
1 

 

 

A STOCHASTIC FRONTIER ANALYSIS APPROACH FOR ESTIMATING 

ENERGY DEMAND AND EFFICIENCY IN THE TRANSPORT SECTOR OF 

LATIN AMERICA AND THE CARIBBEAN 

 

 

Manuel Llorca
*
 

Durham University Business School, United Kingdom 

 

José Baños 

Oviedo Efficiency Group, 

Department of Economics, University of Oviedo, Spain 

 

José Somoza 

Center for Marine Research, University of Havana, Cuba 

 

Pelayo Arbués 

Oviedo Efficiency Group, 

Department of Economics, University of Oviedo, Spain 

 

 

 

 

Abstract 

In this paper, a stochastic frontier analysis approach is applied to estimate energy 

demand functions in the transport sector. This approach allows us to obtain energy 

efficiency measures at country level that are a robust alternative to the energy intensity 

indicators commonly used for international comparisons. A transitive multilateral price 

index is constructed for aggregating the diverse energy components employed in the 

sector. Due to the likely unobserved heterogeneity among countries, the use of a random 

parameters model is proposed to accommodate these differences and to obtain different 

income and price elasticities per country. The estimated model is compared with 

alternative approaches of addressing this issue such as latent class, true fixed effects or 

true random effects models. This study is the first to use a random parameters stochastic 

frontier approach in the estimation of energy demand functions. The proposed 

procedure is applied to Latin America and the Caribbean, where the transport sector 

represents a large share of total energy consumption. 
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1. Introduction 

Since the 1970s oil crisis, monitoring energy efficiency has become an essential 

goal of economic and energy policies in many countries around the world. This concern 

grew in the late 1980s as a result of the increasing awareness of global warming. A key 

issue in the strategy of the countries that aim to reduce their energy consumption and 

mitigate their greenhouse gas emissions is the adoption of measures that improve the 

efficiency of energy use in all economic sectors and especially in those that are energy 

intensive, as in the case of transport. 

As shown in Figure 1, from data of the Latin American Energy Organization 

(OLADE in Spanish), the transport sector represents the highest energy consumption in 

Latin America and the Caribbean. The share of this sector within the overall energy 

consumption has remained high and steady during recent decades. However, according 

to the Economic Commission for Latin America and the Caribbean (ECLAC, 2010) it is 

expected that the transport of passengers and goods increases in the near future. 

Moreover, combined with the separated way in which public policies on infrastructure 

and transport have traditionally been conducted, this will result in an augmentation in 

the use of energy and particularly of oil derivatives consumption. It is thus necessary to 

conduct studies focused on the energy consumption of this sector that can help to 

identify and mitigate the environmental sustainability issues that are mentioned in the 

“Millennium Development Goals” proposed by ECLAC (2005). 

[Insert Figure 1 here] 

Per capita energy consumption in Latin America and the Caribbean is currently 

low in comparison with other parts of the world. However, since the 1990s, it has 

experienced significant growth, as shown in Figure 2. This growth has been common 

within the different areas of the region, but in particular it can be observed that the 

largest increment has taken place in the countries of Central America and the Caribbean 

which are those that show lower volumes of transport energy use as a share of total 

energy use.
1
 However the low per capita consumption of Latin America and the 

Caribbean does not necessarily imply high efficiency in the use of energy, as a 

significant part of the population of these countries lack the funds to have access to 

private cars. In this context, the rapid development of the region in the medium term 

might lead to unsustainable increases in the energy consumption of the transport sector 

and to the associated emissions of greenhouse gases. For example, between 1990 and 

2007, the vehicle fleet that was used in Brazil, Mexico, Chile and Colombia increased 

by 53 million vehicles, with 40% of this increase concentrated between 2003 and 2007. 

Therefore it is crucial to elaborate orderly development strategies that favour public 

transport and promote energy efficiency. 

[Insert Figure 2 here] 

Figure 3 shows the change in energy price in the transport sector between 1990 

and 2010 in the areas of the region.
2
 The scenario of low energy prices in the 1990s 

contrasts with the inflationary process that was experienced in the first decade of the 

21
st
 century. This phenomenon was especially pronounced in South American countries 

and led many countries within the whole region, especially those that were net 

                                                 
1
 We have not included Mexico within Central America in the figures since the weight of this country 

distorted the average values for the region. 
2
 The information about the construction of this energy price can be found in the Appendix. These prices 

are the final prices at which the consumer is faced after taxes and subsidies. 
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importers of energy, to adopt programs to improve energy efficiency. These measures 

aim, on the one hand, to modernise public transport to incentivise its use, renovate the 

vehicle fleets, introduce biofuels as alternatives to oil, promote the use of hybrid and 

electric vehicles, and promote the use of trains and subways in certain activities. On the 

other hand, the infrastructure network should be improved in tandem with logistical 

solutions to the provision of services, such as the adoption of intelligent measures that 

optimise transport routes and favour intermodality (ECLAC, 2010). 

[Insert Figure 3 here] 

One important issue that should be highlighted is that in many of those countries 

strong subsidies have been applied on fuel prices and this has been more conspicuous 

when oil prices have remained high. Fuel pricing policies in Latin America have not 

been traditionally based on marginal or opportunity costs and as a consequence, fuel 

prices have been far below world market prices (Rogat, 2007). Although the situation 

started to change at the end of the 1980s within some countries that applied energy 

reforms, in several countries of the region strong energy subsidies currently persist (e.g., 

Ecuador, Mexico and Venezuela). Di Bella et al. (2015) estimate that the weight of fuel 

subsidies have represented on average about 1% of GDP for the period 2011-2013 and 

about 3.8% when energy subsidies (including electricity) and negative externalities are 

accounted for in the analysis. These authors remark that oil-rich countries and those 

with poorer institutions tend to subsidise fuel more. In general, subsidies generate price 

distortions that may lead to an inefficient use of energy, which in the end can have 

negative effects on the environment and the economic growth of the countries. 

Due to the reasons previously mentioned, reducing energy consumption in the 

transport sector has become a fundamental concern within Latin American and 

Caribbean countries. To help achieve the goal of identifying those countries that are 

references (benchmarks) in efficient use of energy, various quantitative indicators 

related to the energy efficiency of the countries have been developed for international 

comparisons. There is no single definition totally accepted for the concept of energy 

efficiency, both in terms of the economy as a whole or specifically for the transport 

sector. Ang (2006) and Stead (2001) indicate that the most commonly used indicator is 

the ratio of energy consumed to GDP. This measure of energy intensity has the 

advantage of simplicity in its calculation and easy interpretation, thus leading to its 

continued use in international statistics. Since energy intensity is simply the inverse of 

the energy productivity indicator, decreasing levels of the indicator represent a 

reduction in the energy that is required to generate a unit of national production. 

The U.S. Energy Information Administration (EIA, 1995) has frequently 

highlighted the need to adequately define an alternative measure of energy efficiency. 

