1	
2	
3	
4	
5	
6	Selective copying of the majority suggests children are broadly 'optimal-' rather than
7	'over-' imitators
8	
9	
10	Cara L Evans ^{1,2*} , Kevin N Laland ¹ , Malinda Carpenter ^{3,4} & Rachel L Kendal ⁵
11	¹ School of Biology, University of St Andrews, St Andrews, UK
12	² Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of
13	Human History, Jena, Germany
14	³ School of Psychology & Neuroscience, University of St Andrews, St Andrews, UK
15	⁴ Department of Developmental and Comparative Psychology, Max Planck Institute for
16	Evolutionary Anthropology, Leipzig, Germany
17	⁵ Centre for Coevolution of Biology & Culture, Anthropology Department, Durham
18	University, UK
19	* caraevans1@gmail.com
20	
21	
22	
23	Keywords: over-imitation, majority-biased copying, conformity, cultural evolution,
24	cultural transmission, social learning
25	

26		Research Highlights
27	•	Children are frequently cast as 'over-imitators,' yet previous studies have
28		typically overlooked many real-world learning dynamics. Here we take a cultural
29		evolutionary approach, focusing on a key learning strategy: majority-biased
30		copying.
31	•	We show that children flexibly and adaptively adopt a majority-biased learning
32		strategy: Copying does not extend to majorities who perform irrelevant actions.
33	٠	Our results suggest that the presence of causally irrelevant actions might
34		substantially alter the operation of adaptive learning biases.
35	٠	Our findings support a highly functional and selective integration of social and
36		causal information in children, rather than accounts of 'over-imitation' that
37		imply unselective copying or causal misunderstanding.
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		

51	Abstract
52	Human children, in contrast to other species, are frequently cast as prolific 'over-
53	imitators.' However, previous studies of 'over-imitation' have overlooked many
54	important real-world social dynamics, and may thus provide an inaccurate account of
55	this seemingly puzzling and potentially maladaptive phenomenon. Here we investigate
56	this topic using a cultural evolutionary approach, focusing particularly on the key
57	adaptive learning strategy of majority-biased copying. Most 'over-imitation' research
58	has been conducted using consistent demonstrations to the observer, but we
59	systematically varied the frequency of demonstrators that 4- to 6-year-old children
60	observed performing a causally irrelevant action. Children who 'over-imitate' inflexibly
61	should copy the majority regardless of whether the majority solution omits or includes
62	a causally irrelevant action. However, we found that children calibrated their tendency
63	to acquire the majority behavior, such that copying did not extend to majorities that
64	performed irrelevant actions. These results are consistent with a highly functional,
65	adaptive integration of social and causal information, rather than explanations implying
66	unselective copying or causal misunderstanding. This suggests that our species might
67	be better characterized as broadly 'optimal-' rather than 'over-' imitators.
68	

Page 4 of 36

4

69	Selective copying of the majority suggests children are broadly 'optimal-' rather than
70	'over-' imitators
71	Compared with other animals, humans show an exceptional ability to learn
72	through the high-fidelity copying of others' actions (Dean, Kendal, Schapiro, Thierry, &
73	Laland, 2012). This propensity to engage in faithful copying is thought to play a crucial
74	role in facilitating cumulative cultural improvement: a hallmark of human culture
75	(Tomasello, 1999). However, human imitation has also been described as 'surprisingly
76	unselective' or 'mindless' (Whiten, McGuigan, Marshall-Pescini, & Hopper, 2009), and
77	susceptible to behavioral 'inefficiency' or 'cost' (Lyons, Young, & Keil, 2007), following
78	numerous reports that both children and adults often blanket copy even those parts of
79	an action sequence that are manifestly causally irrelevant to obtaining the instrumental
80	goal (e.g., Horner & Whiten, 2005; Kenward, Karlsson, & Persson, 2011; Lyons et al.,
81	2007; McGuigan, Makinson, & Whiten, 2011; McGuigan, Whiten, Flynn, & Horner, 2007;
82	Nielsen & Tomaselli, 2010). This phenomenon, dubbed 'over-imitation' (Lyons et al.,
83	2007), has received much attention in recent years, being replicated in several cultures
84	(Nielsen, Mushin, Tomaselli, & Whiten, 2015; Nielsen & Tomaselli, 2010), and, reported
85	to increase with age into adulthood (McGuigan et al., 2011; Nielsen & Tomaselli, 2010)
86	and to be impervious to cues of prestige or success (Chudek, Baron, & Birch, 2016).
87	The seemingly counterintuitive nature of 'over-imitation', which has not been
88	observed in other species (Horner & Whiten, 2005), has led some to propose
89	explanations grounded in causal cognition, suggesting the demonstration leads
90	individuals to imitate actions automatically, despite an understanding of the necessary
91	causal mechanisms (Lyons, Damrosch, Lin, Macris, & Keil, 2011; Lyons et al., 2007).
92	Such high-fidelity blanket copying, it is argued, might serve to promote facets of cultural
93	learning that are causally opaque (Lyons et al., 2011, 2007), but may also occasionally

RUNNING HEAD: Over-imitation and majority copying in children

94	malfunction, leading to irrelevant actions being copied blindly, and behavior that
95	manifests as causal misunderstanding (Whiten et al., 2009).
96	Others have argued that the phenomenon results instead from more social
97	processes (Kenward et al., 2011; Nielsen & Blank, 2011; Over & Carpenter, 2012).
98	Indeed, the term 'over-imitation' is misleading if copying of the causally irrelevant
99	actions encompasses socially relevant pressures and functions. For example,
100	individuals might copy causally irrelevant actions in order to be like, and share
101	experiences with, the demonstrator, or to affiliate with and encourage the demonstrator
102	to like them (Meltzoff, 2007; Nielsen & Blank, 2011; Over & Carpenter, 2013). Likewise,
103	the unanimity and pedagogical context inherent in most experimental demonstrations
104	of irrelevant actions might lead participants to believe they are expected by the
105	experimenter to perform the irrelevant action (Lyons et al., 2011), or that the
106	demonstration is normative, and they ought to conform to its performance, despite its
107	social or causal function being unclear (Kenward et al., 2011; Keupp, Behne, Zachow,
108	Kasbohm, & Rakoczy, 2015).
109	The critiques levelled at hypotheses based solely on assumptions about causal
110	understanding resonate with findings that imitation in both adults and children can be
111	selective and strategic. Even young children are able to imitate rationally, adjusting
112	imitative fidelity flexibly in response to a number of contextual factors, including
113	demonstrator competency (Birch, Vauthier, & Bloom, 2008) and intentionality
114	(Carpenter, Akhtar, & Tomasello, 1998), constraints upon demonstrators (Gergely,
115	Bekkering, & Király, 2002), signs of pedagogical engagement (Csibra & Gergely, 2006),
116	and the perceived task goal (Carpenter, Call, & Tomasello, 2005; Legare & Nielsen,
117	2015).

