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We study theoretically the edge fracture instability in sheared complex fluids, by means of linear stability
analysis and direct nonlinear simulations. We derive an exact analytical expression for the onset of edge
fracture in terms of the shear-rate derivative of the fluid’s second normal stress difference, the shear-rate
derivative of the shear stress, the jump in shear stress across the interface between the fluid and the outside
medium (usually air), the surface tension of that interface, and the rheometer gap size. We provide a full
mechanistic understanding of the edge fracture instability, carefully validated against our simulations.
These findings, which are robust with respect to choice of rheological constitutive model, also suggest a
possible route to mitigating edge fracture, potentially allowing experimentalists to achieve and accurately
measure flows stronger than hitherto possible.
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Rheology is the study of the deformation and flow of
matter. In the most common rheological experiment, a
sample of complex fluid—e.g., polymer, surfactant, or
colloid—is sandwiched between plates and sheared
(Fig. 1). Plotting the steady-state shear stress σ as a function
of imposed shear rate _γ then gives the flow curve σð_γÞ, which
plays a central role in characterizing any fluid’s flow
response. Almost ubiquitously encountered beyond a certain
(material and device dependent) shear rate, however, is the
phenomenon of edge fracture: the free surfacewhere the fluid
sample meets the outside air destabilizes (Fig. 1, right),
rendering accurate rheological measurement impossible.
This has been studied experimentally in Refs. [1–7] and
cited as “the limiting factor in rotational rheometry” [6].
From a fluid-mechanical viewpoint, it is an important
example of a hydrodynamic instability in free surface
viscoelastic flow [3,8,9].
Despite this ubiquity, edge fracture remains poorly

understood theoretically. Important early papers by
Tanner and co-workers [10,11] predicted it to occur for
a critical magnitude jN2ð_γÞj > Γ=R of the second normal
stress difference N2 in the fluid (we define N2 below),
given a surface tension Γ of the fluid-air interface and an
assumed geometrical length scale R. This prediction was
based on some key assumptions that will in fact prove
inconsistent with our simulations. Taken as a scaling
argument, however, it showed remarkable early insight.
The contributions of this Letter are fourfold. First, we

show that the threshold for the onset of edge fracture is in
fact set by ΔσjN2j0ð_γÞ=σ0ð_γÞ > 2πΓ=Ly, where prime
denotes differentiation with respect to _γ, Δσ is the jump
in shear stress across the interface between the fluid and the
outside air, and Ly is the gap size. (For a note on signs, see
[12].) For low flow rates and negligible air viscosity, setting
also R ¼ Ly, Tanner’s prediction happens to equal ours to
within an Oð1Þ factor, despite containing fundamentally

different physics. Second, we offer the first mechanistic
understanding of edge fracture. Third, we predict the
growth rate at which it develops for any imposed shear
rate. Finally, we suggest a recipe by which it might be
mitigated, potentially enabling experimentalists to achieve
flows stronger than hitherto possible.
Our approaches comprise linear stability analysis and

direct nonlinear simulation. At low shear rates in a simplified
theoretical geometry [13], defined below, we obtain exact
expressions for the threshold, eigenvalue, and eigenfunction
for the onset of edge fracture, and show these to agree with
counterpart nonlinear simulations. We further show this
simplified geometry to closely predict onset in the exper-
imentally realizable geometry of shear between plates.
As shown in Fig. 1 (right), we consider a planar slab of

fluid sheared at rate _γ with flow direction x̂ and flow-
gradient direction ŷ. For a small cone angle and large radius
in the flow cell sketched in Fig. 1 (left), which is usually the
case experimentally, this planar cartoon provides an excel-
lent approximation. The edges of the sample in the vorticity
direction ẑ are in contact with the air, with a sample length
in that direction (initially, at the cell midheight y ¼ 0)