However, energy intensity is still used as a synonym or “substitute” of energy efficiency 

even though variations of this type of indicators can reflect the influence of other factors 

different from changes in energy efficiency such as modifications in the structure of 

GDP or the effect of environmental factors.
3
 Moreover, the values that can take these 

indicators are not within a specific range and therefore it makes difficult the calculation 

of potential energy savings. In particular, as stated by the EIA, the transportation sector 

                                                 
3
 The International Energy Agency (IEA, 2014) also recognises that the use of energy intensity as a proxy 

for energy efficiency can generate untrustworthy results. Despite significant interest in the measurement 

of energy efficiency, its calculation for the transport sector is a difficult task. This organization proposes 

indices of energy intensity for the sector that are calculated using various disaggregated indicators 

obtained from large quantities of information. Due to this requirement, it is impossible to calculate this 

measure for all Latin American and Caribbean countries. 
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is one of the most complex sectors to determine whether efficiency gains have really 

occurred, so proposing new approaches to measure actual energy efficiency levels is 

undoubtedly an appealing challenge. 

The main goal of this paper is to adapt the methodological proposal of Filippini 

and Hunt (2011, 2012) to the case of the energy consumption in the transport sector of 

Latin America and the Caribbean. This approach is applied to obtain measures of energy 

efficiency that are adjusted by specific features of the countries (such as fuel prices, 

GDP or population density) and can be used to make consistent comparisons of 

countries’ performance over time as these measures are always bounded between zero 

and one. Furthermore, the current study estimates various frontier demand functions 

using alternative approaches. We find that a random parameters model is the approach 

that best takes into account the heterogeneity in our sample and allows us to obtain 

specific price and income elasticities for each analysed country. To the best of our 

knowledge, this study is the first to apply this methodology for both the transport sector 

and the Latin American countries.
4
 

This paper is organised as follows. In Section 2, we define the demand for 

energy in the transport sector by providing a brief review of the existing literature. 

Additionally, we propose the use of a Stochastic Frontier Analysis (SFA) approach and 

the application of several models for addressing unobserved heterogeneity when 

estimating energy demand frontier models. In Section 3 we present the database and the 

econometric specification of our models. The results of the estimations are presented in 

Section 4 and finally, Section 5 ends the paper with a summary and the presentation of 

conclusions. 

 

2. Energy demand of the transport sector 

Demand for transport is derivative in nature, as the goal of moving goods and 

people is not to perform the journey but to reach a certain destination. In other words, 

demand is derived from the mobility of passengers and goods. This mobility, in turn, 

leads to energy or fuel demand, which is necessary for transport. 

The previous research in the literature on the modelling of energy consumption 

for transport can be clustered into works that apply econometric techniques, artificial 

intelligence approximations, multi-criteria analysis and simulation methods (for a 

review see Limanond et al., 2011; or Suganthi and Samuel, 2012). The first group 

includes multiple linear regression models (Limanond et al., 2011), partial least square 

regressions (Zhang et al., 2009) and the analysis of time series and cointegration 

(Samimi, 2003; Galindo, 2005; Sa’ad, 2010; and Hao et al., 2011). The second group 

includes studies of artificial neural networks (Dreher et al., 1999; Murat and Ceylan, 

2006; and Limanond et al., 2011) and harmony search algorithms (Haldenbilen and 

Ceylan, 2005; and Ceylan et al., 2008). Some studies have combined the analysis of 

time series and fuzzy logic (Al-Ghandoor et al., 2012). In the prediction of energy 

consumption for vehicles, the use of multi-criteria analysis should be noted, such as in 

the works of Lu et al. (2008, 2009). Lastly, the most prominently used simulation model 

has been the Long-range Energy Alternatives Planning System (LEAP), which allows 

                                                 
4
 The scarcity of empirical analyses in this context has been conditioned by the availability of statistics. In 

fact, in many Latin American countries, there is no formal link between institutions that are in charge of 

providing information on energy and transport. Consequently, in this paper, all variables that are relative 

to energy consumption are based on the authors’ own work on the data provided by OLADE. 
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planning alternative scenarios for energy demand in the transport sector. The works that 

use this method include Bauer et al. (2003), Manzini (2006), Pradhan et al. (2006) and 

Islas et al. (2007). 

Therefore, there is an extensive body of literature on the economics of transport 

that estimates various energy consumption functions or the respective functions of fuel 

use for different types of vehicles. The current study belongs to the line of econometric 

approximations of energy demand from the transport sector that estimates price and 

income elasticities that are related to energy consumption (see, for example, Dahl, 

1995). In their literature review, Graham and Glaister (2002) observe that, as a general 

rule, price elasticities that are obtained in the short term are commonly between -0.2 and 

-0.3 and those obtained in the long term are between -0.6 and -0.8. For the case of 

income elasticities, they find that these are often greater than one (between 1.1 and 1.3) 

in the long term and between 0.35 and 0.55 in the short term. The papers that are 

included in their review generally analyse countries of the Organization for Economic 

Cooperation and Development (OECD). 

In contrast to the previous work, Wohlgemuth (1997) presents also elasticities 

for several countries that are not OECD members. In terms of Latin America and the 

Caribbean, the elasticities for Brazil and Mexico
5
 are presented. In the long term, the 

income elasticities for Brazil take values between 0.88 and 1.10 and the price elasticities 

go from -0.10 to -0.26. For the case of Mexico the income elasticities vary between 0.99 

and 1.72 and the price elasticities are between -0.04 and -0.21. Also for the case of 

Mexico and using a data sample for the period 1965-2001, Galindo (2005) finds in the 

long-run a smaller income elasticity (0.541) than in the abovementioned paper and a 

price elasticity non-statistically different from zero. In the short-run this author obtains a 

large income elasticity (0.836) jointly with a small price elasticity (-0.089). 

On the other hand, Rogat and Sterner (1998) provide a unique analysis of the 

gasoline demand in Latin America. In that paper several econometric models are 

estimated to obtain price and income elasticities of 13 countries in Latin America for the 

period 1960-1994. These authors find remarkably different results for their sample of 

countries. They obtain short-run price elasticities that are between -0.04 (Venezuela) 

and -0.27 (El Salvador) and short-run income elasticities that are between 0.01 

(Honduras) and 0.66 (Paraguay). As it is usual they find larger long-run elasticities, in 

absolute terms, than in the short-run. The values go from -0.16 (Bolivia) to -1.71 

(Mexico) for the price elasticities and from 0.06 (Honduras) to 1.63 (Guatemala) for the 

income elasticities. The broad variety of results found by these authors evidences the 

needing of taking into account the heterogeneity between these countries to estimate 

fuel demand. 

