. Notice that

(4.11) c̃(u1, u2) = c̃

(√
z

w
,
√
wz

)
= −P (z, w).

The right side of equation (4.10) reads

i1+h(ε1,ε2)

(2πi)2

∫
Γ1

dz

z

∫
Γ1

dw

w

a1−ε1
(√

z
w

)1−h(ε1,ε2)
+ aε1

√
wz
(√

z
w

)h(ε1,ε2)

P (z, w)z
x1−y1+x2−y2+2

4 w
x2−y2−x1+y1

4

.(4.12)

It remains to check that for each combination of ε1 and ε2, the integrand in the above equation is
equal to the integrand in (2.2).

If x ∈ W0 and y ∈ B0 then the translation of the fundamental domains, defined in Section 2.3,
between the white vertex and black vertex is(

x1 − (y1 + 1)

4
+
x2 + 1− y2

4
,
x2 + 1− y2

4
− x1 − (y1 + 1)

4

)
,

where the first coordinate is the translation with respect to the z variables and the second coordinate
is the translation with respect to the w variables for the fundamental domain. This means the factor
appearing in the integrand of (2.2) from this translation is given by

z
x1−y1+x2−y2

4 w
x2−y2−x1+y1+2

4 .

Therefore the integrand of (2.2) reads

i(a+ w)

P (z, w)z
x1−y1+x2−y2

4 w
x2−y2−x1+y1+2

4

.

On the other hand, the integrand in (4.12) for ε1 = 0 and ε2 = 0 is given by

i
(
a
√

z
w +
√
zw
)

P (z, w)z
x1−y1+x2−y2+2

4 w
x2−y2−x1+y1

4

=
i(a+ w)

P (z, w)z
x1−y1+x2−y2

4 w
x2−y2−x1+y1+2

4

and so we have verified Eq. (4.10) for ε1 = 0 and ε2 = 0.
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If x ∈ W0 and y ∈ B1, the translation of the fundamental domains between the white vertex and
black vertex is (

x1 − (y1 − 1)

4
+
x2 + 1− y2)

4
,
x2 + 1− y2)

4
− x1 − (y1 − 1)

4

)
using the same coordinate notation as above which means the factor appearing in the integrand
of (2.2) from this translation is given by

z
x1−y1+x2−y2+2

4 w
x2−y2−x1+y1

4 .

Therefore the integrand of (2.2) reads

−(a+ z)

P (z, w)z
x1−y1+x2−y2+2

4 w
x2−y2−x1+y1

4

.

On the other hand, the integrand in (4.12) for ε1 = 0 and ε2 = 1 is given by

−
(
a+

√
z
w

√
zw
)

P (z, w)z
x1−y1+x2−y2+2

4 w
x2−y2−x1+y1

4

=
− (a+ z)

P (z, w)z
x1−y1+x2−y2+2

4 w
x2−y2−x1+y1

4

and so we have verified Eq. (4.10) for ε1 = 0 and ε2 = 1. The remaining two cases follow from
similar computations.

�

The next lemma gives expressions for the whole plane liquid and gas inverse Kasteleyn matrices
in the ω-variables. Note that S(x, y) = DΓR,ΓR(x, y) with R > 1.

Lemma 4.4. Assume that R1 =
√
r1/r2, R2 = 1/

√
r1r2 and R1, R2 < 1. Then,

(4.13) K−1
r1,r2(x, y) = DγR1

,γR2
(x, y).

We also have that

(4.14) K−1
1,1(x, y) = DΓR,ΓR(x, y),

for
√

2c < R < 1. Furthermore,

(4.15) Cωc(x, y) = −i1+h(ε1,ε2)
(
aε2C̃ωc(k1, `1) + a1−ε2C̃ωc(k2, `2)

)
,

where ki, `i are given by (2.19).

Proof. Using (2.19) in (4.9) we see that
(4.16)

K−1
r1,r2(x, y) = −i1+h(ε1,ε2)

[
aε2

(2πi)2

∫
ΓR1

du1

u1

∫
ΓR2

du2

u2

u`11 u
k1
2

c̃(u1, u2)
+
a1−ε2

(2πi)2

∫
ΓR1

du1

u1

∫
ΓR2

du2

u2

u`21 u
k2
2

c̃(u1, u2)

]
.

Note that

c̃(u1/i, u2/i) = 2(1 + a2)(1− c

2
(u1 − 1/u1)(u2 − 1/u2)).

We now first make the change of variables u1 → u1i, u2 → u2i in (4.16), and then the change of
variables u1 = G(ω1), u2 = G(ω2) as in (4.2), which is possible since R1, R2 < 1. This gives us

K−1
r1,r2(x, y) = −i1+h(ε1,ε2)

(
aε2D̃γR1

,γR2
(k1, `1) + a1−ε2D̃γR1

,γR2
(k2, `2)

)
= DγR1

,γR2
(x, y),

by (4.6) and (4.7).
Taking r1 = r2 = 1 in (4.16) we see that

(4.17)

K−1
1,1(x, y) = −i1+h(ε1,ε2)

[
aε2

(2πi)2

∫
Γ1

du1

u1

∫
Γ1

du2

u2

u`11 u
k1
2

c̃(u1, u2)
+
a1−ε2

(2πi)2

∫
Γ1

du1

u1

∫
Γ1

du2

u2

u`21 u
k2
2

c̃(u1, u2)

]
.
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ωc−ωc

ωc−ωc

γ̃R1γR1

Figure 5. A diagram of the contours γR1 and γ̃R1 in Lemma 4.5. The gray circle
is the unit circle.

In (4.17) we can deform Γ1 to Γr with r < 1 close to 1. The same change of variables as above
then gives K−1

1,1(x, y) = Dγr,γr(x, y). We can now deform the ellipse γr to the circle ΓR with R < 1

without passing points such that ω1ω1 = 1 in (4.6). This proves (4.14).
It follows from Lemma 3.2, (3.13) and (2.19) that

(4.18)

Cωc(x, y) =
i(x2−x1+y1−y2)/2

2πi

∫
Γωc

(−1)1+h(ε1,ε2)aε2G(ω)`1G(ω−1)k1 + a1−ε2G(ω)`2G(ω−1)k2

ω
√
ω2 + 2c

√
1/ω2 + 2c

dω.

Using (2.19) and the fact that

ix2−x1+y1−y2 = (−1)ε1+ε2+1,

we see that

i(x2−x1+y1−y2)/2−1−h(ε1,ε2) = −(−1)−k1−`1(−1)ε1+ε2+1

i(x2−x1+y1−y2)/2−1−h(ε1,ε2) = −(−1)−k2−`2 .

Together with (4.8) and (4.18) this proves (4.15). �

The image of the curve −γR under the map ω → 1/ω is a curve γ̃R, where γ̃R has positive
orientation. In order to prove Lemma 3.3 we need the following result.

Lemma 4.5. Let R1 ∈ (|G(1)|, |G(i)|). Then γR1 and γ̃R1 intersect at exactly four points ±ωc,
±ωc, where ωc = eiθc, θc ∈ (0, π/2) and R1 = |G(ωc)|. If R1 = |G(i)|, then γR1 and γ̃R1 intersect at
±i and γ̃R1 is outside γR1. If R1 = |G(1)|, then γR1 and γ̃R1 intersect at ±1 and γ̃R1 is inside γR1.

Figure 5 shows a realization of Lemma 4.5.

Proof. Let

(4.19) ω1 =

√
c

2

(
R1e

iθ1 − 1

R1
e−iθ1

)
, ω2 =

√
c

2

(
R1e

iθ2 − 1

R1
e−iθ2

)
,
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be two parametrizations of γR1 . The curves γR1 and γ̃R1 intersect if ω1ω2 = 1, i.e.

c

2

(
−
(
ei(θ1−θ2) + e−i(θ1−θ2)

)
+R2

1e
i(θ1+θ2) +

1

R2
1

e−i(θ1+θ2)

)
= 1.

If we take the imaginary part in this equation we get(
R2

1 −
1

R2
1

)
sin(θ1 + θ2) = 0,

i.e. θ1 = θ2 +nπ. If θ2 = −θ1 +π we get ω2 = −ω1, which gives ω1ω2 = −|ω1|2 6= 1, so we must have
θ2 = −θ1 from which we see that ω2 = ω1, i.e. |ω1| = |ω2| = 1 at a point of intersection. From (4.19)
we see that γR1 is an ellipse with half-axes

√
c
2(1/R1 −R1) in the x-direction and

√
c
2(1/R1 +R1)

in the y-direction. We see that if R1 ∈ [|G(1)|, |G(i)|], then
√

c
2(1/R1 − R1) ≤ 1 with equality if

and only if R1 = |G(1)| = (
√

1 + 2c− 1)/
√

2c, and
√

c
2(1/R1 +R1) ≥ 1 with equality if and only if

R1 = |G(i)| = (1−
√

1− 2c)/
√

2c. This gives the other statements since γR1 will intersect the unit
circle at exactly four points if R1 ∈ (|G(1)|, |G(i)|), at ±1 if R1 = |G(1)| and at ±i if R1 = |G(i)|. �

We are now ready for the proof of Lemma 3.3.

Proof of Lemma 3.3. Let us first prove (3.14). By (4.14),

K−1
1,1(x, y) = DΓR1

,ΓR1
(x, y),

for
√

2c < R1 < 1. Now,

D̃ΓR1
,ΓR1

(k, `) =
i−k−`

2(1 + a2)(2πi)2

∫
ΓR1

dω1

∫
ΓR1

dω2

ω2

G(ω1)`G(ω2)k

(1/ω2 − ω1)
√
ω2

1 + 2c
√
ω2

2 + 2c
.

We can move the ω1-contour ΓR1 to ΓR where R > 1/R1, and we then pass the pole at ω1 = 1/ω2

which will give a single contour integral contribution. In the remaining double contour integral we
can deform the ω2-contour ΓR1 to ΓR without passing any more poles. This gives

D̃ΓR1
,ΓR1

(k, `) = C̃1(k, `) + S̃(k, `)

and hence, by (4.39), (4.7) and (4.15), we see that

K−1
1,1(x, y) = C1(x, y) + S(x, y),

which proves (3.14).
Let us now prove (3.15). If we take r1 = 1 and r2 = 1/|G(ωc)|2 in (4.13) we get

K−1
r1,r2(x, y) = DγR1

,γR1
(x, y),

since R1 = R2 = |G(ωc)| < 1. Now,

D̃γR1
,γR1

(k, `) =
i−k−`

2(1 + a2)(2πi)2

∫
γR1

dω1

∫
γR1

dω2

ω2

G(ω1)`G(ω2)k

(1/ω2 − ω1)
√
ω2

1 + 2c
√
ω2

2 + 2c

=
i−k−`

2(1 + a2)(2πi)2

∫
γR1

dω1

∫
γ̃R1

dω2

ω2

G(ω1)`G(1/ω2)k

(ω2 − ω1)
√
ω2

1 + 2c
√

1/ω2
2 + 2c

.

We can now move the contour γ̃R1 inside γR1 . By Lemma 4.5 this gives pole contributions if ω1 is
on the parts of γR1 between ωc and ωc, or between −ωc and −ωc. In the remaining double contour
integral we can deform the ω1-contour to ΓR1 and the ω2-contour to Γ1/R, where R1R > 1. Thus,

D̃γR1
,γR1

(k, `) = C̃1(k, `)− C̃ωc(k, `)

+
i−k−`

2(1 + a2)(2πi)2

∫
ΓR1

dω1

∫
Γ1/R

dω2

ω2

G(ω1)`G(1/ω2)k

(ω2 − ω1)
√
ω2

1 + 2c
√

1/ω2
2 + 2c

.
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In the last double contour integral we change ω → 1/ω2 and then deform ΓR1 to ΓR. This gives

D̃γR1
,γR1

(k, `) = C̃1(k, `)− C̃ωc(k, `) + S̃(k, `).

Using (2.18), (4.7) and (4.15) we see that

K−1
r1,r2(x, y) = C1(x, y)− Cωc(x, y) + S(x, y) = K−1

1,1(x, y)− Cωc(x, y),

by (3.14), which is what we wanted to prove.
We see that the intersection points between γR1 and γ̃R1 are mapped to points ±uc, ±uc, where

uc = G(ωc), and these in turn, under z = u1u2, w = u2/u1, are mapped to points (z0, w0) ∈ Γr1×Γr2
and (z0, w0) ∈ Γr1×Γr2 , where P (z0, w0) = P (z0, w0) = 0. See the proof of Lemma 4.3. This shows
that we are in the liquid phase. Compare the remark at the end of section 2.3. �

4.4. Proof of Propositions 3.4 and 3.5 and Lemma 2.5. Before we can prove Proposition 3.4
about Gaussian asymptotics we need some notation and some further results. For k, ` ∈ Z, set

(4.20) Ek,` =
1

(2πi)2

∫
Γ1

du1

u1

∫
Γ1

du2

u2

u`uk2
c̃(u1, u2)

.

We see immediately from (4.20) that

(4.21) Ek,` = E`,k = E−k,` = Ek,−` = E−k,−`.

From the proof of Lemma 4.4 and (4.6) we see that

(4.22) K−1
1,1(x, y) = −i1+h(ε1,ε2)

(
aε2Ek1,`1 + a1−ε2Ek2,`2

)
,

where ki, `i are given by (2.19). Also, for r < 1 close to 1 the change of variables ui = G(ωi) gives,

Ek,` = D̃γr,γr(k, `) = D̃Γr,Γr(k, `)

=
i−k−`

2(1 + a2)(2πi)2

∫
Γr

dω1

ω1

∫
Γr

dω2
G(ω1)`G(ω2)k

(1/ω1 − ω2)
√
ω2

1 + 2c
√
ω2

2 + 2c
.

From this we see that if k ≥ 0, then

(4.23) Ek,` =
i−k−`

2(1 + a2)2πi

∫
Γ1

dω

ω

G(ω)`G(1/ω)k√
ω2 + 2c

√
1/ω2 + 2c

.

This follows since the only pole in the ω2-integral outside Γr is at 1/ω1 if k ≥ 0. Note that G(ω)
decays like 1/ω at infinity, and that the condition k ≥ 0 is essential in (4.23).

The next lemma implements the relations (4.21) in the ω-formula for Ek,`.

Lemma 4.6. Let Am, Bm, m ≥ 1, be given and set bm = max(|Am|, |Bm|), and

am =

{
Am if bm = |Bm|
Bm if bm = |Am|.

Then,

(4.24) EBm+Am,Bm−Am =
(−1)bm

2(1 + a2)2πi

∫
Γ1

dω

ω

G(ω)bm−amG(1/ω)bm+am

√
ω2 + 2c

√
1/ω2 + 2c

.

Proof. We have to check the different cases. Assume that bm = |Am|, am = Bm and Am ≥ 0, so
that Am ≥ |Bm|. Then, bm + am = Am + Bm ≥ 0 and bm − am = Am − Bm. Using (4.21) we see
that

EBm+Am,Bm−Am = Ebm+am,am−bm = Ebm+am,bm−am ,

which gives (4.24) by (4.23). If bm = |Am| = −Am and am = Bm, so that −Am ≥ |Bm|, then
bm + am = −Am +Bm ≥ 0 and bm − am = −Am −Bm. Hence, by (4.21),

EBm+Am,Bm−Am = E−Am+Bm,−Am+Bm = Ebm+am,−(bm−am) = Ebm+am,bm−am ,



DOMINO STATISTICS OF THE TWO-PERIODIC AZTEC DIAMOND 47

and again we get (4.24) by (4.23). The case when bm = |Bm| is treated analogously. �

The next lemma gives an asymptotic formula for EBm+Am,Bm−Am . Together with (4.22) this will
enable us to prove Proposition 3.4.

Lemma 4.7. Let Am, Bm, am, bm be as in Lemma 4.6.

(1) Assume that bm →∞ as m→∞ and |am| ≤ b7/12
m for large m. Then, there exists a constant

d1 > 0 so that

(4.25) EBm+Am,Bm−Am =

(−1)am+bm |G(i)|2bm
(
e−
√
1−2c
2c

a2m
bm

(
1 +O

(
b
−1/4
m

))
+O

(
e−d1b

1/6
m

))
2(1 + a2)(1− 2c)1/4

√
2πcbm

as m→∞.
(2) Assume that bm > 0, m ≥ 1. There exists constants C, d1, d2 > 0 so that

(4.26) |EBm+Am,Bm−Am | ≤
C√
bm
|G(i)|2bm

(
e−d1

a2m
bm + e−d2bm

)
for all m ≥ 1.

Proof. Write

(4.27) g1(ω) = logG(ω) + logG(1/ω) and g2(ω) = logG(ω)− logG(1/ω).

Then, by (4.24)

(4.28) EBm+Am,Bm−Am =
(−1)bm

2(1 + a2)2πi

∫
Γ1

dω

ω

ebmg1(ω)−amg2(ω)

√
ω2 + 2c

√
1/ω2 + 2c

.

We will prove (4.25) by a saddle-point analysis of the right side of (4.28). Since |am| ≤ bm, we treat
g1(ω) as the dominant function and seek zeros of g′1(ω). A computation gives

ωg′1(ω) = − ω√
ω2 + 2c

+
1/ω√

1/ω2 + 2c

from which we see that g′1(ω) = 0 if and only if ω = ±1,±i. Further computation gives

g′′1(±i) = − 4c

(1− 2c)3/2
, g′′1(±1) = − 4c

(1 + 2c)3/2
.

Similarly, g′2(±i) = ±2i/
√

1− 2c, and we also have g′′2(i) = ig′2(i). By (3.9), G(eiθ)G(e−iθ) = |G(eiθ)|2
and we see that the unit circle from ±i to ±1 gives a steepest descent path for ±i. It is not hard to
see that if Γ+

1 is the upper half of the unit circle from 1 to −1, then

EBm+Am,Bm−Am =
(−1)bm

(1 + a2)2πi

∫
Γ+
1

dω

ω

ebmg1(ω)−amg2(ω)

√
ω2 + 2c

√
1/ω2 + 2c

=
(−1)am+bm |G(i)|2bm

(1 + a2)2πi

∫
Γ+
1

dω

ω

ebm(g1(ω)−g1(i))−am(g2(ω)−g2(i))

√
ω2 + 2c

√
1/ω2 + 2c

.

