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Abstract 

This paper presents U-Pb zircon geochronology, petrology, and major and trace element, 

Sr-Nd and zircon Hf isotopic geochemistry of Cretaceous granites and intermediate dykes in 

the Quanzhou and Xiamen regions of southeastern China. These data are used to investigate 

igneous petrogenesis and Cretaceous tectonic evolution, and interpret the geodynamics of 

Palaeo-Pacific slab subduction. Granites in Quanzhou and Xiamen range in age from 133 Ma to 

87 Ma, have high SiO2 and K2O contents, low abundances in P2O5, and an A/CNK index that 

ranges from 0.97 to 1.09, indicating that they are high-K calc-alkaline metaluminous I-type 

rocks. Slightly negative ɛ Nd (t) values (-1.2 to -4.4), young Nd model ages (0.87 Ga to 1.20 Ga) 

and positive ɛ Hf (t) values (-0.5 to +9.9) of zircon grains indicate that the granites were 

derived from magmas that melted amphibolite in the middle-lower crust, and which may have 

assimilated country rocks during emplacement in shallow chambers. The intermediate dykes 

have no genetic link to the granites and magma mixing was negligible. Eight dyke samples 

have low SiO2 and high MgO, Ni and Cr contents. Negative ε Nd (t) values (-1.5 to -2.7) and 

positive ε Hf (t) values (2.7 to 7.6) suggest that the dykes were derived from residual basic 

lower crust after mafic-crystal accumulation. Two samples of adakite-like dykes are 

characterised by high Sr/Y ratios (89 to 100) and high SiO2low K2O, Ni, Cr contents. In 

combination with slightly negative ε Nd (t) values (-1.7 to -1.8) and positive ε Hf (t) values (2.9 

to 4.3), the adakite-like dykes were derived from cumulate basic lower crust which had a 

mixed source between depleted mantle- and crust-derived melts. Based on our data, 

combined with previously published work, we suggest that extension-induced middle-lower 

crustal melting and underplating of mantle-derived basaltic melts were the principal driving 

mechanisms for Cretaceous granitic magmatism in coastal Fujian Province. Extension was 
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related to subduction retreat whereas steep slab subduction caused underplating of 

mantle-derived basaltic melts. These processes were coupled and mainly responsible for the 

tectonic transition during the Cretaceous from compression to extension in the coastal belt of 

the Cathaysia Plate. 

Key words: Cretaceous; Granite; Dyke; Petrogenesis; Subduction; Southeastern China 

1. Introduction 

Granites have long been recognised to play a central role in the evolution and growth of 

continental crust, whereas basic-intermediate dykes are key elements in understanding 

subduction-related geodynamic processes. It is commonly suggested that mantle-derived 

magmas play a prominent role in the origin of granitoids (Annen and Sparks, 2002; Bergantz, 

1989; Huppert and Sparks, 1988; Petford and Gallagher, 2001), for example by the partial 

melting of the mantle wedge, triggered by fluids from the subducting oceanic slab, or of 

underplated basaltic magma.  

Granites of various ages are distributed throughout southeastern China, but Mesozoic 

granites of the Cathaysia Plate (Fig. 1) in particular have provided important constraints on 

petrogenetic models of Palaeo-Pacific slab subduction (e.g., Jahn et al., 1990; Klimetz, 1983; Li 

and Li, 2007; Li et al., 2007; Li et al., 2014; Meng et al., 2012; Niu, 2014; Zhou and Li, 2000; 

Zhou et al., 2006). However, these subduction-based models, are controversial because there 

is a range of hypotheses, namely normal subduction (Jahn et al., 1990; Klimetz, 1983), 

flat-slab subduction (Li and Li, 2007; Li et al., 2007; Meng et al., 2012), changing-angle 

subduction (Zhou and Li, 2000) and subduction retreat (Niu, 2014). Most research has 

focused on Cretaceous granites of the coastal Fujian Province (e.g., Chen et al., 2004; Chen et 

al., 2013, 2014; Li et al., 2012a; Qiu et al., 2012; Zhao et al., 2012). The study by Dong et al. 
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(2011), that only discussed the temporal and spatial relationships between two mafic dykes 

and host granites, and is therefore deficient despite there being an established spatial 

relationship between mafic dykes and the granites. In contrast, there has been little research 

on granites of the Quanzhou and Xiamen regions (Li et al., 2012a). 

The purpose of this paper is to document the evolution of the coastal granitoid belt using 

high quality U-Pb zircon dating and zircon Hf isotopic analyses, bulk-rock major and 

trace-element compositions, and Sr-Nd isotopic analyses of basic-intermediate dykes and 

their host granites in Quanzhou and Xiamen, in order to improve our understanding of the 

nature of the middle-lower crust and Cretaceous crust-mantle interaction in coastal Fujian 

Province, southeastern China. Complementing previous studies, this study highlights the 

temporal and spatial distribution of Cretaceous magmatism and the significant subduction 

polarity of crustal rocks upon the subducted Palaeo-Pacific slab, and provides an enhanced 

understanding of Cretaceous lithospheric extension, crustal growth, and trench/subduction 

retreat. 

2. Regional geology 

The South China Block (SCB) comprises the Yangtze Craton in the northwest and the 

Cathaysia Block in the southeast (Fig. 1), which are separated by the 

Shaoxing-Jiangshan-Pingxiang Fault Zone(SJPF) (Shu et al., 2009; Wang and Shu, 2012) and 

characterised by multistage tectono-magmatic events (Jahn, 1974; Zhou and Li, 2000; Zhou et 

al., 2006). Mesozoic igneous rocks are predominately distributed in the part of the Cathaysia 

Block that was referred to by Zhou et al. (2006) as “the southeast region of the SCB (SE-SCB)”, 

with a total outcrop area of nearly 218,090 km2, and outcrop-area percentages of granitoids 

versus volcanic rocks of respectively 58.4% (127,300 km2) and 41.6% (90,790 km2). More 
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than 90%of Mesozoic magmatic rocks in the SE-SCB are felsic in composition, with only a 

small volume being basic. Mesozoic magmatism significantly increases in volume and 

becomes younger from inland to coastal regions (Zhou et al., 2006; Zhou, 2007). 

Six large-scale fault zones (FZs)cross the SE-SCB (Fig. 1), namely: 1) the NE-trending 

Changle-Nan’ao FZ (CNF), 2) the NE-trending Zhenghe-Dapu FZ (ZDF), 3) the close-to 

NS-trending Ganjiang FZ (GF), 4) the NE-trending Sihui-Wuchuan FZ (SWF) (Shu et al., 2009), 

5) the NE-trending Guangchang-Xunwu FZ (GXF), and 6) the NE-trending Ningyuan-Jianghua 

FZ (NJF) (Zheng et al., 2004). The GF is a sinistral fault whereas the CNF is a sinistral ductile 

shear. Shear deformation associated with the CNF has been dated at 120-100 Ma, by 40Ar/39Ar 

on muscovite from mica-schist (Wang and Lu, 2000), and is related to oblique subduction of 

the Kula Plate (Palaeo-Pacific) (Charvet et al., 1994; Tong and Tobisch, 1996). Seismic 

tomographic studies have shown that a stagnant Palaeo-Pacific slab is clearly visible in cross 

sections at 600 km depth below East China, whereas the transition zone beneath the upper 

mantle of the Fujian coastal region and the Taiwan Strait has low P-wave velocity (low-Vp) 

(Huang and Zhao, 2006). High-Vp materials under Taiwan have penetrated the mantle 

transition zone and entered the lower mantle. Low-Vp anomalies under the SE-SCB and the 

Philippine Sea may represent mantle upwelling flow driven by deep slab subduction (Zhao, 

2004a; Huang et al., 2010). 