 

2.1. A stochastic frontier approach for energy demand in transport 

Based on the efficiency and productivity literature, Filippini and Hunt (2011, 

2012) suggest the use of a parametric approach of stochastic frontiers to estimate 

aggregate energy demand functions. The main goal of those authors is to obtain 

measures of energy efficiency that can be used as alternatives to the standard indicators 

of energy intensity mentioned in the previous section. These efficiency measures are 

based on the comparison of the energy consumption of the countries with respect to the 

                                                 
5
 Although in Wohlgemuth (1997), Mexico is included in the group of countries that are not members of 

the OECD, this country was already a member since May 18, 1994. 
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minimum energy consumption predicted by the frontier, which assumes the optimising 

behaviour of companies and individuals. Therefore, the basic aim of using this approach 

is obtain an assessment of the energy efficiency of the countries and thus differs from 

the main objective of the methods presented in the previous section, i.e., modelling and 

forecasting the energy demand. 

The use of energy demand frontier functions to estimate energy efficiency is an 

approach that is based on the concept of productive efficiency and input specific 

technical efficiency. The application of this type of models has gained relevance in 

recent years (see Evans et al., 2013; Filippini and Hunt, 2011, 2012, 2015a, 2015b; 

Filippini and Zhang, 2016; Filippini et al., 2014; Lundgren et al., 2016; and Orea et al., 

2015). A theoretical explanation of this approach was originally introduced by 

Huntington (1994) and has been recently developed by Filippini and Hunt (2015a). In 

this latter paper, the use of the following three parametric methodologies for estimating 

energy efficiency is discussed: input requirement functions, Shephard input distance 

functions and input demand frontier functions. 

At this point, it should be mentioned that, as it is frequently highlighted in the 

efficiency and productivity analysis literature, there are different type of approaches that 

can be used (namely, parametric, nonparametric and semiparametric) to estimate 

production/cost frontiers. Moreover, each one of the approaches has their own 

advantages and disadvantages. Therefore, the selection of an appropriate estimation 

method is debatable and may influence the obtained results and the subsequent 

regulatory policy suggestions. The best that a researcher can do is to explore alternative 

model specifications and carry out suitable model selection tests to choose the most 

appropriate model for a given approach. In that sense, Coelli et al. (2005) suggest 

exploring alternative models to assess the adequacy and robustness of the results 

obtained when a parametric approach is applied. In this paper, we estimate different 

energy demands using alternative specifications and we carry out several model 

selection tests to be confident about the consistency of our preferred model, given the 

parametric approach that has been used. 

The basic model that is estimated by Filippini and Hunt (2011) is an input 

demand frontier function that takes advantage of the traditional specification of the SFA 

models that was initially proposed by Aigner et al. (1977) (hereinafter ALS). They also 

estimate other models developed in the efficiency and productivity literature, such as 

the True Random Effects (TRE) model presented by Greene (2004, 2005a, 2005b) or 

the formulation of Mundlak (1978) that was proposed for an estimator of random effects 

by Farsi et al. (2005). The standard ALS model can be presented for the case of energy 

demand in the logarithmic form as follows: 

    ln 𝑄 = ln 𝑓(𝑃, 𝑌, 𝑋, 𝛽) + 𝑣 + 𝑢    (1) 

where Q represents the quantity of the demanded energy, P is the price of energy, Y 

represents income, X refers to other control variables and β are the parameters that are 

associated with the variables that are included in the model and can be directly 

interpreted as elasticities. The random term in this model is compound and is formed by 

v, which follows a normal distribution with zero mean and constant variance, σv
2
, and u, 

which is an asymmetric error that follows a half-normal positive distribution to capture 

the inefficiency of energy demand in the same way that it is defined in cost functions of 

many empirical applications in the SFA literature. This model reflects the minimum 

amount of energy necessary to produce any given level of energy services. Therefore 

the positive deviations from the estimated frontier demand are captured by the 
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asymmetric error term that can be interpreted as inefficiency in the use of input energy 

(Filippini and Orea, 2014). Based on the conditional mean of the inefficiency term 

proposed by Jondrow et al. (1982), the efficiency level for each observation can be 

easily obtained from the estimates of u. The efficiency obtained with this model is a 

measure bounded between zero and one (or 100%). The difference between 1 and this 

measure of efficiency shows the amount of energy consumption that could be reduced 

in this country while maintaining the same level of transport services. 

It should be emphasised again that the goal of using this approach in the paper is 

to obtain appropriate and comparable measures of energy efficiency at country level. 

Apart from the standard distributional assumptions about the random error, in this and 

next models (presented below) no particular parametric functional forms are imposed 

for the inefficiency term. Therefore, if we were interested in forecasting energy 

efficiency trends, we should make certain ad hoc and additional assumptions such as, 

for instance, to expect that energy efficiency improvements of recent years are going to 

be similar in next years. Alternatively, the model could be estimated including the 

expected values of the introduced variables to obtain ex ante estimates of future energy 

efficiency. However, the use of both approaches heavily relies on specific assumptions 

about future features of the economy that make this type of projections very risky and 

unreliable. 

 

2.2. Treating unobserved heterogeneity with a random parameters model 

Based on the influential work of ALS, a broad body of literature has been 

developed to attempt to precisely measure the efficiency of the studied individuals 

(firms, countries, etc.) with various methodological proposals that allow for solving 

specific problems that affect the obtained results. One of the main weaknesses of the 

basic model that is proposed in Equation (1) is that despite the fact that its specification 

allows to control for random noise, the presence of unobserved heterogeneity between 

the studied individuals can bias the efficiency measures (see Greene, 2005a, 2005b). 

This heterogeneity is typically considered an unobserved determining factor of 

the estimated production or cost frontier, and inefficiency is interpreted as the distance 

to the frontier once heterogeneity has been taken into account. Multiple empirical 

strategies, each one with specific advantages and drawbacks, have been developed to 

solve this problem. A first approach that can be applied, is the use of a specification that 

accounts for unobserved heterogeneity through the intercept, as is the case of the True 

Fixed Effects (TFE) and TRE models proposed by Greene (2004, 2005a, 2005b). The 

TFE model includes a series of country-specific intercepts that are simultaneously 

estimated with the remaining parameters of the model and allow the distinction between 

unobserved heterogeneity (which does not change over time) and inefficiency. In this 

approach, unobserved heterogeneity is modelled as an individual-specific intercept and, 

therefore, is a neutral or parallel movement of the function that maintains the remaining 

common parameters for all individuals. On the other hand, in the TRE model the 

intercept is modelled as a random variable that, as in the case of the TFE model, also 

permits disentangling time-invariant unobserved heterogeneity from time-varying 

inefficiency. After the estimation of this model it is possible to obtain ex post values of 

the intercept that can vary from country to country. The estimation of both models (TFE 

and TRE) implies that specific characteristics of the energy demand are the same for all 

the countries analysed. This assumption is difficult to justify for such a heterogeneous 

region as Latin America and the Caribbean. If the countries in the sample have different 
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demand characteristics such as price or income elasticities, we should estimate a model 

that allows us to take these features into account. 

