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Data analysis usually aims to identify a particular signal, such
as an intervention effect. Conventional analyses often as-
sume a specific data generation process, which suggests a
theoretical model that best fits the data. Machine learning
techniques do not make such an assumption. In fact, they
encouragemultiplemodels to competeon the samedata. Ap-
plying logistic regression andmachine learning algorithms to
real and simulated datasets with different features of noise
and signal, we demonstrate that no single model dominates
others under all circumstances. By showingwhen different
models shine or struggle, we argue it is both possible and
important to conduct comparative analyses.
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1 | TWO MODELING APPROACHES

Data analysis is usually about identifying signal from noise. But data, particularly social science data, can be truly noisy,
partly because the outcome is often a human construct, which can only bemeasuredwith some error. Noise can also
stem from other factors, such as the collection of data on variables that are uncorrelated with the outcome of interest,
or unmeasured variables that have an effect on the outcome, or simply high dimensionality as a result of interaction
and/or the addition of higher order terms, which can easily fail in-sample goodness-of-fit tests (Breiman, 2001). The
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noisementioned above can beminimised in careful research designs and sound data analyses. Nevertheless, theories
about best designs and views about best analysis plans can be another source of noise, because the best approach to
data analysis for a given study often differs in theory from person to person, even for those who are from the same
discipline. Moreover, single best models cannot be statistically compared unless some of them are nested within others
(Shmueli and Koppius, 2011). Donoho called the analytical approach that relies on single best models “generative
modeling” (2015), where a data generation process is assumed and a single best model, whichmust exist because of the
assumptions made, is then deployed to analyse the data. But the choice of that model can itself be a source of variation
in results because of the theoretical differences mentioned above. Consequently, themodel may lead to “irrelevant
theory and questionable scientific conclusions” (Breiman, 2001) because it is usually more about a data generation and
selection process than about how the real world functions or the underlying problem to be solved. When published,
the results may further justify the choice of the theoretically best model in subsequent studies, particularly when they
are linked with research funding streams, which in turn canmake the results more salient or more noticeable in the
literature. This feedback loop can be pernicious (O’Neil, 2016), if policy decisionsmade on the evidence from a single
best model produce unintentional and undesirable consequences (Merton, 1936) to those who participated in the
studies and/or beyond.

Generative modeling can be theoretically best because of the asymptotic guarantee: if an intervention is to be
repeatedmany times until all samples in a population are exhausted, the model is guaranteed to predict the correct
outcome. This sounds reassuring, but in reality, we do not live in an “asymptopia” (Domingos, 2012). This implies that, if
model A is better thanmodel B given infinite data, due to bias-variance trade-off, there is no guarantee that the former
will be better than the latter given finite data or a particular dataset. Therefore, we also need “predictive modeling”
(Donoho, 2015; Hofman et al., 2017), which is generally agnostic about a data generatingmechanism and allowsmultiple
models to learn from andwork onmultiple datasets. Some of these are used to train themodels, others are put aside as
test sets, just as we turn a ball many times and each timewemake a prediction about the patterns on the side we do
not see using the information on the side we can see. The performances of the trainedmodels are then judged against
a common task, usually, predictive accuracy on test sets, which is easy-to-understand and can be compared across
datasets and over time (Breiman, 2001; Donoho, 2015; Hofman et al., 2017; James et al., 2015).
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Predictive modeling thus provides timely feedback for analysts to assess how successful the tools they have
deployed actually are in the wild. As a result, the best performing models can be efficiently deployed for real-world
applications, which can then enhance the roles evidence has to play in decisionmaking and reduce the gap between
research and practice (Shmueli, 2010). This approach overcomes one problem of single best models, where different
analysts analyse the same dataset in their ownmanner andmay produce different results andmake different claims
about the performance of their preferredmethods (Breiman, 2001; Donoho, 2015; Hand, 2006; Xiao et al., 2016). If
we do not knowwhich, if any, of the best models actually worked because of the problems associatedwith in-sample
strength-of-fit measures (Breiman, 2001; Shmueli and Koppius, 2011), the conclusions drawn from the results of single
best models may be too dependent on error or noisemaking them effectively just noises themselves. This only adds to
the challenge of evidence-based policy and practice by confusing decisionmakers with varying advice. In many social
science studies, such as the educational interventions funded by the Education Endowment Foundation (EEF) in the
UK, predictive modeling is yet to be widely appreciated (Shmueli and Koppius, 2011), despite the aforementioned
advantages and its rapid development in other fields as well as its capability to work on large and small datasets of
varying levels of complexity.