The Fujian Province is located within the SE-SCB, and is subdivided by the ZDF into a 

western part, which is mostly covered by Middle-Late Jurassic granites and minor Triassic 

granites, and an eastern part, in which Cretaceous granites and volcanic rocks dominate (Fig. 

1). Voluminous Early Palaeozoic and Triassic per-aluminous (usually S-type) granites and 

some I-type granites are exposed in the western Fujian Province. These granites are 
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interpreted to be responses to the tectonic change from compressive to local post-collisional 

extensional regimes associated respectively with Caledonian and Indosinian orogenesis (Li et 

al., 2012b; Zhou et al., 2006). In contrast, an extensional tectonic regime prevailed in Fujian 

Province at the same time, whereas extension- and arc-related magmatism (e.g., bimodal 

volcanic rocks and A-type granites) occurred during the Jurassic-Cretaceous. Despite a 

long-standing controversy on the Late Mesozoic tectono-magmatic evolution of the area, the 

regional geodynamic setting is generally regarded to have been an active continental margin 

associated with subduction of a Palaeo-Pacific slab (Li et al., 2007; Li et al., 2014; Wang et al. 

2013; Zhou and Li, 2000; Zhou and Chen, 2001; Zhou et al., 2006). 

3. Field observation and petrography 

This study focuses on the Mesozoic granites and intermediate dykes of the Quanzhou 

and Xiamen regions, which are located in coastal Fujian Province and includes the Zhangban, 

Huian, Sidu, Damaoshan and Xiamen (i.e., Xiamen Island) plutons (Fig. 1; Fig. 2a, b). The 

plutons in Quanzhou have a total exposed area of ~600 km2 (Fig. 2a), are intruded by 

intermediate dykes (Fig. 2d), and comprise monzogranite, fine-grained granite, 

biotite-bearing granite, and minor granite porphyry. The Xiamen Pluton (~60 km2) is 

composed mainly of monzogranite and biotite-bearing granite (Fig. 2b), and is intruded by 

near-vertical intermediate dykes (Fig. 2c). All the sampled dykes have a NE-trending strike, 

parallel to the coastline, as also described by Chen et al. (2002). Furthermore, there are minor 

gabbroic intrusions, widespread dynamic-metamorphic rocks (T-J), and late Jurassic 

intermediate-felsic pyroclastic and volcaniclastic rocks interlayered with mudstone, 

sandstone, and siliceous rocks (J3nb-c) in both regions (Fig. 2a, b) (e.g., in Houzhu and Songyu). 

The dynamic-metamorphic rocks (T-J) are leptynite, which is composed of biotite, plagioclase, 
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K-feldspar, and quartz, and interpreted to have originally been intermediate-felsic volcanic or 

volcaniclastic rock (FJBGMR, 1985). 

Thirty-three samples were collected from the two study areas, comprising ten 

intermediate dykes and twenty-three granite plutons. Porphyritic intermediate rocks are 

characterised mainly by distinctive sets of phenocrysts. Dioritic porphyrites have a phenocryst 

assemblage of plagioclase (~60%), hornblende (~35%) and quartz (<5%) (Fig. 3a), whereas 

some sample shave euhedral phenocrysts of sanidine (Fig. 3b). Gabbroic dioritic porphyries 

contain calcite amygdales and phenocrysts of clinopyroxene and plagioclase set in a glassy 

groundmass (Fig. 3c). Granite porphyry is characterised by phenocrysts of quartz (~50%), 

with embayed grain boundaries suggesting resorption, and of plagioclase (~45%), with 

oscillatory concentric zoning, and biotite (~5%) (Fig. 3d). Biotite-bearing granite is composed 

of K-feldspar (25% to 30%), plagioclase (30% to 35%), quartz (~25%), biotite (~4%), and 

muscovite (~3%) with minor zircon and Fe-Ti oxides (Fig. 3e). Monzogranite mainly 

comprises K-feldspar (35% to 40%), plagioclase (30% to 35%),with common oscillatory 

zoning, quartz (~25%), and biotite (~5%), whereas K- and Na-feldspars occasionally occur as 

perthite (Fig. 3f, g). Fine-grained granite is composed of plagioclase (~30%), K-feldspar 

(~35%), quartz (~25%), biotite (<5%) and muscovite (<5%) (Fig. 3h, i). No granites have 

obvious apatite crystals in thin sections. 

4. Analytical methods 

4.1 LA-ICP-MS U-Pb zircon dating 

Nine granite samples and three dyke samples were selected for U-Pb zircon dating. 

Zircon grains were separated via gravity, magnetic, heavy liquid separation techniques in the 
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Laboratory of the Geological Team of Hebei Province, China. Cathodoluminescence (CL) 

images were obtained at the Institute of Geology and Geophysics, Chinese Academy of 

Sciences (IGGCAS), to examine the internal structure of individual zircon grains, and for the 

selection of sites for zircon isotope analyses. 

Uranium-Pb zircon dating was performed by LA-ICP-MS at the State Key Laboratory of 

Geological Processes and Mineral Resources (GPMR), China University of Geosciences, Wuhan, 

China. Detailed operating conditions for the laser ablation system and the ICP-MS instrument, 

and data reduction are identical to those described by Liu et al. (2008a, 2010b). Laser 

sampling was performed using a GeoLas 2005 (Lambda Physik, Göttingen, Germany). An 

Agilent 7500a ICP-MS instrument (Agilent Technologies Inc., Japan) was used to acquire 

ion-signal intensities. The off-line selection and integration of background and analysis signals, 

the time-drift correction, and the U-Pb dating were performed by ICPMSDataCal (Liu et al., 

2008a, 2010b). 

Zircon grain 91500 was used as an external standard for the U-Pb dating and was 

analysed twice every five analyses. Time-dependent drifts of the U-Th-Pb isotopic ratios were 

corrected using a linear interpolation (with time) for every five analyses according to the 

variations of the zircon grain 91500 (i.e., 2 zircon grains of 91500 + 6 samples + 2 zircon 

grains of 91500) (Liu et al., 2010b). The preferred U-Th-Pb isotopic ratios used for zircon 

grain 91500 are from Wiedenbeck et al. (1995). The uncertainty of preferred values for the 

external standard zircon grain 91500 was propagated to the final results from the samples. 

Common lead was corrected for using the correction function of Andersen (2002). The 

program ISOPLOT (version 3.0) (Ludwig, 2003) was used for plotting Concordia diagrams and 

age spectra, and for age calculations. Uncertainties in individual analyses are reported at1σ; 
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weighted mean ages for pooled 206Pb/238U results are reported at2σ. The U-Pbzircon isotopic 

data are presented in Table S1. 