An alternative approach to control for unobserved heterogeneity that seems to be 

more adequate for the current context is the Latent Class Stochastic Frontier Model 

(LCSFM), such as the model proposed by Orea and Kumbhakar (2004) and Greene 

(2004, 2005b). This model allows for estimation of different parameters for countries 

that belong to distinct groups and share similar characteristics. The characteristics of the 

countries in each group differ and thus, given that the countries that belong to the same 

class share the same set of parameters, this approach controls for the heterogeneity 

“between groups”. In other words, the latent class procedure allows us to control for 

heterogeneity in the slopes (the estimated coefficients of the variables introduced in the 

model), which is unobserved and associated with country groups. The estimation of a 

model of this type implies the existence of J groups of countries, which show 

differences among themselves in terms of their behaviour function. Additional variables 

can be included in the probabilities of class membership. If such variables are not 

included, the model uses the goodness of fit of each class to identify the distinct groups. 

However, the abovementioned latent class model can be viewed as an 

approximation to a Random Parameters Stochastic Frontier Model (RPSFM) where 

heterogeneity between countries is modelled through a discrete distribution, instead of 

through a continuous parameter variation (Greene, 2005b).
6
 In our context, this model 

can be presented as follows: 

ln 𝑄𝑖𝑡 = ln 𝑓(𝑃𝑖𝑡, 𝑌𝑖𝑡, 𝑋𝑖𝑡, 𝛽𝑖) + 𝑣𝑖𝑡 + 𝑢𝑖𝑡   (2) 

where i represents the country, t stands for the period, βi is the vector for the parameters 

(which are randomly distributed) estimated for each country i, and the random term, as 

in the previous model, is composed of vit ~ N(0,σv
2
) and uit ~ N

+
(0,σu

2
).

7
 It is important 

to note that in this type of approach, some parameters are allowed to be “fixed” across 

countries while others are random by researcher’s decision. In that sense, it should also 

be noted that the TRE model can be viewed as a special case of a fully specified random 

parameters model in which the only random parameter (βi) in the model is the intercept 

(Greene, 2004, 2005b). 

Because of the variety of approaches to control for unobserved heterogeneity 

that can be applied, it is needed to apply statistical tests to choose the most appropriate 

model in each application. In the literature, the most commonly used tests are the 

Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), and 

some of their variants. Apart from incorporating the value of the likelihood function, 

these criteria penalise (with different weights) the increase in the number of parameters 

that are estimated in each model. As shown by Fonseca and Cardoso (2007), the general 

form for most of the statistical information criteria is: 

−2 ln 𝐿𝐹 + 𝐶      (3) 

where the first term is twice the negative logarithm of the maximum likelihood which 

decreases when the complexity of the model increases. The second term, C, penalises 

too complex models, and increases with the number of parameters of the model. In 

these information criteria, the preferred model is that one that shows the lowest value 

                                                 
6
 We thank one of the referees for pointing out this issue. 

7
 The estimation procedure of this type of model can be found in detail for instance in Greene (2002, 

2004, 2005b). 
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according to (3). In this paper, we use several criteria to select the preferred model (see 

later on in Section 4). 

 

3. Econometric specification and data 

This section presents the data and the econometric specification of the models to 

be estimated that were presented above. Incomplete panel data are used, for the 1990-

2010 period, from the following 24 countries in Latin America and the Caribbean: 

Argentina, Barbados, Bolivia, Brazil, Chile, Colombia, Costa Rica, Dominican 

Republic, Ecuador, El Salvador, Grenada, Guatemala, Guyana, Honduras, Jamaica, 

Mexico, Nicaragua, Panama, Paraguay, Peru, Suriname, Trinidad and Tobago, Uruguay 

and Venezuela.
8
 The econometric specification of our basic ALS model with a translog 

specification is the following: 

ln 𝑄𝑖𝑡 = 𝛼 + ∑ 𝛽𝑝 ln 𝑍𝑝𝑖𝑡
5
𝑝=1 +

1

2
∑ ∑ 𝛽𝑝𝑞 ln 𝑍𝑝𝑖𝑡

5
𝑞=1 ln 𝑍𝑞𝑖𝑡

5
𝑝=1 + 𝛽𝑆𝑇𝑆𝑇𝑖𝑡 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡  (4) 

where for notational ease, the vector Z stands for Y, P, POP, DEN and t. It should be 

pointed out that Q, Y, P, v, u and β are defined as in prior equations. Analogously to 

Filippini and Hunt (2011, 2012), we include other explanatory control variables
9
 such as 

POP, which represents the population; ST, which is the share of the transport sector in 

the economy; DEN, population density; and t, the time trend. 

Table 1 shows the descriptive statistics of these variables. It should be 

mentioned that the dependent variable, Q, represents the final energy consumption of 

the transport sector, expressed in thousands of toe. It is obtained by adding the total of 

the energy consumption in internal transport
10

 for each country for both passengers and 

goods. The types of energy that are included in this aggregate are natural gas, Liquefied 

Petroleum Gas (LPG), electricity, gasoline (which includes biofuel), kerosene (jet fuel), 

diesel oil and fuel oil. Y, is the GDP of each country and is measured in millions of 

2005 US dollars at Purchasing Power Parity (PPP). POP is the mean population for 

each country, as measured in thousands of inhabitants. 

P is an energy price index calculated as the weighted sum of mean prices (in real 

terms) of the types of energy used in the transport sector. It should be mentioned that 

these are final prices after taxes and subsidies, so it is expected that our estimates are 

not going to be altered by the level of subsidisation of the countries and hence only 

consumers’ behaviour is captured. Because OLADE and other energy international 

agencies do not provide any price index for the total of the countries of Latin America 

and the Caribbean, we have calculated a transitive multilateral price index that allows 

                                                 
8
 The sample is composed of a total of 503 observations. The observation for Barbados in 2010 is not 

included because it is unavailable. Of the 27 country members of OLADE, Belize and Haiti are not 

included due to the lack of data. Furthermore, Cuba is not included in the sample, as the inclusion of this 

country in the analysis does not allow for the convergence of estimates in some models because the 

estimated function does not fulfil the convexity property and, in other models, the obtained values for 

efficiency are virtually zero. Due to these results, the observations for this country are considered to be 

outliers and, thus, we exclude them from the sample. 
9
 However, in our model, we do not include meteorological variables because we analyse energy demand 

in the transport sector and such variables do not play a relevant role as in the modelling of total energy 

demand or the residential sector of a country. However, possible persistent meteorological differences 

would be controlled for in our preferred model, which precisely allows the treatment of unobserved 

heterogeneity. 
10

 Internal transport includes domestic aviation, domestic shipping, roads and railways and excludes 

international maritime and air transport. 
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for consistent comparisons between countries throughout the sample period (see 

Appendix). We have chosen the use of this type of index instead of standard ones such 

as Paasche, Laspeyres, Fisher or Törnqvist, because all of them present the same 

problem. They allow for comparisons of each country with itself over time and between 

countries in terms of price changes, but they do not allow for comparisons of price 

levels between countries throughout time. In practice, the use of these simpler indices 

implies the assumption that each country has a specific time-invariant effect due to the 

absence of differences in price levels, which artificially introduces heterogeneity into 

the model. Studies that use international data should employ transitive multilateral 

indices to overcome this difficulty. 