The process of randomly splitting data into training and test sets can transform the technical procedure of genera-
tive modeling into that of predictive one. This avoids denying the inferential contributions generative modeling has
made and avoids dichotomising analytic approaches. To find out when different models shine and others struggle, we
apply conventional logistic regression and somemachine learning techniques to real and simulated datasets.

2 | THE FALLACY OF MORE DATA

In this study, we first show thatmeasurement error in some outcome of interest canmask the relationship between
covariates and the outcome. In the simulation, we suppose the outcome is an unweighted mean of two covariates,
which, together with the outcome and other variables, come from a normal distribution with the samemean of zero
and standard deviation one. To add measurement error into the outcome, we introduce a normal distribution with
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the samemean but different standard deviations, which represent the strength of the noise in the outcome. Figure
1 visualises the effect of measurement error on the correlations between the outcome and the two signal variables,
X1 andX2. As the noise gets louder and louder, the correlation coefficients between the outcome and the two signal
variables become smaller and smaller. This change is not affected by the change in sample size, which suggests that
the common focus on larger sample sizes to detect an intervention effect might be inappropriate when the outcome
measure is prone to errors. For educational interventions, such as those funded by the EEF, it is therefore crucial to
choose the right test as an outcomemeasure. Otherwise, the real effect of an interventionmight never be detected,
even when the sample size in a given study is large, if there is substantial measurement error in the test (see also Loken
and Gelman, 2017). An example of this can be found in the Building Blocks intervention in the US, whichmight have
suffered from somemeasurement error, where the large-scale pre-K program focused on skills such as counting that
childrenwill eventually master as they grow, evenwithout the intervention (Mervis, 2017). To avoid this mistake, the
EEF normally requires independent evaluators to pre-specify a standardised national test, whichminimises the effect of
the noise in measurement at either baseline or post-test.

Noise does not simply exist as measurement error. It can also exert its power through covariates, particularly
when there are interactions among them. In social science research, there is usually a tendency to collect data on
as many covariates as possible. This is partly due to competing theories that inform data collection. As an example,
the association under themiasma theory in themid-1800s between cholera and personal habits and characteristics,
such as strong emotions like fear and immorality, specifically overindulgence in alcohol and sex, predispositions often
linked at the time with the “lower classes” (Tulodziecki, 2011). But it also has something to do with the more the
merrier philosophy, according to which, more information on asmany variables as possible, at worst, provides no extra
information about the outcome. However, one risk of the practice may be that the benefits of having more data on
irrelevant covariates can be sometimes outweighed by “the curse of dimensionality” (Domingos, 2012).

Again, we use simulations to illustrate the power of noise, particularly when there are interaction terms. Suppose
the outcome this time is a categorical variable with two possible values of one and zero in an educational intervention.
When it takes on the value of one, it means a student gained from the intervention. Otherwise, the studentmade no
progress from baseline to post-test. At the beginning of the intervention, we also had a number of baselinemeasures,
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among which there might exist interactions. First, let’s suppose an interaction exists between two covariates. We
implement this interaction effect by randomly shifting half of the observations in the covariates up by one unit, and
the other half down by one unit. We also adjust the outcomes accordingly so that observations that were randomly
shifted up aremore likely to take on the value of one, and those shifted down less likely to be one. Apart from the two
covariates that are interacted, there are also others that are neither interacted with one another nor correlated with
the outcome variable. Those null variables are in effect noises, which vary in number from dataset to dataset, as the
earlier measurement errors vary in strength from one simulation to another. To illustrate the effect of interaction terms
in the simulated data, we have produced some pairwise scatter plots. As shown in Figure 2, when there is no interaction,
the observations in any pair of variables are randomly scattered. But, as we increase the power of an intervention
by randomly shifting up or down observations in interacted covariates bymore than one unit, the outcomes become
increasingly separable and the interaction effect is clearer.