4.2Major and trace elements geochemical analyses 

Bulk-rock major element compositions were determined by inductive coupled 

plasma-atomic emission spectroscopy (ICP-AES) (Prodigy)at the GPMR, China University of 

Geosciences, Beijing. Operating procedures are described by Song et al. (2010). The 

reproducibility deduced from replicate analyses is typically better than 1% with the exception 

of TiO2 (~1.5%) and P2O5 (~2.0%). Trace-element compositions (including rare earth 

elements) were analysed by ICP-MS (Agilent 7500a) after sample powders were digested by 

HF and HNO3 in Teflon bombs at the GPMR, China University of Geosciences, Wuhan, China. 

The detailed sample-digesting procedure for ICP-MS analyses and analytical precision and 

accuracy for trace elements are as presented by Liu et al. (2008b). Major and trace element 

geochemical data are presented in Table S2. 

4.3 Bulk-rock Rb-Sr and Sm-Nd isotopic analyses 

Bulk-rock Sr and Nd isotopic compositions were determined using a Finnigan MAT-261 

multi-collector mass spectrometer operated in static mode at GPMR, China University of 

Geosciences, Wuhan, China. Analytical details are given in Liu et al. (2004) and Rudnick et al. 

(2004). Sr and Nd isotopic fractionation was normalised respectively to 86Sr/88Sr = 0.11940 

and 146Nd/144Nd = 0.721900. The average 143Nd/144Nd ratio of the JNdi-1 standard (Geological 

Survey of Japan) measured during the sample runs is 0.512106± 7(2σ, n = 8), and the 

average 87Sr/86Sr ratio of the NBS987 standard (US National Institute of Standards and 

Technology) is 0.710249± 9(2σ, n = 8). Total procedural Sr and Nd blanks are respectively <1 
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ng and <50 pg. The Sr-Nd isotopic data are presented in Table S3. 

4.4 In situ zircon Hf isotope analyses 

Hafnium isotopic measurements were performed on the same spots or the same age 

domains used for age determinations of concordant grains, as guided by CL images. Analyses 

were conducted using a Neptune Plus MC-ICP-MS (Thermo Fisher Scientific, Germany) in 

combination with a Geolas 2005 excimer ArF laser ablation system (Lambda Physik, Göttingen, 

Germany) at the GPMR, China University of Geosciences, Wuhan, China. A “wire” signal 

smoothing device is included in this laser ablation system, by which smooth signals are 

produced even at very low laser repetition rates down to 1 Hz (Hu et al., 2012a). Detailed 

operating conditions for the laser ablation system and the MC-ICP-MS instrument and 

analytical method are the same as those described by Hu et al. (2012a).  

The major limitation to accurate in situ zircon Hf isotope determination by 

LA-MC-ICP-MS is the very large isobaric interference from 176Yb and, to a much lesser extent 

176Lu on 176Hf (Woodhead et al., 2004). The under- or over-estimation of the βYb value would 

undoubtedly affect the accurate correction of 176Yb and thus the determined 176Hf/177Hf ratio. 

We applied the directly obtained βYb value from the zircon sample itself in real-time (Liu et al., 

2010a). The 179Hf/177Hf and 173Yb/171Yb ratios were used to calculate the mass bias of Hf (βHf) 

and Yb (βYb), which were normalised to 179Hf/177Hf = 0.7325 and 173Yb/171Yb = 1.1248 

(Blichert-Toft et al., 1997) using an exponential correction for mass bias. Interference of 176Yb 

on 176Hf was corrected by measuring the interference-free 173Yb isotope and using 176Yb/173Yb 

= 0.7876 (McCulloch et al., 1977) to calculate 176Yb/177Hf. Similarly, the relatively minor 

interference of 176Lu on 176Hf was corrected by measuring the intensity of the 
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interference-free 175Lu isotope and using the recommended 176Lu/175Lu = 0.02656 

(Blichert-Toft et al., 1997) to calculate 176Lu/177Hf. We used the mass bias of Yb (βYb) to 

calculate the mass fractionation of Lu because of their similar physicochemical properties. 

Off-line selection and integration of analytical signals, and mass bias calibrations were 

performed using ICPMSDataCal (Liu et al., 2010a). The zircon Lu-Hf isotopic data are given in 

Table S4. 

5. Results 

The compositional characteristics of intermediate dykes and granites are summarised in 

the following discussion in relation to the different analytical methods. Results of major and 

trace element compositions, U-Pb zircon dating, zircon Hf and Sr-Nd isotopic compositions, 

and previously published data are listed in Supplementary Materials and Supplementary Data. 

References cited with the geochemical data (Supplementary Data) are listed in the Appendix. 

5.1 U-Pb zircon geochronology 

Three samples of intermediate dykes and nine granites were selected for U-Pb zircon 

dating; U-Pb age data and Concordia diagrams are presented respectively in Table S1 and 

Figure 4. Analysed zircon grains are characterized by euhedral and elongate crystals that show 

significant oscillatory growth zoning in CL images, and by Th/U ratios ranging from 0.21 to 

3.38, which imply a magmatic origin (Hoskin and Schaltegger, 2003).  

5.1.1 Zhangban Pluton 

Zircon grains from five samples of the Zhangban pluton, including biotite-bearing 

granite (QZ01, 07), monzogranite (QZ11) and intermediate dykes (QZ12, 14), were dated by 

LA-ICP-MS. Twenty-four spots selected for zircon grains from sample QZ01 produced ages 

ranging from 104.8 Ma to 100.3 Ma. Excluding six analyses which are discordant or of high 
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error, the analyses give a weighted mean 206Pb/238U age of 102.3 ± 0.8 Ma (Fig. 4a). Eighteen 

spots from sample QZ07 were analysed, with 10givinga weighted mean 206Pb/238U age of 92.1 

± 1.0 Ma (Fig. 4b). Eighteen spots were determined for zircon grains from sample QZ11, of 

which13give a weighted mean 206Pb/238U age of 87.1 ± 0.9 Ma (Fig. 4c). Eighteen spots 

selected for zircon grains from the intermediate dyke samples (QZ12, 14) were analysed and 

give weighted mean 206Pb/238U ages of 86.9 ± 0.9 Ma and 83.5 ± 0.9 Ma (Fig. 4d, e); rejected 

analyses are discordant or have high error. 

5.1.2 Huian Pluton 

For the Huian Pluton, only two monzogranite samples (QZ17, 22) were used for U-Pb 

LA-ICP-MS zircon dating. Eighteen zircon grains from sample QZ17 were analysed, with ten 

giving concordant ages from 108.7 Ma to 107.7 Ma and a weighted mean 206Pb/238U age of 

108.4 ± 0.9 Ma (Fig. 4f). Eighteen zircon grains from sample QZ22 were analysed, with 11 

concordant analyses giving a weighted mean 206Pb/238U age of 117.6 ± 1.5 Ma (Fig. 4g).  

5.1.3 Sidu Pluton 

Two monzogranite samples (QZ25, 55) from Sidu Pluton were selected for U-Pb 

LA-ICP-MS zircon dating. Fourteen zircon grains from sample QZ25 give a weighted mean 

206Pb/238U age of 133.1 ± 1.3 Ma, with four analyses being discordant (Fig. 4h). Fifteen zircon 

grains of out of 18 selected from sample QZ55 give a weighted mean 206Pb/238U age of 91.4 ± 

1.0 Ma, with the other three analyses being discordant (Fig. 4i). 

5.1.4 Damaoshan Pluton 

We selected only one monzogranite (QZ62) for dating from Damaoshan Pluton. Ten 

zircon analyses gave a weighted mean 206Pb/238U age of 111.3 ± 1.2 Ma (Fig. 4j), another three 

analyses were excluded because they are discordant, whereas the other five analyses gave 

older ages ranging from 144.7 Ma to125.7 Ma, which we interpret to be of inherited origin. 
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The weighted mean 206Pb/238U age of 111.3 ± 1.2 Ma is interpreted to be the crystallisation 

age of the Damaoshan monzogranite. 