ST is the ratio of Gross Value Added (GVA) in transport and the total GVA for 

each economy, and it is expressed in percentages. Lastly, DEN reflects the ratio between 

the population in thousands of inhabitants and the area of each country in km
2
.
11

 

Concerning the data sources, the variables Q, P and POP are derived from the Energy-

Economic Information System of the OLADE. The variables ST and DEN are obtained 

from ECLAC. The variable Y is obtained from the data in the Penn World Table (PWT 

7.1) presented by Heston et al. (2012). 

[Insert Table 1 here] 

Among the explanatory variables that we have included in our specification, 

those more correlated with the dependent variable are Y and POP (>90%). The 

correlation with the remaining variables introduced is low, being DEN the one that have 

the largest negative correlation (-22%) with energy consumption. Urban population was 

alternatively considered for the calculation of DEN since it may be seen by some people 

as a more appropriate measure to estimate energy efficiency. However, the results that 

are obtained are virtually identical to those obtained when the previous variable is used 

so we have finally used total population for the calculation of population density. 

 

4. Estimates and results 

Table 2 shows the results of the ALS model estimation with the standard Cobb-

Douglas and translog specifications. If we focus first on the Cobb-Douglas 

specification, we can observe that all the variables that are included in the models are 

statistically significant at 99% (except the time trend squared) and show the expected 

signs. The values of the income and price elasticities are 0.81 and -0.23, respectively. 

These elasticities are found within the range of values that are obtained in the demand 

for energy in transport papers, as discussed in Section 2. It should be noted that as we 

are not considering the panel structure of the data in this model, the coefficients can be 

interpreted as long-run elasticities. The coefficient of the population variable has a 

positive sign, which indicates that population increases lead to, ceteris paribus, 

increases in the energy demand. A similar interpretation can be made for the share of 

the transport sector in the economy, which can be understood as a proxy for the degree 

of transport development. It can be expected that a more developed sector results in 

greater welfare for society, which is achieved through greater energy consumption. 

However, density presents a negative sign, indicating that the countries that are more 

densely populated have, ceteris paribus, lower transport energy demand due to the 

                                                 
11

 The lack of homogenous information or a sufficient timeframe on the transport infrastructure, stock of 

vehicles, distances travelled or goods and passenger traffic indicators, impedes the inclusion of these 

types of variables in the estimated demands. 



11 

 

smaller average distances that companies and individuals travel. After controlling for 

the remaining variables in the estimation, the positive sign of the time trend shows that 

energy consumption increased throughout the sample period (as shown in Figure 2), 

which may indicate technical regress in the sector. The mean value of efficiency is 

87.4%. Nevertheless, great variability is found among the observations, with minimum 

and maximum values of 66.2% and 94.7% respectively.
12

 

[Insert Table 2 here] 

An issue that recurrently arises in applied research is the choosing of the model 

specification. More flexible functions (e.g., translog) are generally preferred to those 

more straightforward (e.g., Cobb-Douglas). However, the estimation of more flexible 

functions can involve the non-fulfilment of some properties required by the models to 

be estimated and the arising of multicollinearity problems (see, e.g., Coelli et al., 2005; 

or Filippini and Hunt, 2015a). Therefore the election of which model should be used in 

each context is ultimately an empirical question. In this paper we have also estimated a 

model in which all the variables except one, the share of the transport sector in the 

economy, are included and interact with each other in a translog specification. The share 

of the transport sector has been introduced in that model, but its interactions with the 

remaining variables are not included due to the small variance of this variable (see 

Table 1) that mainly reflects between-countries variation and hence it can be considered 

that acts, in a way, as some sort of “country-specific individual effect”.
13

 The estimation 

of this model allows us to analyse the possible nonlinearity of some variables and the 

evolution of the estimated elasticities over time. 

In this translog specification we can also observe that most of the first-order 

coefficients show the expected sign and have similar magnitude to those obtained in the 

Cobb-Douglas.
14

 This outcome gives us confidence about the robustness of our results 

and the elasticities estimated. Surprisingly, except for population, none of the 

coefficients of the squared terms are statistically significant. This should not be taken as 

an evidence of the lack of a nonlinear effect of these variables, as this circumstance may 

be captured by the interactions between variables that result significant in every case. In 

particular, the positive coefficient for the interaction between price and time trend and 

the negative coefficient for the interaction between income and time trend, show that 

both elasticities decrease over time in absolute terms. This declining trend in price and 

                                                 
12

 A reviewer’s suggestion that the inefficiency in our model might include a behaviour that would be the 

consequence of low energy prices in certain countries led us to estimate a heteroscedastic model of the 

type proposed by Reifschneider and Stevenson (1991), Caudill and Ford (1993) and Caudill et al. (1995). 

The estimation of this model allows us to test whether there is a correlation between energy prices and 

energy efficiency that may bias our results. The coefficients that are estimated with such a model for the 

variables in the frontier are practically identical to those obtained in the ALS model, and the price is not 

statistically significant in the inefficiency term. The values of the efficiencies that are obtained in this 

heteroscedastic model are similar to those obtained in the ALS model, with a 96% correlation between the 

two measures. Thus, we can assume that this issue is not biasing the results in our application. 
13

 We have not included all the interactions among variables in the translog specification as this generates 

a problem of wrong skewness of the residuals. This problem seems to be caused by the wrong functional 

form of the mentioned translog and the multicollinearity issue that is generated. However, when 

estimating energy demand frontier functions, the wrong skewness problem can also arise from the 

presence of both allocative and technical efficiency within the estimated energy efficiency. For a 

discussion on this topic see Filippini and Hunt (2015a). 
14

 All the variables introduced in the model are expressed in logarithms and in deviations with respect to 

the arithmetic mean (which is equivalent to normalising the original variables using the geometric mean). 

This allows us to interpret the first-order coefficients of the translog function as elasticities evaluated at 

the sample mean and thus they can be directly compared to those estimated in the Cobb-Douglas. 
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income elasticities can also be observed in other energy demand papers (see for 

instance, Fouquet, 2012). Moreover, it should be mentioned that the Cobb-Douglas is 

clearly rejected in favour of the translog specification according to the values of the log-

likelihood functions and the number of parameters in each model. Therefore, the 

translog specification will be the one preferred and henceforth will be used to estimate 

and choose among the alternative models that control for unobserved heterogeneity. 

Our data sample covers a period of 21 years and hence another issue that should 

be analysed is the probability of existence of some kind of structural break due to, for 

instance, financial crises or other macroeconomic events. The test suggested by Chow 

(1960) has been used as a simple way to check if we should estimate separated models 

for dissimilar subsamples within our overall sample. Table 3 shows the values of the 

Chow test statistic when three different years (1999, 2000 and 2001) are considered as 

points of structural break. We have performed this test for those years in view of the 

great increase of fuel prices observed since the end of the 1990’s (see Figure 3). Taking 

into account that the null hypothesis of this test is that the coefficients of the two 

regressions for the different subsamples are equal, a rejection of this hypothesis would 

indicate that we should estimate separated demand functions. We can observe that the 

hypothesis cannot be rejected at a confidence level of 95% for all the years. Therefore 

we do not believe that a structural break can imply an issue in our analysis. 