To analyse the simulated datasets, we introduce a number of analytical models, which are logistic regression,
random forests, and k -nearest neighbours with k taking on varying number of values (James et al., 2015). To show how
stable those analytical models are, we also simulate each specification three times, which results in three performance
outcomes for each of the models mentioned above. As shown in Figure 3, the performance of logistic regression is
no better than tossing a coin when there is just one interaction term. Random forests have higher predictive power
when the sample sizes are larger. K -NN outperform others when the values of k are appropriate in a given simulation.
When sample size is 100, themost appropriate k is between 5 and 10, as sample size increases to 500 or 1000, themost
appropriate k is about 100. However, the results aremuchmore stable when the sample size is 1000 across the three
simulated datasets.

The scenario described above involves only one interaction term in the simulated dataset. Now let’s see how the
models performwhenwe increase the power of noise and signal by addingmore interaction terms and null variables.
As we can see in Figure 3, when there are two interaction terms, random forests can almost match K -NN at themost
appropriate value of k . Logistic regression again crumbles, regardless of the strength of signal and noise in the simulated
data. Nevertheless, when the number of interaction terms climbs up to five, the only model that can achieve acceptable
predictive accuracy (or low test error) is K -NN at the right level of k , of which the choice is much narrower thanwhen
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there are only two interaction terms.

In the above-simulated datasets, the conventional logistic regression is no better than guesswork even when a
single interaction term exists. This does not suggest that it is no use at all. For the logistic regression to have higher
predictive power, we can add into the regression an interaction term, which will substantially improve the predictive
accuracy of the model. The addition of the interaction term is straightforward when we know which variables are
interacted andwhen the number of covariates is not large so that we can explore all possible pairwise combinations of
covariates in the data. But when there aremany variables in a dataset, as is the case inmany social science studies, it will
be practically impossible to exhaust all possible combinations. Usually, analysts of social research data add interaction
terms when a theory suggests themwhat covariates are likely to interact with one another. If serious interaction exists
but analysts fail to address it accordingly, the logistic regression will produce evidence that is inadequate to inform
decisionmaking. The so-called evidence would be just another source of noise in the literature. Given that we normally
do not know howmany interaction terms exist in a dataset and it is prohibitive to examine all the combinations when
there are as few as ten covariates, it is no surprise that machine learning techniques such as random forests and K -NN
are increasingly perceived to be better models for data analysis. As it becomes easier and perhaps less expensive to
collect more data, these techniques are likely to appeal to more andmore social scientists in the years to come. But they
also have limitations, as the above simulations show, when there are five interaction terms or more, random forests are
no better than logistic regression, evenwhen the signal is strong.

3 | THE FALLACY OF FREE LUNCHES

The simulations described above are, after all, only simulations. The performances of thesemodels may changewhen
they are tested on a new dataset with different features. In this section, we use a dataset that is openly available to the
public andwell-known to themachine learning community (LeCun et al., 1998). The dataset has 60,000 observations
in the training set and 10,000 in the test set. Each observation represents a hand-written digit ranging from 0 to 9,
and there are 784 columns, each of which contains values that represent degrees of grey. To see which model has
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the highest level of prediction accuracy in reading the digit 8 in the test set, we use observations from the training
set to train candidate models, which are then used to predict the outcome in the test set. In the training, we also
alter the number of sample sizes in each re-sample, so that we can observe how themodels learn from the data. The
models trained are logistic regression, decision trees, bagging, and random forests (James et al., 2015; Liaw andWiener,
2002). We exclude K -NN for this dataset because it is known to have high predictive accuracy in reading hand-written
digits (Domingos, 2012) and the main purpose of using this dataset is to show the effect of input knowledge on the
performances of conventional and machine learning techniques. The last three of the learners selected are related,
because each decision tree is a hierarchy of cuts using either continuous or categorical variables, and bagging refers to
bootstrapped aggregation, where each bootstrapped re-sample is used to grow a decision tree. Since bagging uses all
features in each re-sample, and variables that are highly correlated with the outcome are likely to be selected first, the
algorithmwill produce very similar trees in the end. Random forests overcome this problem by randomly choosing a
subset of features in each bootstrapped re-sample of the data. As a result, the trees grown in themodel will be very
diverse, and the average performance of the forests is usually better than that of bagging (James et al., 2015). However,
the algorithm of random forests runs much faster than that of bagging. A useful metaphor is that it is like randomly
opening a subset of drawers in a chest of drawers that contain different pieces of information about the outcome, rather
than all the drawers each time.