We parameterize Γ+
1 by

(4.29) ω(t) = ieit/
√
bm , |t| ≤ π

2

√
bm.

Take ε small. A Taylor expansion gives

(4.30) bm(g1(ω(t))− g1(i)) = − 2c

(1− 2c)
3
2

t2 +
t3√
bm

Φ1(t),



48 SUNIL CHHITA AND KURT JOHANSSON

where |Φ1(t)| ≤ C for |t| ≤ 2ε
√
bm, t ∈ C. Using g′′2(i) = ig′2(i), we find

(4.31) am(g2(ω(t))− g2(i)) = − 2i√
1− 2c

am√
bm
t+

am

b
3/2
m

t3Φ2(t),

where |Φ2(t)| ≤ C for |t| ≤ 2ε
√
bm, t ∈ C. Let Γ+

1,ε be the part of Γ+
1 given by (4.29) for ε

√
bm ≤

|t| ≤ π
2

√
bm. It follows from (4.30), (4.31) and the fact that we have a steepest descent contour that

(4.32)

∣∣∣∣∣ 1

2πi

∫
Γ+
1,ε

dω

ω

ebm(g1(ω)−g1(i))−am(g2(ω)−g2(i))

√
ω2 + 2c

√
1/ω2 + 2c

∣∣∣∣∣ ≤ Ce−c2ε2bm
for some c2 > 0. Consider the remaining part of the integral

1

2πi

∫
Γ+
1 \Γ

+
1,ε

dω

ω

ebm(g1(ω)−g1(i))−am(g2(ω)−g2(i))

√
ω2 + 2c

√
1/ω2 + 2c

=
1

2π
√
bm

∫ ε
√
bm

−ε
√
bm

e
− 2c

(1−2c)3/2
t2− 2i√

1−2c
am√
bm

t+ t3√
bm

Φ3(t)√
ω(t)2 + 2c

√
1/ω(t)2 + 2c

dt,

(4.33)

where Φ3(t) = Φ1(t)+amΦ2(t)/bm. Since |am| ≤ bm we see that |Φ3(t)| ≤ C for |t| ≤ 2ε
√
bm, t ∈ C.

First consider the case |am| ≤ b
7/12
m . Take ε = ε0b

−5/12
m so that |t| ≤ ε0b

1/12
m . On the right side

of (4.33), we make the change of variables

t = s− i(1− 2c)am

2c
√
bm

.

Note that
∣∣∣ i(1−2c)am

2c
√
bm

∣∣∣ ≤ ε0b1/12
m if we take ε0 large enough. We shift the contour back to the real line

ensuring that the error remains smaller than the one on the right side of (4.32). Consequently, we
get the integral

e−
√
1−2c
2c

a2m
bm

2π
√
bm

∫ ε0b
1/12
m

−ε0b1/12m

ds
e
− 2c

(1−2c)3/2
s2+ 1√

bm
(s−iκ0

am√
bm

)3Φ3(s−iκ0
am√
bm

)√
ω(s− iκ0

am√
bm

)2 + 2c
√

1/ω(s− iκ0
am√
bm

)2 + 2c

where κ0 = (1− 2c)/(2c). Since

1√
bm

∣∣∣∣(s− iκ0
am√
bm

)3Φ3(s− iκ0
am√
bm

)3

∣∣∣∣ ≤ Cb−1/4
m

some further computations and estimates give (4.25).
We also want to prove the estimate (4.26). Consider again (4.33) and make the change of variables

t = s− iκ
am√
bm

where κ, 0 < κ ≤ ε, will be chosen. Note that |κam/
√
bm| ≤ ε

√
bm. After moving the integration

contour back to the real line, which gives an error of the same size as the right side of (4.32), we
get the estimate∣∣∣∣∣∣∣

1

2π
√
bm

∫ ε
√
bm

−ε
√
bm

e
− 2c

(1−2c)3/2
t2− 2i√

1−2c
am√
bm

t+ t3√
bm

Φ3(t)√
ω(t)2 + 2c

√
1/ω(t)2 + 2c

dt

∣∣∣∣∣∣∣
≤ Ce

− 2c

(1−2c)3/2
κ2

a2m
bm

√
bm

∫ ε
√
bm

−ε
√
bm

e
− 2c

(1−2c)3/2
s2+

C0√
bm
|s−iκ am√

bm
|3
ds+ Ce−c3ε

2bm

(4.34)
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where C0, c3 > 0. Now, for |s| ≤ ε
√
bm

1√
bm
|s− iκ

am√
bm
|3 ≤ |s|

3

√
bm

+ 3κ
am
bm

s2 + 3κ2 a
2
m

b
3/2
m

|s|+ κ3a
3
m

b2m

≤ (ε+ 3κ)s2 +
a2
m

bm
κ2(3ε+ κ)

since |am| ≤ bm. Choose ε and κ so that

3C0(ε+ κ) ≤ c

(1− 2c)3/2
.

Then, the right side of (4.34) is less than or equal to

Ce
− 2c

(1−2c)3/2
κ2

a2m
bm

√
bm

∫ ∞
−∞

e
− c

(1−2c)3/2
s2

ds+ Ce−c3ε
2bm

from which (4.26) follows. �

We are now ready to prove Proposition 3.4.

Proof of Proposition 3.4. We will use the formula (4.22) together with Lemma 4.7. From Bm+Am =
ki and Bm −Am = `i we see that in the lemma we will have

Bm =
ki + `i

2
, Am =

ki − `i
2

.

Thus, for i = 1, 2,

2Bm =
x2 − x1 + y1 − y2

2
+ (−1)i(1− h(ε1, ε2))(4.35)

= 2(βx − βy)λ2(2m)2/3 +
u2 − v2 + v1 − u1

2
+ (−1)i(1− h(ε1, ε2)),

2Am = 2(αx − αy)λ1(2m)1/3 +
u2 − v2 + u1 − v1

2
− (−1)ih(ε1, ε2).

We can assume that m is large. Assume first that βx 6= βy. Then, using the definition in Lemma 4.6
we see that am = Am and bm = |Bm|. The G(i)-factor in the left side of (3.16) together with the
G(i)-factor in (4.26) gives the factor

(4.36) |G(i)|2(|Bm|−Bm)

by (4.35) if we ignore ±(1 − h(ε1, ε2)). If βx < βy, then Bm < 0 and we see that the expression

in (4.36) goes to zero fast as m → ∞. Note that |G(i)| = (1 −
√

1− 2c)/
√

2c < 1. Assume that
βx > βy, so that bm = Bm. Then, we have am + bm = ki. We obtain using (4.25)

(2m)1/3|G(i)|
x1−x2+y2−y1+2

2 Eki,`i =
(−1)ki |G(i)|1+(−1)i(1−h(ε1,ε2))e

−λ
2
1
√
1−2c

2cλ2

(αx−αy)2

βx−βy

2(1 + a2)(1− 2c)1/4
√

2πcλ2

√
βx − βy

(1 +O(m−1/6))

=
(−1)ki |G(i)|1+(−1)i(1−h(ε1,ε2))c0e

− (αx−αy)2

4(βx−βy)

(1 + a2)(1− 2c)
√

4π
√
βx − βy

(1 +O(m−1/6))
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where we have substituted in the scale factors given in Theorem 2.7 to simplify the above equation.
Using the above equation and (4.22), we find that

(2m)1/3|G(i)|
x1−x2+y2−y1+2

2 K−1
1,1(x, y)

= (2m)1/3|G(i)|
x1−x2+y2−y1+2

2 (−aε2 i1+h(ε1,ε2)Ek1,`1 − a1−ε2 i1+h(ε1,ε2)Ek2,`2)

=
(1 +O(m−1/6))c0e

− (αx−αy)2

4(βx−βy)

(1 + a2)(1− 2c)
√

4π
√
βx − βy

×
(
−aε2 i2k1+1+h(ε1,ε2)|G(i)|h(ε1,ε2) − a1−ε2 i2k2+1+h(ε1,ε2)|G(i)|2−h(ε1,ε2)

)
.

(4.37)

Observe that

i2k1+1 = ix2−y2+2h(ε1,ε2) = ix2−y2+2ε1+2ε2+4ε1ε2 = −i2x2−2y2+y1−x1 = iy1−x1

because ix2−x1 = i2ε1−1, iy1−y2 = i2ε2−1 and x2 − y2 mod 2 = 1. We also have i2k2+1 = −i2k1+1.
These sign simplifications can be used in (4.37) to obtain

(2m)1/3|G(i)|
x1−x2+y2−y1+2

2 K−1
1,1(x, y) =

(1 +O(m−1/6))c0e
− (αx−αy)2

4(βx−βy)

(1 + a2)(1− 2c)
√

4π
√
βx − βy

× iy1−x1
(
−aε2 ih(ε1,ε2)|G(i)|h(ε1,ε2) + a1−ε2 ih(ε1,ε2)|G(i)|2−h(ε1,ε2)

)
.

(4.38)

Notice that from G(i) = i(1 −
√

1− 2c)/
√

2c, G(i−1) = −G(i), Lemma 3.2 and Lemma 3.16, we
have (

−aε2 ih(ε1,ε2)|G(i)|h(ε1,ε2) + a1−ε2 ih(ε1,ε2)|G(i)|2−h(ε1,ε2)
)

=
(
aε2(−1)1+h(ε1,ε2)G(i−1)h(ε1,ε2) + a1−ε2G(i)G(i−1)1−h(ε1,ε2)

)
= 2(1 + a2)(1− 2c)Vε1,ε2(i, i) = i(1 + a2)(1− 2c)gε1,ε2

and using the above simplification in (4.38) gives

(2m)1/3|G(i)|
x1−x2+y2−y1+2

2 K−1
1,1(x, y) =

(1 +O(m−1/6))iy1−x1+1c0gε1,ε2√
4π(βx − βy)

e
− (αx−αy)2

4(βx−βy) .

If βx = βy and αx 6= αy, then bm = |Am|, am = Bm and, by (4.35), (x2 − x1 + y2 − y1)/2 is

bounded. Since |Am| → ∞, it follows from (4.26) that Eki,`i goes to zero like |G(i)|2|Am|. The
proposition is proved. �

We will now give the proof of Lemma 2.5 which concerns properties of S(x, y) defined by (2.18).
Recall that e1 = (1, 1) and e2 = (−1, 1).

Proof of Lemma 2.5. Consider S̃(k, `) defined by (2.17). Analyticity outside ΓR in ω1 or ω2 includ-
ing at infinity shows that

(4.39) S̃(k, `) = 0 if k ≥ 0 or l ≥ 0.

Here we use that G(ω) ∼ −
√
c/2ω−1 as ω → ∞. From (4.39) and (2.19) we see that (2.20)

follows. A consequence of (2.20) is that S(x, x + f) = 0 only if f 6= e2. By (2.18) and (4.39),

S(x, x+ e2) = −iaε1S̃(−1,−1), since x+ e2 ∈ Bε1 , i.e. ε1 = ε2. Thus, with R > 1,

(4.40) S(x, x+ e2) =
aε1 i

2(1 + a2)(2πi)2

∫
ΓR

dω1

∫
ΓR

dω2
G(ω1)−1G(ω2)−1

(1− ω1ω2)
√
ω2

1 + 2c
√
ω2

2 + 2c
.
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Using G(ω) ∼ −
√
c/2ω−1 and

√
ω2 + 2c ∼ ω as ω → ∞, we see that as R → ∞ the right side

of (4.40) converges to

− aε1 i

2(1 + a2)

2

c
= −iaε1−1.

To see that S(x, y) works as a coupling function for a solid phase, we let w1, . . . , wk be white
vertices, wi = (xi1, x

i
2). Let fi = (f i1, f

i
2) ∈ {±e1,±e2}, and consider det(S(wj , wi + fi)), compare

Theorem 2.1. Without changing the value of the determinant we can assume that w1, . . . , wk is
lexicographically ordered, i.e. x1

1 ≤ · · · ≤ xk1 and xi2 < xi+1
2 if xi1 = xi+1

1 . Now,

wi + fi − wj = (xi1 − aji + f i1, x
i
2 − xj2 + f i2).

If i > j and xi1 > xj1, then (2.20) shows that S(wj , wi + fi) = 0. If i > j and xi1 = xj1, then xi2 > xj2,
and again S(wj , wi + fi) = 0. Hence, the determinant det(S(wj , wi + fi)) is upper-triangular and
the diagonal elements are 6= 0 if and only if fi = e2. �

Next, we turn to the proof of Proposition 3.5.

Proof of Proposition 3.5. By (3.14) and (2.20)

S(x, y) = Iy1−x1≤−1Ix2−y2≤−1(K−1
1,1(x, y)− C1(x, y)).

Now,

(4.41) (2m)1/3|G(1)|
x1−x2+y2−y1

2 K−1
1,1(x, y) =

∣∣∣∣G(1)

G(i)

∣∣∣∣
x1−x2+y2−y1

2

|G(i)|
x1−x2+y2−y1

2 (2m)1/3K−1
1,1(x, y).

It follows from
√

1± 2c < 1± c, that |G(1)/G(i)| < 1. By (2.19) and Condition 2,

ki =
x2 − y2 + (−1)i

2
− (−1)ih(ε1, ε2)(4.42)

= (βx − βy)λ2(2m)2/3 + (αx − αy)λ1(2m)1/3 +
u2 − v2 + (−1)i

2
− (−1)ih(ε1, ε2),

`i = (βx − βy)λ2(2m)2/3 − (αx − αy)λ1(2m)1/3 +
v1 − u1 + (−1)i

2
.

We may assume that m is large. Note that if βx > βy, then S(x, y) = 0 by (2.20). If βx = βy and
αx 6= αy, then (2.20) again gives S(x, y) = 0. Thus, βy > βx is the only possibility if we want a
non-zero limit.

We see from (4.42) that (x1− x2 + y2− y1)/2 ∼ 2(βy − βx)λ2(2m)2/3 →∞, as m→∞, and thus
by (4.41),

(4.43) lim
m→∞

(2m)1/3|G(1)|
x1−x2+y2−y1

2 K−1
1,1(x, y) = 0.

It remains to compute the asymptotics of C1(x, y). This is very similar to the proof of Lemma 4.7.
Consider (4.15) with ωc = 1. Write

Ui =
u2 − v2 + (−1)i

2
− (−1)ih(ε1, ε2) , Vi =

v1 − u1 + (−1)i

2
,

which are bounded quantities. Also, write

βm = (βy − βx)λ2(2m)2/3 , αm = (αx − αy)λ1(2m)1/3.
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Then, using (4.27),

C̃1(ki, `i) =
i−ki−`k

2(1 + a2)2πi

∫
Γ1

dω

ω

G(ω)−βm+αm+UiG(1/ω)−βm−αm+Vi

√
ω2 + 2c

√
1/ω2 + 2c

=
i−ki−`k

2(1 + a2)2πi

∫
Γ1

dω

ω

e−βmg1(ω)+αmg2(ω)G(ω)UiG(1/ω)Vi√
ω2 + 2c

√
1/ω2 + 2c

.

If we compare with the proof of Lemma 4.7 the dominating saddle points are now ±1 instead, and
the unit circle is again a steepest descent curve. Proceeding in an analogous fashion we obtain

C1(x, y) = −i1+h(ε1,ε2)(aε2C1(k1, l1) + a1−ε2C1(k2, l2))

= −2
i−

x2−x1+y1−y2
2

+1+h(ε1,ε2)G(1)
x2−x1+y1+y2−2

2

2(1 + a2)(1 + 2c)1/4
√

2πcλ2

1√
βy − βx

e
−λ

2
1
√
1+2c

2cλ2

(αx−α2)
2

βy−βx

× 2(i1−h(ε1,ε2)aε2G(1)h(ε1,ε2) + i−1+h(ε1,ε2)a1−ε2G(1)2−h(ε1,ε2))(2m)−1/3(1 +O(m−1/6))

(4.44)

Using the fact that i−
x2−x1+y1−y2

2
+2h(ε1,ε2) = −i−

x2−x1+y1−y2
2

+2ε1+2ε2−2 = −i
x2−x1+y1−y2

2 since ix2−x1 =
i2ε1−1 and iy1−y2 = i2ε2−1 and using Lemma 3.2, we find that the right side of (4.44) reduces to

C1(x, y) =
i
x2−x1+y1−y2

2 G(1)
x2−x1+y1+y2−2

2√
2πcλ2(βy − βx)(1 + 2c)−3/4

2Vε1,ε1(1, 1)e
−λ

2
1
√
1+2c

2cλ2

(αx−α2)
2

βy−βx (2m)−1/3(1 +O(m−1/6))

=
i
x2−x1+y1−y2

2 G(1)
x2−x1+y1+y2−2

2√
4π(βy − βx)

2Vε1,ε2(1, 1)c0e
− (αx−α2)

2

4(βy−βx) (2m)−1/3(1 +O(m−1/6))

(4.45)

where we have used the scale factors λ1 and λ2 and constant c0 from the statement of Theorem 2.9.
Using Eq. (4.43), Lemma 3.25 and the asymptotics from Eqs. (4.45) substituted into (4.15), we
obtain (3.17). �

4.5. Proofs of Lemma 3.7 and Lemma 3.8. We now give the proof of Lemma 3.7.

Proof of Lemma 3.7. We can represent 1/
√
ω2 + 2c as

1√
ω2 + 2c

=
1

π

∫ √2c

−
√

2c

1

ω − is

ds√
2c− s2

=

∫
1

ω − is
dm(s),

which gives the correct square root. We consider a discrete approximation to the probability measure
m. Suppose that −

√
2c < γ1 < · · · < γm < 0 < γm+1 < · · · < γ2m <

√
2c and that for n = 4m

2

n

n/2∑
j=1

δγj → m

in the sense of weak convergence. Then, we rewrite the saddle point equation (2.22) using the
discrete approximation of the measure m and find

1 +
2

n

n/2∑
j=1

(
ξ1ω

ω − iγj
+

ξ2

1− iγjω

)
= 0.