[Insert Table 3 here] 

Figure 4 shows the different information criteria that are used as selection tests 

to choose the preferred model: the traditional AIC and BIC and some of their variants, 

the modified AIC criterion (AIC3), the corrected AIC (AICc), the AICu and the 

consistent AIC (CAIC), which can be considered a variation of the AIC and the BIC.
15

 

Although our paper is focused on the application of a random parameters procedure to 

estimate an energy demand frontier model, for robustness grounds we have compared 

the performance of that approach with other methods commonly used in SFA literature 

(mentioned in Section 2.2) to control for unobserved heterogeneity. The ALS (which 

does not control for unobserved heterogeneity), the TFE, the TRE and the latent class 

models are presented along with the estimated RPSFM model. It seems clear that there 

is a significant improvement in the performance of all the models when compared with 

the standard ALS model. We can observe that the TFE and specially the TRE and 

LCSFM
16

 models monitor fairly well the unobserved heterogeneity that exists in our 

sample. However it seems that the use of a random parameters specification is the 

model that fits best to the characteristics of our data and, thus, we consider it to be the 

preferred choice. 

[Insert Figure 4 here] 

Table 4 shows the parameters estimates of the RPSFM model in which the 

intercept and all the first-order coefficients are allowed to be randomly distributed. The 

means for random parameters in this model are significant, show the expected signs and 

are of a reasonable order of magnitude as in the ALS model presented before. 

                                                 
15

 Additional details on these criteria can be found in Fonseca and Cardoso (2007). 
16

 The LCSFM presented in the figure is a latent class model with three classes with a Cobb-Douglas 

specification which includes per capita income and density as separating variables in the probabilities of 

class membership. This model can be considered as our preferred model within the latent class approach. 

It must be said that this model cannot be estimated with more than three classes or alternatively with three 

classes and a translog specification due to problems of lack of convergence. More information about this 

type of procedure can be found in Orea and Kumbhakar (2004) or Greene (2005b). 
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Moreover, the scale parameters for the distributions of these random parameters are also 

significant which means that there are relevant differences across countries, not only in 

the intercept but also in the slopes of the variables introduced in the analysis. As in the 

ALS model, again almost all the coefficients of the squared terms are not statistically 

significant while on the contrary many of the interaction terms are statistically 

significant. As previously mentioned, the main advantage of using this approach is that 

it allows us to obtain individual elasticities for each country in our sample. 

[Insert Table 4 here] 

The most relevant variables included in demand analysis are generally income 

and price. In Table 5 we provide the income and price elasticities of the demand 

computed at country level for our sample when the RPSFM model is applied. The 

country with the most inelastic demand for income is Peru (0.649), while the most 

elastic one is Dominican Republic (0.942). There are some similarities between our 

results and the findings of Rogat and Sterner (1998). In the short-run, they find that 

Chile, El Salvador and Guatemala are among those countries that show larger income 

elasticities and that is something that we also find in our analysis. The same happens to 

Honduras and Mexico that are among those countries with lower income elasticities. In 

the case of price elasticities, El Salvador and Uruguay are in both studies among the 

countries with more elastic demands, while Argentina, Bolivia and Venezuela show low 

price elasticities. Probably the most dissimilar result is the price elasticity for Mexico 

that in our case it shows one of the most elastic demands while Rogat and Sterner 

(1998) find this country among those with more inelastic demand. However, it should 

be mentioned that they find that this country is the one with the most elastic demand in 

the long-run. If we compare our results with those obtained by Wohlgemuth (1997) for 

the case of Brazil and Mexico, and Galindo (2005) for Mexico, we observe that we 

obtain lower income elasticities but larger price elasticities. 

[Insert Table 5 here] 

Table 5 also provides information about the energy efficiency of the countries in 

our sample computed using our preferred model. The mean energy efficiency that is 

obtained is 93.2%, ranging this value between 91.3% (Trinidad and Tobago) and 94.2% 

(Guatemala). These results indicate that there are not large differences in the energy 

efficiency among countries. They also reflect that all of them can reduce their energy 

consumption at least 6%, while the less efficient countries have a margin of up to 9%. 

Although this could be seen as a small number, it should be taken into account that 

these savings are non-negligible given the size of the transport sector in these countries. 

Moreover, these potential savings are however obtained without explicitly considering 

possible “rebound effects”. This phenomenon captures the idea that part of the savings 

from increases in the efficiency level in the use of energy can be offset by increases in 

the demand for energy services derived from the marginal cost reduction of those 

energy services. Orea et al. (2015) have recently proposed a model that allows to model 

and measure energy efficiency and rebound effect when an energy demand function is 

estimated through an SFA approach. However, this approach has not been generalised 

to a random parameters framework yet. 

If we focus on the individual efficiency scores in our sample, we observe that the 

three countries with the greatest energy efficiency are Guatemala, Brazil and Ecuador.
17

 

                                                 
17

 In some sense, the most efficient countries in our sample seem to correspond to countries that, 

according to ECLAC (2010), have adopted distinctive measures for the improvement of public transport 

in their cities. In this report, it is highlighted the Bus Rapid Transit (BRT) system implementation in 
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The remaining countries should attempt to follow the energy policies of those countries 

most efficient that can be considered their “benchmarks”. As part of the political 

measures to improve energy efficiency, governments should pay special attention to the 

increase of actual fuel consumption in road transport which involves the largest share of 

energy consumption in transport. Leaving aside the quality of road infrastructures, the 

main reason in worsening on-road fuel economy is the driving of vehicles at non-

optimum speed (Bonilla and Foxon, 2009). This issue together with the age and 

maintenance of the vehicle fleet should be properly addressed within the political 

agendas as a priority objective in the near future. 

Finally, as mentioned before, energy indicators have traditionally been used to 

measure energy efficiency in countries. The most commonly used indicator of energy 

intensity is the ratio of energy consumption to GDP in a country. Table 5 also shows the 

value of this indicator for the transport sector of each country and presents a ranking of 

“energy intensity”. The table also shows the mean efficiencies that are obtained for each 

country with the RPSFM model. The correlation coefficients of both measures for each 

country are in some cases, such as Bolivia (-0.951), Paraguay (-0.848) and Venezuela (-

0.827), quite high and negative. This result indicates, as expected, that energy efficiency 

improvements are associated with decreases in the energy intensity indicators. However 

there is a low correlation between these measures for some countries (such as Barbados, 

Nicaragua and Argentina) and it is even positive in one country (Ecuador), indicating 

that the evolution of energy intensity indicators is associated with circumstances other 

than energy efficiency improvements. Moreover, using the Spearman’s rank correlation 

coefficient, we observe that the mentioned differences generate quite dissimilar 

rankings of countries according to their energy efficiency (22% of correlation). This 

result is of the same order of magnitude as those previously obtained by Filippini and 

Hunt (2012) for the case of US residential energy demand. This outcome can be taken 

as evidence that the efficiency measures that are derived from the estimation of energy 

demand frontier models are more appropriate than those provided by energy intensity 

indicators. 