Page 6 of 36

6

RUNNING HEAD: Over-imitation and majority copying in children

118	Here we take a cultural evolutionary approach to investigate whether children
119	are better characterized as 'over-' or broadly 'optimal-' imitators. Cultural evolutionary
120	theory predicts that social learning decisions should be strategic regarding whom and
121	when individuals copy (Boyd & Richerson, 1985), and guided by adaptive learning
122	biases promoting the emergence, stability and evolution of cultural traits (Boyd $\&$
123	Richerson, 1985; Laland, 2004). Evidence that learning biases are involved in guiding
124	the use of social information has been provided using both theoretical (Boyd &
125	Richerson, 1985; Kandler & Laland, 2013) and empirical approaches (Rendell et al.,
126	2011; see Wood, Kendal, & Flynn, 2013b for a review in children). These biases should
127	be especially tuned to decisions regarding the adoption of causally sub-optimal
128	behavior, yet they have been little considered in investigations of 'over-imitation' (see
129	McGuigan, 2013; Wood, Kendal, & Flynn, 2012 for initial evidence).
130	Most previous 'over-imitation' research has involved the demonstration of a
131	single sequence of behavior (i.e., the target behavior is performed unanimously) to an
132	observer (for exceptions see, e.g., Chudek et al., 2016; McGuigan & Robertson, 2015;
133	Nielsen & Blank, 2011). However, real-world learning often involves observing multiple
134	individuals behaving differently. Thus, comparing the operation of learning biases in
135	situations that include, exclude, or vary the degree of irrelevant action performance, by
136	multiple demonstrators, will be particularly informative regarding (i) the robustness of
137	children's propensity to 'over-imitate' outside of unanimous conditions, and (ii) the
138	evaluation of competing explanations of 'over-imitation.'
139	Here we consider one type of learning bias that has been a major focus for
140	cultural evolutionists and psychologists alike: majority-biased copying. The majority
141	behavior represents the behavior that the greatest proportion of group members have
140	

142 converged upon, and there is empirical evidence that majority or consensus behavior

RUNNING HEAD: Over-imitation and majority copying in children

143	informs copying in both children (Corriveau, Fusaro, & Harris, 2009; Haun, Rekers, &
144	Tomasello, 2012; Morgan, Laland, & Harris, 2015) and adults (Coultas, 2004; Morgan,
145	Rendell, Ehn, Hoppitt, & Laland, 2012). Majority behavior is expected to signal a
146	relatively safe, reliable, and adaptive behavioral response (Boyd & Richerson, 1985;
147	Wolf, Kurvers, Ward, Krause, & Krause, 2013), making it a particularly suitable
148	transmission bias for testing hypotheses about the adoption of causally irrelevant
149	information.
150	In the current study, we showed 4- to 6-year-old children a video demonstration
151	in which we had all four demonstrators perform a causally relevant action, but
152	systematically varied the number of demonstrators who additionally performed a
153	causally irrelevant action while retrieving a reward from a puzzle box. Either all, the
154	majority (3 of 4), the minority (1 of 4), or none of the demonstrators, performed the
155	causally irrelevant action.
156	In the first experimental condition, we examined whether children were more
157	likely to adopt the majority over the minority solution when faced with alternative, but
158	equivalent, causally relevant task solutions. In line with previous findings (Haun et al.,
159	2012), we expected that children would demonstrate a bias towards copying the
160	majority's solution.
161	Importantly, we then investigated whether majority-biased copying in children
162	extends to majorities who perform a causally irrelevant action. If children copy
163	inflexibly – if 'over-imitation' is robust outside of unanimous demonstrations – they
164	might be expected to copy the solution used by the majority regardless of whether it
165	omits or includes causally irrelevant actions. Instead, we predicted that when
166	presented with a majority performing the irrelevant action and a minority omitting it,
167	the instrumental framing of our task, coupled with children's rational and selective

Page 8 of 36

8

168	imitation (Gergely et al., 2002; Want & Harris, 2001), would counter their tendency to
169	copy the majority, and majority-biased copying would not be detected. In contrast, in a
170	condition in which the majority <i>omits</i> the irrelevant action and the minority performs it,
171	we predicted majority-biased copying. We compared these results to those from a
172	condition representing the paradigm typically used in 'over-imitation' research:
173	unanimous demonstration of the irrelevant action. Here we predicted that the
174	unanimity of the demonstration would result in irrelevant action copying at similarly
175	high levels as previously reported (e.g., Horner & Whiten, 2005; Lyons et al., 2007). A
176	final condition, with no demonstration, provided the baseline level of irrelevant action
177	production. Thus, when demonstration of the irrelevant action was unanimous, we
178	expected it to be copied at high levels, but with anything less than unanimity we did not
179	expect high levels of 'over-imitation.'
180	Participants were provided with multiple (three) attempts at solving the puzzle
181	box, permitting an evaluation of children's initial tendency to copy and their tendency to
182	'stick with' performing the demonstrated actions after their own initial experience with
183	the task. We tested 4- to 6-year-olds, as children within this age range have developed
184	sensitivity to demonstrator frequency in other learning contexts (Haun et al., 2012;
185	Morgan et al., 2015; Wilks, Collier-Baker, & Nielsen, 2015), as well as an ability to
186	engage in rational and selective imitation (Gergely et al., 2002; Want & Harris, 2001),
187	and are considered prolific 'over-imitators' (Kenward, 2012; Lyons et al., 2007; Nielsen
188	& Tomaselli, 2010).

189	
190	Method
191	Participants and Materials
192	Two hundred and fifty-two 4- to 6-year-old children visiting UK science centers
193	(128 males; 4-year-olds: <i>M</i> = 4;5, range = 4;0 - 4;11; 5-year-olds: <i>M</i> = 5;6, range = 5;0 -
194	5;11; 6-year-olds: $M = 6$;5, range = 6;0 - 6;11) were included in the final sample. Eight
195	additional children were tested but excluded due to experimenter error (2), apparatus
196	failure (3), parental interference (2), and refusal to interact with the apparatus (1).
197	The 'Sweep-Drawer Box' (Wood, Kendal, & Flynn, 2013a; see Figure 1), a two-
198	action transparent apparatus, was used with minor modifications. Retrieval of a capsule
199	containing a sticker was dependent upon the capsule being moved to a sliding black
200	opaque door by one of two spatially separated and functionally independent
201	manipulandi: a silver sweeper with blue handle (Figure 1a), or a blue drawer with red
202	handle (Figure 1b). In some demonstrations, a causally irrelevant action (see Figure 1c),
203	involving the demonstrator twice sliding the black door open and closed, preceded use
204	of the sweep/drawer manipulandum.
205	
206	Design and Procedure
207	In a between-groups design, participants were randomly allocated to one of five
208	conditions (C1-C5). There were no significant differences in the distribution of age ($F(4, $
209	246)=0.26, p =.91) and approximately equal numbers of boys and girls in each condition.
210	In four experimental conditions (C1-C4, N=201), children watched a video showing four

211 female demonstrators (distinguished by colored shirts) retrieving the sticker capsule

212 from the apparatus in turn, before attempting capsule retrieval themselves three times.