For notational convenience, we set γ̃j = −1/γj and set ω = iz. The above equation becomes

1 +
2

n

n/2∑
j=1

(
ξ1z

z − γj
− ξ2γ̃j
z − γ̃j

)
= 0.(4.46)
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By a rearrangement, we have

n/2∑
j=1

n/2∏
k=1

(z − γk)(z − γ̃k)

+ ξ1z(z − γ̃j)

n/2∏
k 6=j

(z − γk)(z − γ̃k)


− ξ2γ̃j(z − γj)

n/2∏
k 6=j

(z − γk)(z − γ̃k)

 = 0.

Since |ξ1| < 1, the above equation has n roots . We count how many of these roots are contained
within the cuts. By our choice of γj , we have −∞ < γ̃m+1 < · · · < γ̃2m < −1/

√
2c < −

√
2c < γ1 <

· · · < γm < 0 < γm+1 < · · · < γ2m <
√

2c < 1/
√

2c < γ̃1 < · · · < γ̃m < ∞. It is clear that in each
of the intervals (γk, γk+1), (γk+m, γm+k+1), (γ̃k, γ̃k+1) and (γ̃m+k, γ̃m+k+1) for 1 ≤ k ≤ m− 1 there
is a root due to a sign change on the left side of (4.46) when traversing each interval from left to
right. As a result there are at least n− 4 roots in the branch cuts. Therefore, there are at most 4
roots away from the branch cuts. We take limits as n tends to infinity to conclude that there are
at most 4 roots of (2.22) in C\i((−∞,−1/

√
2c] ∪ [−

√
2c,
√

2c] ∪ [1/
√

2c,∞)).
�

We now give the proof of Lemma 3.8.

Proof of Lemma 3.8. We present the first, second, fourth and fifth cases since the omitted cases are
analogous. We have

Im gξ,ξ(ω) = argω − ξ argG(ω) + ξ argG(ω−1),

where arg takes values in (−π
2 ,

3π
2 ).

For 0 < t <
√

2c, we have

lim
δ→0+

G (δ + it) =
1√
2c

(
it−

√
2c− t2

)
and lim

δ→0+
G
(
(δ + it)−1

)
=

i√
2c

(
t−1 −

√
t−2 − 2c

)
.

It follows that on the right side of the cut [0,
√

2c]i, we have

argG (it) = arccot

(
−
√

2c− t2
t

)
and argG

(
−it−1

)
=

3π

2
,

where arccot takes values in (0, π). From the above equation, on the right side of the cut [0,
√

2c]i,
we have

Im gξ,ξ(it) =
π

2
− ξ arccot

(
−
√

2c− t2
t

)
+ ξ

3π

2
.

It follows from the above equation that on the right side of the cut [0,
√

2c]i, Im gξ,ξ(it) is decreasing

for increasing t ∈ (0,
√

2c) with

lim
t→0+

Im gξ,ξ(it) =
π

2
(1 + ξ) and lim

t→
√

2c
−

Im gξ,ξ(it) =
π

2
(1 + 2ξ),

which verifies the first case.
For
√

2c < t < 1/
√

2c, we have

argG(it) = arg

 i
(
t−
√
t2 − 2c

)
√

2c

 =
π

2
and argG(−it−1) = arg

 i
(
t−1 −

√
t−2 − 2c

)
√

2c

 =
3π

2
,

which verifies the second case.
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For t ∈ (0,∞), notice that from the equation

G(ω) = −
√

2c

ω +
√
ω2 + 2c

for ω 6= ±i
√

2c,

we have limδ→0+ argG(t+ iδ) = π and limδ→0+ argG((t+ iδ)−1) = π which verifies the fourth case.
For the fifth case, set ω = δeiφ. We have

argG(ω) = arg

(
−

√
2c

ω +
√
ω2 + 2c

)
= π as δ → 0+

and

argG(ω−1) = arg

(
−

√
2c

ω−1 +
√
ω−2 + 2c

)
= π + φ as δ → 0+,

which verifies the fifth case. �

5. Formula Simplification

In this section, we find the reductions of the four variable generating function for K−1
a,1 computed

in [12] which will eventually lead to Theorem 2.3. We also give the proof of Corollary 2.4. This
section is highly computational but it results in a dramatic simplification of the previous formula for
K−1
a,1 . Many of these computations were executed using computer algebra. The section is organized

as follows:

(1) We partially bring forward the previous formula for the four variable generating function
for K−1

a,1 given in [12]. This is stated in Section 5.1. We refer to [12] for the omitted parts
of the formula.

(2) In Section 5.2, we find a symmetrized version of K−1
a,1 . This results in a splitting of the

generating function formula for K−1
a,1 into essentially four different parts (up to symmetry)

in Section 5.3
(3) We simplify the so-called boundary generating function in Section 5.4 into much more man-

ageable expressions.
(4) In Section 5.5, we extract coefficients of the separate parts which we were able to identify

above. After many computations, these give double contour integral formulas.
(5) From the above computations, we are able to conclude the proof of Theorem 2.3 in Sec-

tion 5.6.
(6) Finally, we prove Corollary 2.4 in Section 5.7.

5.1. Previous formula. In order to describe the four variable generating function obtained in [12]
whose coefficients are entries of the matrix K−1

a,1 we need the following terms:

ca∂(w1, w2) = 2(1 + a2) + a(w2
1 + w−2

1 )(w2
2 + w−2

2 ),

sai,0(w1, w2) = −a
(
w−2

1 w−2
2 + w2

1w
−2
2

)
− aiw2

1 + aiw−2
1 − 2a2i,

sai,2n(w1, w2) = w2n
2

(
−a
(
w2

1w
2
2 + w−2

1 w2
2

)
+ aiw2

1 − aiw−2
1 − 2a2(1−i)

)
for i ∈ {0, 1}. Note that in [12], ca∂ was denoted by c∂ . We need the a dependence for our later
computations. We set fn(x) = (1− xn)/(1− x) – the sum of a geometric series and we also let for



DOMINO STATISTICS OF THE TWO-PERIODIC AZTEC DIAMOND 55

n = 4m and w = (w1, w2) and b = (b1, b2),

d(w, b) = f2m(w4
2b

4
2)f2m(w4

1b
4
1)b2w1(a+ w2

1b
2
1 + w2

2b
2
2(1 + aw2

1b
2
1))(w2

2 + b21 − i(1 + w2
2b

2
1))

+
((

1− iw2
2

)
w−1

1 b2(1 + aw2
2b

2
2) +

(
w2

2 − i
)
w2n+1

1 b2n1 b2(a+ w2
2b

2
2)
)
f2m(w4

2b
4
2)

− dsides(w, b)

ca∂(b1, b2)
f2m(w4

1b
4
1),

where

dsides(w, b) = sa0,0(w1, w2)
(
a(b21 − i)w1b2 + w1b

−1
2 (1− ib21)

)
+ sa1,0(w1, w2)

(
(b21 − i)w3

1b
2
1b2 + aw3

1b
2
1b
−1
2 (1− ib21)

)
+ sa0,2n(w1, w2)

(
(1− ib21)w1b

2n−1
2 + aw1b

2n+1
2 (−i + b21)

)
+ sa1,2n(w1, w2)

(
a(1− ib21)w3

1b
2
1b

2n−1
2 + w3

1b
2
1b

2n+1
2 (−i + b21)

)
.

The generating function of K−1
a,b for Ka,b defined in (2.1), is given by

G(a, b, w1, w2, b1, b2) :=
∑
x∈W

∑
y∈B

K−1
a,b (x, y)wx11 wx22 by11 b

y2
2

for x = (x1, x2) and y = (y1, y2).

Theorem 5.1 ([12]). For an Aztec diamond of size n = 4m with m ∈ N, the generating function
of K−1

a,1 with variables w = (w1, w2) and b = (b1, b2) is given by

G(a, 1, w1, w2, b1, b2) =
d(w, b)

ca∂(w1, w2)

+

 ∑
i,j∈{0,1}

∑
k,l∈{0,2n}

∑
(x1,k)∈Wi

∑
(l,y2)∈Bj

sai,k(w1, w2)saj,l(b2, b1)K−1
a,1((x1, k), (l, y2))

ca∂(w1, w2)ca∂(b1, b2)
wx11 by22

 ,

where

K−1
a,1((x1, 0), (0, y2)) = La,1

(
x1 − 1

2
,
y2 − 1

2

)
,

K−1
a,1((x1, 0), (2n, y2)) = i2n−1−x1+y2L1,a

(
n− x1 + 1

2
,
y2 − 1

2

)
,

K−1
a,1((x1, 2n), (0, y2)) = i2n−1+x1−y2L1,a

(
x1 − 1

2
, n− y2 + 1

2

)
and

K−1
a,1((x1, 2n), (2n, y2)) = La,1

(
n− x1 + 1

2
, n− y2 + 1

2

)
.

and La,b(i, j) is given below in Lemma 5.2.

In [12], the authors derive an expression to compute La,b(i, j) and find that La,b(i, j) are the
signed entries of the so-called boundary generating function; see [12] for a full description. The next
lemma partially brings forward the formula for La,b(i, j) as stated in [12, Lemma 6.1].

Lemma 5.2 ([12]). For an Aztec diamond of size n = 4m with m ∈ N, let La,b(i, j) denote

K−1
a,b ((2i+ 1, 0), (0, 2j + 1)). We have

La,b(i, j) =
−ii+j+1

(2πi)2

∫
|z|=1

∫
|w|=1

×
m−1∑
r=0

∑
k,l∈{0,1}

g2k+l+1
2[i]2+[j]2+1(a, b, w, z)αrk(a, b, w)αrl (a, b, z)

wbi/2c+1zbj/2c+1
dw dz,
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where for 1 ≤ p, q ≤ 4 we have gqp(a, b, w, z) = Np,q(a, b, w, z) which is given in [12, Appendix A]
and

αrk(a, b, w) =
(β0(a, b, w))2r + (−1)k(β1(a, b, w))2r

4
√
ab(a2 + b2)(

√
w
√

(b4 + a4)w + a2b2(1 + w2))k

for k ∈ {0, 1} with

(5.1) βl(a, b, w) =

(
(a2 + b2)

√
w − (−1)l

√
(b4 + a4)w + a2b2(1 + w2)

)
√

2ab(a2 + b2)
.

5.2. Symmetrization. In this subsection, we show that K−1
a,1 given in Theorem 5.1 satisfies a

symmetrization property. These symmetrization formulas are consequences of reflections in the
lines (n, 0) and (0, n).

Define

T1(x, y) = (2n− x, y) and T2(x, y) = (x, 2n− y),

which are the reflections in the lines (n, 0) and (0, n) respectively. We have that

Ti : Bj → B(i−1)(1−j)+(2−i)j and Ti : Wj → W(i−1)j+(2−i)(1−j)

for i ∈ {1, 2} and j ∈ {0, 1} which is seen directly from the definitions.

Lemma 5.3. For r ∈ {1, 2}, we have for b = (b1, b2) ∈ B and w = (w1, w2) ∈ W

Ka,b(Trb, Trw) = (−i)(−1)
w1−b1+w2−b2

2 Kb,a(b, w).

Proof. We first perform the calculation for T1. We have that if T1w−T1b = ±ej , then w−b = ±e3−j
for j ∈ {1, 2} which can be seen by evaluating each case separately. Using (2.1), we write

Ka,b(T1b, T1w) =


a(1− j) + bj if T1w = T1b + e1, b ∈ Bj
(aj + b(1− j))i if T1w = T1b + e2, b ∈ Bj
aj + b(1− j) if T1w = T1b− e1, b ∈ Bj
(a(1− j) + bj)i if T1w = T1b− e2, b ∈ Bj

= −(−1)(w1−b1+w2−b2)/2iKb,a(b, w).

The formula for Ka,b(T2b, T2w) is verified in a similar way as given above.
�

Using the previous lemma, we are able to write formulas for K−1
a,b under the reflections T1, T2 and

T2T1.

Lemma 5.4. For r ∈ {1, 2}

(5.2) K−1
a,b (w, b) = (−1)

w1+w2−b1−b2
2 (−i)K−1

b,a (Trw, Trb)

and

(5.3) K−1
a,b (w, b) = −(−1)w2−b2K−1

a,b (T2T1w, T2T1b).

Proof. By definition we have that for b, b′ ∈ B∑
w∈W

Ka,b(b
′, w)K−1

a,b (w, b) = δb′,b.

We make the change w 7→ Trw which gives∑
Trw∈W

Ka,b(b
′, Trw)K−1

a,b (Trw, b) = δb′,b



DOMINO STATISTICS OF THE TWO-PERIODIC AZTEC DIAMOND 57

but the sum is over the same set, so we write∑
w∈W

Ka,b(b
′, Trw)K−1

a,b (Trw, b) = δb′,b.

We make the change b 7→ Trb and b′ 7→ Trb′ and interchange a and b which gives∑
w∈W

Kb,a(Trb′, Trw)K−1
b,a (Trw, Trb) = δTrb′,Trb = δb′,b.

We now use Lemma 5.3 which gives∑
w∈W

Ka,b(b
′, w)(−i)(−1)

w1−b
′
1+w2−b

′
2

2 K−1
b,a (Trw, Trb) = δb′,b.

We can multiply both sides of the above equation by (−1)(b′1+b′2)/2. By using the fact that δb′,b(−1)(b′1+b′2)/2 =

δb′,b(−1)(b1+b2)/2 the above equation becomes∑
w∈W

Ka,b(b
′, w)(−i)(−1)

w1−b1+w2−b2
2 K−1

b,a (Trw, Trb) = δb′,b

for all b, b′ ∈ B. Since the inverse of a matrix is unique, we obtain (5.2).
To obtain (5.3), by using (5.2) repeatedly, we find that

K−1
a,b (w, b) = −i(−1)

w1+w2−b1−b2
2 K−1

b,a (T1w, T1b)

= −(−1)
w1+w2−b1−b2

2 (−1)
(T1w)1+(T1w)2−(T1b)1−(T1b)2

2 K−1
b,a (T2T1w, T2T1b)

= −(−1)
w1+w2−b1−b2

2 (−1)
2n−w1+w2−(2n−b1)−b2

2 K−1
b,a (T2T1w, T2T1b),

which gives (5.3).
�

A consequence of Lemma 5.4 is that there is a symmetrization formula for K−1

4K−1
a,b (w, b) = K−1

a,b (w, b)− (−1)w2−b2K−1
a,b (T2T1w, T2T1b)

− i(−1)
w1+w2−b1−b2

2

(
K−1
a,b (T1w, T1b) +K−1

a,b (T2w, T2b)
)
,

although this formula is not used in our analysis.

5.3. Formula Splitting. We split the generating function into smaller parts and use the sym-
metrization formulas found in Section 5.2 to deduce a simpler formula for G(a, 1, w1, w2, b1, b2).
This leads to a simpler form of the generating function which is more amenable to analysis.

Let

(5.4) d1(a,w1, w2, b1, b2) =
b2w1

(
a+ b21w

2
1 + b22

(
1 + ab21w

2
1

)
w2

2

) (
b21 + w2

2 − i
(
1 + b21w

2
2

))(
1− b41w4

1

) (
1− b42w4

2

)
ca∂(w1, w2)

,

(5.5) d2(a,w1, w2, b1, b2) =
b2
(
1− iw2

2

) (
1 + ab22w

2
2

)
w1

(
1− b42w4

2

)
ca∂(w1, w2)

,

d3(a,w1, w2, b1, b2) =

sa0,0 (w1, w2)

(
(1−ib21)w1

b2
+ a

(
−i + b21

)
b2w1

)
+ sa1,0 (w1, w2)

(
ab21(1−ib21)w3

1

b2
+ b21

(
−i + b21

)
b2w

3
1

)
(1− b41w4

1)ca∂(w1, w2)ca∂(b1, b2)
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and

H(a,w1, w2, b1, b2) =
∑

i,j∈{0,1}

∑
(x1,0)∈Wi
(0,y2)∈Bj

sai,0(w1, w2)saj,0(b2, b1)

ca∂(w1, w2)ca∂(b1, b2)
K−1
a,1((x1, 0), (0, y2))wx11 by22 .

Define

(5.6) G0(a,w1, w2, b1, b2) = (d1 + d2 − d3 +H)(a,w1, w2, b1, b2).

Define the operation S which acts on four variable functions with parameters of the form g(a,w1, w2, b1, b2)
by

Sg(a,w1, w2, b1, b2) = g(a,w1, w2, b1, b2) +
i

a
(w1b1)2ng(a−1,−iw−1

1 , iw2,−ib−1
1 , ib2)

+
i

a
(w2b2)2ng(a−1, iw1,−iw−1

2 , ib1,−ib−1
2 )− (w1w2b1b2)2ng(a,w−1

1 ,−w−1
2 , b−1

1 ,−b−1
2 ).

We have that

Lemma 5.5.

(5.7) G(a, 1, w1, w2, b1, b2) = SG0(a,w1, w2, b1, b2).

Proof. We compute the right side of (5.7) for each of the four terms that define G0(a,w1, w2, b1, b2).
Before doing so, notice that

(5.8) a2s
1/a
i,0 (−iw−1

1 , iw2) = sa1−i,0(w1, w2),

(5.9) b2n1 a2s
1/a
i,0 (ib2,−ib−1

1 ) = sai,2n(b2, b1)

and

(5.10) w2n
2 sai,0(w−1

1 ,−w−1
2 ) = sa1−i,2n(w1, w2),

which follow from direct computations for i ∈ {0, 1}. We also note that

(5.11) c
1/a
∂ (w1, w2) = 1/a2ca∂(w1, w2).