5.1.5 Xiamen Pluton 

One monzogranite sample (XM07) and one intermediate dyke sample (XM08) were 

chosen for dating of the Xiamen Pluton. Fifteen spots selected from sample XM07 were 

analysed, giving a weighted mean 206Pb/238U age of 114.8 ± 1.8 Ma from 14concordant 

analyses (Fig. 4k). Although 14 zircon grains were analysed from sample XM08, giving a 

weighted mean 206Pb/238U age of 90.7 ± 1.7 Ma (Fig. 4l), only one analysis is concordant. 

Discordance between207Pb/235U and207Pb/235U ratios in the analyses is derived from lower 

207Pb isotope contents, thereby causing the ICP-MS to give imprecise 207Pb/235U ratios. Despite 

the discordant set of analyses, the mean206Pb/238U age is interpreted to record the 

crystallisation age of this intermediate dyke. 

5.2 Major and trace element geochemistry 

Geochemical analyses of 33 samples (see Table S2) combined with previously published 

data (see Supplementary Data) document the regional scale geochemical characteristics of the 

coastal Fujian Province. 

The plutonic total alkali-silica diagram (Fig. 5a) emphasizes the considerable variations 

of alkalis versus silica of the five plutons, and serves as a basis for nomenclature (Middlemost, 

1994). The intermediate dykes sampled in this study show diverse geochemical compositions, 

with SiO2 ranging from 55.1% to 64.4%. One sample of gabbroic diorite (QZ63, Mg# = 56) 

plots in the monzodiorite field owing to its high LOI value (4.3%), which is compatible with 

the presence of calcite amygdales seen in thin-section (Fig. 3c). Similarly, quartz and 

plagioclase phenocrysts (Fig. 3a) in the other two dioritic dyke samples (QZ12, 14) result in 
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the sample plotting in the granodiorite field. Most of sampled intermediate dykes are 

medium-K to high-K calc-alkaline rocks (Fig. 5b), and are metaluminous with A/CNK ratios 

(molar ratio Al2O3/[CaO + K2O + Na2O]) ranging from 0.65 to 1.09 (Fig. 5c). 

The majority of granites sampled in this study are characterised by a high range in SiO2 

from 70.2% to 78.8% and in K2O from 3.1% to 5.3%, indicating that they are high-K 

calc-alkaline rocks (Fig. 5a, b), but they have low abundances in TiO2, Fe2O3T, MnO, MgO, CaO 

and P2O5. The abundance of Al2O3 ranges from 12.2%to 14.9%. Excluding QZ07, the range in 

A/CNK index from 0.97 to 1.09 establishes that these rocks are metaluminous (Fig. 5c). 

Chondrite-normalised rare-earth elements (REEs) and primitive mantle normalised 

trace-element patterns are shown in Fig. 6. The former invariably show light rare-earth 

element (LREEs) enrichment and insignificant negative europium anomalies (Eu/Eu* = 0.85 

to 0.95) for all intermediate dyke rocks (Fig. 6a). In the primitive mantle normalized variation 

diagram (Fig. 6b), all intermediate dyke rocks show characteristic negative anomalies in Th, 

Nb, Ta, and Ti, and positive anomalies for U, Pb, Sr, Zr and Hf. Samples QZ12 and QZ14 have 

lower abundances in REEs and trace elements, and higher Sr/Y ratios (100 and 89, Fig. 8) 

than the other samples, which will be explained in the following discussion. 

The granites (group 1) on Figure 6c are enriched in LREEs relative to HREEs, with small 

to moderate negative europium anomalies (Eu/Eu* = 0.49 to 0.85) and flat HREEs patterns. 

The primitive mantle normalised variation diagram (Fig. 6d) shows that the granites are 

enriched in large ion lithophile elements (LILEs, such as Rb, Ba, Th, U, K, Pb) and depleted in 

high field strength elements (HFSEs, such as Nb, Ta, P, Ti). 

The fine-grained granites (group 2) are enriched in LREEs relative to HREEs with 

significant negative europium anomalies (Eu/Eu* = 0.17 to 0.49, except for QZ19) and inverse 
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HREEs patterns (except for QZ05) (Fig. 6e). On a primitive mantle normalised variation 

diagram (Fig. 6f), all the fine-grained granites are enriched in LILEs (Rb, Ba, Sr, Th, U, K, Pb) 

and seriously depleted in HFSEs (Nb, Ta, P, Ti). 

5.3 Sr-Nd isotopic geochemistry 

Bulk-rock Sr-Nd isotopic compositions of representative samples from QZ and XM are 

listed in Table S3 and plotted on Fig. 7a, b. Initial 87Sr/86Sr ratios, and ɛ Nd (t) values have been 

calculated using ages obtained in this study. All the granites have initial 87Sr/86Sr ratios of 

0.704817 to 0.706108 and ɛ Nd (t) values of -1.2 to -4.4, with Nd model ages ranging from 0.87 

Ga to 1.20 Ga. The intermediate dykes have similar Sr-Nd isotopic compositions (87Sr/86Sr i = 

0.705659 to 0.706223; ɛ Nd (t) = -1.2 to -2.7), with Nd model ages ranging from 0.92 Ga to 

1.14 Ga. 

5.4 Zircon Hf isotope geochemistry 

In situ Hf isotopic data of zircon grains from six granite samples and two intermediate 

dyke samples are listed in Table S4, and shown alongside previously published data in Fig. 7c. 

In situ zircon U-Pb ages were used to calculate ɛ Hf (t) values and Hf model ages. Two 

intermediate dykes (QZ12 and XM08) show positive ɛ Hf (t) values ranging from +2.7 to +7.6, 

corresponding to Cambrian-Neoproterozoic Hf mantle model ages (TDM) of 0.48 Ga to 0.67 Ga. 

Granites also gave positive ɛ Hf (t) values (-0.5 to +9.9), except for the ɛ Hf (t) values of sample 

QZ25 (-2.8 to +1.0), corresponding to Neoproterozoic-Mesoproterozoic Hf crust model ages 

of 0.54 Ga to 1.37 Ga. On the basis of published data, it appears that a mantle contribution to 

granites increased with decreasing zircon U-Pb ages. This spatial-temporal evolution is 

explained below. 
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6. Discussion 

6.1 Temporal and spatial distribution of Cretaceous magmatism in Fujian Province 

As Figure 1shows, most Middle-Late Jurassic igneous rocks are located within the 

Cathaysia Block whereas the great majority of Cretaceous igneous rocks are distributed along 

the coastal belt. In particular, there are vast areas of Cretaceous granites in coastal Fujian 

Province. 