RUNNING HEAD: Over-imitation and majority copying in children

	213	The fifth condition	(C5, N=51) served	as a non-social, baseline	control in which
--	-----	---------------------	-------------------	---------------------------	------------------

214 participants received no video demonstration.

215 The first experimental condition (*relevant actions only*: C1, N=51) investigated 216 whether children displayed majority-biased copying when choosing between two 217 causally relevant actions: sweep versus drawer retrieval. Children in this condition saw 218 the majority (three demonstrators) perform the alternate relevant action to the 219 minority person. In the remaining three experimental conditions, each child saw all four 220 demonstrators perform the same causally relevant action (i.e., sweep or drawer), but 221 the number of demonstrators who additionally performed the irrelevant action varied 222 between one (i.e., *minority irrelevant*: C2), three (i.e., *majority irrelevant*: C3), and four 223 (i.e., all irrelevant: C4) across conditions (see Table 1). The identity of the minority 224 demonstrator, order in which the minority and majority performed, and use of sweep 225 and drawer methods were counterbalanced within and between conditions. The 226 majority demonstrators always appeared consecutively, with the minority individual 227 demonstrating her method immediately before or after them. To control for 228 demonstration frequency, the three majority demonstrators retrieved the capsule once 229 each, while the minority individual demonstrated her method three times. 230 Children were tested individually in a screened–off area at the science center, 231 with parents sat at a distance. Each child chose a sticker, which the experimenter placed 232 inside the reward capsule before dropping it into the puzzle box. The child was told that 233 they had to get the capsule out of the box and then could keep the sticker. For the 234 experimental conditions (C1-4), the child was then shown a picture of the four 235 demonstrators and asked to watch a video showing them retrieving the sticker (see 236 supporting information S1 for a detailed procedural script).

RUNNING HEAD: Over-imitation and majority copying in children

237	Children were next told it was their turn to try to get the sticker out and were
238	free to approach the apparatus and interact with it until (i) the capsule had been
239	retrieved, (ii) 2 minutes had elapsed, or (iii) the child refused to continue. Participants
240	who retrieved the sticker at T1 were offered two further attempts (T2 and T3); between
241	trials the experimenter reset the apparatus out of sight while the child chose a new
242	sticker.

243 Children assigned to the *baseline* condition (C5) received the same initial

instructions and prompts as children in the experimental groups but watched no video.

All children who participated in the study received a sticker reward.

246

247 Coding and Analysis

248 Each participant was scored for three measures on each response trial: (i) 249 successful removal of the capsule, (ii) number of times they performed the irrelevant 250 action (sliding the door open and closed prior to operating the manipulandi), and (iii) 251 the manipulandum used during retrieval (sweep or drawer). The experimenter coded 252 100% of the sample from video records. An independent observer, blind to condition 253 and hypotheses, coded a random sample of 25%. Inter-observer reliability was 254 excellent: Chronbach's alpha = 0.99 for the number of irrelevant actions performed, and 255 Cohen's kappa = 1.00 for the two other measures. 256 All analyses were carried out in R version 3.1.3. Significance testing of main effects in regression models was undertaken using Likelihood-ratio (χ^2) tests, and 257 258 Tukey post-hoc comparisons were performed using the package *multcomp*. 259 Conventional binomial tests were used to assess whether copying was biased towards 260 the majority or minority behavior during a single response trial (i.e, differed from 261 chance level at e.g., T1). To assess whether children demonstrated an overall copying

RUNNING HEAD: Over-imitation and majority copying in children

262	bias across all response trials combined (i.e., data pooled across T1-T3), we adopted the
263	option-bias method (Kendal, Kendal, Hoppitt, & Laland, 2009), to account for within-
264	individual correlations in responses across trials (see supporting information S4). For
265	analyses of persistence in copying across trials, we computed a binary (yes/no)
266	measure of copying persistence to indicate whether children consistently reproduced
267	the demonstrated action in every response trial (i.e., performed it in T1, T2, and T3).
268	Two-tailed <i>p</i> values are reported throughout.
260	

- 269
- 270

Results

271 We present the results in three sections. First, we examine children's copying of 272 unanimous demonstrators. We then investigate the influence of the majority on 273 children's tendency to copy. Finally, we additionally examine the effect of demonstrator 274 unanimity on children's initial decisions to copy, and their tendency to persist with 275 performing the demonstrated actions across all trials. A descriptive overview of 276 irrelevant and relevant action copying for each trial in each condition can be found in 277 the supporting information; see Table S1. Throughout, preliminary analyses were 278 conducted to test for age, sex, and primacy effects (where applicable), and in most cases 279 no significant effects were found; the few exceptions are reported below. 280 First, to confirm the utility of social information to naïve children attempting the 281 task, we note that children who received a social demonstration (C1-4) were 282 significantly more successful at retrieving the reward at T1 (success rate = 100%) than 283 those (C5) who did not (six participants failed in C5: success rate = 88.2%; Fisher's 284 Exact Test, p < 0.001). All but three participants who retrieved the reward at T1 also did 285 so in T2 and T3.

287 **Copying When the Demonstrators Were Unanimous**

288 (i) Causally relevant actions. We pooled data across the three conditions in 289 which children saw all four demonstrators performing the same causally relevant action 290 (i.e., sweep or drawer retrieval, C2-C4 combined, N=150). Despite successful children in 291 the *baseline* condition showing a bias towards retrieval using the sweep manipulandum 292 (78% of all retrievals used sweep: Fisher's Exact Test, p<.001), children who saw a 293 unanimous demonstration showed a strong tendency to copy the relevant action they 294 had witnessed (92% copying across all trials combined [91% sweep, 93% drawer]: 295 Fisher's Exact Test, *p*<.001). A logistic generalized linear mixed model (GLMM) revealed 296 no significant effect of the method demonstrated (sweep vs. drawer), experimental 297 condition (C2-C4), trial number, or whether the child copied the irrelevant action, on 298 whether the relevant action was copied (see supporting information, Table S2).

299 (ii) Causally irrelevant action. Only 16% of children in the baseline condition 300 performed the irrelevant action on their first retrieval attempt (T1). By contrast, when 301 irrelevant actions were demonstrated unanimously (all irrelevant condition: C4), a 302 significantly larger percentage of children copied the irrelevant action at T1 (86%; 303 $\chi^2(1) = 51.60$, p<.001), consistent with our predictions and the high levels of irrelevant 304 action copying in previous studies (Horner & Whiten, 2005; Lyons et al., 2007). 305 Similarly, across all trials (T1-T3) combined, the percentage of children's responses in 306 the all irrelevant condition that included production of the irrelevant action (81%) was

307 significantly greater than in the baseline (9%; $\chi^2(1) = 167.83$, *p*<.001).