We now compute each term of G0(a,w1, w2, b1, b2) when substituted into the right side of (5.7).
Since the computations are quite long, we expand out each term separately and where appropriate,
we have used computer algebra to help with these formulas.

For d1(a,w1, w2, b1, b2), we have using (5.11)

i

a
(w1b1)2nd1(a−1,−iw−1

1 , iw2,−ib−1
1 , ib2)

=
ib2b

2n
1

(
b21
(
w2

2 + i
)

+ iw2
2 + 1

)
w2n+1

1

(
ab21b

2
2w

2
2w

2
1 + a+ b21w

2
1 + b22w

2
2

)(
b41w

4
1 − 1

) (
b42w

4
2 − 1

)
ca∂(w1, w2)

,
(5.12)

i

a
(w2b2)2nd1(a−1, iw1,−iw−1

2 , ib1,−ib−1
2 )

=
iw1b

2n+1
2

(
b21
(
w2

2 + i
)

+ iw2
2 + 1

)
w2n

2

(
ab21b

2
2w

2
2w

2
1 + a+ b21w

2
1 + b22w

2
2

)(
b41w

4
1 − 1

) (
b42w

4
2 − 1

)
ca∂(w1, w2)

(5.13)

and

− (w1w2b1b2)2nd1(a,w−1
1 ,−w−1

2 , b−1
1 ,−b−1

2 )

=
b2n1 b2n+1

2

(
b21
(
1− iw2

2

)
+ w2

2 − i
)
w2n+1

1 w2n
2

(
ab21b

2
2w

2
2w

2
1 + a+ b21w

2
1 + b22w

2
2

)(
b41w

4
1 − 1

) (
b42w

4
2 − 1

)
ca∂(w1, w2)

.
(5.14)
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Summing up (5.12), (5.13), (5.14) and d1(a,w1, w2, b1, b2) we find Sd1(a,w1, w2, b1, b2) is exactly
equal to the first term in d(w, b)/ca∂(w1, w2).

For d2(a,w1, w2, b1, b2), we have using (5.11)

i

a
(w1b1)2nd2(a−1,−iw−1

1 , iw2,−ib−1
1 , ib2) = −b2

(
w2

2 − i
)
b2n1 w2n+1

1

(
a+ b22w

2
2

)
(b42w

4
2 − 1)ca∂(w1, w2)

,(5.15)

i

a
(w2b2)2nd2(a−1, iw1,−iw−1

2 , ib1,−ib−1
2 ) =

(
1− iw2

2

)
b2n+1
2 w2n

2

(
ab22w

2
2 + 1

)
w1

(
b42w

4
2 − 1

)
ca∂(w1, w2)

(5.16)

and

− (w1w2b1b2)2nd2(a,w−1
1 ,−w−1

2 , b−1
1 ,−b−1

2 ) =

(
w2

2 − i
)
b2n1 b2n+1

2 w2n+1
1 w2n

2

(
a+ b22w

2
2

)
(b42w

4
2 − 1)ca∂(w1, w2)

.(5.17)

Summing up (5.15), (5.16), (5.17) and d2(a,w1, w2, b1, b2), we find Sd2(a,w1, w2, b1, b2) is exactly
equal to the second term in d(w, b)/ca∂(w1, w2).

For d3(a,w1, w2, b1, b2), by using (5.8) and (5.11)

i

a
w2n

1 b2n1 d3(a−1,−iw−1
1 , iw2,−ib−1

1 , ib2) = −w2n
1 b2n1 d3(a,w1, w2, b1, b2),(5.18)

which is seen by expanding out d3. By using (5.9) and (5.11) we also have

i

a
(w2b2)2nd3(a−1, iw1,−iw−1

2 , ib1,−ib−1
2 )

= b2n1

ai
(
−sa0,2n(w1, w2)

(
w1b2(1 + ib21) + w1

ab2
(b21 + i)

)
− s1,2n(w1, w2)

(
w3

1b
2
1b2
a (1 + b21i) + b21(i + b21)

w3
1
b2

))
(1− w4

1b
4
1)ca∂(w1, w2)ca∂(b1, b2)

= b2n1

sa0,2n(w1, w2)
(
aw1b2(b21 − i) + w1

b2
(1− b21i)

)
+ s1,2n(w1, w2)

(
w3

1b
2
1b2(b21 − i) + ab21(1− ib21)

w3
1
b2

)
(1− w4

1b
4
1)ca∂(w1, w2)ca∂(b1, b2)

.

(5.19)

Using (5.10) and (5.11), we have

− (w1b1w2b2)2nd3(a,w−1
1 ,−w−1

2 , b−1
1 ,−b−1

2 )

= w2n+4
1 b2n+4

1 b2n2

sa1,2n(w1, w2)
(

(1− ib−2
1 ) b2w1

+
a(b−2

1 −i)
b2w1

)
+ sa0,2n(w1, w2)

(
ab−2

1 (1− ib−2
1 ) b2

w3
1

+
b−2
1 (b−2

1 −i)

b2w3
1

)
(1− w4

1b
4
1)ca∂(w1, w2)ca∂(b1, b2)

= w2n
1 b2n1 b2n2

sa1,2n(w1, w2)
(

(b21 − i)b21b2w
3
1 +

a(1−ib21)w3
1b

2
1

b2

)
+ sa0,2n(w1, w2)

(
a(b21 − i)w1b2 +

(1−ib21)w1

b2

)
(1− w4

1b
4
1)ca∂(w1, w2)ca∂(b1, b2)

.

(5.20)

Summing up (5.18), (5.19), (5.20) and d3(a,w1, w2, b1, b2) gives exactly

Sd3(a,w1, w2, b1, b2) =
dsides(w, b)

ca∂(w1, w2)ca∂(b1, b2)
f2m(w1b1).

For the termH, we must first rewriteK−1
1,a(x, y) asK−1

1/a,1(x, y) by applying gauge transformations.

Indeed, we multiply all the vertices encoded by K−1
1/a(x, y) by a. Since K−1

1/a,1(x, y) is encoded by a

signed count of dimer coverings of the Aztec diamond graph with x and y removed divided by the
total number of dimer coverings of the Aztec diamond graph, we have the relation

K−1
1/a,1 =

a−(n(n+1)−1)

an(n+1)
K−1

1,a ,
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which leads to the equation

K−1
1,a(x, y) =

1

a
K−1

1/a,1(x, y)

for x ∈ W and y ∈ B. Using the above gauge transformation, (5.8) and (5.9), we have

i

a
(w1b1)2nH

(
a−1, iw−1

1 , iw2, ib
−1
1 , ib2

)
= iw2n

1

∑
i,j∈{0,1}

∑
(x1,0)∈Wi
(0,y2)∈Bj

1

a
K−1

1/a,1((x1, 0), (0, y2))
(
−iw−1

1

)x1
(ib2)y2

sa1−i,0(w1, w2)saj,2n(b2, b1)

ca∂(w1, w2)ca∂(b1, b2)

= iw2n
1

∑
i,j∈{0,1}

∑
(x1,0)∈Wi
(0,y2)∈Bj

K−1
1,a((x1, 0), (0, y2))

(
−iw−1

1

)x1
(ib2)y2

sa1−i,0(w1, w2)saj,2n(b2, b1)

ca∂(w1, w2)ca∂(b1, b2)

= w2n
1

∑
i,j∈{0,1}

∑
(x1,0)∈Wi
(0,y2)∈Bj

K−1
a,1(T1(x1, 0), T1(0, y2))

(
w−1

1

)x1
by22

sa1−i,0(w1, w2)saj,2n(b2, b1)

ca∂(w1, w2)ca∂(b1, b2)
,

where the last line follows from using Lemma 5.4. We can change the sum over (0, y2) to (2n, y2)
which gives

i

a
(w1b1)2nH

(
a−1, iw−1

1 , iw2, ib
−1
1 , ib2

)
= w2n

1

∑
i,j∈{0,1}

∑
(x1,0)∈Wi

(2n,y2)∈Bj

K−1
a,1((2n− x1, 0), (2n, y2))

(
w−1

1

)x1
by22

sa1−i,0(w1, w2)saj,2n(b2, b1)

ca∂(w1, w2)ca∂(b1, b2)

=
∑

i,j∈{0,1}

∑
(x1,0)∈Wi

(2n,y2)∈Bj

K−1
a,1((x1, 0), (2n, y2))w2n−x1

1 by22

sai,0(w1, w2)saj,2n(b2, b1)

ca∂(w1, w2)ca∂(b1, b2)

(5.21)

by reversing the sum respect to (x1, 0). The above equation is exactly equal to one of the terms in
the G(a, 1, w1, w2, b1, b2) given in Theorem 5.1.

We can perform a very similar calculation for i/a(w2b2)2nH(a−1, iw1,−iw−1
2 , ib1,−ib−1

2 ) as given
above. We find that

i

a
(w2b2)2nH

(
a−1, iw1,−iw−1

2 , ib1,−ib−1
2

)
=

∑
i,j∈{0,1}

∑
(x1,2n)∈Wi
(0,y2)∈Bj

K−1
a,1((x1, 2n), (0, y2))wx11 b2n−y22

sai,2n(w1, w2)saj,0(b2, b1)

ca∂(w1, w2)ca∂(b1, b2)
.

(5.22)

Finally, we consider −(w1w2b1b2)2nH(a,w−1
1 ,−w−1

2 , b−1
1 ,−b−1

2 ). Using (5.10), we find that

− (w1w2b1b2)2nH
(
a,w−1

1 ,−w−1
2 , b−1

1 ,−b−1
2

)
= −

∑
i,j∈{0,1}

∑
(x1,0)∈Wi
(0,y2)∈Bj

K−1
a,1 ((x1, 0), (0, y2))w−x11 b−y22 (−1)y2

sa1−i,2n(w1, w2)sa1−j,2n(b2, b1)

ca∂(w1, w2)ca∂(b1, b2)
(w1b2)2n

=
∑

i,j∈{0,1}

∑
(x1,0)∈Wi
(0,y2)∈Bj

K−1
a,1 (T1T2(x1, 0), T1T2(0, y2))w2n−x1

1 b2n−y22

sa1−i,2n(w1, w2)sa1−j,2n(b2, b1)

ca∂(w1, w2)ca∂(b1, b2)
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by using Lemma 5.4. We now reverse the sums and so we obtain

− (w1w2b1b2)2nH
(
a,w−1

1 ,−w−1
2 , b−1

1 ,−b−1
2

)
=

∑
i,j∈{0,1}

∑
(x1,2n)∈Wi
(2n,y2)∈Bj

K−1
a,1 ((x1, 2n), (2n, y2))wx11 by22

sai,2n(w1, w2)sa1,2n(b2, b1)

ca∂(w1, w2)ca∂(b1, b2)
.(5.23)

We now use (5.21), (5.22) and (5.23) to deduce that

SH(a,w1, w2, b1, b2)

=
∑

i,j∈{0,1}

∑
k,l∈{0,2n}

∑
(x1,k)∈Wi

∑
(l,y2)∈Bj

sai,k(w1, w2)saj,l(b2, b1)K−1
a,1((x1, k), (l, y2))

ca∂(w1, w2)ca∂(b1, b2)
wx11 by22 .

�

Remark 1. The above lemma suggests that G(a, b, w1, w2, b1, b2) has a symmetrization property,
that is, one can show

4G(a, b, w1, w2, b1, b2) = G(a, b, w1, w2, b1, b2) + i(w1b1)2nG(b, a,−iw−1
1 , iw2,−ib−1

1 , ib2)

+ i(w2b2)2nG(b, a, iw1,−iw−1
2 , ib1,−ib−1

2 )− (w1w2b1b2)2nG(a, b, w−1
1 ,−w−1

2 , b−1
1 ,−b−1

2 ).

The above formula follows from noting the symmetries of K−1
a,b . Since we do not use this formula

in the rest of the paper, we will not provide the details of this assertion.

5.4. Boundary Generating Function Simplification. In this subsection, we consider the bound-
ary generating function of the two-periodic Aztec diamond of size n = 4m parameterized by a and
b. For this subsection only, we present our computations and results for general b . Since sym-
metrization transformations of G0 give G from Section 5.2, we only need to consider the boundary
generating function at one corner. We choose the corner with white vertices (x1, 0) and black ver-
tices (0, y2) for x1, y2 ∈ 2Z + 1 and 1 ≤ x1, y1 ≤ 2n − 1. Most of the computations have used
(‘brute force’) computer algebra, that is, we have large expressions which eventually simplify to
expressions which are very reasonable. Below, we summarize these computer algebra computations.
Rather than subject the reader to these long intricate computations, we will only verify that our
obtained expressions are correct. The motivation behind these simplifications was the appearance
of a formula related to c̃(u, v), defined in (2.3).

We start by recalling the boundary generating function given in [12], using the same defini-
tions given in that paper, unless mentioned specifically otherwise. We set G(a, b, x, y, z) to be the
boundary generating function which is defined as

G(a, b, x, y, z) =
∞∑
n=0

n−1∑
j=0

n−1∑
i=0

|K−1
a,b ((2i+ 1, 0), (0, 2j + 1))|xiyjzn,

where K−1
a,b ((2i + 1, 0), (0, 2j + 1)) depends on n by definition. Let Λ be a diagonal 4 × 4 matrix

with entries along the diagonal given by {λi}4i=1 with

λ2i+j+1 = βi(x)2βj(y)2,
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where we have dropped the dependency of a and b in the definition of βi given in (5.1), that is
βi(w) = βi(a, b, w) for i ∈ {0, 1}. Let Γ denote the 4× 4 matrix with the (i, j) entry given by(

(b2 − a2)x− (−1)b
j−1
2
c√x

√
(a4 + b4)x+ a2b2(1 + x2)

ab(1 + x)

)1−b i−1
2
c

×
(

(b2 − a2)y − (−1)[
j−1
2 ]

2
√
y
√

(a4 + b4)y + a2b2(1 + y2)

ab(1 + y)

)1−[ i−1
2 ]

2

,

where [i]2 = i mod 2. From [12, Lemma 6.4], the coefficient of zn in G(a, b, x, y, z) is given by

(5.24)
m−1∑
k=0

ΓΛkΓ−1.(B1 + B2),

where we have

B1 =


a2+2b2

2a(a2+b2)
b

2(a2+b2)
b

2(a2+b2)
a

2(a2+b2)

 and B2 =



4b4xy+2a4(1+x)(1+y)+a2b2(1+3x+3y+5xy)

4a(a2+b2)2

4a4(1+x)+2b4x(1+y)+a2b2(3+y+x(7+y))

4b(a2+b2)2

2b4(1+x)y+4a4(1+y)+a2b2(3+x+7y+xy)

4b(a2+b2)2

5
a(8a4+b4(1+x)(1+y)+2a2b2(4+x+y))

4b2(a2+b2)2

 .

Note that B1 and B2 were not written out explicitly in [12]. Since they are crucial to the following
argument, we have listed them above. We remark that [12, Lemma 6.1] is obtained from [12, Lemma
6.4] by a transformation and extraction of coefficients. We found that the form of G(a, b, x, y, z) as
given in [12, Lemma 6.4] (and hence (5.24)) is much more convenient to use than [12, Lemma 6.1].

In the above definitions, we set x = u2 and y = v2 and we have

µa,b(u) = 1−
√

1 + c2
a,b(u− u−1)2

and sa,b(u) = 1 − µa,b(u) where ca,b = ab/(b2 + a2). In the specific case when b = 1, we recover
ca,1 = c defined in (2.4), sa,1(u) = s(u) and µa,b(u) = µ(u) which are both defined in (2.8). For

this subsection, we use the notation that if A is a vector, then A|i represents the ith row of A and
recall (2.16) which says that h(ε, δ) = ε(1− δ) + (1− ε)δ for ε, δ ∈ {0, 1}.

We write λi = λi(a, b, u, v) as

λ2i+j+1 = βi(u
2)2βj(v

2)2,

where

β0(u2)2 =
ca,b
2
u2µa,b(u)2 and β1(u2)2 =

ca,b
2
u2(2− µa,b(u))2.

We rewrite Γ = {Γi,j}4i,j=1 in terms of µa,b. By noting that µa,b(u)2 = 2µa,b(u) + c2
a,b(u− 1/u)2, the

(2ε1 + ε2 + 1, 2γ1 + γ2 + 1)th entry of Γ, with ε1, ε2, γ1, γ2 ∈ {0, 1} reads

(−1)h(ε1,γ2)+h(ε2,γ1)+ε1−γ1ε1+ε2−γ2ε2u2−2ε1
(
ab
(
1 + u2

))−1+ε1 v2−2ε2
(
ab
(
1 + v2

))−1+ε2

×
(
−2a2−2γ1b2γ1 +

(
a2 + b2

)
µa,b(u)

)
1−ε1 (−2a2−2γ2b2γ2 +

(
a2 + b2

)
µa,b(v)

)
1−ε2 .

The inverse of Γ can also be expressed in terms of µa,b. The (2ε1 + ε2 + 1, 2γ1 + γ2 + 1)th entry of
Γ−1 for ε1, ε2, γ1, γ2 ∈ {0, 1} is given by

(−1)h(ε1,γ2)+h(ε2,γ1)+γ1+γ2−γ1ε1−γ2ε2

4 (a2 + b2)2 (−1 + µa,b(u))(−1 + µa,b(v))
u2(−1+γ1)

(
ab
(
1 + u2

))1−γ1 v2(−1+γ2)
(
ab
(
1 + v2

))1−γ2
(
−2a2ε1b2−2ε1 +

(
a2 + b2

)
µa,b(u)

)
γ1
(
−2a2ε2b2−2ε2 +

(
a2 + b2

)
µa,b(v)

)
γ2 .
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We have introduced all the definitions that we need for our computations. We will perform com-
puter algebra computations on these expressions but first, we manipulate the boundary generating
function symbolically which gives a convenient form. To do so, we expand (5.24) in terms of λi
which gives

(5.25)
m−1∑
k=0

ΓΛkΓ−1.(B1 + B2) =
m−1∑
k=0

4∑
i=1

Xiλ
k
i ,

where Xj = Xj(a, b, u, v) are four column vectors which are the coefficients of ai in the following
expression

Γdiag(a1, a2, a3, a4)Γ−1.(B1 + B2),

where diag(a1, a2, a3, a4) is a 4 × 4 diagonal matrix with entries a1, . . . , a4 and for B1 and B2, we
set x = u2 and y = v2. Note that each entry of Xi is not a polynomial. We write (5.25) in terms
of the geometric series, that is, we obtain

m−1∑
k=0

4∑
i=1

Xiλ
k
i =

4∑
i=1

Xi
1− λmi
1− λi

=

4∑
i=1

Xi
1

1− λi
−

4∑
i=1

Xi
λmi

1− λi

=

∑4
i=1 Xi

∏
j 6=i 1− λj∏4

j=1 1− λj
−
∑4

i=1 Xiλ
m
i

∏
j 6=i 1− λj∏4

j=1 1− λj
.