FIG. 1. Left: Schematic of a cone and plate device. Right:
Snapshots from full nonlinear simulations of the Giesekus
model between hard walls. _γτ ¼ 1.0, θ ¼ 90°, α ¼ 0.4, and
ηa=Gτ ¼ 0.01.
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denoted Λ. We assume translational invariance in x̂,
performing two-dimensional simulations in the y − z plane.
Our simulation box has length Lz and periodic boundary
conditions in z. Only its left half is shown in Fig. 1.
In the y direction we consider two different kinds of

boundary condition. The first models the experimentally
realizable case of shear between hard walls at y ¼ �Ly=2,
with no slip or permeation. The second gives the simplified
biperiodic Lees-Edwards geometry, in which all quantities
repeat periodically across shear-mapped points on the
boundaries of box copies stacked in y, but with adjacent
copies moving relative to each other at velocity _γLyx̂. Our
numerically obtained threshold for the onset of edge
fracture will prove in excellent agreement between these
two. The simplified geometry allows analytical progress
that is otherwise prohibitive.
The total stress T in any fluid element comprises an

isotropic contribution −pI with pressure p, a Newtonian
solvent contribution of viscosity ηs, and a viscoelastic
contribution Σ from the complex fluid (polymer chains,
emulsion droplets, etc.), with a scale set by a constant
modulus G. We assume creeping flow conditions,
giving the force balance condition ∇ · T ¼ 0, and there-
fore ηs∇2v þ∇ · Σ −∇p ¼ 0 inside the fluid and
ηa∇2v −∇p ¼ 0 in the air, with air viscosity ηa. The
pressure field pðr; tÞ is determined by enforcing incom-
pressibility, with the flow velocity vðr; tÞ obeying∇ · v ¼ 0.
The dynamics of Σ is determined by a viscoelastic con-
stitutive equation of the form

∂tΣþ v ·∇Σ ¼ 2GDþ fðΣ;∇vÞ − 1

τ
gðΣÞ; ð1Þ

where D ¼ 1
2
ð∇v þ∇vTÞ. The first two terms on the rhs

capture the loading of viscoelastic stress in flow, and the third
represents the relaxation back towards an unstressed state.
The forms of f and g prescribe the precise model, and we
shall simulate in what follows the Johnson-Segalman [14]
and Giesekus [15] models, set out in [16]. In the former, f
contains a slip parameter a. In the latter, g contains an
anisotropy parameter α. Importantly, however, our predic-
tions for edge fracture will depend on a or α only via their
appearance in the shear stress σ ≡ Txy and second normal
stress differenceN2 ≡ Tyy − Tzz. In thisway, the key physics
proves robust to choice of constitutive model. Indeed, most
complex fluids show the low-shear scalings σ ∼ _γ; N2 ∼ −_γ2
of this model. An exception are non-Brownian suspensions
[23], deferred to future work.
Our simulations model the air-fluid coexistence by a

Cahn-Hilliard equation [16,24,25], with a mobility M for
air-fluid intermolecular diffusion, a scale Gμ for the free
energy density of demixing, and a slightly diffuse air-fluid
interface of thickness l, with surface tensionΓ ¼ 2

ffiffiffi
2

p
Gμl=3.

Our linear stability analysis assumes a sharp interface, with a
surface tension Γ. Our results for these two approaches
agree fully.

In unsheared equilibrium, the contact angle where the
air-fluid interface meets the flow cell walls is denoted θ. A
value θ ¼ 90° gives a vertical equilibrium interface,
θ > 90° an interface convex into the air, and θ < 90°
concave. In having a diffuse interface [25], our simulations
capture any motion of the contact line along the wall in
flow. In the simplified biperiodic geometry the equilibrium
interface is always vertical, mimicking θ ¼ 90° with walls.
As the initial condition for our shear simulations, we take a
coexistence state first equilibrated without shear, with a
small perturbation then added to the interface’s position
hðyÞ along the z axis, h → hþ 10−8 cosðnπy=LyÞ, to
trigger edge fracture, taking n ¼ 1 with walls and n ¼ 2
in the biperiodic geometry.
Important dimensionless quantities that we shall explore

are the scaled surface tension Γ=GLy, the Weissenberg
number _γτ, the equilibrium contact angle θ, and the air
viscosity ηa=Gτ. Less important parameters, which do not
affect the physics once converged to their physically
appropriate large or small limit are the cell aspect ratio,
Lz=Ly ¼ 10.0, the air gap size ðLz − ΛÞ=Ly ¼ 3.0, the
small solvent viscosity [16], the air-fluid interface width
l=Ly ¼ 0.01, and the inverse mobility for intermolecular
diffusion, l2=MGμτ ¼ 0.01�0.1.
We now present our results. The basic phenomenon is