 

5. Conclusions 

In this paper, we estimate stochastic frontier demand functions to measure the 

level of energy efficiency of the transport sector in Latin America and the Caribbean by 

using panel data from 24 countries for the 1990-2010 period. Due to the different types 

of energy that are used in the transport sector, it is necessary to employ an index that 

aggregates the set of energy prices for the estimation of these demands. International 

energy and statistical agencies do not provide energy price indicators for all of the 

countries in the sample and thus, we construct a transitive multilateral index, which 

allows for consistent comparisons of energy price among countries throughout time. 

The estimated models are a basic stochastic frontier and diverse models that 

allow us to control for unobserved heterogeneity in our sample. The results indicate that 

                                                                                                                                               
Curitiba (Brazil). This system was started in 1972 as part of a general policy of urban planning. Other 

noted examples are the BRT TransMilenio, which has been developed since 2000 in Bogotá (Colombia). 

The innovations of this system have made it the most solid BRT of the world and have led it to develop 

an extension plan of this system to seven additional cities. In Mexico City (Mexico), a BRT system has 

been implemented, named Metrobús, as a complement to the extensive subway system of the city. In 

Guatemala City (Guatemala), a trans-urban system was developed in 2009 with the aim of improving 

efficiency and reducing contamination indices of the transport sector in the city. 



15 

 

the specification that best fits an energy demand in this context is a random parameters 

model. In this model, significant differences in income and price elasticities are 

observed within the sample. The estimation of our model allows us to identify the most 

efficient countries in energy consumption (Guatemala, Brazil and Ecuador) that are 

indeed some of those that have successfully implemented programs of improved public 

transport in some of their cities. As a policy recommendation, it should be suggested 

that the remaining countries should follow the example of these countries identified as 

benchmarks. The adaptation of the national transport sector policies implemented in the 

most efficient areas of the region might help those countries lagging behind to improve 

their energy efficiency and reduce their levels of urban contamination. 

In addition, this paper shows that the commonly used indicators of energy 

intensity cannot consistently be used as a reasonable reference for energy efficiency in 

the transport sector. Using efficiencies that are obtained through a frontier approach, we 

find that although the mean efficiency is relatively high, there is room for energy 

savings and, thus, for a reduction of greenhouse gas emissions. However, according to 

the likely existence of rebound effects, it is possible that increases in energy efficiency 

do not involve the expected reduction in energy consumption. This concept should be 

considered in future research for measuring energy efficiency in the transport sector of 

Latin America and the Caribbean. 
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Table 1. Descriptive statistics 

 

Variable Units Mean Std. Dev. Max. Min. 

Q Thousands of toe 6,141 12,434 69,384 18 

Y Millions of US dollars (2005) 164,968 339,168 1,800,000 713 

POP Thousands of inhabitants 20,517 38,114 195,498 91 

P Energy price index (See Appendix) 174.56 108.64 850.66 3.76 

ST % 4.02 1.59 12.74 1.07 

DEN Thousands of inhabitants / km
2
 0.10 0.14 0.63 0.00 

 

 

Table 2. Parameter estimates of the ALS frontier demand models 

 

    ALS (Cobb-Douglas)   ALS (translog) 

  Variable Est.   t-ratio   Est.   t-ratio 

         Frontier param. 
       

 
Intercept 7.098 *** 405.450 

 
7.033 *** 358.523 

 
ln Yit 0.810 *** 39.720 

 
0.851 *** 37.450 

 
ln POPit 0.182 *** 8.834 

 
0.099 *** 3.763 

 
ln Pit -0.229 *** -15.138 

 
-0.354 *** -13.104 

 
STit 0.047 *** 7.103 

 
0.001 

 
0.159 

 
ln DENit -0.096 *** -12.031 

 
-0.075 *** -7.683 

 
t 0.013 *** 6.960 

 
0.022 *** 9.505 

 
½ (ln Yit)

2
 

    
0.044 

 
1.601 

 
½ (ln POPit)

2
 

   
 

-0.335 *** -5.330 

 
½ (ln Pit)

2
 

   
 

0.006 
 

0.247 

 
½ (ln DENit)

2
 

   
 

0.020 
 

1.299 

 
½ t

2
 -0.001  -1.537 

 
0.001 

 
1.009 

 
ln Yit · ln POPit    

 
0.122 ** 2.176 

 
ln Yit · ln Pit    

 
0.302 *** 6.320 

 
ln Yit · ln DENit 

    
0.053 *** 3.082 

 
ln Yit · t 

    
-0.028 *** -8.187 

 
ln POPit · ln Pit 

    
-0.318 *** -6.723 

 
ln POPit · ln DENit 

    
-0.096 *** -5.995 

 
ln POPit · t 

    
0.025 *** 7.613 

 
ln Pit · ln DENit 

    
-0.151 *** -8.118 

 
ln Pit · t 

    
0.004 * 1.852 

 
ln DENit · t 

    
0.007 *** 5.642 

         Compound error 
       

 
σ = (σv

2
+σu

2
)
(1/2)

 0.257 *** 590.578 
 

0.229 *** 618.651 

 
λ = σu/σv 0.886 *** 7.411 

 
1.464 *** 8.992 

           Log-likelihood 52.689   173.477 
Significance code: * p<0.1, ** p<0.05, *** p<0.01  
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Table 3. Chow breakpoint test 

 

Year of breakpoint Chow test statistic 

1999 1.502 

2000 1.393 

2001 1.372 
Note: F-distribution (22, 459) = 1.565 (95%) 

 

 

Table 4. Parameter estimates of the frontier demand with a random parameters model 

specification 

 

   RPSFM (translog) 

  Variable Est.   t-ratio   Est.   t-ratio 

  
   

Scale param. for 
 Frontier (means for random param.) 

 
dist. of random param. 

 

Intercept 7.057 *** 278.901 

 

0.102 *** 8.632 

 

ln Yit 0.802 *** 21.337 

 

0.077 *** 6.752 

 

ln POPit 0.169 *** 4.246 

 

0.058 *** 5.565 

 

ln Pit -0.287 *** -9.901 

 

0.108 *** 4.600 

 

STit 0.021 ** 2.408 

 

0.098 *** 11.245 

 

ln DENit -0.071 *** -3.719 

 

0.033 *** 3.995 

 

t 0.020 *** 8.810 

 

0.008 *** 5.126 

         Nonrandom param. 