We have reviewed most of the published age-data (see Supplementary Data) on the 

Cretaceous granites and associated basic-intermediate dykes. Generally, inland granites are 

older than coastal granites (Fig. 1), although magmatic stages can be preserved in the same 

pluton along the coastal belt (Fig. 8a). This is particularly significant in Quanzhou and Xiamen 

(Fig. 2a, b). We suggest that the migration of granite magmatism from inland to coastal 

regions was the result of subduction retreat from the late Jurassic to the late Cretaceous. The 

age data indicate that the principal stage of granite magmatism occurred from 120 Ma to 90 

Ma (Fig. 8b), and that basic-intermediate magmatism in these granites occurred between 120 

Ma to 80 Ma (Fig. 8c). This implies that mantle-derived magmas contributed significantly to 

the crust over the peak magmatic period (i.e., 120 Ma to 80 Ma).  

Five Cretaceous A-type granite plutons are exposed along the sinistral Changle-Nan’ao 

Fault Zone (CNF). Although the genesis of A-type granite is controversial, there is consensus 

that A-type granites relate to shallow level high-temperature and low-pressure conditions of 

the middle to upper crust, as determined by experimental petrology (Clemens et al., 1986; 

Patiño Douce, 1997). Coupled with a mantle contribution between 120 Ma to 80 Ma, the 

implication is that the Cretaceous tectonic setting of coastal Fujian Province was extensional. 
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6.2 Magmatic sources and petrogenesis 

6.2.1 Granites 

6.2.1.1 Sources of granite magmas 

The subdivision of I-type (igneous source) and S-type (sedimentary source) granites 

was proposed by Chappell and White (1974), and subsequently applied world-wide. Granites 

studied here are characterised by high K2O (to 5.3%), low FeO*/MgO ratios (2.6 to 6.7) (Fig. 

9a) and A/CNK values (<1.1) (Fig. 5c), and mostly fall in the high-K calc-alkaline series (Fig. 

5b). In addition, P2O5 decreases (<0.1%) with increasing SiO2, because apatite attains 

saturation in metaluminous and slightly peraluminous magmas but has high solubility in 

strongly peraluminous melts (Wolf and London, 1994) (Fig. 9b). Yttrium and Th increase as 

Rb increases (Fig. 9c, d), thereby showing a typical I-type granite evolution trend (Eby, 1990; 

Chappell, 1999). Combined with field geology (Fig. 2a, b), we suggest that the widespread 

dynamic-metamorphic rocks (T-J) were at least a small portion of the source for the granites 

in this study. Consequently, the granites are typical high-K calc-alkaline I-type granites. Group 

2 granites have significant negative anomalies of Eu, Ba, Sr, P and Ti on spidergrams (Fig. 6e, f), 

suggesting that the granites are highly fractionated I-types (Wu et al., 2003).  

Although granites in Quanzhou and Xiamen have four classifications based on their 

petrography, they are collectively characterised by low initial 87Sr/86Sr ratios, slightly negative 

ε Nd (t) values (Table S3) and positive ε Hf (t) values (Table S4), with the exception of sample 

QZ25. Low initial 87Sr/86Sr ratios (0.705 to 0.706) and slightly negative ε Nd (t) values (-1.2 to 

-4.4) (Fig. 7a) with young Nd model ages (0.87 to 1.20 Ga) indicate that the mantle 

contributed to the formation of the granites, or that the granites were mainly derived from the 

melting of juvenile crust. Positive ε Hf (t) values (-0.5 to 9.9) (Fig. 7b) and young Hf crust 

model ages (0.54 to 1.21 Ga) establish that the granites were mainly derived from the partial 
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melting of juvenile crustal sources. Sample QZ25 has more negative ε Nd (t) and lower negative 

ε Hf (t) values than the other granites, indicating that its source had a more ancient crustal 

composition. 

6.2.1.2 Petrogenesis of granites 

Published work in recent years has shown that granitic magmas can be formed in an 

extensional setting. In particular, granites in subduction-related settings are associated with 

the extension of the continental lithosphere and its underplating by basaltic magmas derived 

from the mantle (Chen et al., 2014; Li et al., 2014; Qiu et al., 2012; Wang and Shu, 2012; Zhou 

et al., 2006; Zhou and Li, 2000). As mentioned above, the relatively high ε Nd (t) values (-1.2 to 

-2.7), young Nd model ages (0.87 Ga to 1.20 Ga) and positive ε Hf (t) values (-0.5 to 9.9) of the 

granites, excluding sample QZ25, indicate that the granites contain a significant mantle 

component. The Nd-Hf isotopic compositions of the granites are homogeneous and this (Table 

S3, S4 and Fig. 7a, b), further demonstrates that the granites were derived from the melting of 

juvenile crust (Bolhar et al., 2008). Sample QZ25 has low ε Nd (t) values (-4.4) and 

intermediate ε Hf (t) values (1.0 to -2.8), suggesting that the granite crystallised from magma 

formed by mixing between crustal and mantle end-members (Fig. 7a, b). 

Cumulate basic granulite xenoliths (CBGX, with a Sr-Nd isochron age of 115 Ma) from 

Qilin (Fig. 1) have the characteristics of depleted mantle (Fig. 7a), namely low K2O (0.04% to 

0.34%) and P2O5 (0.02% to 0.04%), and high CaO (9.9% to 14.7%). However, magmatic basic 

granulite xenoliths (MBGX) have similar Sr-Nd isotopic compositions (i.e., juvenile) to the 

granites, namely high K2O (0.5% to 1.6%) and P2O5 (0.3% to 0.7%), and low CaO (6.6% to 

8.7%) (Yu et al., 2003); in particular, REE patterns are similar to the granites. We suggest that 

fractional crystallization of a magma, with a source mixed between underplated basalt and 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

19 

lower crust, produced the magmatic basic granulite layer, above which amphibolite remains 

and makes up the composition of the middle-crust or the upper lower-crust (Fig. 11a). 

Consequently, we consider that the granites were formed from magmas that melted 

amphibolite, and assimilated country rocks during their emplacement in shallow-level 

chambers. 

The ε Hf (t) values of the granites have an obvious linear trend, increasing with granite 

age, which become younger from inland to the coast (Fig. 7b). The Hf isotopic composition of 

zircon grains in granites records ages earlier than Sr-Nd isotopic compositions due to the high 

closure temperature of zircon. In addition, zircon Hf crustal model ages of the granites and the 

zircon Hf mantle model ages of the dykes imply there was a common mantle contribution to 

the crust between 120 Ma and 90 Ma, particularly in the granites which show an increasing 

trend during that period (Fig. 7c, d). Therefore, we suggest that the contribution from the 

mantle increased from 133 Ma to 84 Ma. Considering the origin of the I-type granites studied 

here, it appears that an extensional setting for coastal Fujian Province played a crucial role in 

lithospheric evolution during Mesozoic subduction of the Palaeo-Pacific slab. This is 

supported by the results from the Sinoprobe02-04 Project, whose conductivity characteristics 

of the magnetotelluric profile in the coastal area of southeastern China show thinned 

lithosphere and upwelling asthenosphere (Liu et al., 2012). 