Figure 4 (b) shows the performances of the four models mentioned above. As we can see, when the training sample
size is 300, the accuracy level of logistic regression is slightly above 50%. However, when the sample size increases to
about 1000, logistic regression can achieve about 80% accuracy, which slowly increases asmore samples are used to
train themodel. Nevertheless, it is nomatch for the other threemachine learning techniques, particularly when the
training size is small. This dataset is unique in the sense that there are 784 covariates, when the training size is below
1000, logistic regression really struggles in pulling the accuracy level up to those of its counterparts, which have at
least 90% accuracy evenwhen sample size is as low as 300. Their performances, particularly those of random forests,
increase as more andmore training data are fed into them. However, it is worth mentioning that the computational
costs for bagging and logistic regression are remarkably high, although they can achieve comparable accuracy levels of
random forests in this case. The performance of decision trees also increases as training samples increase, but it is less
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accurate than bagging and random forests. Decision trees are said to be highly sensitive to changes in the data (James
et al., 2015), but in this case, its performance is acceptable and it does not take long for the algorithm to run.

As we have demonstrated, developing models with high predictive accuracy requires a lot of “black art” (Domingos,
2012), which can rarely be found in statistical textbooks. Although conventional logistic regression can eventually
achieve a similar level of accuracy to that of random forests in the above case, the latter can get more from less and it
runsmuch faster than the former. The results reported above also show that machine learning techniques cannot do
magic without input knowledge. There is no such thing as a free lunch. But they can, as with a lever, turn a small amount
of input into a large amount of output, but this obviously varies frommodel tomodel (Domingos, 2012).

So far, we have used simulated and real datasets to test and compare the performances of both logistic regression
andmachine learning techniques such as decision trees, bagging, and random forests. When there aremore variables
than observations in a dataset and there are very few interaction terms, the performance of random forests is truly
impressive in terms of predictive accuracy. Unlike logistic regression and bagging, it is not computationally expensive to
run. Moreover, it does not require analysts to fine tunemany parameters, such as the values of k inK -NN.Unsurprisingly,
it appeals tomore andmore analysts.

4 | THE FALLACY OF SINGLE BEST MODELS

Next, we use a few further datasets from large scale educational interventions funded by the EEF in England. Unlike
the datasets we have seen so far, EEF datasets are highly curated and structured. In three of the four cases that follow,
participantswere randomly assigned to intervention or control groups, and the tests used in the trialswere standardised
national tests in England, suggesting that themeasurement error is likely to be low. As in earlier datasets, observations
are randomly split into training and test sets, themodels are first trained in the training set, and then tested for their
predictive accuracy, test error, sensitivity, and specificity. Four out-of-sample performancemetrics are used this time
because the costs associated with different misclassification errors can be different (Hand, 2006). Since there aremany
ways to split the data into training and test sets, we report the results from two splittingmethods, the first rows use 68%
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of the observed samples in the interventions to train themodels and the rest as test sets. The second rows result from
bootstrapped training and test sets, meaning sample sizes in the training sets are equal to the observed sample sizes
of the interventions. However, some observations will be selectedmore than once for the training sets while others
will not be selected at all, which are then used as test sets. As expected, the two rows in Figure 5 (a–d) have almost
identical results across all the metrics. This is ideal because we do not want the results to be sensitive to different
cross-validation methods. The four datasets also vary in sample and effect sizes. Using zero gain as the cut-off, the
outcome takes on either one or zero, meaning either progress or no progress in the tests at the end of the interventions.