308

309 Majority-Biased Copying

310 (i) Causally relevant actions. Consistent with our predictions, Figure 2
311 demonstrates that at T1 children in the *relevant actions only* condition (C1: N=51)

14

312	copied the majority significantly above chance when faced with demonstrations of two
313	different, yet causally equivalent, relevant actions (binomial test: 76% copied majority,
314	±95% CI [62% – 87%], p<.001). Likewise, children in this condition continued to
315	demonstrate majority-biased copying when all responses across T1-T3 combined were
316	considered (<i>option bias test statistic</i> = 4.39; <i>p</i> <.001; majority: 73%, minority: 27%).
317	(ii) Causally irrelevant action. Participants were scored as demonstrating a
318	majority bias if they copied the majority's behavior with regard to omitting (<i>minority</i>
319	<i>irrelevant</i> ; C2) or performing (<i>majority irrelevant</i> ; C3) the irrelevant action. As expected,
320	there was a strong preference for the efficient majority solution in the <i>minority</i>
321	<i>irrelevant</i> condition at T1 (binomial test: 84% copied the majority, 95% CI [71%, 93%],
322	<i>p</i> <.001), that remained across T1-T3 combined (<i>option bias test statistic</i> = 7.70; <i>p</i> <.001;
323	majority: 85%, minority: 15%; see Figure 2).
324	In contrast, but in line with predictions, majority-biased copying was not
325	observed in the majority irrelevant condition at T1, where most children copied the
326	minority's omission of the irrelevant action (binomial test: 41% copied the majority,
327	95% CI [27% – 56%], p =.25). Majority-biased copying was also not observed across T1-
328	T3 combined, where most children continued to copy the minority person's more
329	efficient solution (<i>option bias test statistic</i> = 1.82; <i>p</i> <.08; majority: 39.5%, minority:
330	60.5%). Children in the <i>majority irrelevant</i> condition were influenced by the order in
331	which the majority and minority performed: they more often copied the demonstration
332	witnessed first (64% of all responses matched the solution demonstrated first: Fisher's
333	Exact Test, <i>p</i> <0.001).
334	

335 **Demonstrator Unanimity and Copying Persistence Across Trials**

336 Previous research suggests children persist with performing an irrelevant action 337 at high levels after observing a single demonstrator, despite hands-on experience of 338 task mechanics (Lyons et al., 2007; Wood et al., 2012). Children also typically persist in 339 performing a demonstrated relevant solution, even when other equally efficacious 340 solutions are discoverable (Wood et al., 2013a). Here we additionally examined the 341 effects of demonstrator unanimity on both initial copying (in T1), and on children's 342 persistence with the demonstrated method across all trials (T1-T3; i.e., children 343 performed this action in each of the three response trials). 344 (i) Unanimous demonstrators. Within the all irrelevant condition (C4), where

both causally relevant and irrelevant actions were demonstrated unanimously, the level of irrelevant action copying (86%) did not differ significantly from the high level of causally relevant action copying (96%) at T1 (McNemar Test: $\chi^2(1) = 1.78$, *p*=.18). However, in contrast, children were less likely to persist with the irrelevant action in each of the three trials (T1-T3) (70%) than the relevant action (92%; McNemar Test:

350 $\chi^2(1) = 5.88$, *p*=.02), suggesting that fidelity erodes more quickly for irrelevant actions.

351 (ii) Causally relevant actions. We compared the behavior of children who 352 witnessed a unanimous demonstration of the causally relevant action (i.e., sweep or 353 drawer retrieval, C2-C4 combined, N=150) with that of children who witnessed a less-354 than-unanimous majority (*causal actions only*, C1, N=51). Children were significantly 355 more likely to adopt the relevant action at T1 when it was unanimously demonstrated 356 than when it was demonstrated by a less-than-unanimous majority (Unanimous=96%, 357 Not Unanimous= 76%: $\chi^2(1)$ =8.32, *p*<.004), and were also more likely to persist with 358 copying the unanimous demonstration across T1-T3 (Unanimous=89%, Not 359 Unanimous= 63%: $\chi^2(1)$ =16.91, *p*<.001). Thus, children were more likely to both

360	adopt and persist with the majority action when the demonstration was unanimous
361	compared to when it was not unanimous.

362	(iii) Causally irrelevant actions. Logistic regression models, including
363	participants' sex and age, were used to examine the effect of demonstrator unanimity on
364	children's copying of the irrelevant action. The baseline condition was included for
365	comparison in analyses of children's initial copying of irrelevant actions in T1 (C2-C5,
366	N=201), but dropped from analyses of their persistence in copying the irrelevant action
367	across trials (T1-T3; C2-C4, N=150) as it lacked the variation required to fit a logistic
368	regression (i.e., no children in the <i>baseline</i> condition performed the irrelevant action in
369	all trials).
370	The frequency of demonstrators performing the irrelevant action strongly
371	influenced both children's initial copying of it in T1 (GLM: $\chi^2(3)$ =81.20, p<.001), and
372	their persistence with it across T1-T3 (GLM: $\chi^2(2) = 51.19$, <i>p</i> <.001). Pairwise
373	comparisons between conditions (see Figure 3 and Table 2) revealed that levels of
374	initial and persistent irrelevant action copying decreased sharply from unanimous
375	demonstration (all irrelevant: T1: 86%, T1-T3: 70%) to non-unanimous demonstration
376	of the irrelevant action, including when the irrelevant action was demonstrated by the
377	majority (<i>majority irrelevant:</i> T1: 41%, T1-T3: 21%). There was a further sharp
378	reduction in children's initial (T1) copying of the irrelevant action when the number of
379	demonstrators performing the irrelevant action dropped from three (majority
380	<i>irrelevant</i> : 41%) to just one (<i>minority irrelevant</i> : 14%) out of four, although this initial
381	difference did not remain significant when we considered children's persistence in
382	performing the irrelevant action across T1-T3. Thus, when the demonstrators were not
383	unanimous, children were influenced by the number of demonstrators who performed
384	the irrelevant action at T1, but this did not translate into differences in persistence with

RUNNING HEAD: Over-imitation and majority copying in children

385	the causally irrelevant behavior across trials. Comparisons of irrelevant action
386	production with the <i>baseline</i> condition (16%) revealed that the percentage of children
387	who performed the irrelevant action at T1 did not increase when it was demonstrated
388	by the minority (<i>minority irrelevant</i>), but increased sharply when demonstrated by a
389	non-unanimous (<i>majority irrelevant</i>) or unanimous majority (all irrelevant).
390	Across conditions (C2-C5) children's age correlated negatively with irrelevant
391	action performance at T1, such that older children produced fewer irrelevant actions
392	(Table 2; supporting information Figure S1). However, the negative effect of age on
393	irrelevant action copying (in conditions C2-C4) in T1 was confined to conditions in
394	which the irrelevant action was not unanimously demonstrated (i.e., the majority
395	irrelevant and minority irrelevant conditions), and was still significant following
396	removal of the <i>all irrelevant</i> and <i>baseline</i> conditions from the analysis (C2-C3, $Z = -2.04$,
397	Odds ratio = 0.95, <i>p</i> =.041, N=100). By contrast, children's age had no significant effect
398	on persistence in copying the irrelevant action across T1-T3, even when the analysis
399	was confined to conditions with non-unanimous demonstration of the irrelevant action.
400	Thus the initial (T1) tendency for increased copying of the efficient solution in older
401	children was not maintained across repeated trials.
402	Although there was no effect of sex on children's initial performance of the
403	irrelevant action (T1), boys were less likely to persist with the irrelevant action (T1-T3)
404	than girls (Table 2). Follow-up analysis revealed no interaction effect between sex and
405	age.
406	
407	Discussion
408	The results presented here contribute an important new perspective to our
409	understanding of human cultural transmission, and in particular to work on both 'over-