exemplified by the three late-time snapshots of our non-
linear simulations of the Giesekus model between hard
walls in Fig. 1 (right). At any given imposed strain rate, an
air-fluid interface with high surface tension is undisturbed
by the flow and retains its equilibrium shape (top snapshot).
We shall denote such states by a black cross in Fig. 2. For
an intermediate surface tension the interface partially
fractures, displacing in the z direction a distance OðLyÞ
set by the gap between the rheometer plates in the y
direction, before settling to a new steady-state shape,
different from its unsheared equilibrium one. We denote

FIG. 2. Edge-fracture phase diagram for the Johnson-Segalman
model in Lees-Edwards biperiodic shear. Solid line: phase
boundary between stable and partially fractured states. Dashed
line: prediction of Eq. (8), with no adjustable parameters. Dotted
line: Tanner’s prediction, with the prefactor adjusted to best fit the
simulations in the limit _γτ → 0. a ¼ 0.3 and ηa=Gτ ¼ 0.01.
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these states by red open circles. Finally, for a low surface
tension, the interface fully fractures, displacing in the z
direction a distance OðΛÞ set by the sample width in that
direction (red closed circles). Here the system never attains
a new steady state: depending on the wetting angle and flow
rate, the fluid may, e.g., dewet the wall, and/or air bubbles
may invade the fluid.
In Fig. 2, we collect into a phase diagram the results of

simulations at many values of surface tension and shear
rate, for the Johnson-Segalman model in the biperiodic
geometry. (In the Supplemental Material [16], we show that
the phase boundary is essentially independent of model,
geometry, and equilibrium wetting angle θ.) The red solid
line marks the phase boundary between undisturbed and
partially fractured interfacial states.
Within the biperiodic geometry, we now perform a linear

stability analysis to derive an expression for this onset
threshold, in the limit of low strain rates. To do so, we
represent the state of the system as an underlying homo-
geneous time-independent base state (denoted by subscript 0),
corresponding to the initially unfractured case in which the
interface is flat and the flowuniform. (Recall that our nonlinear
simulations showed the phase boundary to be independent of
the initial interfacial shape [16].) To this, we add a small
perturbation (denotedbyovertildes) representing theprecursor
of edge fracture. For any given interfacial tension Γ and
imposed flow rate _γ, we then determine whether the pertur-
bation grows towards an edge-fractured state, or decays to
leave a flat interface.
Accordingly, in the fluid bulk we write the velocity field

v ¼ v0 þ ~v ¼ ð_γy; 0; 0Þ þ ð ~vx; ∂z ~ψ ;−∂y ~ψÞ and stress field

T ¼ T0 þ ~T. Our use of a stream function ~ψ automatically
ensures incompressibility. The force balance condition
∇ · T ¼ 0 then simply becomes ∇ · ~T ¼ 0. In the fluid
bulk the x component of force balance and the curl of its
y, z components are, respectively,

0 ¼ ∂y
~Txy þ ∂z

~Txz; ð2aÞ

0 ¼ ∂y∂zð ~Tyy − ~TzzÞ þ ð∂2
z − ∂2

yÞ ~Tyz: ð2bÞ

We likewise write the z position of the interface at any
gap coordinate y as h0 þ ~hðyÞ. We further choose the origin
of z to lie at the interface, so h0 ¼ 0, with fluid for z > 0
and air for z < 0. The condition of force balance n · Tþ
Γn∇int · n ¼ 0 across this perturbed interface with normal
n ¼ ẑ − ∂y

~h ŷ and ∇int the interfacial gradient operator
gives componentwise linearized equations

0 ¼ ~Txzjz¼0þ − Δσ∂yh; ð3aÞ
0 ¼ ~Tyzjz¼0þ − N2∂yh; ð3bÞ
0 ¼ ~Tzzjz¼0þ þ Γ∂2

yh; ð3cÞ

with Δσ and N2 the jumps in the shear and second normal
stress difference across the interface, from fluid to air.
(N2 is always zero in the air, so we omit its Δ prefix.) Note
we have assumed (for now) negligible stresses on the air
side of the interface, z ¼ 0−. The interface moves with the z
component of the fluid velocity,