Before we look at the results, wewill provide some background information about the trials. Themetacognition
intervention, called ReflectED, aimed to improve pupils’ ability to think about andmanage their own learning (Motteram
et al., 2016). It is a school-based randomised controlled trial with randomisation at class level. In the final analysis,
the study involved 1507 pupils from 30 schools, and the primary outcomewas age standardisedmathematics score.
Chess in Schools is an intervention that randomly allocated 100 schools (4009 pupils) to either intervention or control.
Intervention schools taught children how to play chess over a year, whereas control schools were business-as-usual. The
primary outcomewas Key Stage 2mathematics score one year after the intervention (Jerrim et al., 2016). Improving
Writing Quality is a smaller intervention with a large effect size. It involved 261 pupils from 23 primary schools, which
were randomly allocated to receive training onwriting or to continuewith business-as-usual (Torgerson et al., 2014).
Unlike the first three, Tutor Trust Secondary is a quasi-experimental design, whichmatched 781 participating pupils with
100,991 others in a comparison groupwho did not participate in the small group or one-to-one tutoring intervention
but had similar demographic and socio-economic characteristics (Buchanan et al., 2015). The outcome chosen for this
study is performance on GCSEmathematics.

Figure 5 shows the performances of threemodels, which are logistic regression, random forests, and K -NNwith
varying number of neighbours in the training set used for prediction on the test set. As for predictive accuracy in (a),
random forests have themost impressive performance, which is followed by logistic regression. K -NN, across all values
of k , do not perform as well as expected. However, when k is 100, it has the highest level of specificity, meaning when
the outcome is zero, themodel accurately predicts zero with the highest level of accuracy. This model is therefore less
likely to produce false positives than others for this intervention. In terms of sensitivity, logistic regression and random
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forests are about equal. When k is 100, K -NN has the lowest level of sensitivity, whichmeans it has the lowest level of
predictive accuracy when the outcome is one and it accurately predicts one. This model is thusmore likely to produce
false negatives. In sub-figure (b), logistic regression and random forests perform about equally well in terms of accuracy
and test error. However, the former has the highest level of specificity and the latter the highest level of sensitivity.
K -NN, again, is far behind the first two across all metrics of performance. In (c), the performance of logistic regression is
better than any other model considered across all themetrics. Random forests closely follow that of logistic regression.
Given the large sample size and imbalanced structure of the data in (d), random forests and K -NN truly shine in all
aspects.

As we can see, across the four trial datasets, higher levels of accuracy always correlate with lower levels of test
error, but higher levels of sensitivity do not always imply lower levels of specificity. The patterns thus suggest that it is
important to comparemodel performances across multiple metrics. Besides, random forests, while impressive when
sample size is relatively large, are not necessarily better than conventional logistic regression. When the sample size is
relatively small and the data is clean andwell structured, thewidely perceived superior machine learning technique
cannot outperform its conventional counterpart. However, this does not imply that more experienced users of random
forests cannot fine tune its parameters to “squeeze” the best performance out of it (Domingos, 2012; Hand, 2006).

5 | CONCLUSION

Taken together, we have demonstrated that no single model dominates others under all circumstances. Most studies
using single best models explain why their models are the best, but say little or nothing about how or why their
predictions or inferences might be wrong (Subrahmanian and Kumar, 2017). To demonstrate the risks of taking this
approach, we have shown both. For instance, logistic regression is no better than tossing a coin when sample sizes
are small, andwhen there aremore covariates than observations, not tomention the roles interaction termsmay play.
Random forests are no better than logistic regression when there are many interaction terms and when the noise
swamps the signal. K -NN at the appropriate value of K can achieve the lowest level of test error, evenwhen there are
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many interaction terms and null variables. However, they are far behind logistic regression and random forests when
the data are “overly clean” (Shmueli, 2010) and the observations are very similar across intervention and control groups,
in which case, K -NN at all levels of K simplymake random predictions. The findings from all the datasets used in the
study thus present a compelling case that single best models cannot be known a priori and it is crucial to cross-validate
results and comparemodel performances usingmultiple metrics.