18

RUNNING HEAD: Over-imitation and majority copying in children

410	imitation' and majority-biased copying. The findings provide direct evidence that
411	adaptive learning biases are implemented more flexibly than previously thought, and
412	are substantially altered by both the social context (unanimity of demonstrators) and
413	the type of actions demonstrated (causally relevant vs. irrelevant). As expected, we
414	found that the previously reported pervasiveness of 'over-imitation' (Chudek et al.,
415	2016; Horner & Whiten, 2005; Lyons et al., 2007; McGuigan et al., 2011; Nielsen &
416	Tomaselli, 2010) is substantially diminished in the more real-world situation of non-
417	unanimous demonstrations, and that majority-biased copying did not extend to
418	majorities who performed irrelevant actions, despite being detected in all instances
419	where the majority performed a causally efficient task solution. Rather than
420	representing a 'puzzling' and 'mindless' peculiarity of human imitation, or a "copy-all,
421	correct-later" strategy (Chudek et al., 2016; Whiten et al., 2009), our data suggest that
422	the occurrence of so-called 'over-imitation' instead fits with the operation of a highly
423	flexible, selective, and adaptive high-fidelity copying mechanism in our species.
424	

425 Irrelevant Action Copying

426 In line with previous research (Horner & Whiten, 2005; Lyons et al., 2007), 427 children copied the irrelevant action at high levels when it was demonstrated 428 unanimously, despite the instrumental framing of our task. Our experimental design 429 offers some insight regarding the competing hypotheses proposed to explain why 430 children and adults copy irrelevant information at such high levels in this context. For 431 instance, it is unlikely that children in the all irrelevant condition blindly copied the 432 irrelevant action as causally necessary (Lyons et al., 2011, 2007), as explanations based 433 solely on assumptions about causal understanding imply that once the redundancy of 434 the irrelevant action has been demonstrated (i.e., at least one demonstrator omits the

435	irrelevant action), children should not show sensitivity to the relative frequency of
436	demonstrators performing or omitting the irrelevant actions. However, demonstrator
437	frequency did influence children's irrelevant action copying in our study: children were
438	more likely to perform the irrelevant action in the <i>majority irrelevant</i> than <i>minority</i>
439	<i>irrelevant</i> condition. The low level of irrelevant action production in the <i>baseline</i>
440	condition further implies that causal understanding of what was and was not required
441	to extract the reward was not problematic for participants in any of the age groups.
442	Considered together, these findings suggest that children's copying was influenced not
443	by causal understanding but by demonstrator behavior.
444	Older children (age 6) were less likely to copy irrelevant actions at T1 than
445	younger children (age 4), but only where irrelevant actions were not demonstrated
446	unanimously. Previous studies in which the irrelevant action was demonstrated
447	unanimously have found that irrelevant action copying increases with age (McGuigan et
448	al., 2011, 2007; Nielsen & Tomaselli, 2010). A plausible explanation for these combined
449	findings is that unanimous demonstrations generate normative pressures to copy
450	behavior as the 'way it is done,' despite the child's knowledge that it is causally
451	unnecessary, which increases with age (Moraru, Gomez, & McGuigan, 2016). (Note that
452	this amounts in effect to a sort of group-level rational imitation: If everyone does it this
453	way, there must be a good reason for it.) However, when demonstrators vary in their
454	performance of the irrelevant action, as in our study, the pressure to conform is
455	substantially reduced and becomes increasingly undermined by age-related increases in
456	discarding the majority behavior for more accurate or reliable behavior (Einav, 2014;
457	Seston & Kelemen, 2014).

RUNNING HEAD: Over-imitation and majority copying in children

458

459 Majority-Biased Copying

460 These results provide strong evidence that while young children do use majority 461 behavior as a heuristic to guide instrumental learning, they are able to do so flexibly, 462 calibrating their decision-making according to additional cues, such as the majority's 463 perceived efficiency. Wilks et al. (2015) found that children were more likely to copy a 464 successful minority than an unsuccessful majority, despite being more likely to copy the 465 majority when both the majority and minority solutions were equally successful. Here 466 we extended Wilks and colleagues' investigation to superfluous behavior that did not 467 result in goal failure, using a different measure of majority copying that allows us to 468 make additional inferences about the cultural evolution of so-called 'over-imitation'. 469 Majority-biased copying (regarded as a key strategy for acquiring safe and effective 470 behavior; Boyd & Richerson, 1985; Wolf et al., 2013) was strongest when the majority 471 demonstrated the inefficiency of the minority's irrelevant action, and did not extend to a 472 majority that performed irrelevant actions. Thus, children do not blindly follow the 473 crowd.

474 While some evidence for majority-biased transmission has been observed in 475 other species (notably non-human primates; Haun et al., 2012), it remains untested 476 whether nonhuman animals are able to calibrate majority-biased copying according to 477 additional cues such as the efficiency of the majority's behavior. It is plausible that 478 humans' ability to adjust adaptive learning heuristics flexibly and selectively – such as 479 their tendency to follow the crowd – in concert with their remarkable ability to engage 480 in high-fidelity copying, has played a major evolutionary role in the generation of our 481 species' remarkable cultural prowess relative to nonhuman animals.

RUNNING HEAD: Over-imitation and majority copying in children

21

482

483 Implications for Cultural Evolution

484 Cultural evolutionary theory states that a behavioral trait must be copied at 485 levels proportional to the trait in the population if the trait is to be maintained at its 486 current levels (Boyd & Richerson, 1985). Our data therefore suggest that majority-487 biased copying could potentially stabilize functionally relevant behaviors within a 488 population over time, but not behaviors that contain functionally redundant 489 information. That is, most participants who witnessed the majority perform an 490 irrelevant action copied the minority's more efficient solution, both at T1 and across all 491 three trials combined. Additionally, participants who saw the majority performing the 492 irrelevant action were not more likely to persist in performing it across trials than those 493 who saw it performed by the minority. Moreover, there was a strong bias towards 494 copying a majority who demonstrated greater behavioral efficiency over a minority, and 495 children showed a greater tendency to reproduce the causally relevant than causally 496 irrelevant action across trials following unanimous demonstration. 497 Taken together, our findings imply that without additional reinforcement of the 498 irrelevant action (e.g., sanctions, punishments, explicit teaching, or other normative or 499 social pressures), majority behavior containing functionally redundant information will 500 rapidly evolve to a more efficient solution (i.e., irrelevant action omission), which would

501 likely continue to increase towards fixation. However, by adding ritualistic or normative

502 contextual cues (Clegg & Legare, 2016; Fusaro & Harris, 2008; Herrmann et al., 2013;

Legare & Nielsen, 2015) or providing clear social functions (Nielsen & Blank, 2011; Over

504 & Carpenter, 2012) to causally irrelevant actions in unanimous and non-unanimous

505 demonstrations, a different pattern of results, and possibly majority-biased copying of

Page 22 of 36

22

RUNNING HEAD: Over-imitation and majority copying in children

irrelevant actions, might emerge, clarifying further what triggers causally irrelevant	

507 action copying.