(5.26)

It is possible to show, after some computations, that
∑4

i=1 Xi
∏
i 6=j(1−λj) and

∏4
j=1(1−λj) share

a polynomial factor of g0(u, v)g1(u, v) where

gi(u, v) = 16 + d2
(
16d6 + 8

(
7 + u2

)
+ 8d4

(
7 + u2

)
+ d2

(
81 + 13u2 + 3u4 − u6

))
+ 2(−1)i

(
d+ d3

)
u
(
4
(
−3 + u2

)
+ 4d4

(
−3 + u2

)
+ d2

(
−23 + 6u2 + u4

))
v

− d2
(
−1 + u2

) (
4
(
2 + u2

)
+ 4d4

(
2 + u2

)
+ d2

(
13 + 14u2 − 3u4

))
v2

+ 4(−1)i
(
d+ d3

)
u
(
2 + 2d4 + d2

(
3 + 2u2 − u4

))
v3

+ d2
(
−1 + u2

) (
4u2 + d2

(
−3 + 2

(
7 + 2d2

)
u2 − 3u4

))
v4

+ 2(−1)id3
(
1 + d2

)
u
(
−1 + u2

)2
v5 + d4

(
−1 + u2

)3
v6,

where di = aib8−i. Let

Ga,bε1,ε2(m,u, v) =

∑4
i=1 Xi|2ε1+ε2+1

∏
j 6=i(1− λj)∏4

j=1(1− λj)
λmi ,

where Xi|2ε1+ε2+1 denotes (2ε1 + ε2 + 1)th row of Xi as mentioned above. From (5.26) we have

(5.27)
m−1∑
k=0

4∑
i=1

Xi|2ε1+ε2+1 λ
k
i = Ga,bε1,ε2(0, u, v)− Ga,bε1,ε2(m,u, v).

For ε1, ε2 ∈ {0, 1}, define

(5.28) T a,bε1,ε2(u, v) =

2m−1∑
p,q=0

K−1
a,b ((4q + 2ε1 + 1, 0), (0, 4p+ 2ε2 + 1)) (iu)2q(iv)2p.

Once we have obtained a suitable expression for Ga,bε1,ε2(m, a, b), we are able to use it in the boundary
generating function because of the following lemma

Lemma 5.6.

T a,bε1,ε2(u, v) = −iε1+ε2+1
(
Ga,bε1,ε2(0, u, v)− Ga,bε1,ε2(m,u, v)

)
.
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Proof. We have that

(5.29) T a,bε1,ε2(u, v) =

2m−1∑
p,q=0

La,b(2q + ε1, 2p+ ε2)(iu)2q(iv)2p

by using (5.28) and [12, Lemma 6.1]. The sign of La,b(i, j) is given by −ii+j+1. Therefore, the sign
in the summand in (5.29) is given by

−i2p+2qi2p+ε1+2q+ε2+1 = −iε1+ε2+1.

Therefore, we write

T a,bε1,ε2(u, v) = −iε1+ε2+1
2m−1∑
p,q=0

|La,b(2q + ε1, 2p+ ε2)|u2qv2p.

The sum in the right hand-side of the above equation is exactly equal to the row 2ε1 + ε2 + 1 of the
boundary generating function with x = u2 and y = v2. By using (5.27), we have that the boundary

generating function is equal to Ga,bε1,ε2(0, u, v)− Ga,bε1,ε2(m,u, v). �

The above symbolic computations requires extensive computer algebra to find an explicit expres-

sion for Ga,bε1,ε2(m,u, v) in terms of the rational functions defined in Definition 3.1. We performed
these computations and we state the resulting formulas in the lemma below. For the proof of this
lemma, we will not give these computations due to sheer complexity of the intermediate terms.
Instead, it suffices to verify that our assertions are correct and we provide the necessary statements
which gives a much simpler verification (also by using computer algebra).

Lemma 5.7. We have that

Ga,bε1,ε2(m,u, v) =
(−1)ε1ε2yε1,ε20,0 (a, b, u, v)

sa,b(u)sa,b(v)
χ1 +

(−1)ε1(1−ε2)y
ε1,ε2
0,1 (a, b, u, v)

sa,b(u)
χ2

+
(−1)ε2(1−ε1)y

ε1,ε2
1,0 (a, b, u, v)

sa,b(v)
χ3 + (−1)ε1+ε2−ε1ε2yε1,ε21,1 (a, b, u, v)χ4,

where χi = χi(u, v) are given by

χ2δ1+δ2+1(u, v) =
1∑

α1,α2=0

(−1)α1+α2+α1δ1+α2δ2(λ2α1+α2+1(u, v))m

for δ1, δ2 ∈ {0, 1}, and for ε1, ε2, γ1, γ2 ∈ {0, 1}, yε1,ε2γ1,γ2(a, b, u, v) are given in Definition 3.1.

Proof. We claim the following four relations

X1|2ε1+ε2+1 sa,b(u)sa,b(v) =
(

(−1)ε1ε2yε1,ε20,0 + sa,b(v)(−1)ε1(1−ε2)y
ε1,ε2
0,1

+sa,b(u)(−1)ε2(1−ε1)y
ε1,ε2
1,0 + sa,b(u)sa,b(v)(−1)ε1+ε2−ε1ε2yε1,ε21,1

)
(1− λ1),

(5.30)

X2|2ε1+ε2+1 sa,b(u)sa,b(v) =
(
−(−1)ε1ε2yε1,ε20,0 + sa,b(v)(−1)ε1(1−ε2)y

ε1,ε2
0,1

−sa,b(u)(−1)ε2(1−ε1)y
ε1,ε2
1,0 + sa,b(u)sa,b(v)(−1)ε1+ε2−ε1ε2yε1,ε21,1

)
(1− λ2),

(5.31)

X3|2ε1+ε2+1 sa,b(u)sa,b(v) =
(
−(−1)ε1ε2yε1,ε20,0 − sa,b(v)(−1)ε1(1−ε2)y

ε1,ε2
0,1

+sa,b(u)(−1)ε2(1−ε1)y
ε1,ε2
1,0 + sa,b(u)sa,b(v)(−1)ε1+ε2−ε1ε2yε1,ε21,1

)
(1− λ3)

(5.32)
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and

X4|2ε1+ε2+1 sa,b(u)sa,b(v) =
(

(−1)ε1ε2yε1,ε20,0 − sa,b(v)(−1)ε1(1−ε2)y
ε1,ε2
0,1

−sa,b(u)(−1)ε2(1−ε1)y
ε1,ε2
1,0 + sa,b(u)sa,b(v)(−1)ε1+ε2−ε1ε2yε1,ε21,1

)
(1− λ4),

(5.33)

where y
ε1,ε2
i,j = y

ε1,ε2
i,j (a, b, u, v). To prove these relations, we first must obtain a suitable formula Xk.

Setting B = B1 + B2, we have by expanding out the matrix multiplication

ΓΛrΓ−1.(B1 + B2)
∣∣
i

=
4∑

k=1

B|k
4∑
j=1

λrjΓi,jΓ
−1
j,k

for i ∈ {1, . . . , 4}. From the above equation, we extract the coefficient of λrj and so by definition of

Xj given in equation (5.25), we obtain

Xj |i = Γi,j

4∑
k=1

B|k Γ−1
j,k .

Therefore, we are able to evaluate the left hand-side of equations (5.30), (5.31), (5.32) and (5.33).
To evaluate the right hand-side of equations (5.30), (5.31), (5.32) and (5.33), we first simplify λi

by using the following simplifications:

λ1 =

(
c2
a,b

(
−1 + u2

)2
+ 2u2µa,b(u)

)(
c2
a,b

(
−1 + v2

)2
+ 2v2µa,b(v)

)
4c2
a,b

,

λ2 =

(
c2
a,b

(
−1 + u2

)2
+ 2u2µa,b(u)

)(
4v2 + c2

a,b

(
−1 + v2

)2 − 2v2µa,b(v)
)

4c2
a,b

,

λ3 =

(
4u2 + c2

a,b

(
−1 + u2

)2 − 2u2µa,b(u)
)(

c2
a,b

(
−1 + v2

)2
+ 2v2µa,b(v)

)
4c2
a,b

and

λ4 =

(
4u2 + c2

a,b

(
−1 + u2

)2 − 2u2µa,b(u)
)(

4v2 + c2
a,b

(
−1 + v2

)2 − 2v2µa,b(v)
)

4c2
a,b

.

We substitute in the above expressions for λi into the right hand-sides of equations (5.30), (5.31), (5.32)
and (5.33), set sa,b(u) = 1−µa,b(u) and sa,b(v) = 1−µa,b(v), and use the simplifications µa,b(u)2 =
2µa,b(u) + c2

a,b(u − 1/u)2 and µa,b(v)2 = 2µa,b(v) + c2
a,b(v − 1/v)2 so that the degree of µa,b(u)

and µa,b(v) is at most 1. Using the above approach (and computer algebra), we have computable
expressions of both sides of equations (5.30), (5.31), (5.32) and (5.33). From these expressions,
by using computer algebra we verify (5.30), (5.31), (5.32) and (5.33). The lemma follows from
equations (5.30), (5.31), (5.32) and (5.33). This can be seen by dividing both sides of (5.30) by
(1−λ1), (5.31) by (1−λ2), (5.32) by (1−λ3) and (5.33) by (1−λ4) and then substituting into the
right side of the following equation:

Ga,bε1,ε2(m,u, v) =
4∑
i=1

Xi|2ε1+ε2+1

1− λi
λmi .

�
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From Lemma 5.6, T a,1ε1,ε2(u, v) consists of two components which we call S1
ε1,ε2(u, v) and S2

ε1,ε2(u, v),

where S1
ε1,ε2(u, v) is the contribution of T a,1ε1,ε2(u, v) from Ga,1ε1,ε2(0, u, v) and S2

ε1,ε2(u, v) is the contri-

bution of T a,1ε1,ε2(u, v) from Ga,1ε1,ε2(m,u, v). More explicitly, we have

(5.34) T a,1ε1,ε2(u, v) = S1
ε1,ε2(u, v)− S2

ε1,ε2(u, v).

Using Lemma 5.7, we find that

S1
ε1,ε2(u, v) = −iε1+ε2+1Ga,1ε1,ε2(0, u, v)

= −4(−1)ε1+ε2−ε1ε2 iε1+ε2+1y
ε1,ε2
1,1 (u, v)

(5.35)

and

S2
ε1,ε2(u, v) = −iε1+ε2+1Ga,1ε1,ε2 (m,u, v)

= −iε1+ε2+1

(
(−1)ε1ε2yε1,ε20,0 (u, v)

s(u)s(v)
χ1 +

(−1)ε1(1−ε2)y
ε1,ε2
0,1 (u, v)

s(u)
χ2

+
(−1)(1−ε1)ε2y

ε1,ε2
1,0 (u, v)

s(v)
χ3 + (−1)ε1+ε2−ε1ε2yε1,ε21,1 (u, v)χ4

)
,

(5.36)

where for 1 ≤ i ≤ 4, χi is given in Lemma 5.7 and for ε1, ε2, γ1, γ2 ∈ {0, 1}, y
ε1,ε2
γ1,γ2(u, v) =

y
ε1,ε2
γ1,γ2(a, 1, u, v) as given in Definition 3.1.

5.5. Double Contour integrals. In this subsection, we consider for ε > 0 small

K−1
a,1((x1, x2), (y1, y2)) =

1

(2πi)4

∫
Γ1−ε

dw1

w1

∫
Γ1−ε

dw2

w2

∫
Γ1−ε

db1
b1

∫
Γ1−ε

db2
b2

G(a, 1, w1, w2, b1, b2)

wx11 wx22 by11 b
y2
2

and show that we can reduce to linear combinations of double contour integrals. The splitting of
the generating function given in Lemma 5.5 greatly reduces the complexity of the computation.
However, the computation is extremely involved and so we provide a synopsis of our computations:

(1) We first introduce the notation that we use.
(2) We extract the coefficient of wx11 wx22 by11 b

y2
2 of S(d1 + d2)(a,w1, w2, b1, b2) using quadruple

integrals and show that there is a double contour integral formula. By comparing this
expression with Eq. (4.10), we find that this double contour integral is given by K−1

1,1(x, y).

(3) We are able to rearrange the sums in H(a,w1, w2, b1, b2) and split the expression into two
parts based on the simplification given in Section 5.4. We are able to find double con-
tour integral formulas for the coefficients of wx11 wx22 by11 b

y2
2 in these two expressions. For

(x1, x2) ∈ Wε1 and (y1, y2) ∈ Bε2 with ε1, ε2 ∈ {0, 1}, we call the first of these double contour
integral formulas ψε1,ε2(a, x1, x2, y1, y2) while the second double contour integral is equal
to Bε1,ε2(a, x1, x2, y1, y2) given in (2.10). That is, the first expression comes from (5.35)
while the second expression comes from (5.36) after the sum rearrangement. The second
expression is exactly equal to (2.10).

(4) We next extract the coefficient of wx11 wx22 by11 b
y2
2 in d3(a,w1, w2, b1, b2) and find that this

coefficient is given by ψε1,ε2(a, x1, x2, y1, y2).

The vertex type of wrbs = wr11 w
r2
2 b

s1
1 b

s2
2 is given by W([r1+r2]4−1)/2 × B([s1+s2]4−1)/2. A function f

does not change the vertex type if f(wrbs) also has the vertex type W([r1+r2]4−1)/2 × B([s1+s2]4−1)/2.
For example, the function defined by multiplying 1/ca∂(w1, w2) to wrbs does not change the vertex
type.

Let s̃aε(u1, u2) = saε,0(
√
u1,
√
u2) and we can write

(5.37) s̃aε(u1, u2) = Ba
ε,0(u1, u2) +Ba

ε,1(u1, u2),
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where

(5.38) Ba
ε,0(u1, u2) = −a(u1 + u−1

1 )u−1
2 − 2a2ε

and

(5.39) Ba
ε,1(u1, u2) = −ai(u1 − u−1

1 ).

We combine (5.38) and (5.39) to obtain

Ba
ε,δ(u1, u2) = −

(
a(u1 + u−1

1 )
)1−δ

uδ−1
2 − (2a2ε)1−δ −

(
ai(u1 − u−1

1 )
)δ

+ 1 + δ

for ε, δ ∈ {0, 1}. From comparing (2.3) and caδ , we have c̃(u1, u2) = ca∂(
√
u1,
√
u2).

5.5.1. Double Contour integrals from the contributions from d1 and d2. We combine the terms d1

and d2 defined in Eqs. (5.4) and (5.5) and extract out the coefficients wx11 , wx22 , by11 and by22 for x ∈ W

and y ∈ B but dependent on the type of white and black vertices.

Lemma 5.8. For x = (x1, x2) ∈ Wε1 and y = (y1, y2) ∈ Bε2 and ε1, ε2 ∈ {0, 1} we have

1

(2πi)4

∫
Γ1−ε

dw1

w1

∫
Γ1−ε

dw2

w2

∫
Γ1−ε

db1
b1

∫
Γ1−ε

db2
b2

S(d1 + d2)(a,w1, w2, b1, b2)

wx11 wx22 by11 b
y2
2

= −i
1+h(ε1,ε2)

(2πi)2

∫
Γ1

du1

u1

∫
Γ1

du2

u2

a1−ε1u
1−h(ε1,ε2)
1 + aε1u2u

h(ε1,ε2)
1

c̃(u1, u2)u
x1−y1+1

2
1 u

x2−y2+1
2

2

= K−1
1,1(x, y).

When extracting out the vertex types in the proof below, our convention is that the first row
corresponds to the pair vertices in W0 × B0, the second row corresponds to the pair of vertices in
W0× B1, the third row corresponds to the pair of vertices W1× B0 and the fourth row corresponds to
the pair of vertices in W1 × B1.

Proof. From d1(a,w1, w2, b1, b2) we extract out the types of vertices and organize the result as
a column vector as described above. Notice that the series expansions of 1/((1 − w4

1b
4
1)(1 −

w4
2b

4
2)ca∂(w1, w2)) do not change the vertex types. Therefore, we only need to sort the type of

vertices in the numerator of d1(a,w1, w2, b1, b2). We find that the vertex types of d1(a,w1, w2, b1, b2)
are given by

(5.40)
1

(1− w4
1b

4
1)(1− w4

2b
4
2)ca∂(w1, w2)


−ib2w1

(
a+ b41w

4
1 + b21b

2
2w

4
1 + ab21b

2
2w

4
1

)
b2w1

(
ab21 + b21w

4
1 + b22w

4
1 + ab41b

2
2w

4
1

)
b2w

3
1

(
a+ b41 + b21b

2
2 + ab21b

2
2w

4
1

)
−ib2w

3
1

(
b21 + ab21 + b22 + ab41b

2
2w

4
1

)
 .

We also extract out the vertex types for d2(a,w1, b1, b2). We obtain

(5.41)
1

(1− w4
2b

4
2)ca∂(w1, w2)


−ib2w1

ab32w1
b2
w1

−iab32w3
1

 .