6.2.2Dykes 

6.2.2.1 The cross-cutting relationship between host rocks and dykes 

The co-existence of basic-intermediate and felsic magmas appears compelling based on 

our field observations (Fig. 2c, d). The dykes have sharp, chilled contacts with their host 

granites and a gradational mixed magma zone is poorly defined. These relationships indicate 

that the host granites had a crystal content greater than 80% before the intermediate magmas 
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were injected along fractures to form continuous dykes, as explained by the four-stage model 

proposed by Barbarin and Didier (1992) and Barbarin (2005). This indicates that mixing 

between granite and dyke magmas did not occur. Furthermore, petrographic observations 

suggest that quartz and plagioclase xenocrysts did not crystallise from dyke magmas because 

of their resorbed margins (Fig. 3a), whereas our dating shows that the emplacement of dyke 

magmas (90 Ma to 84 Ma) slightly post-dates emplacement of the host granites (115 to 87 

Ma). However, samples QZ11 and QZ12 have similar ages (~ 87 Ma). Based on outcrop 

features of chilled margins with angular and flat joint surfaces that were created by plastic flow 

during cooling, we suggest that sample QZ12 is of a synplutonic dyke that invaded an 

unconsolidated, yet relatively cooler granitic host (QZ11) (Figure S1). Furthermore, because zircon 

U-Pb ages have errors of between 1 and 2 million years, it is reasonable assume that the dyke and 

host granite have similar ages. Because of the relatively small volume of dyke magma, cooling 

was probably so rapid that there was limited opportunity for chemical interaction between 

the two magmas (cf. Wiebe, 1991). Consequently, the dykes have no genetic link to the 

granites and magma mixing was negligible. 

6.2.2.2Petrogenesisof dykes 

Fractional crystallization within cooling basaltic magmas can generate mafic crystals 

and anorthites, which then accumulate in the lower part of the magma chamber (Bowen, 

1922). The residual melt gradually enriches in silica and incompatible elements, such as K, Rb, 

Ba, U, Pb. Harker diagrams of selected major elements from the dyke samples show that the 

weight percentages of Na2O and Al2O3 increase with silica content (Fig. 10a, b), whereas the 

opposite occurs with CaO and MgO (Fig. 10c, d). These data therefore appear to conform to a 

fractional crystallization model. The decreasing content of K2O with decreasing silica content, 
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however, is not the result of the fractional crystallization model (Fig. 5b), even if the values of 

all regional basic-intermediate dykes or plutons have increasing silica content. Therefore, the 

petrogenesis of the dykes cannot completely be explained by the fractional crystallization of a 

basalt magma derived from the melting of lithospheric mantle. 

The intermediate~90 Ma dykes from Xiamen have low MgO (2.9% to 4.2%), Ni (31 ppm 

to 72 ppm) and Cr (40 ppm to 96 ppm) and low SiO2 (55% to 58%), Al2O3 (16.8% to 17.2%) 

contents (Table S2), suggesting that their parental magmas were unlikely to have been 

directly derived from mantle sources. Their negative ε Nd (t) values and positive ε Hf (t) values 

suggest that their parental melts were not derived from enriched mantle but formed by 

mixing of mantle-derived basaltic magma and crustal-derived melt (Fig. 7a, b). This is shown 

by high Nb/Ta ratios (17 to 20) and Th/Yb ratios (1.4 to 2.5), similar to the middle-lower 

crust, and by the Fe-Mg diagram (Fig. 11a, b, c). As described above, magmatic basic granulite 

xenoliths (MBGX)from Qilin have similar Sr-Nd isotopic compositions, enriched LILEs (Rb, Ba, 

U, K, Pb, Sr), OIB-like rare earth elements, and depleted HFSEs (Nb, Ta, Ti) like the dykes (Fig. 

6a, b). Therefore, it appears that the Xiamen dykes were derived from residual basic lower 

crust after mafic crystal accumulation. 

In addition, the dykes from Quanzhou, excluding samples QZ12 and QZ14, have similar 

geochemical characteristics to the Xiamen dykes, particularly samples QZ02 and QZ63. 

Nevertheless, the other samples have relative low Th/Yb ratios and high Nb/Yb ratios (Fig. 11 

b). Considering the geochemical similarity Xiamen dykes, we suggest that the Quanzhou dykes 

are products of the late melting stage of the same sources. 

Samples QZ12 and QZ14 are characterised by high Sr/Y ratios, which are typical features 

of adakitic rocks (Fig. 11d). Adakites are defined by Defant and Drummond (1990) as rocks 
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resulting from the partial melting of a subducted slab in the garnet stability field. Recent 

studies have shown that adakitic rocks can form by the partial melting of recently underplated 

or thickened crust (Atherton and Petford, 1993; Chung et al., 2003; Condie, 2005; Sheppard et 

al., 2001; Wang et al., 2005), fractionation of mantle-derived primitive arc magma (Castillo et 

al., 1999; Macpherson et al., 2006; Richards and Kerrich, 2007; Roderíguez et al., 2007), and 

mixing between mantle- and crust-derived melts (Danyushevsky et al., 2008; Xu et al., 

2012).The high Sr/Y ratios (89 to 100) and high SiO2 (63.12%),low K2O (1.5% to 1.6%), Ni 

(15 ppm to 16 ppm) and Cr (~20 ppm) contents of the adakitic samples indicate that the 

rocks were unlikely to have been derived from thickened crust (Moyen, 2009; Wang et al., 

2005) or the fractionation of mantle-derived primitive arc magma. In combination with their 

slightly negative ε Nd (t) values (-1.7 to -1.8) and positive ε Hf (t) values (2.9 to 4.3), we suggest 

that the adakitic rocks were derived from a mixed lower crust source, between depleted 

mantle- and crust-derived melts. The high content of Sr may derive from melting of 

plagioclase in the cumulate basic granulite xenoliths (CBGX), which have the features of 

depleted mantle (Yu et al., 2003). 

6.3 Brief review on Cretaceous adakite-like rocks in coastal Fujian Province 

Previously published work on Mesozoic granites and basic-intermediate dykes/plutons 

of coastal Fujian Province has documented some adakite-like rocks (see the samples identified 

by asterisks on the trace element sheets in Supplementary Data and on Fig. 11d), comprising 

several basic-intermediate dykes/plutons and 12 granites. It appears that those granites or 

basic-intermediate dykes/plutons crystallised between 110 Ma and 90 Ma. The granites have 

been proposed to be derived from a mixed source comprising depleted mantle and crustal 
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components (Fig. 7a, b; Li et al., 2012b; Qiu et al., 2012; Zhao et al., 2012). With regards to the 

petrogenesis of gabbroic plutons, Chen et al. (2004) suggested high Sr/Y gabbros formed from 

the dehydration melting of amphibolite, whereas the gabbros from Quanzhou and Tong’an 

were interpreted to have originated from mantle-derived magmas contaminated by a crustal 

component (Li et al., 2012a; Zhou and Chen, 2001). In contrast, Zhao (2004b) advocated that 

the Putian gabbroic intrusion had not experienced much crustal assimilation but rather 

metasomatism before its emplacement. Finally, high Sr/Y basic-intermediate dykes from 

Tuling and Meizhoudao were interpreted to be the products of mixed contributions from 

Palaeo-Pacific slab subduction and crust-mantle interaction (Dong et al., 2011; Yang et al., 

2010a; Zhao, 2004b). Although those authors derived different petrogenetic models from 

their geochemical results, Cretaceous lithospheric extension and subduction of the 

Palaeo-Pacific slab were emphasised. 