506

508	We also anticipate that had the causally irrelevant action in our study		
509	encompassed more substantial efficiency costs, we would have observed lower rates of		
510	irrelevant action copying and faster rates of erosion over time; a suggestion consistent		
511	with the findings of Keupp et al. (2016). Varying the ratio of majority versus minority		
512	demonstrators who performed the irrelevant action (for example 25:1 instead of 3:1),		
513	would also plausibly affect the rate of erosion, as would manipulating the relative age		
514	(Wood et al., 2012), group membership (Oostenbroek & Over, 2015), or status		
515	(McGuigan, 2013; though see Chudek et al., 2016) of the demonstrators. Examining the		
516	interaction of different types of learning biases in irrelevant action copying is an area		
517	ripe for future research.		

518

519 **Conclusions**

520 To our knowledge, we present the first evidence that young children flexibly and 521 adaptively adopt a majority-biased learning strategy when faced with an instrumental 522 learning goal and the opportunity to integrate social information from multiple 523 individuals. Majority-biased copying did not extend to causally inefficient and irrelevant 524 actions, despite these being copied at high levels when demonstrated unanimously. 525 Akin to the findings of Asch (1956) with adults, when just one individual dissented from 526 the majority, 'over-imitation' plummeted. Thus, our data suggest that the presence of 527 causally irrelevant actions might substantially alter the operation of adaptive learning 528 biases. This finding has obvious implications for cultural evolutionary theory; namely 529 that causally irrelevant, and potentially costly, actions are unlikely to be maintained in 530 causal or instrumental real-world contexts where behavioral traits are often not

RUNNING HEAD: Over-imitation and majority copying in children

531	exhibited unanimously. Rather, in many – perhaps most – circumstances, socially-
532	transmitted behavior is expected to evolve towards efficient solutions.
533	An easily envisaged exception to this expectation is when instances of copying
534	causally irrelevant actions serve social, ritualistic or normative purposes. As children
535	showed sensitivity to the degree of unanimity in demonstrator behavior, our findings
536	provide support for the operation of socially-driven motivations, and explanations, in
537	causally irrelevant action copying. However, we suggest that the term 'over-imitation' is
538	inaccurate and misleading when copying of causally irrelevant actions encompasses
539	socially functional properties, as their performance in this instance no longer
540	represents puzzling or irrational behavior. To the contrary, our findings illustrate a
541	flexible, and highly functional, integration of social learning strategies, through which
542	individuals combine social and non-social sources of information to home in rapidly on
543	the relevant actions in instrumental tasks, while remaining sensitive to the social
544	functions of imitation. This suggests that our species might more accurately be cast as
545	broadly 'optimal' rather than 'over'-imitators.
546	
547	Ethics statement. Full ethical approval for this study was provided by UTREC of the
548	University of St Andrews, and informed consent was obtained for all participants.
549	
550	Author contributions. CLE conceived and designed the study, carried out the data
551	collection, analyses, and drafted the manuscript. RLK participated in the design of the
552	study. RLK, KNL and MC helped interpret the data and revise the manuscript. All
553	authors gave final approval for publication.
554	

554

555 **Competing interests.** We declare no competing interests.

RUNNING HEAD: Over-imitation and majority copying in children

556

- 557 **Acknowledgements**. We thank the science centers (The Centre for Life, Newcastle;
- 558 Dundee Science Centre and Glasgow Science Centre) and children who participated in
- this study, as well as E. Burdett, E. Flynn, A. Lucas, S. Jujjavarapu, L. Wood, A. Whiten and
- 560 A. Thornton. This research was supported by an ERC Advanced Investigator grant
- 561 (EVOCULTURE, Ref: 232823) awarded to KNL, and a BBSRC studentship awarded to
- 562 CLE.

563

564

566	References		
567	Asch, S. E. (1956). Studies of independence and conformity: I. A minority of one against		
568	a unanimous majority. Psychological Monographs: General and Applied, 70(9), 1.		
569	Birch, S. A. J., Vauthier, S. A., & Bloom, P. (2008). Three- and four-year-olds		
570	spontaneously use others' past performance to guide their learning. Cognition,		
571	107(3), 1018–34.		
572	Boyd, R., & Richerson, P. J. (1985). Culture and the evolutionary process. University of		
573	Chicago Press.		
574	Carpenter, M., Akhtar, N., & Tomasello, M. (1998). Fourteen- through 18-month-old		
575	infants differentially imitate intentional and accidental actions. Infant Behavior and		
576	Development, 21(2), 315–330.		
577	Carpenter, M., Call, J., & Tomasello, M. (2005). Twelve- and 18-month-olds copy actions		
578	in terms of goals. <i>Developmental Science</i> , 8(1), F13-20.		
579	Chudek, M., Baron, A. S., & Birch, S. (2016). Unselective overimitators: The evolutionary		
580	implications of children's indiscriminate copying of successful and prestigious		
581	models. Child Development, 87(3), 782–794.		
582	Clegg, J. M., & Legare, C. H. (2016). Instrumental and conventional interpretations of		
583	behavior are associated with distinct outcomes in Early Childhood. Child		
584	Development, 87(2), 527–542.		
585	Corriveau, K. H., Fusaro, M., & Harris, P. L. (2009). Going with the flow: preschoolers		
586	prefer nondissenters as informants. <i>Psychological Science</i> , 20(3), 372–7.		
587	Coultas, J. C. (2004). When in Rome An evolutionary perspective on conformity. Group		
588	Processes & Intergroup Relations, 7(4), 317–331.		
589	Csibra, G., & Gergely, G. (2006). Social learning and social cognition: The case for		
590	pedagogy. In Y. Munakata & M. Johnson (Eds.), Processes of Change in Brain and		