We add (5.40) and (5.41) to obtain an expression for (d1 +d2)(a,w1, w2, b1, b2). Entry-wise, we have
that (d1 + d2)(a,w1, w2, b1, b2) is given by

(5.42)
1

(1− w4
1b

4
1)(1− b42w4

2)ca∂(w1, w2)


− ib2(aw2

1+w2
2)(1+b21b

2
2w

2
1w

2
2)

w1
b2(b21w2

1+b22w
2
2)(a+w2

1w
2
2)

w1
b2(1+aw2

1w
2
2)(1+b21b

2
2w

2
1w

2
2)

w1

− ib2(w2
1+aw2

2)(b21w2
1+b22w

2
2)

w1

 .



68 SUNIL CHHITA AND KURT JOHANSSON

Notice that

1

(2πi)4

∫
Γ1−ε

dw1

w1

∫
Γ1−ε

dw2

w2

∫
Γ1−ε

db1
b1

∫
Γ1−ε

db2
b2

S(d1 + d2)(a,w1, w2, b1, b2)

wx11 wx22 by11 b
y2
2

=
1

(2πi)4

∫
Γ1−ε

dw1

w1

∫
Γ1−ε

dw2

w2

∫
Γ1−ε

db1
b1

∫
Γ1−ε

db2
b2

(d1 + d2)(a,w1, w2, b1, b2)

wx11 wx22 by11 b
y2
2

(5.43)

because the coefficient of by11 is zero in the term i
a(w1b1)2n(d1 + d2)(a−1,−iw−1

1 , iw2,−ib−1
1 , ib2) for

0 ≤ y1 ≤ 2n, the coefficient of wx22 is zero in the term i
a(w2b2)2n(d1 +d2)(a−1, iw1,−iw−1

2 , ib1,−ib−1
2 )

for 0 ≤ x2 ≤ 2n and the coefficient of by11 is zero in the term (w1w2b1b2)2n(d1+d2)(a,w−1
1 ,−w−1

2 , b−1
1 ,−b−1

2 )
for 0 ≤ y1 ≤ 2n. Each of these assertions is seen by expanding out each expression and 1/(1−w4

1b
4
1)

or 1/(1− w4
2b

4
2) in terms of its geometric series.

We consider the change of variables (w1, w2) = (u
1/2
1 , u

1/2
2 ) and (b1, b2) = (v

1/2
1 , v

1/2
2 ) in (5.43)

and notice that (5.42) becomes

(5.44)
1

(1− u2
1v

2
1)(1− u2

2v
2
2)c̃(u1, u2)


− i
√
v2(au1+u2)(u1u2v1v2+1)√

u1√
v2(a+u1u2)(u1v1+u2v2)√

u1√
v2(au1u2+1)(u1u2v1v2+1)√

u1

− i
√
v2(au2+u1)(u1v1+u2v2)√

u1

 .

We claim the following equation

1

(2πi)4

∫
Γ1−ε

dw1

w1

∫
Γ1−ε

dw2

w2

∫
Γ1−ε

db1
b1

∫
Γ1−ε

db2
b2

S(d1 + d2)(a,w1, w2, b1, b2)

wx11 wx22 by11 b
y2
2

=
−i1+h(ε1,ε2)

(2πi)4

∫
Γ1−ε

du1

u1

∫
Γ1−ε

du2

u2

∫
Γ1−ε

dv1

v1

∫
Γ1−ε

dv2

v2

×

(
a1−ε1u

1−h(ε1,ε2)
1 + aε1u2u

h(ε1,ε2)
1

) (
u1v1(u2v2)1−ε2 + (u2v2)ε2

)
u

(x1+1)/2
1 u

x2/2
2 v

y1/2
1 v

(y2−1)/2
2

(5.45)

for (x1, x2) ∈ Wε1 and (y1, y2) ∈ Bε2 . The above equation follows due to the change of variables

(w1, w2) = (u
1/2
1 , u

1/2
2 ) and (b1, b2) = (v

1/2
1 , v

1/2
2 ) doubles the contour of integration for each integral

but this is compensated by the extra factor of 1/2 from the change of variables for each integral and
using (5.44) entry-wise. We are able to compute the integrals with respect to v1 and v2 because

1

(2πi)2

∫
Γ1−ε

dv1

v1

∫
Γ1−ε

dv2

v2

(u1u2v1v2 + 1)

v
y1/2
1 v

(y2−1)/2
2 (1− u2

1v
2
1)(1− u2

2v
2
2)

= u
y1/2
1 u

(y2−1)/2
2

and

1

(2πi)2

∫
Γ1−ε

dv1

v1

∫
Γ1−ε

dv2

v2

(u1v1 + u2v2)

v
y1/2
1 v

(y2−1)/2
2 (1− u2

1v
2
1)(1− u2

2v
2
2)

= u
y1/2
1 u

(y2−1)/2
2

using the residue theorem. These two equations means that (5.45) is equal to

−i
1+h(ε1,ε2)

(2πi)2

∫
Γ1−ε

du1

u1

∫
Γ1−ε

du2

u2

a1−ε1u
1−h(ε1,ε2)
1 + aε1u2u

h(ε1,ε2)
1

c̃(u1, u2)u
x1−y1+1

2
1 u

x2−y2+1
2

2

.

Since the integrands are analytic for |u1| = 1 and |u2| = 1, we deform the contours of integration
|u1| = 1 − ε and |u2| = 1 − ε to |u1| = 1 and |u2| = 1 and compare with Eq. 4.10 which gives the
result. �
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5.5.2. Double Contour integrals from the contributions from H. Let

ψε1,ε2(a, x1, x2, y1, y2) =
−iε1+ε2+1(1 + a2)2

(2πi)2

∫
Γ1

du1

u1

∫
Γ1

dv2

v2

Fx2
2

(ν(u1))F y1
2

(ν(v2))

u
x1−1

2
1 v

y2−1
2

2

×

 1∑
γ1,γ2=0

(−1)ε1ε2+γ1(1+ε2)+γ2(1+ε1)s(−iu1)γ1s(−iv2)γ2yε1,ε2γ1,γ2(−iu1,−iv2)uε11 v
ε2
2

 .

Here, we prove the following lemma

Lemma 5.9. For ε1, ε2 ∈ {0, 1} with x ∈ Wε1 and y ∈ Bε2, we have

1

(2πi)4

∫
Γ1−ε

dw1

w1

∫
Γ1−ε

dw2

w2

∫
Γ1−ε

db1
b1

∫
Γ1−ε

db2
b2

H(a,w1, w2, b1, b2)

wx11 wx22 by11 b
y2
2

= ψε1,ε2(a, x1, x2, y1, y2)− Bε1,ε2(a, x1, x2, y1, y2),

(5.46)

where Bε1, ε2(a, x1, x2, y1, y2) is given in (2.10).

We shall split the proof of this lemma into several smaller computations. Some of these compu-
tations are dependent on the relations between the coefficients y

ε1,ε2
γ1,γ2 for γ1, γ2, ε1, ε2 ∈ {0, 1}. We

split up the entries of H(a,w1, w2, b1, b2) into its vertex types.

Lemma 5.10. Under the change of variables (w2
1, w

2
2) = (u1, u2) and (b21, b

2
2) = (v1, v2), the entries

of H(a,w1, w2, b1, b2) are given by

2∑
i=1

(−1)i+1

c̃(u1, u2)c̃(v1, v2)


∑1

γ1,γ2=0B
a
γ1,γ1(u1, u2)Ba

γ2,γ2(v2, v1)Siγ1,γ2(−u1i,−v2i)u
γ1+1/2
1 v

γ2+1/2
2∑1

γ1,γ2=0B
a
γ1,γ1(u1, u2)Ba

γ2,1−γ2(v2, v1)Siγ1,γ2(−u1i,−v2i)u
γ1+1/2
1 v

γ2+1/2
2∑1

γ1,γ2=0B
a
γ1,1−γ1(u1, u2)Ba

γ2,γ2(v2, v1)Siγ1,γ2(−u1i,−v2i)u
γ1+1/2
1 v

γ2+1/2
2∑1

γ1,γ2=0B
a
γ1,1−γ1(u1, u2)Ba

γ2,1−γ2(v2, v1)Siγ1,γ2(−u1i,−v2i)u
γ1+1/2
1 v

γ2+1/2
2

 ,

(5.47)

where the (2ε1 + 2ε2 + 1)th row are the terms in Wε1 × Bε2.

The equation (5.47) has a much more compact form, namely, we write the (2ε1 + ε2 + 1)th row
of (5.47) as

2∑
i=1

(−1)i+1

c̃(u1, u2)c̃(v1, v2)

1∑
γ1,γ2=0

Ba
γ1,h(γ1,ε1)(u1, u2)Ba

γ2,h(γ2,ε2)(v2, v1)Siγ1,γ2(−u1i,−v2i)u
γ1+1/2
1 v

γ2+1/2
2 .

Proof. We apply the change of variables to wi 7→
√
ui and bi 7→

√
vi for i ∈ {1, 2} to H. We find

that

H(a,
√
u1,
√
u2,
√
v1,
√
v2) =

1∑
γ1,γ2=0

∑
(x1,0)∈Wγ1
(0,y2)∈Bγ2

s̃aγ1(u1, u2)s̃aγ2(v2, v1)

c̃(u1, u2)c̃(v1, v2)
K−1
a,1((x1, 0), (0, y2))u

x1/2
1 v

y2/2
2 .

We rewrite the sum over (x1, 0) ∈ Wi and (0, y2) ∈ Bj . We obtain

H(a,
√
u1,
√
u2,
√
v1,
√
v2) =

1∑
γ1,γ2=0

s̃aγ1(u1, u2)s̃aγ2(v2, v1)

c̃(u1, u2)c̃(v1, v2)

×
2m+1∑
p,q=0

K−1((4p+ 2γ1 + 1, 0), (0, 4q + 2γ2 + 1))u
2p+γ1+1/2
1 v

2q+γ2+1/2
2 .
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We now rewrite the second sum in the above equation using the definition of T a,1γ1,γ2 given in (5.28).
We obtain

H(a,
√
u1,
√
u2,
√
v1,
√
v2) =

1∑
γ1,γ2=0

s̃aγ1(u1, u2)s̃aγ2(v2, v1)

c̃(u1, u2)c̃(v1, v2)
T a,1γ1,γ2(−iu1,−iv2)u

γ1+1/2
1 v

γ2+1/2
2 .

Using Lemma 5.6 and the decomposition of T a,1γ1,γ2 into S1
γ1,γ2 and S2

γ1,γ2 given in (5.34), we obtain

H(a,
√
u1,
√
u2,
√
v1,
√
v2) =

1∑
i=0

1∑
γ1,γ2=0

s̃aγ1(u1, u2)s̃aγ2(v2, v1)

c̃(u1, u2)c̃(v1, v2)
(−1)iSi+1

γ1,γ2(−iu1,−iv2)u
γ1+1/2
1 v

γ2+1/2
2 .

We now use the following claim which is proved later.

Claim 1. For x2i+j+1 ∈ Wi × Bj, we expand

1∑
γ1,γ2=0

s̃aγ1(u1, u2)s̃aγ2(v2, v1)

c̃(u1, u2)c̃(v1, v2)
x2γ1+γ2+1u

γ1
1 v

γ2
2

√
u1v2

into four terms in Wε1 × Bε2 for ε1, ε2 ∈ {0, 1} with the Wε1 × Bε2 entry given by

1∑
γ1,γ2=0

Ba
γ1,h(ε1,γ1)(u1, u2)Ba

γ2,h(ε2,γ2)(v2, v1)

c̃(u1, u2)c̃(v2, v1)
x2γ1+γ2+1u

γ1
1 v

γ2
2

√
u1v2.(5.48)

By setting x2γ1+γ2+1 to be Si+1
γ1,γ2 in the above claim, we obtain the lemma.

�

Proof of Claim 1. We have that c̃(u1, u2) does not change the vertex type, that is, for (u1, u2) ∈ W0,
we still have c̃(u1, u2) ∈ W0. We also have that

√
u1v2 does not change the vertex type either. We

expand

s̃aγ1(u1, u2)s̃aγ2(v2, v1)x2γ1+γ2+1u
γ1
1 v

γ2
2

√
u1
√
v2

in terms of entries in Wε1 × Bε2 in the following way: to find the entry of the form W0 × B0, we split
both of the s̃aγ terms (that is s̃aγ(u1, u2) and s̃aγ(v2, v1)) using (5.37) into two parts with one part
changing the vertex type and the other part not changing the vertex type. For x1, we do not change
the vertex type of both vertices and hence

Ba
0,0(u1, u2)Ba

0,0(v2, v1)
√
u1
√
v2x1 ∈ W0 × B0.

For x2, we only need to change the black vertex type because x2 ∈ W0 × B1 and hence

Ba
0,0(u1, u2)Ba

0,1(v2, v1)
√
u1
√
v2v2x2 ∈ W0 × B0.

For x3, we only need to change the white vertex type because x3 ∈ W1 × B0 and hence

Ba
0,1(u1, u2)Ba

0,0(v2, v1)
√
u1
√
v2u1x3 ∈ W0 × B0.

Finally, for x4, we need to change both vertices because x4 ∈ W1 × B1 and hence

Ba
0,1(u1, u2)Ba

0,1(v2, v1)
√
u1
√
v2u1v2x4 ∈ W0 × B0.

We sum the above four equations to verify (5.48) for ε1 = ε2 = 0. The other three pairs of vertex
types can be evaluated in a similar fashion and noting

Ba
0,1(u1, u2) = Ba

1,1(u1, u2).

�
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We now state and prove two technical lemmas which describe relations between the coefficients
y
ε1,ε2
γ1,γ2(−iu1,−iu2) for γ1, γ2, ε1, ε2 ∈ {0, 1}. The proof of these lemmas require polynomial computer

algebra. These lemmas are key to finding a good expression for the double contour integral formula
for extracting coefficients of H(a,w1, w2, b1, b2). Before doing so, let

Fδ1,δ2(u1, u2, ε1, ε2, γ1, γ2, κ1, κ2) = (−iγ1+γ2+1)(−1)δ2γ1+δ1γ2−γ1γ2yγ1,γ2δ1,δ2
(−iu1,−iu2)uγ11 u

γ2
2

×
2∏
j=1

([
1 + h(γj , εj)− (2a2γj )1−h(εj ,γj) − (ai(uj − u−1

j ))h(γj ,εj) − (−(1 + a2))1−h(εj ,γj)
]

(1− κj)

−κj(1− h(γj , εj))(1 + a2)1−h(γj ,εj)
)
.

for δ1, δ2, ε1, ε2, γ1, γ2, κ1, κ2 ∈ {0, 1}.
Lemma 5.11. For ε1, ε2 ∈ {0, 1}, we have

1∑
γ1,γ2=0

(−iγ1+γ2+1)(−1)γ1+γ2−γ1γ2yγ1,γ21,1 (−iu1,−iu2)uγ11 u
γ2
2

×
2∏
j=1

[
1 + h(γj , εj)− (2a2γj )1−h(εj ,γj) − (ai(uj − u−1

j ))h(γj ,εj) − (−(1 + a2)µ(−iuj))
1−h(εj ,γj)

]

=

1∑
κ1,κ2=0

(−iε1+ε2+1)(−1)κ1(1+ε2)+κ2(1+ε1)+ε1ε2(1 + a2)2uε11 u
ε2
2 yε1,ε2κ1,κ2(−iu1,−iu2)s(−iu1)κ1s(−iu2)κ2 .

(5.49)

The left side of Eq. (5.49) has a more compact form given by

1

4

1∑
γ1,γ2=0

Ba
γ1,h(γ1,ε1)

(
u1,

(
− µ(−iu1)

c(u1 + 1/u1)

)−1
)
Ba
γ2,h(γ2,ε2)

(
v2,

(
− µ(−iu2)

c(u2 + 1/u2)

)−1
)

× S1
γ1,γ2(−u1i,−u2i)uγ11 u

γ2
2 ,

(5.50)

which is seen by using the formula for S1
ε1,ε2 given in Eq. (5.35) and using Eqs. (5.38) and (5.39).

Proof. First, notice that F1,1(u1, u2, ε1, ε2, γ1, γ2, κ1, κ2) is the coefficient of s(−iu1)κ1s(−iu2)κ2 in
each summand with respect to γ1 and γ2 of the left side of (5.49) with respect, that is, the left side
of (5.49) is equal to

(5.51)

1∑
κ1,κ2=0

1∑
γ1,γ2=0

F 1,1(u1, u2, ε1, ε2, γ1, γ2, κ1, κ2)s(−iu1)κ1s(−iu2)κ2 .

The following four relations can be checked (using computer algebra) by verifying that the left side
is equal the right side:

1∑
γ1,γ2=0

F1,1(u1, u2, ε1, ε2, γ1, γ2, 0, 0) = −iε1+ε2+1(−1)ε1ε2(1 + a2)2uε11 u
ε2
2 y

ε1,ε2
0,0 (−iu1,−iu2),

1∑
γ1,γ2=0

F1,1(u1, u2, ε1, ε2, γ1, γ2, 0, 1) = −iε1+ε2+1(−1)1+ε1+ε1ε2(1 + a2)2uε11 u
ε2
2 y

ε1,ε2
0,1 (−iu1,−iu2),

1∑
γ1,γ2=0

F1,1(u1, u2, ε1, ε2, γ1, γ2, 1, 0) = −iε1+ε2+1(−1)1+ε2+ε1ε2(1 + a2)2uε11 u
ε2
2 y

ε1,ε2
1,0 (−iu1,−iu2)
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and
1∑

γ1,γ2=0

F1,1(u1, u2, ε1, ε2, γ1, γ2, 1, 1) = −iε1+ε2+1(−1)ε1+ε2+ε1ε2(1 + a2)2uε11 u
ε2
2 y

ε1,ε2
1,1 (−iu1,−iu2).