6.4 Implications for Cretaceous lithospheric evolution 

6.4.1 Cretaceous extensional setting 

As discussed above, previously published work has suggested that granite can be formed 

in an extensional setting. In particular, granites emplaced in a subduction-related tectonic 

setting are associated with the extension of the overlying continental lithosphere and the 

underplating of basaltic magmas derived from the mantle (Chen et al., 2014; He and Xu, 2012; 

Li et al., 2014; Qiu et al., 2012; Wang and Shu, 2012; Yang et al., 2013; Zhou et al., 2006; Zhou 

and Li, 2000). The 105 Ma to 90 Ma A-type granites along the Changle-Nan’ao Fault Zone in 

the coastal Fujian Province (Fig. 8a) imply, based on petrology and experimental petrology 

(e.g., Clemens et al., 1986; Patiño Douce, 1997), a high temperature, low pressure tectonic 

environment. In addition, comprehensive geochronological studies (by K-Ar and 
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40Ar/39Armethods) of basic dykes and plutons in Fujian Province (Zhao, 2004b) and in 

Guangdong Province (Li and McCulloch, 1998) divide the basic magmatism into five stages, 

namely: 140 Ma to 135 Ma, 125 Ma, 110 Ma to 105 Ma, 90 Ma to 85 Ma and 75 Ma to 70 Ma. 

Furthermore, SHRIMP U-Pb zircon ages of basic dykes from Jinjiang, Tong’ an and Meizhoudao 

in the coastal Fujian Province range from 96 Ma to 87 Ma (Dong et al., 2006, 2011; Yang et al., 

2010b). These studies suggest that an extensional setting dominated Cretaceous 

magmatic-tectonic interaction in the coastal belt, which can also be linked to the 

Changle-Nan’ao Fault Zone (Shi and Zhang, 2010; Wang and Lu, 1997, 2000). In conjunction 

with the results of our work, we suggest that extension-induced middle-lower crustal melting 

and underplating by mantle-derived basaltic melts were the principal driving mechanisms for 

Cretaceous granitic magmatism in coastal Fujian Province. Figure 12 is a schematic view of the 

tectonomagmatic scenario for the 120 Ma to 80 Ma magmatic stage. The later part of that 

stage may be related to sinistral strike-slip along the Changle-Nan’ao Fault Zone from 112 Ma 

to 95 Ma (Wang et al., 2013). 

6.4.2 Cretaceous continental crust growth 

Crustal growth is the process by which rocks of a depleted mantle composition are 

added to continental crust (Wu et al., 2007). Cretaceous granites in coastal Fujian Province 

comprise mainly I- and A-type (Chen et al., 2013, 2014; Li et al., 2012b; Qiu et al., 1999, 2000, 

2012); whereas S-type granites are absent. All the granites studied here are I-type. Their 

isotopic geochemical characteristics imply a depleted mantle contribution to Cretaceous 

continental crust of the southeastern Cathaysia Plate. This study, in combination with 

previously published work, suggests that the period of depleted mantle contribution to the 

continental crust occurred between 120 Ma to 80 Ma. Growth of continental crust is 
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inherently related to subduction-related processes, such that active continental margins are 

generally considered to be the principal sites for the formation of continental crust (Ernst, 

2000; Middlemost, 1997; Oncken et al., 2006). The Cretaceous tectonic setting of the 

southeastern Cathaysia Plate was an active continental margin, thereby explaining why there 

was intense magmatic activity of the mantle between 120 Ma to 80 Ma, as indicated by the 

isotope geochemistry reported here. Consequently, we consider that underplating basalt 

magmatism is the important mechanism for continental crust growth at subduction zones. 

Continental crust growth continued into the Cainozoic, for example during the formation of 

the Philippine Sea Plate (Yin, 2010). Crustal growth of the southeastern Cathaysia Plate was 

much younger than the 200 Ma to 150 Ma crustal growth of northeastern China (Wu et al., 

2000), and this age difference relates to a different period of Palaeo-Pacific slab subduction.  

6.4.3 Geodynamics of palaeo-Pacific slab subduction 

Lithospheric growth associated with oceanic plate subduction under continental 

margins is triggered by dehydration of the sinking slab, so that regions surrounding the Pacific 

Ocean are a natural laboratory for lithospheric research. The Pacific slab under southeastern 

China is shown to be stagnant in the mantle transition zone on tomographic imagery (Huang 

and Zhao, 2006). Some studies consider that the transition-zone slab of the Palaeo-Pacific 

Plate beneath eastern China resulted from westward flat-subduction during the Mesozoic (e.g., 

Li and Li, 2007; Li et al., 2007; Meng et al., 2012). This model is unrealistic due to the lack of a 

driving force for flat-subduction and it is more likely that the slab was left behind as the result 

of western Pacific subduction retreat (Fig. 12) under gravity (Niu, 2014). 

Since the beginning of the early Cretaceous (145 Ma), the dip angle of the subducting 

slab has increased (Zhou and Li, 2000). Fast subduction gave rise to incomplete dehydration 
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and oceanic crust eclogitization was not exhaustive. During the late stage of the early 

Cretaceous and the early stage of the late Cretaceous (120 Ma to 80 Ma), the low density of 

the subducted slab mean that the slab could not sink into the lower mantle. Stable gravity in 

the mantle transition zone made the dip angle of subducted slab increase further, the response 

to which, at the crustal level, was trench retreat (Niu, 2014), which resulted in lithospheric 

extension. 

However, if a subducting slab quickly reaches thermal equilibrium and thus passes 

below 660 km depth and enters the lower mantle, subduction retreat is slowed (Li et al., 

2008). In contrast, the Palaeo-Pacific slab in the transition zone confirms a fast speed of 

subduction which produced a stagnant slab in the mantle transition zone. This interpretation 

is supported by a period (109 Ma to 90 Ma) of rapid subduction beneath southeastern China 

(Jahn, 1974). The temporal and spatial distribution of Cretaceous magmatism in Fujian 

Province, as discussed above, establishes a significant subduction retreat from inland to 

offshore as do the ɛ Hf (t) values. Hence, we conclude that fast trench/subduction retreat, 

which resulted in the extensional setting, and steep slab subduction, which resulted in the 

underplating of mantle-derived basaltic melts, were coupled and mainly responsible for the 

Cretaceous tectonic transition from compression to extension in the coastal belt of 

southeastern China. 

7. Conclusions 

Main findings of the present study are summarised as follows. 

1) The ages of granites and intermediate dykes range respectively from 133 Ma to 87 Ma 

and from 90 Ma to 84 Ma. Inland granitic magmatism is older than coastal granitic magmatism. 

The dykes do not have a genetic link with the granites, and magma mixing was negligible. 
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2) Similar elemental and isotopic geochemical characteristics of the granites indicate the 

granites were produced by the ascent of magma that melted from amphibolite in the 

middle-lower crust, and which may have assimilated country rocks during emplacement in a 

shallow chamber. Adakite-like dykes were derived from a source mixed between depleted 

mantle-derived and crust-derived melts. The high content of Sr originated from the melting of 

plagioclase in cumulate basic granulite xenoliths (CBGX), which have the features of depleted 

mantle. Other dykes were derived from residual basic lower crust after mafic crystals 

accumulation. 