       

 

½ (ln Yit)
2
 0.082 * 1.664 

    

 

½ (ln POPit)
2
 -0.250 

 
-1.463 

    

 

½ (ln Pit)
2
 -0.013 

 

-0.387 

    

 

½ (ln DENit)
2
 0.004 

 

0.208 

    

 

½ t
2
 0.000 

 

1.093 

    

 

ln Yit · ln POPit 0.041 
 

0.319 

    

 

ln Yit · ln Pit 0.204 *** 5.719 

    

 

ln Yit · ln DENit 0.049 
 

1.043 

    

 

ln Yit · t -0.024 *** -7.872 

    

 

ln POPit · ln Pit -0.226 *** -6.047 

    

 

ln POPit · ln DENit -0.119 ** -2.183 

    

 

ln POPit · t 0.020 *** 5.881 

    

 

ln Pit · ln DENit -0.055 * -1.960 

    

 

ln Pit · t 0.007 *** 2.753 

    
 

ln DENit · t 0.002 
 

1.062 

             Compound error 
       

 

σ = (σv
2
+σu

2
)
(1/2)

 0.110 *** 11.818 

    

 

λ = σu/σv 1.401 *** 3.262 

                      

  Log-likelihood 449.146 
Significance code: * p<0.1, ** p<0.05, *** p<0.01 
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Table 5. Country-specific elasticities and rankings using energy intensity and energy 

efficiency scores 

 

Country 

Country-

specific 

elasticities 

Indicator 

(Energy/GDP) 

Frontier demand 

(RPSFM) Correlation 

(EI Vs Eff.) 

βY βP EI Ranking Eff. Ranking 

Argentina 0.774 -0.170 0.037 14 0.937 7 -0.314 

Barbados 0.751 -0.098 0.019 1 0.937 8 -0.286 

Bolivia 0.791 -0.180 0.042 19 0.922 21 -0.951 

Brazil 0.765 -0.203 0.034 12 0.941 2 -0.512 

Chile 0.827 -0.210 0.044 20 0.934 14 -0.627 

Colombia 0.895 -0.206 0.032 8 0.935 11 -0.683 

Costa Rica 0.794 -0.332 0.032 9 0.937 6 -0.572 

Dominican Rep. 0.942 -0.264 0.026 4 0.921 23 -0.693 

Ecuador 0.852 -0.273 0.055 22 0.941 3 0.015 

El Salvador 0.809 -0.362 0.026 5 0.940 4 -0.626 

Grenada 0.847 -0.234 0.029 7 0.935 12 -0.558 

Guatemala 0.805 -0.303 0.024 2 0.942 1 -0.633 

Guyana 0.828 -0.378 0.066 24 0.926 18 -0.773 

Honduras 0.765 -0.233 0.033 10 0.923 20 -0.454 

Jamaica 0.760 -0.042 0.038 16 0.926 19 -0.473 

Mexico 0.775 -0.371 0.040 18 0.934 15 -0.737 

Nicaragua 0.897 -0.323 0.040 17 0.936 10 -0.291 

Panama 0.780 -0.186 0.037 15 0.938 5 -0.449 

Paraguay 0.801 -0.365 0.054 21 0.922 22 -0.848 

Peru 0.649 -0.282 0.025 3 0.929 17 -0.394 

Suriname 0.742 -0.108 0.035 13 0.931 16 -0.777 

Trinidad and Tobago 0.762 -0.270 0.033 11 0.913 24 -0.462 

Uruguay 0.786 -0.446 0.028 6 0.936 9 -0.553 

Venezuela 0.887 -0.194 0.062 23 0.935 13 -0.827 

        

Spearman’s rank correlation coefficient between both rankings 

 

0.221 

Note: EI stands for Energy Intensity and Eff. is the abbreviation of Efficiency 
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Figure 1. Final energy consumption by activity sector 

 

 

Source: OLADE 

 

 

Figure 2. Energy consumption in tons of oil equivalent (toe) per capita in transport 

 

 

Source: OLADE 
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Figure 3. Energy price indices in the transport sector 

 

 

Source: Own elaboration based on data from OLADE 

 

 

Figure 4. Model selection tests 
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APPENDIX 

Construction of the price index 

 

OLADE provides information on the final prices and quantities consumed of the 

different types of energy that are used in the general transport sector of Latin America 

and the Caribbean. However, this agency does not provide a unique price of energy for 

these countries. To estimate aggregate energy demand in transport, it is necessary to 

obtain an indicator or index that accounts for the distinct components in the energy 

consumption of the sector. In general, a compound price index can be defined as 

follows: 

    𝑃𝐼0𝑡 =
∑ 𝑝𝑚𝑡𝑞𝑚𝑡
𝑀
𝑚=1

∑ 𝑝𝑚0𝑞𝑚0
𝑀
𝑚=1

     (A1) 

where PI0t measures the change in value of the total of the M energy components 

between the base period 0 and final period t. In this type of index, it is difficult to 

distinguish between changes in prices and changes in consumed quantities. The two 

indices that are most commonly used in practice are Laspeyres and Paasche. In the 

former, the quantities that are consumed in the base year (qm0) are used as weights both 

in the numerator and denominator. Thus, this index isolates the change in prices without 

accounting for changes in consumption patterns. The second type of index uses energy 

quantities from the current period (qmt) as weights, thus simultaneously including 

variations in prices and quantities. These two indices, therefore, represent two extreme 

cases and only coincide when relative prices do not experience any variation (i.e., 

pmt/pm0 is constant). 

As mentioned in the paper, a price index that allows transitive multilateral 

comparisons between countries should be ideally used for international comparisons. 

Here we will use the method proposed by Elteto and Koves (1964) and Szulc (1964). 

This method, known as EKS, was used by Caves et al. (1982) to obtain transitive 

Törnqvist indices. The formula, in line with Coelli et al. (2005), is as follows: 

ln 𝑃𝐼𝑖𝑗
𝐶𝐶𝐷 =

1

2
∑ (𝜔𝑚𝑗 + �̅�𝑚)
𝑀
𝑚=1 (ln 𝑝𝑚𝑗 − ln 𝑝𝑚̅̅ ̅̅ ̅̅ ̅) −

1

2
∑ (𝜔𝑚𝑖 + �̅�𝑚)
𝑀
𝑚=1 (ln 𝑝𝑚𝑖 − ln 𝑝𝑚̅̅ ̅̅ ̅̅ ̅) (A2) 

where ωmi represents the importance held by component m in the energy expenditure of 

the transport sector within a certain country and year, i, while j represents the country 

and year of reference, and �̅�𝑚 is the arithmetic mean of these expenditure amounts for 

the whole sample. Furthermore, ln 𝑝𝑚̅̅ ̅̅ ̅̅ ̅ represents the average of the logarithm of prices 

of energy component m for the set of countries. 

The intuitive interpretation of Equation (A2) is that to compare the price indices 

of two countries, each of them is compared to the average country and then the 

differences from this mean are calculated. Logically, as opposed to other indices, when 

an observation is added or subtracted from the sample, all values should be recalculated 

due to changes in the mean of the sample. 