Using the above four equations we have that Eq. (5.51) is equal to the right side of (5.49) as
required. �

Lemma 5.12. For ε1, ε2 ∈ {0, 1}, we have

1∑
δ1,δ2=0

1∑
γ1,γ2=0

(−iγ1+γ2+1)(−1)δ2γ1+δ1γ2−γ1γ2
y
γ1,γ2
δ1,δ2

(−iu1,−iu2)uγ11 u
γ2
2

s(−iu1)1−δ1s(−iu2)1−δ2 χ2δ1+δ2+1(−iu1,−iu2)

×
2∏
j=1

[
1 + h(γj , εj)− (2a2γj )1−h(εj ,γj) − (ai(uj − u−1

j ))h(γj ,εj) − (−(1 + a2)µ(−iuj))
1−h(εj ,γj)

]

= 4
1∑

κ1,κ2=0

(−iε1+ε2+1)(−1)κ1(1+ε2)+κ2(1+ε1)+ε1ε2(1 + a2)2uε11 u
ε2
2 yε1,ε2κ1,κ2(−iu1,−iu2)

× s(−iu1)κ1s(−iu2)κ2λm4 (−iu1,−iu2).

(5.52)

The left hand-side of the equation (5.52) has a more compact form given by

1∑
γ1,γ2=0

Ba
γ1,h(γ1,ε1)

(
u1,

(
− µ(−iu1)

c(u1 + 1/u1)

)−1
)
Ba
γ2,h(γ2,ε2)

(
v2,

(
− µ(−iu2)

c(u2 + 1/u2)

)−1
)

× S2
γ1,γ2(−u1i,−u2i)uγ11 u

γ2
2 ,

(5.53)

which is seen by using the formula for S2
ε1,ε2 given in Eq. (5.36) and using Eqs. (5.38) and (5.39).

Proof. The proof is based on expansions of relations primarily using computer algebra. In the
relations below, we set χ2δ1+δ2+1 = χ2δ1+δ2+1(−iu1,−iu2) and λm2δ1+δ2+1 = λ2δ1+δ2+1(−iu1,−iu2)m.
Notice that the left side of (5.52) is equal to

(5.54)

1∑
κ1,κ2=0

1∑
δ1,δ2=0

1∑
γ1,γ2=0

Fδ1,δ2(u1, u2, ε1, ε2, γ1, γ2, κ1, κ2)
s(−iu1)κ1s(−iu2)κ2

s(−iu1)1−δ1s(−iu2)1−δ2 χ2δ1+δ2+1.

To compute the above expression, we first evaluate

(5.55)

1∑
γ1,γ2=0

Fδ1,δ2(u1, u2, ε1, ε2, γ1, γ2, κ1, κ2)

for each possible pair of values of (δ1, δ2) where δ1, δ2 ∈ {0, 1}. For (δ1, δ2) = (0, 0) in (5.55), we
have

1∑
γ1,γ2=0

F0,0(u1, u2, ε1, ε2, γ1, γ2, κ1, κ2) = i1+ε1+ε2(−1)1+ε1+ε2+ε1ε2+κ2(1+ε1)+κ1(1+ε2)

× s(−iu1)2(1−κ1)s(−iu2)2(1−κ2)uε11 u
ε2
2 (1 + a2)2y

ε1,ε2
1−κ1,1−κ2(−iu1,−iu2),

(5.56)

where κ1, κ2, ε1, ε2 ∈ {0, 1}. For (δ1, δ2) = (0, 1) in (5.55), we have

1∑
γ1,γ2=0

F0,1(u1, u2, ε1, ε2, γ1, γ2, κ1, κ2) = i1+ε1+ε2(−1)1+ε2+ε1ε2+κ2(1+ε1)+κ1(1+ε2)

× s(−iu1)2(1−κ1)uε11 u
ε2
2 (1 + a2)2y

ε1,ε2
1−κ1,κ2(−iu1,−iu2),

(5.57)
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where κ1, κ2, ε1, ε2 ∈ {0, 1}. For (δ1, δ2) = (1, 0) in (5.55), we have

1∑
γ1,γ2=0

F1,0(u1, u2, ε1, ε2, γ1, γ2, κ1, κ2) = i1+ε1+ε2(−1)1+ε1+ε1ε2+κ2(1+ε1)+κ1(1+ε2)

× s(−iu2)2(1−κ2)uε11 u
ε2
2 (1 + a2)2y

ε1,ε2
κ1,1−κ2(−iu1,−iu2),

(5.58)

where κ1, κ2, ε1, ε2 ∈ {0, 1}. For (δ1, δ2) = (1, 1) in (5.55), we have

1∑
γ1,γ2=0

F 1,1(u1, u2, ε1, ε2, γ1, γ2, κ1, κ2) = i1+ε1+ε2(−1)1+ε1ε2+κ2(1+ε1)+κ1(1+ε2)

× uε11 u
ε2
2 (1 + a2)2yε1,ε2κ1,κ2(−iu1,−iu2),

(5.59)

where κ1, κ2, ε1, ε2 ∈ {0, 1}. We sum up (5.56), (5.57), (5.58) and (5.59) to find (5.55) which we
substitute back into (5.54). Then, (5.54) becomes

1∑
δ1,δ2=0

1∑
κ1,κ2=0

i1+ε1+ε2(−1)1+(1−δ1)ε1+(1−δ2)ε2+ε1ε2+κ2(1+ε1)+κ1(1+ε2)uε11 u
ε2
2 (1 + a2)2

× s(−iu1)2(1−δ1)(1−κ1)+κ1s(−iu2)2(1−δ2)(1−κ2)+κ2
y
ε1,ε2
1−h(κ1,δ1),1−h(κ2,δ2)(−iu1,−iu2)

s(−iu1)1−δ1s(−iu2)1−δ2 χ2δ1+δ2+1.

Applying the definition of χ2δ1+δ2+1 for δ1, δ2 ∈ {0, 1}, which is given in Lemma 5.7, into the above
equation, we find that (5.54) becomes

1∑
α1,α2=0

1∑
δ1,δ2=0

1∑
κ1,κ2=0

i1+ε1+ε2(−1)1+(1−δ1)ε1+(1−δ2)ε2+ε1ε2+κ2(1+ε1)+κ1(1+ε2)+α1(1+δ1)+α2(1+δ2)uε11 u
ε2
2

× (1 + a2)2s(−iu1)(1−δ1)(1−2κ1)+κ1s(−iu2)(1−δ2)(1−2κ2)+κ2y
ε1,ε2
1−h(κ1,δ1),1−h(κ2,δ2)(−iu1,−iu2)λm2α1+α2+1.

(5.60)

We proceed by expanding out the first sum (5.60) and consider the summand for (α1, α2) = (0, 0),
(0, 1), (1, 0) and (1, 1). This is equivalent to extracting the coefficients of λm1 , λ

m
2 , λ

m
3 and λm4 . We

obtain the following four relations which are verified using computer algebra

1∑
δ1,δ2=0

1∑
κ1,κ2=0

i1+ε1+ε2(−1)1+(1−δ1)ε1+(1−δ2)ε2+ε1ε2+κ2(1+ε1)+κ1(1+ε2)uε11 u
ε2
2 (1 + a2)2

× s(−iu1)(1−δ1)(1−2κ1)+κ1s(−iu2)(1−δ2)(1−2κ2)+κ2y
ε1,ε2
1−h(κ1,δ1),1−h(κ2,δ2)(−iu1,−iu2)λm1 = 0

(5.61)

for all ε1, ε2 ∈ {0, 1},
1∑

δ1,δ2=0

1∑
κ1,κ2=0

i1+ε1+ε2(−1)1+(1−δ1)ε1+(1−δ2)ε2+ε1ε2+κ2(1+ε1)+κ1(1+ε2)+1+δ2uε11 u
ε2
2 (1 + a2)2

× s(−iu1)(1−δ1)(1−2κ1)+κ1s(−iu2)(1−δ2)(1−2κ2)+κ2y
ε1,ε2
1−h(κ1,δ1),1−h(κ2,δ2)(−iu1,−iu2)λm2 = 0

(5.62)

for all ε1, ε2 ∈ {0, 1},
1∑

δ1,δ2=0

1∑
κ1,κ2=0

i1+ε1+ε2(−1)1+(1−δ1)ε1+(1−δ2)ε2+ε1ε2+κ2(1+ε1)+κ1(1+ε2)+1+δ1uε11 u
ε2
2 (1 + a2)2

× s(−iu1)(1−δ1)(1−2γ1)+γ1s(−iu2)(1−δ2)(1−2γ2)+γ2y
ε1,ε2
1−h(κ1,δ1),1−h(κ2,δ2)(−iu1,−iu2)λm3 = 0

(5.63)
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for all ε1, ε2 ∈ {0, 1} and

1∑
δ1,δ2=0

1∑
κ1,κ2=0

i1+ε1+ε2(−1)1+(1−δ1)ε1+(1−δ2)ε2+ε1ε2+κ2(1+ε1)+κ1(1+ε2)+1+δ1+1+δ2uε11 u
ε2
2 (1 + a2)2

× s(−iu1)(1−δ1)(1−2κ1)+κ1s(−iu2)(1−δ2)(1−2κ2)+κ2y
ε1,ε2
1−h(κ1,δ1),1−h(κ2,δ2)(−iu1,−iu2)λm4

= 4

1∑
κ1,κ2=0

(−iε1+ε2+1)(−1)κ1(1+ε2)+κ2(1+ε1)+ε1ε2(1 + a2)2uε11 u
ε2
2 yε1,ε2κ1,κ2(−iu1,−iu2)

× s(−iu1)κ1s(−iu2)κ2λm4 .

(5.64)

Since summing up Eqs. (5.61), (5.62), (5.63) and (5.64) is equal to (5.54), we have verified Eq. (5.52).
�

Using the computational lemmas given above, we now present the proof of Lemma 5.9.

Proof of Lemma 5.9. We first concentrate on verifying (5.46). The change of variables (w2
1, w

2
2) 7→

(u1, u2) and (b21, b
2
2) 7→ (v1, v2) doubles each contour of integration but this is compensated by a

factor of 1/24 from the change of variables Jacobian. Thus, the left hand-side of (5.46) is equal to

1

(2πi)4

∫
Γ1−ε

du1

u1

∫
Γ1−ε

du2

u2

∫
Γ1−ε

dv1

v1

∫
Γ1−ε

dv2

v2

H(a,
√
u1,
√
u2,
√
v1,
√
v2)

u
x1/2
1 u

x2/2
2 v

y1/2
1 v

y2/2
2

.(5.65)

Using Lemma 5.10, (5.65) is equal to

1

(2πi)4

∫
Γ1−ε

du1

u1

∫
Γ1−ε

du2

u2

∫
Γ1−ε

dv1

v1

∫
Γ1−ε

dv2

v2

×
2∑
i=1

(−1)i+1

∑1
γ1,γ2=0B

a
γ1,h(γ1,ε1)(u1, u2)Ba

γ2,h(γ2,ε2)(v2, v1)Siγ1,γ2(−u1i,−v2i)u
γ1+1/2
1 v

γ2+1/2
2

u
x1/2
1 u

x2/2
2 v

y1/2
1 v

y2/2
2 c̃(u1, u2)c̃(v1, v2)

for (x1, x2) ∈ Wε1 and (y1, y2) ∈ Bε2 and ε1, ε2 ∈ {0, 1}. To evaluate (5.65), we consider the following
equation:

1

(2πi)4

∫
Γ1−ε

du1

u1

∫
Γ1−ε

du2

u2

∫
Γ1−ε

dv1

v1

∫
Γ1−ε

dv2

v2

×
∑1

γ1,γ2=0B
a
γ1,h(γ1,ε1)(u1, u2)Ba

γ2,h(γ2,ε2)(v2, v1)Siγ1,γ2(−u1i,−v2i)u
γ1+1/2
1 v

γ2+1/2
2

u
x1/2
1 u

x2/2
2 v

y1/2
1 v

y2/2
2 c̃(u1, u2)c̃(v1, v2)

.

(5.66)
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For the integral in (5.66), we make the change of variables u2 7→ u−1
2 and v1 7→ v−1

1 to obtain

1

(2πi)4

∫
Γ1−ε

du1

u1

∫
Γ1−ε

du2

u2

∫
Γ1−ε

dv1

v1

∫
Γ1−ε

dv2

v2

×
∑1

γ1,γ2=0B
a
γ1,h(γ1,ε1)(u1, u

−1
2 )Ba

γ2,h(γ2,ε2)(v2, v
−1
1 )Siγ1,γ2(−u1i,−v2i)u

γ1+1/2
1 v

γ2+1/2
2 u

x2/2
2 v

y1/2
1

u
x1/2
1 v

y2/2
2 c̃(u1, u2)c̃(v1, v2)

=
1

(2πi)2

∫
Γ1−ε

du1

u1

∫
Γ1−ε

dv2

v2
Fx2/2(ν(u1))Fy1/2(ν(v2))

1∑
γ1,γ2=0

Siγ1,γ2(−u1i,−v2i)

×
Ba
γ1,h(γ1,ε1)

(
u1,
(
− µ(−iu1)
c(u1+1/u1)

)−1
)
Ba
γ2,h(γ2,ε2)

(
v2,
(
− µ(−iv2)
c(v2+1/v2)

)−1
)
u
γ1+1/2
1 v

γ2+1/2
2

4u
x1/2
1 v

y2/2
2

,

(5.67)

where we have integrated with respect to u2 and v1 using Lemma 2.2. When i = 1 in (5.67), using
the fact that (5.50) is equal to the formula in Lemma 5.11, we rewrite part of the integrand in
the above equation, and obtain ψε1,ε2(a, x1, x2, y1, y2). When i = 2, using the fact that (5.53) is
equal to the formula in Lemma 5.12, we rewrite part of the integrand in the above equation, and
obtain Bε1,ε2(a, x1, x2, y1, y2). Hence, we have verified (5.46).

�

5.5.3. Double Contour integrals from the contributions from d3. Here, we find the double contour
integral for the coefficients of d3(a,w1, w2, b1, b2). For this subsection we set

yε1,ε2(u1, u2, v1, v2) = −iε2+1Ba
0,ε1(u1, u2)(v1−ε2

1 + avε21 v2)− i2−ε2u1v1B
a
1,ε1(u1, u2)(avε21 + av1−ε2

1 v2).

(5.68)

We have the following lemma

Lemma 5.13. For ε1, ε2 ∈ {0, 1} with x ∈ Wε1 and y ∈ Bε2, we have

1

(2πi)4

∫
Γ1−ε

dw1

w1

∫
Γ1−ε

dw2

w2

∫
Γ1−ε

db1
b1

∫
Γ1−ε

db2
b2

d3(a,w1, w2, b1, b2)

wx11 wx22 by11 b
y2
2

= ψε1,ε2(a, x1, x2, y1, y2).

(5.69)

Proof. For the proof, we first extract the terms of each vertex types in the expression d3(a,w1, w2, b1, b2).
Once we have the vertex types, we extract coefficients using a quadruple integral which is reduced
to a double contour integral formula. To this double contour integral formula, we apply a change
of variables, and after a computer algebra verification, we obtain ψε1,ε2(a, x1, x2, y1, y2).

To extract the terms of each vertex type from the expression d3(a,w1, w2, b1, b2), it is more
convenient to take the change of variables (w2

1, w
2
2) = (u1, u2) and (b21, b

2
2) = (v1, v2). We expand

out d3 with these change of variables and write in terms of its vertex types using the same convention
used above. This expansion gives

1

(1− u2
1v

2
1)c̃(u1, u2)c̃(v1, v2)


−iBa

0,0(u1, u2)
√
u1√
v2

(v1 + av2) +Ba
1,1(u1, u2)

√
u1√
v2
u1v1(a+ v1v2)

Ba
0,0(u1, u2)

√
u1√
v2

(1 + av1v2)− iBa
1,1(u1, u2)

√
u1√
v2
u1v1(av1 + v2)

−iBa
0,1(u1, u2)

√
u1√
v2

(v1 + av2) +Ba
1,0(u1, u2)

√
u1√
v2
u1v1(a+ v1v2)

Ba
0,1(u1, u2)

√
u1√
v2

(1 + av1v2)− iBa
1,0(u1, u2)

√
u1√
v2
u1v1(av1 + v2)

 .
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Since we have extracted the vertex types of d3(a,w1, w2, b1, b2), we now extract the coefficients
using quadruple integrals. This means that the left hand-side of (5.69) is equal to

1

(2πi)4

∫
Γ1−ε

du1

u1

∫
Γ1−ε

du2

u2

∫
Γ1−ε

dv1

v1

∫
Γ1−ε

dv2

v2

yε1,ε2(u1, u2, v1, v2)

(1− u2
1v

2
1)c̃(u1, u2)c̃(v1, v2)u

(x1−1)/2
1 u

x2/2
2 v

y1/2
1 v

(y2+1)/2
2

,

where yε1,ε2(u1, u2, v1, v2) is given in (5.68). We now apply the reduction to a double contour integral
formula. We have that (1− u2

1v
2
1) is not zero for u1, v1 ∈ Γ1−ε. We integrate with respect to u2 and

v1 by applying the residue theorem and find that the above integral is equal to

1

(2πi)2

∫
Γ1−ε

du1

u1

∫
Γ1−ε

dv2

v2

yε1,ε2

(
u1,
(
−µ(−iu1)
c(u1+1/u1)

)−1
,
(
−µ(−iv2)
c(v2+1/v2)

)−1
, v2

)
4

(
1− u2

1

(
−µ(−iv2)
c(v2+1/v2)

)−2
)
v2u

x1−1
2

1 u
y2−1

2
2

Fx2
2

(ν(u1))F y1
2

(ν(v2)).