∂t
~h ¼ −∂y ~ψ jz¼0: ð4Þ

Finally, we must specify the perturbed stress components
~Tij in Eqs. (2) and (3). Each comprises a solvent con-
tribution of viscosity ηs and a viscoelastic stress that
follows Eq. (1). For values of ðΓ=GLy; _γτÞ only just across
the instability threshold in Fig. 2, the interface will
destabilize only very slowly and the viscoelastic stress
will, for any instantaneous interfacial shape, be determined
as the quasistatic solution of Eq. (1). In the limit of small
imposed shear rate _γ, this gives

~Txy ¼ ðGτ þ ηsÞ∂y ~vx þOð_γÞ; ð5aÞ

~Txz ¼ Gτ þ ηsÞ∂z ~vx þOð_γÞ; ð5bÞ

~Tyy − ~Tzz ¼ 4ðGτ þ ηsÞ∂y∂z ~ψ − 2_γGτ2b∂y ~vx; ð5cÞ

with b ¼ 1 − a and α in the Johnson-Segalman and
Giesekus models, respectively.
Substituting Eq. (5) (with a counterpart expression for

~Tyz) into Eqs. (2) and (3) gives finally a set of coupled
partial differential equations for the perturbation to the bulk
flow field, ~vxðy; z; tÞ; ~ψðy; z; tÞ, and to the interface position
~hðy; tÞ. Solving these gives, to leading order in _γ and at any
wave vector q in the y direction,

~ψðy; z; tÞ ¼ ½Ae−qz þ Be−kz�eiqyeωt;
~vxðy; z; tÞ ¼ Ce−qzeiqyeωt;

~hðy; tÞ ¼ iqDeiqyeωt ð6Þ

(ignoring a small term in e−kz in ~vx), in which k ¼
q=

ffiffiffiffiffiffiffiffiffiffiffi
1þ β

p
with β ≈ bð1 − bÞ_γ2τ2, and with known expres-

sions for A, B, C, D that we do not write. These
eigenfunctions ~ψðy; zÞ, ~vxðy; zÞ are shown in the left panel
of Fig. 3 and agree fully with their counterparts from (the
linear regime of) our fully nonlinear simulations in the
same panel.
Equation (6) tells us that perturbations at any wave

vector q will grow if their eigenvalue ωðqÞ > 0. We find

ω ¼ 1

2ðGτ þ ηsÞ
�
1

2
Δσ

djN2j
d_γ

=
dσ
d_γ

− Γq
�
: ð7Þ

The condition ω > 0 is most readily satisfied for the mode
with the lowest wave vector that is consistent with the
boundary conditions, q ¼ 2π=Ly. Accordingly, our final
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condition for an initially flat fluid-air interface to undergo
edge fracture is given by

1

2
Δσ

djN2ð_γÞj
d_γ

. dσ
d_γ

>
2πΓ
Ly

: ð8Þ

This criterion is marked by the dashed line in Fig. 2, and
fully agrees at low shear rates with the onset of fracture in
our numerical simulations.
We now compare Eq. (8) with Tanner’s prediction of

jN2j > 2Γ=3R, with R the radius of an assumed initially
semicircular interfacial crack. Clearly, R must now be
replaced by the dominant wavelength Ly. Disregarding
Oð1Þ prefactors, the important difference between Tanner’s
prediction and ours then lies in replacing

jN2j →
1

2
Δσ

djN2j
d_γ

. dσ
d_γ

: ð9Þ

Given negligible air viscosity, the jump Δσ in shear stress
across the interface between the fluid and air simply equals
the shear stress σ in the fluid. For most complex fluids
(excluding non-Brownian suspensions), in the limit of
small shear rates, N2 ∼ −_γ2 and σ ∼ _γ. Tanner’s jN2j on
the lhs of Eq. (9) then simply equals our expression on the
rhs. In contrast, at higher shear rates these simple power
laws no longer (in general) hold, and our prediction departs
from Tanner’s, as seen in Fig. 2. Indeed, Tanner predicts the
critical surface tension to increase monotonically with
shear rate. The nonmonotonicity that we find follows
because σ and jN2j both initially increase with _γ, before
N2ð_γÞ saturates to a constant at high shear rates, such
that dN2=d_γ → 0.
Our results also explain the mechanism of instability as

follows. Were the interface to remain perfectly flat, the
jump Δσ in shear stress across it would be consistent with
force balance. However, any small interfacial tilt ∂y