This is a troubling time for evidence-based policy, partly becausewe do not always agree onwhat constitutes as
the best evidence, but it also stems from the fact that the path from knowledge to power is not always linear. Evidence
is just one ingredient that goes into the policy mix (Malakoff, 2017). In order to present the best possible evidence,
the conclusions made above are ever more important. As we do not live in an asymptopia and sometimes decisions
have to be made in a timely fashion, we can no longer safely say at the end of an intervention that the findings are
mixed, therefore more studies are needed. When an answer straddles both sides of “maybe”, it precludes accountability
(Tetlock et al., 2017). So, we suggest that one way forward is to concede our exclusive reliance on generativemodeling,
which risks producing research results that may have little relevance to practice. Although the theoretical approach
can have high in-sample explanatory power or breadth, it does not necessarily follow that its out-of-sample predictive
power will be precise (Trafimow andUhalt, 2015). Therefore, it is important tomake sure that research findings from
social science research such as the educational interventions in this study can explain the causal mechanismwell, but
also have sufficient predictive quality (Shmueli, 2010), or give us some idea, in advance, of what impact an intervention
will have, for whom andwhere (Clauset et al., 2017). Otherwise, the gap betweenmethodological advance and practical
application will be widened and the path of evidence to impact becomes evenmore winding.
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F IGURE 1 Simulated impact ofmeasurement error. Correlationmatrices betweenoutcomeY , signal variables
X1 , X2 , and other null variables, which are weakly correlated with the outcome. The greener the cells, the weaker
the correlations. In the first row, the standard deviation of the noise in outcome is 0.5, which increases to 1 in the
middle row and 2 in the bottom row. Note the first two cells of theY column become greener and greener as the
noise gets louder and louder. N represents simulated sample size. NV is the number of variables, and SD is the
standard deviation of the noise. For a better visualisation effect, each matrix plots the correlations between the
first eight variables of the corresponding simulation only.
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(d) N= 1000, Vs = 5, D = 1

F IGURE 2 Visualising interaction effect. The four simulated datasets have the same sample size (N ) of
1000, and in each case, only the first two variables are interacted. However, the datasets differ in the number
of variables (V s ) and degree of separability in outcome (D ), or intervention effect if we suppose it is trial data.
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(b)N=2500, NC=2, NN=18, D=2
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F IGURE 3 Analysing simulateddatasetswith interactions. Performances of differentmodels on simulated datasets
with different sample sizes (N ) and intervention effects (D ), varying numbers of interaction terms (NC ) andnull variables
(NN ). Sub-figure (b) shows the effect of change in the number of features (mTry) used in each re-sample for random
forests. The simulations use only one performancemetric, which is prediction error on the test set.
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(b) Effect of input knowledge

F IGURE 4 Trainingmodels to read hand-written digits. Sub-figure (a) is a random reading of 16 hand-written digits
from the training set. Each digit is located in the center of a 28 by 28 grid, which forms a row with 784 columns if the
cells in the grid are stacked up to form just one row. When there are 10,000 rows in the test set, there are 10,000 digits.
Sub-figure (b) shows the effect of sample sizes in the training set on the prediction accuracy of the four models, logistic
regression (lgr), decision trees (DTree), bagging (Bag), and random forests (RF).
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(d) Tutor Trust Secondary

F IGURE 5 Performances of multiple models on EEF data. There are four performancemetrics, prediction accuracy
(acc), prediction error (err), sensitivity (sens), and specificity (spec). train/test and bootstrap represent two different
data splittingmethods. lgr and rf refer to logistic regression and random forests, respectively. All models with a letter k
in the label are K -NNwith different values of k .
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