Using computer algebra, we evaluate the integrand in the above expression and find that

yε1,ε2

(
u1,
(
−µ(−iu1)
c(u1+1/u1)

)−1
,
(
−µ(−iv2)
c(v2+1/v2)

)−1
, v2

)
4

(
1− u2

1

(
−µ(−iv2)
c(v2+1/v2)

)−2
)
v2

= −i1+ε1+ε2

1∑
γ1,γ2=0

Y ε1,ε2
γ1,γ2 (u1, u2),

where Y ε1,ε2
γ1,γ2 (u1, u2) is given in (3.1). Therefore, we have verified (5.69).

�

5.6. Completion of the proof of Theorem 2.3. We wrap up all our previous computations to
prove Theorem 2.3.

Proof of Theorem 2.3. From Lemma 5.5, to find the formula forK−1
a,1(x, y) we can extract coefficients

from SG0(a,w1, w2, b1, b2). By noting the signs in the splitting of G0 as given in (5.6), we can
use (5.46) and (5.69) to find

1

(2πi)4

∫
Γ1−ε

dw1

w1

∫
Γ1−ε

dw2

w2

∫
Γ1−ε

db1
b1

∫
Γ1−ε

db2
b2

(−d3 +H)(a,w1, w2, b1, b2)

wx11 wx22 by11 b
y2
2

= −Bε1,ε2(a, x1, x2, y1, y2).

(5.70)

We extract coefficients of the remaining three expressions in S(−d3 + H)(a,w1, w2, b1, b2) which
were not considered above. This leads to three further double contour integral expressions. Since
these computations are analogous to the long computation behind (5.70), we will not list these
computations explicitly. These four double contour integral and Lemma 5.8 combined give the
formula for K−1

a,1((x1, x2), (y1, y2)) as written in Theorem 2.3.
�

5.7. Proof of Corollary 2.4. We verify the formulas which are suitably nice for asymptotic com-
putations that are given in Corollary 2.4. We start with the proof of Eq. (2.12).

Proof of Eq. (2.12). From (2.10), we take the change of variables u1 7→ iu1 and u2 7→ iu2. This
gives

Bε1,ε2(a, x1, x2, y1, y2) =
i−(x1+y2)/2

(2πi)2

∫
Γ1−ε

du1

u1

∫
Γ1−ε

du2

u2

Fx2
2

(ν(u1i))F y1
2

(ν(u2i))

u
x1−1

2
1 u

y2−1
2

2

λ4(u1, u2)m

× (1 + a2)2

 1∑
γ1,γ2=0

(−1)ε1+ε2+ε1ε2+γ1(1+ε2)+γ2(1+ε1)s(u1)γ1s(u2)γ2yε1,ε2γ1,γ2(u1, u2)uε11 u
ε2
2

 ,

(5.71)
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where we have deformed the contours of integration so that they are both within the unit circle.
To the above equation, we take the change of variables ui = G(ωi). To do so, we use Lemma 2.2 to
expand out Fx2/2 and Fy1/2 and also use

1

u

du

dω
= − 1√

ω2 + 2c
.

Note that the contour of integration in the ω variables will be clockwise but can be made counter
clockwise by compensating a factor of (−1) and deforming to a contour Γp for

√
2c < p < 1. We

also have that

λ4(G(ω1), G(ω2)) =
ω2

1ω
2
2G (ω1)2G (ω2)2

G
(
ω−1

1

)2
G
(
ω−1

2

)2 .
Putting all the parts together, (5.71) under the change of variables ui = G(ωi) for i ∈ {1, 2} becomes

Bε1,ε2(a, x1, x2, y1, y2) =
i
x2−x1+y1−y2

2

(2πi)2

∫
Γp

dω1

ω1

∫
Γp

dω2

ω2

ω2m
1 ω2m

2 G (ω1)2m−x1−1
2 G (ω2)2m− y2−1

2

G
(
ω−1

1

)2m−x2
2 G

(
ω−1

2

)2m− y1
2

× 1∏2
j=1

√
ω2
j + 2c

√
ω−2
j + 2c

1∑
γ1,γ2=0

(−1)ε1+ε2+ε1ε2+γ1(1+ε2)+γ2(1+ε1)

× s (G (ω1))γ1 s (G (ω2))γ2 yε1,ε2γ1,γ2 (G (ω1) , G (ω2))G (ω1)ε1 G (ω2)ε2 .

In the above equation, we remove a factor of 1/(1 − ω2
1ω

2
2) in the expression y

ε1,ε2
γ1,γ2(G(ω1), G(ω2))

and rewrite using (3.2). Finally, taking the change of variable ω2 7→ ω−1
2 and using the definitions

given in Eq. (3.5) and Eq. (2.11), gives the result.
�

We now prove Eqs. (2.13), (2.14) and (2.15) which will conclude the proof of Corollary 2.4.

Proof of Eqs. (2.13), (2.14) and (2.15). We will only find the formula for 1
aB1−ε1,ε2(a−1, 2n−x1, x2, 2n−

y1, y2). By symmetry, this will also lead to a good asymptotic formula for 1
aBε1,1−ε2(a−1, x1, 2n −

x2, y1, 2n− y2) and B1−ε1,1−ε2(a, 2n− x1, 2n− x2, 2n− y1, 2n− y2).
We proceed by evaluating 1

aB1−ε1,ε2(a−1, 2n− x1, x2, 2n− y1, y2). We find that

1

a
B1−ε1,ε2(a−1, 2n− x1, x2, 2n− y1, y2)

= − i1−ε1+ε2+1

(2πi)2a

∫
Γr

du1

u1

∫
Γr

du2

u2

Fx2
2

(ν(u1))F 2n−y1
2

(ν(u2))

u
2n−x1−1

2
1 v

y2−1
2

2

λ4(−iu1,−iu2)m(1 + a2)2

×
1∑

γ1,γ2=0

(−1)(1−ε1)ε2+γ1(1+ε2)+γ2(2−ε1)s(−iu1)γ1s(−iu2)γ2y1−ε1,ε2
γ1,γ2 (a−1, 1,−iu1,−iu2)u1−ε1

1 uε22 ,

(5.72)

which follows from (2.10) and using the fact that (1 + a2)Fs is invariant under a 7→ a−1. In the
above equation, we make the change of variables u1 7→ iu1 and u2 7→ iu2 which gives

− 1

(2πi)2a

∫
Γr

du1

u1

∫
Γr

du2

u2

Fx2
2

(ν(iu1))F 2n−y1
2

(ν(iu2))

i
−x1+y2

2 u
2n−x1−1

2
1 v

y2−1
2

2

λ4(u1, u2)m(1 + a2)2

×
1∑

γ1,γ2=0

(−1)ε1+ε1ε2+γ1(1+ε2)+γ2(2−ε1)s(u1)γ1s(u2)γ2y1−ε1,ε2
γ1,γ2 (a−1, 1, u1, u2)u1−ε1

1 uε22 .

(5.73)
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We deform the contour with respect to u1 from Γr to Γ1/r since the integrand is analytic. By
noticing that

1

a
y1−ε1,ε2
γ1,γ2 (a−1, 1, u1, u2) =

1

u2
1

yε1,ε2γ1,γ2(a, 1, u−1
1 , u2),

which follows from Definition 3.1 and that

u4
1λ4(u−1

1 , u2) = λ4(u1, u2)

we find that (5.73) under the above contour deformation and the change of variables u1 7→ u−1
1

gives

− 1

(2πi)2

∫
Γr

du1

u1

∫
Γr

du2

u2

Fx2
2

(−ν(iu1))F 2n−y1
2

(ν(iu2))

i
−x1+y2

2 u
x1+1

2
1 v

y2−1
2

2

λ4(u1, u2)m(1 + a2)2

×
1∑

γ1,γ2=0

(−1)ε1+ε1ε2+γ1(1+ε2)+γ2(2−ε1)s(u1)γ1s(u2)γ2yε1,ε2γ1,γ2(u1, u2)u1+ε1
1 uε22 .

Using the integral representation of Fs in Lemma 2.2 to rewrite Fx2
2

(−ν(iu1)) as (−1)
x2
2 Fx2

2
(ν(iu1)),

we proceed in taking the change of variables ui = G(ωi) and follow the simplification procedures
detailed in the proof of Eq. (2.12). After these computations we arrive at (2.13). We follow
similar procedures which give (2.13) from (5.72) for 1

aBε1,1−ε2(a−1, x1, 2n − x2, y1, 2n − y2) and
B1−ε1,1−ε2(a, 2n− x1, 2n− x2, 2n− y1, 2n− y2). We find (2.14) and (2.15).

�

6. Combinatorial Boundary

In this section, we introduce a candidate for lattice paths which we believe describe the liquid-
gas interface. We call these paths tree paths. We remark that the red-blue particles [17] and the
DR paths [24](or Schröder lattice paths) which have been previously used to study the solid-liquid
boundary, are inadequate for giving a good description of the path separating the liquid and gas
regions, even when adjusting for the two-periodicity. These statements are motivated from numerous
simulations.

6.1. Height Function. Thurston, in [34], introduced the notion of the height function for dimer
coverings on a bipartite graph which is in correspondence with each dimer covering. The height
function for the square grid is defined as follows: the height is defined on the faces of the graph
with the height difference between two faces equal to ±3 if a dimer covers the shared edge between
faces and ∓1 if there is no dimer covering the shared edge between the faces. The definition of the
height function is chosen so that the total change of the height around each vertex is equal to zero.
We will use the convention that the height at the faces whose center are given by (2i, 0) and (0, 2i)
(which border the Aztec diamond graph) are equal to 2i while the heights at the faces whose center
are given by (2n− 2i, 2n) and (2n, 2n− 2i) are equal to 2i for 0 ≤ i ≤ n. With this convention, the
height function can be computed on the faces of the Aztec diamond graph for each specific dimer
covering.

6.2. Tree Paths. As the language of trees contains the words vertex and edge, a vertex on trees
will be called a node and as these trees are directed, a tree edge will be called an arrow. We
introduce a procedure that builds the trees paths on nodes in W0 with additional boundary vertices
appended to the Aztec diamond graph.

• For an Aztec diamond of size n = 4m, there are sources nodes at {(2i+ 1, 0)}n−1
i=0 ∩W0, and

{(2i+ 1, 2n)}n−1
i=0 ∩W0 and sink nodes at {−1, 4i+ 2}2m−1

i=0 and {2n+ 1, 4i+ 4}2m−2
i=0 . These

sink nodes are outside of the Aztec diamond graph.
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Figure 6. An example of one tree path for a domino tiling of an Aztec diamond of
size 12. This tree path starts at (13, 1) drawn in blue. The left figure shows the tree
path after one step, that is a line from (13, 1) to (11, 3). The right figure shows the
completed tree path.

• Suppose that x ∈ W0 is either a source node or incident to an incoming arrow. Then, there
is an outgoing arrow (x, x± 2ei) if and only if there is a dimer covering the edge (x, x± ei)
for i ∈ {1, 2}. The path terminates when this outgoing arrow is incident to a sink vertex.

Similarly, there is a procedure which builds tree paths on nodes in W1 with additional boundary
vertices appended to the Aztec diamond graph.

• For an Aztec diamond of size n = 4m, there are sources nodes at {(2i+ 1, 0)}n−1
i=0 ∩W1, and

{(2i+ 1, 2n)}n−1
i=0 ∩W1 and sink nodes at {−1, 4i+ 4}2m−2

i=0 and {2n+ 1, 4i+ 2}2m−1
i=0 . These

sink nodes are outside of the Aztec diamond graph.
• Suppose that x ∈ W1 is either a source vertex or incident to an incoming arrow. Then, there

is an outgoing arrow (x, x± 2ei) if and only if there is a dimer covering the edge (x, x± ei)
for i ∈ {1, 2}. The path terminates when this outgoing arrow is incident to a sink vertex.

This construction is very much related to Temperley’s correspondence [33]. Fig. 6 shows an example
of one tree path on a relatively small Aztec diamond.

We refer to each path built from each construction as a tree path. We shall also distinguish
between tree paths on nodes of type W0 and tree paths on nodes of type W1.

Lemma 6.1. For the set of tree paths built from the above construction and assuming that the edges
((1, 0), (0, 1)), ((2n− 1, 0), (2n, 1)), ((0, 2n− 1), (1, 2n)) and ((2n− 1, 2n), (2n, 2n− 1)) are covered
by dimers, then

(1) exactly one pair of tree paths of type W0 coalesces and exactly one pair of tree paths of type
W1 coalesces,

(2) the tree paths which coalesce have source nodes on opposite boundaries,
(3) apart from these four tree paths, the rest of the tree paths are non-intersecting,
(4) the tree paths begin and end at the same height,
(5) each tree path has zero winding when it terminates.
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Figure 7. Two different drawings of an Aztec diamond of size 52 with a = 0.5
with the two-periodic weighting. In each figure, the red paths are the tree paths of
type W0 and the blue paths are the tree paths of type W1. The left figure shows
tree paths started from every white vertex on both the top and bottom boundaries
while the right figure shows half of these tree paths. See the on-line version for colors.

The assumption in the lemma is an event which occurs with probability extremely close to 1, i.e.

with probability 1− Ce−n2
for a positive constant C.

Proof. From the above construction, tree paths only terminate at the sink nodes. Since every white
vertex in the Aztec diamond is covered by a dimer, then there is potentially one outgoing arrow
from a white vertex depending on whether the white vertex is incident to an incoming arrow. A
white vertex with an incoming arrow does not have an outgoing arrow if it is not covered by a dimer
and so this white vertex must be a sink node.

We next prove that two tree paths whose source vertices start on the same boundary are non-
intersecting. It is immediate from the construction that two tree paths cannot change vertex type
and a tree path can only coalesce with a tree path of the same type otherwise there is a violation of
the dimer covering. Suppose that two tree paths of type W0 which start from the same boundary
coalesce. This immediately implies that the tree paths of type W1 which start at nodes in between
the tree paths of type W0, must terminate before reaching either the left or right boundaries. This
a contradiction. Therefore, the set of tree paths whose source nodes are on the bottom boundary
of the Aztec diamond are non-intersecting. A similar statement holds for the top boundary.

By construction, each tree path only increases in height if it winds. More precisely, each type of
different arrow on the same tree path has the same height regardless of their locations, provided
that the tree path does not wind. This follows directly from the definition of the height function
of the dimer model. By the underlying dimer model, if two tree paths coalesce then they must
have had the same height, otherwise, there is a violation with the height function rule and it is
impossible for tree paths to coalesce with another tree path with a different winding number. It
is also impossible for any tree path to terminate if it has a non-zero winding. Therefore, each tree
path has zero overall winding which means that the tree paths have the same initial and terminating
height.

Since we assume that the edges ((1, 0), (0, 1)), ((2n − 1, 0), (2n, 1)), ((0, 2n − 1), (1, 2n)) and
((2n − 1, 2n), (2n, 2n − 1)) are covered by dimers, then there are exactly 2n source vertices and
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Figure 8. The simulation considered in Fig. 2 with half of the tree paths overlaid,
with the same convention as found in Fig. 7. See the on-line version for colors.

2n−1 sink vertices for tree paths of type W0 and similarly for tree paths of type W1. This means that
at least two pairs of tree paths must coalesce. Each pair of tree paths which coalesce must start from
opposite boundaries and must have the same initial height function since each path cannot spiral -
there is no total winding on each path. The heights of the source vertices on the bottom boundary
increase from left to right whereas the heights of the sources vertices on the top boundary decrease
from left to right. Since the paths starting from different heights cannot cross, it follows that the
only pair of W0 tree paths which coalesce have sources vertices (4m + 1, 0) and (4m − 1, 4m) and
the only pair of W1 tree paths which coalesce have source vertices (4m+3, 0) and (4m+1, 8m). �
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We now discuss heuristically a possible candidate for the paths which separate the liquid-gas
boundary. From the above lemma, exactly two pairs of tree paths coalesce. If we choose tree paths
of one vertex type on the bottom boundary and the other vertex type on the top boundary, then
there is no coalescence, that is, we remove half the tree paths; see Fig. 7.

From many simulations, it appears that for 0 < a < 1 and for n = 4m, we should choose the tree
paths starting from (4k+ 1, 0) and (4k+ 3, 8m) for 0 ≤ k ≤ 2m− 2. We believe that the tree paths
started from (4m − 3, 0), (4m + 1, 0), (4m − 1, 8m) and (4m + 3, 8m) separate the liquid and gas
region.

Large simulations seem to show that this choice of tree paths give a good description of the paths
that seem to be present in Fig. 2. Fig. 8 shows this choice of tree paths, overlaid on that simulation.
Note that the other choice of tree paths seems to show a path crossing the gas region.

We remark that the tree paths give good descriptions of the dark lines emerging in Fig. 2. There,
due to the ‘clumping’ dominoes, it is not clear exactly where the path is. As remarked earlier in the
paper, to compute the correlations between parts of these tree paths does not seem possible with
the local statistical information we currently have available.

Appendix A. Limit shape

The limit shape of the two-periodic Aztec diamond with corners (−1,−1), (1,−1), (1, 1) and
(−1, 1) with c = a/(1 + a2) is given by the equation
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[20] Richard Kenyon and Andrei Okounkov. Planar dimers and Harnack curves. Duke Math. J., 131(3):499–524, 2006.
[21] Richard Kenyon and Andrei Okounkov. Limit shapes and the complex Burgers equation. Acta Math., 199(2):263–

302, 2007.
[22] Richard Kenyon, Andrei Okounkov, and Scott Sheffield. Dimers and amoebae. Ann. of Math. (2), 163(3):1019–

1056, 2006.
[23] Richard Kenyon and Robin Pemantle. Double-dimers, the Ising model and the hexahedron recurrence.

arXiv:1308.2998, 2013.
[24] Michael Luby, Dana Randall, and Alistair Sinclair. Markov chain algorithms for planar lattice structures. SIAM

J. Comput., 31(1):167–192 (electronic), 2001.
[25] E. W. Montroll, R. B. Potts, and J. C. Ward. Correlations and spontaneous magnetization of the two-dimensional

Ising model. Journal of Mathematical Physics, 4:308–322, 1963.
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