~h (first
column of Fig. 3, right) exposes this jump. To maintain
force balance across the interface, a counterbalancing
perturbation ~Txz ¼ iqhΔσ is then required [Eq. 3(a)]. To
maintain the x component of force balance in the fluid bulk

[Eq. 2(a)], a corresponding perturbation ~Txy is then needed,

achieved via a perturbation ~_γ ¼ ∂y ~vx ¼ qhΔσ=σ0ð_γÞ in the
shear rate (second column of Fig. 3, right). The second
normal stress N2 ≈ −bGτ2 _γ2 in the fluid bulk then suffers a
corresponding perturbation [second term in Eq. (5c)]
~Tyy − ~Tzzjshear ¼ −qhΔσjN2j0ð_γÞ=σ0ð_γÞ (third column of
Fig. 3, right). This must be counterbalanced (at zero surface
tension at least) by an equal and opposite extensional
perturbation [first term in Eq. (5c)] ~Tyy − ~Tzzjext ¼
4Gτ∂y∂z ~ψ ¼ −4Gτ∂z ~vz ¼ 4Gτq~vz. This requires a z
component of fluid velocity (fourth column of Fig. 3,
right), which convects the interface, ∂ ~h=∂t ¼ ~vz ¼
1
4
ΔσhjN2j0ð_γÞ=Gτσ0ð_γÞ, enhancing its original tilt with a

growth rate ω ¼ 1
4
ΔσjN2j0ð_γÞ=Gτσ0ð_γÞ, consistent with

Eq. (7) at zero surface tension, noting that ηs is small.
This mechanism resembles in spirit that of instabilities
between layered viscoelastic fluids [26–28].
Finally, our results suggest a recipe via which edge

fracture might be mitigated. By immersing the flow cell in
an immiscible Newtonian “bathing fluid” with a viscosity
larger than that of air, more closely matched to that of the
study fluid, the jump Δσ in shear stress between the study
and bathing fluids, which is a key factor in driving the
instability, will be reduced. This is explored in Fig. 4. The
red solid line shows the onset threshold for a bathing fluid
of negligible viscosity, such as air, and the green, blue and
magenta lines for successively increasing values of the
bathing fluid’s viscosity, each giving increased stability.
The dashed lines show linear stability results recalculated
with nonzero bath viscosity, in excellent agreement.
Clearly, choosing a bathing fluid with as a high a possible
surface tension with the test fluid will also help stability.
To summarize, we have derived an exact expression for

the onset of edge fracture in complex fluids, shown it to
agree with numerical simulations, and provided the first
mechanistic understanding of edge fracture. We have
also suggested a way of mitigating the phenomenon

FIG. 3. Left: Eigenfunctions from analytic calculation (top) and
simulation (bottom). (Analytics ignore the air phase, as shown by
the white regions.) _γτ ¼ 0.125, a ¼ 0.3, Γ=GLy ¼ 0.0,
ηa=Gτ ¼ 0.01, and q ¼ 2π=Ly. Right: Instability mechanism,
discussed in text, with 0 and � symbols corresponding to the
phase locations shown.

FIG. 4. Threshold for onset of edge fracture instability in the
Johnson-Segalman model in biperiodic shear, for various values
of the viscosity ηa of the bathing medium. Solid lines: full
nonlinear simulation. Dotted lines: linear stability analysis, valid
in the limit _γτ → 0. a ¼ 0.3 and ηs=Gτ ¼ 0.15.

PRL 119, 028006 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
14 JULY 2017

028006-4



experimentally. Given the status of edge fracture as a
crucially limiting factor in experimental rheology, this
suggests a route to accessing flows stronger than hitherto
possible.
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