- 591 *Cognitive Development* (pp. 249–274). Oxford: Oxford University Press.
- 592 Dean, L. G., Kendal, R. L., Schapiro, S. J., Thierry, B., & Laland, K. N. (2012). Identification
- 593 of the social and cognitive processes underlying human cumulative culture. *Science*,
- *335*(6072), 1114–1118.
- Einav, S. (2014). Does the majority always know best? Young children's flexible trust in
 majority opinion. *PloS One*, *9*(8), e104585.
- Fusaro, M., & Harris, P. L. (2008). Children assess informant reliability using bystanders'
 non-verbal cues. *Developmental Science*, *11*(5), 771–7.
- 599 Gergely, G., Bekkering, H., & Király, I. (2002). Rational imitation in preverbal infants.
- 600 *Nature*, 415(6873), 755.
- Haun, D. B. M., Rekers, Y., & Tomasello, M. (2012). Majority-biased transmission in
- chimpanzees and human children, but not orangutans. *Current Biology*, 22(8), 727–
 731.
- Herrmann, P. A, Legare, C. H., Harris, P. L., & Whitehouse, H. (2013). Stick to the script:
- The effect of witnessing multiple actors on children's imitation. *Cognition*, 129(3),
 536–43.
- 607 Horner, V., & Whiten, A. (2005). Causal knowledge and imitation/emulation switching in
- 608 chimpanzees (Pan troglodytes) and children (Homo sapiens). *Animal Cognition*,
 609 8(3), 164–181.
- Kandler, A., & Laland, K. N. (2013). Tradeoffs between the strength of conformity and
 number of conformists in variable environments. *Journal of Theoretical Biology*,
- *332*, 191–202.
- Kendal, R. L., Kendal, J. R., Hoppitt, W., & Laland, K. N. (2009). Identifying social learning
 in animal populations: a new "option-bias" method. *PloS One*, 4(8), e6541.
- 615 Kenward, B. (2012). Over-imitating preschoolers believe unnecessary actions are

- 616 normative and enforce their performance by a third party. *Journal of Experimental*
- 617 *Child Psychology*, *112*(2), 195–207.
- 618 Kenward, B., Karlsson, M., & Persson, J. (2011). Over-imitation is better explained by
- 619 norm learning than by distorted causal learning. *Proceedings. Biological Sciences /*
- 620 *The Royal Society*, *278*(1709), 1239–46.
- 621 Keupp, S., Bancken, C., Schillmöller, J., Rakoczy, H., & Behne, T. (2016). Rational over-
- 622 imitation: Preschoolers consider material costs and copy causally irrelevant actions
 623 selectively. *Cognition*, 147, 85–92.
- 624 Keupp, S., Behne, T., Zachow, J., Kasbohm, A., & Rakoczy, H. (2015). Over-imitation is not
- automatic: Context sensitivity in children's overimitation and action interpretation
- 626 of causally irrelevant actions. Journal of Experimental Child Psychology, 130, 163–
- 627 175.
- Laland, K. N. (2004). Social learning strategies. *Learning & Behavior*, 32(1), 4–14.
- 629 Legare, C. H., & Nielsen, M. (2015). Imitation and innovation: The dual engines of
- 630 cultural learning. *Trends in Cognitive Sciences*, *19*(11), 688–99.
- 631 Legare, C. H., Wen, N. J., Herrmann, P. A., & Whitehouse, H. (2015). Imitative flexibility
- and the development of cultural learning. *Cognition*, *142*, 351–361.
- 633 Lyons, D. E., Damrosch, D. H., Lin, J. K., Macris, D. M., & Keil, F. C. (2011). The scope and
- 634 limits of overimitation in the transmission of artefact culture. *Philosophical*
- 635 Transactions of the Royal Society of London. Series B, Biological Sciences, 366(1567),
- 636 1158–67.
- 637 Lyons, D. E., Young, A. G., & Keil, F. C. (2007). The hidden structure of overimitation.
- 638 Proceedings of the National Academy of Sciences of the United States of America,
- 639 *104*(50), 19751–6.
- 640 McGuigan, N. (2013). The influence of model status on the tendency of young children to

RUNNING HEAD: Over-imitation and majority copying in children

- 641 over-imitate. *Journal of Experimental Child Psychology*, *116*(4), 962–9.
- 642 McGuigan, N., Makinson, J., & Whiten, A. (2011). From over-imitation to super-copying:
- adults imitate causally irrelevant aspects of tool use with higher fidelity than young
 children. *British Journal of Psychology*, *102*(1), 1–18.
- 645 McGuigan, N., & Robertson, S. (2015). The influence of peers on the tendency of 3- and
- 646 4-year-old children to over-imitate. *Journal of Experimental Child Psychology*, 136,
- 647 42–54.
- 648 McGuigan, N., Whiten, A., Flynn, E., & Horner, V. (2007). Imitation of causally opaque
- 649 versus causally transparent tool use by 3- and 5-year-old children. *Cognitive*650 *Development*, 22(3), 353–364.
- 651 Meltzoff, A. N. (2007). "Like me": a foundation for social cognition. *Developmental*
- 652 *Science*, *10*(1), 126–34.
- 653 Moraru, C.-A., Gomez, J.-C., & McGuigan, N. (2016). Developmental changes in the
- influence of conventional and instrumental cues on over-imitation in 3- to 6-year-

old children. *Journal of Experimental Child Psychology*, 145, 34–47.

- Morgan, T. J. ., Laland, K. N., & Harris, P. L. (2015). The development of adaptive
- 657 conformity in young children: effects of uncertainty and consensus. *Developmental*658 *Science*, 18(4), 511–24.
- Morgan, T. J. H., Rendell, L. E., Ehn, M., Hoppitt, W., & Laland, K. N. (2012). The
- evolutionary basis of human social learning. *Proceedings of the Royal Society B: Biological Sciences*, 279(1729), 653–62.
- 001 *biological sciences*, 275(1725), 035-02.
- Nielsen, M., & Blank, C. (2011). Imitation in young children: when who gets copied is
- 663 more important than what gets copied. *Developmental Psychology*, 47(4), 1050–3.
- Nielsen, M., Mushin, I., Tomaselli, K., & Whiten, A. (2015). Where culture takes hold:
- 665 "overimitation" and its flexible deployment in Western, Aboriginal, and Bushmen

- 666 children. *Child Development*, *85*(6), 2169–84.
- Nielsen, M., & Tomaselli, K. (2010). Overimitation in Kalahari Bushman children and the
 origins of human cultural cognition. *Psychological Science*, *21*(5), 729–36.
- 669 Oostenbroek, J., & Over, H. (2015). Young children contrast their behavior to that of out-
- 670 group members. *Journal of Experimental Child Psychology*, 139, 234–241.
- 671 Over, H., & Carpenter, M. (2012). Putting the social into social learning: explaining both
- selectivity and fidelity in children's copying behavior. *Journal of Comparative Psychology*, *126*(2), 182–92.
- 674 Over, H., & Carpenter, M. (2013). The social side of imitation. *Child Development*
- 675 *Perspectives*, 7(1), 6–11.
- 676 Rendell, L., Fogarty, L., Hoppitt, W. J. E., Morgan, T. J. H., Webster, M. M., & Laland, K. N.
- 677 (2011). Cognitive culture: Theoretical and empirical insights into social learning
 678 strategies. *Trends in Cognitive Sciences*, *15*(2), 68–76.
- 679 Seston, R., & Kelemen, D. (2014). Children's conformity when acquiring novel
- conventions: The case of artifacts. *Journal of Cognition and Development*, 15(4),
 569–583.
- Tomasello, M. (1999). *The cultural origins of human cognition*. Cambridge, MA: Harvard
 Univ Press.
- Want, S. C., & Harris, P. L. (2001). Learning from other people's mistakes: causal
- understanding in learning to use a tool. *Child Development*, 72(2), 431–43.
- 686 Whiten, A., McGuigan, N., Marshall-Pescini, S., & Hopper, L. M. (2009). Emulation,
- 687 imitation, over-imitation and the scope of culture for child and chimpanzee.
- 688 Philosophical Transactions of the Royal Society of London. Series B, Biological
- 689 *Sciences*, *364*(1528), 2417–28.
- 690 Wilks, M., Collier-Baker, E., & Nielsen, M. (2015). Preschool children favor copying a