3) Extension-induced middle-lower crustal melting and underplating of mantle-derived 

basaltic melts are suggested as the principal driving mechanisms for Cretaceous granitic 

magmatism in coastal Fujian Province. The period of continental crust growth in the coastal 

Cathaysia Plate was between 120 Ma to 80 Ma, which is later than crustal growth (200 Ma to 

150 Ma) recorded in northeastern China, and may have continued into the Cainozoic.  

4) Fast subduction retreat produced the extensional setting, and the accompanying 

steep slab subduction caused underplating of mantle-derived basaltic melts. These tectonic 

processes were coupled and mainly responsible for the Cretaceous tectonic transition from 

compression to extension in the coastal belt of the Cathaysia Plate.  
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Figure captions 

Fig. 1. Geological map of Mesozoic granitic and volcanic rocks, and tectonic features in South 

China (modified after Zhou et al., 2006; Shu et al., 2009; Wang and Shu, 2012; Zheng et al., 

2004). SJPF: Shaoxing-Jiangshan-Pingxiang Fault Zone; CNF: Changle-Nan’ao Fault Zone; ZDF: 

Zhenghe-Dapu Fault Zone; GXF: Guangchang-Xunwu Fault Zone; GF: Ganjiang Fault Zone; SWF: 

Sihui-Wuchuan Fault Zone; NJF: Ningyuan-Jianghua Fault Zone. 

 

Fig. 2. Simplified geological maps of Quanzhou (a) and Xiamen (b), showing the distribution of 

Cretaceous granites, sample locations (blue stars), U-Pb zircon ages of igneous rocks (ovals 

with numerals, italic for dyke dating), and major northeast-trending faults and felsic dykes. (c) 

Intermediate dykes intruding with near-vertical orientation into a granite pluton (in Xiamen). 

(d) Dykes mutually cross-cutting with clear boundaries (in Quanzhou).  

 

Fig. 3. Photomicrographs (crossed polars) of thin-sections from granites and intermediate 

dykes. Indices: Bi: biotite; Cal: calcite; Cpx: clinopyroxene; Hbl: hornblende; Kfs: K-feldspar; 

Ms: muscovite; Per: perthite; Pl: plagioclase; Q: quartz; San: sanidine. 

 

Fig. 4. Representative Cathodoluminescence (CL) images of zircon grains and LA-ICP-MS U-Pb 

Concordia diagrams for Cretaceous granites and intermediate dykes in Quanzhou and Xiamen. 

Plots (d), (e) and (l) are dates for intermediate dykes, others are for granites. The solid (32 

µm) and dashed (44 µm) circles respectively indicate the locations of LA-ICP-MS U-Pb and Hf 

isotopic analyses. The scale bar in all CL images is 100 μm in length. 
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Fig. 5. Plots of (a) (Na2O+K2O) versus SiO2, (b) K2O versus SiO2and (c) A/NK [molar ratio 

Al2O3/(Na2O+K2O)] versus A/CNK [molar ratio Al2O3/(CaO+Na2O+K2O)] for Cretaceous 

granites and intermediate dykes in coastal Fujian Province. Diagrams (a), (b) and (c) are 

respectively from Middlemost (1994), Rickwood (1989), and Maniar and Piccoli (1989). 

Green and red crosses respectively represent previously published data of Mesozoic 

basic-intermediate plutons/dykes and granites from coastal Fujian Province (refer to 

Supplementary Data and Appendix). Indices: FG: Foid Gabbro; FMd: Foid Monzodiorite; FMs: 

Foid Monzosyenite; GD: Gabbroic Diorite; Md: Monzodiorite.  

 

Fig. 6. Chondrite-normalised REE (a, c and e) and primitive mantle (PM) normalised trace 

element (b, d and f) patterns for Cretaceous granites and intermediate dykes in coastal Fujian 

Province. The values of OIB, E-MORB, N-MORB, chondrite and primitive mantle are from Sun 

and McDonough (1989), and shown as the grey fields (refer to Supplementary Data and 

Appendix). 

 

Fig. 7. (a) Bulk-rock ε Nd (t) versus (87Sr/86Sr) i diagram for Cretaceous granites and 

basic-intermediate dykes/plutons in coastal Fujian Province. (b) Zircon ε Hf (t) versus U-Pb 

ages diagram for Cretaceous granites and basic-intermediate dykes/plutons in coastal Fujian 

Province. CBGX: Cumulate basic granulite xenoliths; MBGX: Magmatic basic granulite xenoliths. 

(c) and (d) Zircon Hf model ages versus U-Pb ages diagrams for Cretaceous granites and 

basic-intermediate dykes/plutons in coastal Fujian Province. The approximate field of 

Cainozoic basalts in SE China is from Chen et al. 2014. Basic granulite xenolith data are from 

Yu et al. 2003. Green and red crosses respectively represent previously published data of 
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Mesozoic basic-intermediate plutons/dykes, and granites from coastal Fujian Province (refer 

to Supplementary Data and Appendix). 

 

Fig. 8. Simplified spatial-temporal map of Cretaceous intrusive magmatism in coastal Fujian 

Province (modified after Li et al., 2014 and Zhou et al., 2006), previously published data with 

numbers in brackets are listed in Supplementary Data. Red ages for I-type granites, dark blue 

ages for A-type granites, and green ages for basic-intermediate rocks. 

 

Fig. 9. FeO*/MgO versus SiO2 (a) (Eby, 1990), P2O5 versus SiO2 (b), and plots of Y (c), Th (d) 

against Rb (Chappell, 1999) discriminant diagrams for Cretaceous granites in coastal Fujian 

Province. Red crosses represent previously published data of Mesozoic granites from coastal 

Fujian Province (refer to Supplementary Data and Appendix). 

 

Fig. 10. Harker diagrams of selected major elements for Cretaceous intermediate dykes in 

Quanzhou and Xiamen. 

 

Fig. 11. Nb/Ta versus Zr/Sm (Foly et al., 2002) (a), Th/Yb versus Nb/Yb (Pearce, 2008) (b), 

FeO* versus MgO (Zorpi et al., 1989; 1991) (c) and (Sr/Y) versus Y (Defant and Drummond, 

1990) (d) diagrams for Cretaceous granites and intermediate dykes in coastal Fujian Province. 

In (b): N-MORB, E-MORB, OIB and Primitive Mantle (PM) are from Sun and McDonough 

(1989); average lower crust (LC), upper crust (UC), Middle crust (MC) and total continental 

crust (CC) are from Rudnick and Fountain (1995). Green and red crosses represent previously 

published data of Mesozoic basic-intermediate plutons/dykes, and granites from coastal 
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Fujian Province (refer to Supplementary Data and Appendix). Adakitic rock data are listed in 

the trace elements sheets of Supplementary Data. 

 

Fig. 12. Simplified model cross-sections for Cretaceous subduction dynamics of the 

Palaeo-Pacific slab under the Cathaysia Plate.  
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Highlights 

1. Twelve new zircon U-Pb ages of 133–84 Ma become younger from inland to coast. 

2. The granites crystallised as I type and derived from middle-lower crust. 

3. Eight intermediate dykes derived from residual basic lower crust after accumulation. 

4. Two adakite-like dykes derived from a mixed lower crust source. 

5. Subduction retreat was principal style of Cretaceous Palaeo-Pacific slab subduction. 
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