RUNNING HEAD: Over-imitation and majority copying in children

- 691 successful individual over an unsuccessful group. *Developmental Science*, 18(6),
- 6921014–1024.
- 693 Wolf, M., Kurvers, R. H. J. M., Ward, A. J. W., Krause, S., & Krause, J. (2013). Accurate
- 694 decisions in an uncertain world: collective cognition increases true positives while
- 695 decreasing false positives. *Proceedings of the Royal Society B: Biological Sciences*,
- *280*(1756), 2777.
- 697 Wood, L. A., Kendal, R. L., & Flynn, E. G. (2012). Context-dependent model-based biases

698 in cultural transmission: children's imitation is affected by model age over model
699 knowledge state. *Evolution and Human Behavior*, *33*(4), 387–394.

- 700 Wood, L. A., Kendal, R. L., & Flynn, E. G. (2013a). Copy me or copy you? The effect of
- 701 prior experience on social learning. *Cognition*, *127*(2), 203–13.
- Wood, L. A., Kendal, R. L., & Flynn, E. G. (2013b). Whom do children copy? Model-based
 biases in social learning. *Developmental Review*, *33*(4), 341–356.

Tables and figures

Condition	Majority solution (3 demonstrators)	Minority solution (1 demonstrator)	Ν
(C1) Causal actions only	All retrieve using the same relevant action (sweep OR drawer)	Retrieves using the alternate relevant action	51
(C2) Minority irrelevant	All retrieve using the same relevant action (sweep OR drawer) only	Performs irrelevant action then retrieves using the same relevant action as the majority	51
(C3) Majority irrelevant	All perform the irrelevant action before retrieval. All use the same relevant action (sweep OR drawer)	Retrieves using the same relevant action as the majority, without performing the irrelevant action	49
(C4) All irrelevant	All demonstrators perform the irrelevant action before retrieval. All use the same relevant action (sweep OR drawer)		50
(C5) Baseline	No demonstration		51

Table 1. Overview of the Demonstration and Baseline Conditions

RUNNING HEAD: Over-imitation and majority copying in children

Table 2 . The Effects of Experimental Condition and Age on Whether the Irrelevant Action
was Performed at T1 (C2 - C5), and Persistently Across T1-T3 (C2-C4)

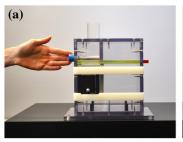
Model parameters	Pairwise comparisons	Estimate (S.E.)	Odds ratio
<u>Model T1</u>			
Intercept		0.66(1.21) ^{NS} 2.25(0.51) ^{***} 3.81(0.60) ^{***} 3.81(0.60) ^{***}	
×	All (C4) – Majority (C3)	2.25(0.51)****	9.49
	All (C4) – Minority (C2)	$3.81(0.60)^{***}$	45.15
Condition ^a	All (C4) – Baseline (C5)	$3.81(0.60)^{***}$	45.15
	Baseline (C5) – Minority (C2)	$-0.005(0.58)^{13}$	1.00
	Majority (C3) – Minority (C2)	1.56(0.51)	4.76
– h	Majority (C3) – Baseline (C5)	1.56(0.51)*	4.76
Participant's age ^b		-0.04(0.02)*	0.96
Participant's sex ^c		-0.33(0.37)	0.72
Total model:	$R^2 = 0.46$ (Nagelkerke), $\chi^2(5) = 84.41$, p<.001		
Model T1-T3			
Intercept	-0.71(1.48)		
Condition ^a	All (C4) – Minority (C2)	$3.48(0.63)^{***}$	32.57
Condition	All $(C4)$ – Millority $(C2)$ All $(C4)$ – Majority $(C3)$	3.48(0.63) ^{***} 2.18(0.48) ^{***}	52.57 8.87
	Majority (C3) – Minority (C2)	$1.30(0.63)^{NS}$	3.67
Participant's age ^b	initiation (05) initiation (02)	$-0.02(0.02)^{NS}$	0.98
Participant's sex ^c		$-1.01(0.44)^*$	0.37
Total model:	R^2 = 0.43 (Nagelkerke), $\chi^2(4)$ = 55.76, p<.001		

^a Categorical variable (see Table 1); ^b Numeric variable (age in months); ^c Dichotomous variable (0 = female, 1 = male); ^{NS} p>.05; * p<.05; ***p<.001

List of figure legends

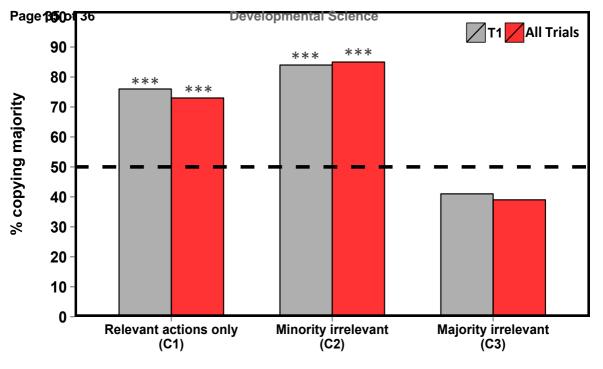
Figure 1a – c. The Sweep-Drawer Box. Demonstrator Releasing the Capsule by Pushing the Sweep Manipulandum (a), or Pulling the Drawer Manipulandum (b). Demonstrator Performing the Irrelevant Action on the Door Prior to Capsule Release (c).

Figure 2. Percentage of Participants Copying the Majority Behavior (Chance Level Copying Indicated by Dashed Line) at T1 and Across All Three Trials Combined (Collapsed Across Age Groups, C1- C3)

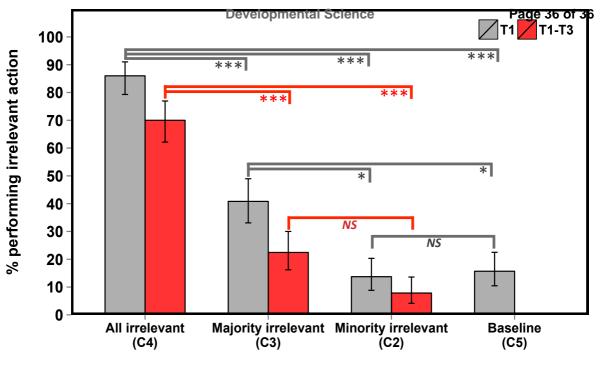

<insert Figure 2 >

****p*<.001

Figure 3. Percentage of Participants Performing the Irrelevant Action at T1 and Persistently Across T1-T3 (Collapsed Across Age Groups, C2-C5)


<insert Figure 3>

***p<.001, *p<.05, ^{NS}p>.05. Comparisons with baseline were made at T1 only. Binomial standard errors.



Condition

Condition