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Abstract Phylogenetic inference aims to reconstruct the evolutionary relationships of different species
based on genetic (or other) data. Discrete characters are a particular type of data, which contain information
on how the species should be grouped together. However, it has long been known that some characters con-
tain more information than others. For instance, a character that assigns the same state to each species groups
all of them together and so provides no insight into the relationships of the species considered. At the other
extreme, a character that assigns a different state to each species also conveys no phylogenetic signal. In this
manuscript, we study a natural combinatorial measure of the information content of an individual character
and analyse properties of characters that provide the maximum phylogenetic information, particularly, the
number of states such a character uses and how the different states have to be distributed among the species
or taxa of the phylogenetic tree.
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1 Introduction

The evolutionary history of a set of species (or, more generally, taxa) is usually described by a phylogenetic
tree. Such trees can range from small trees on a clade of closely related species, through to large-scale
phylogenies across many genera (such as the Tree of Life project (Maddison et al, 2007)). Phylogenetic trees
are usually derived from genetic data, such as aligned DNA, RNA or protein sequences, genetic markers
(SINEs, SNPs etc), gene order on chromosomes and the presence and absence patterns of genes across
species. These types of data generally consist of discrete characters, each of which assigns a state from
some discrete set to each species.
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In order to derive a tree from character data, we require a measure of how well the characters ‘fit’ onto
each possible tree in order to choose the tree which gives the best fit. One such simple measure is the notion
of a character being homoplasy-free on the tree, which means that the evolution of the character can be
explained by assuming that each state has evolved only once.1 It turns out out that this is equivalent to a
more combinatorial condition of requiring the character to be ‘convex’ on the tree. This notion is defined
formally in the next section, but, briefly and roughly speaking, it says that when all species (at the leaves of
the tree) that are in the same state are connected to one another, the resulting subtrees do not intersect. This
concept is illustrated in Fig. 1.
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Fig. 1: Character χ = ααβββγ is convex on tree T (left), but not on T ′ (right). The dotted lines represent the minimum spanning
tree connecting the leaves that are in state α , whereas the dashed lines represent the minimum spanning tree connecting all leaves
which are in state β . When a character that takes k ≥ 2 states is convex on a tree, then at least k−1 edges are not needed in any
of the spanning trees, as shown for T by the edges marked with an asterisk.

In practice, biologists generally build a tree by using a large number of characters. However, it has been
shown that for any binary tree T (involving any number of leaves) just four characters (on a large enough
number of states) suffice to ensure that T is the only tree on which those four characters are convex (Huber
et al (2005), Bordewich et al (2006)). Moreover, even a single character already contains some information
concerning which of the species should be grouped together.

Note that a character is often compatible with more than one tree – for instance, if you have six species
(say 1,2, . . . ,6), and the constant character χ that assigns each species the state α , then the induced partition
is {1,2,3,4,5,6}. This implies that all species are grouped together and therefore no information concerning
which species is most closely related to another species can be obtained. This particular character is convex
on all possible phylogenetic trees on six species, so this character does not provide any information on which
tree should be chosen. At the other extreme, a character for which each species is in a different state from
any other species is convex on every possible phylogenetic tree, and so it is also completely uninformative.
The same is true for a character in which some species are in one state, and each remaining species has its
own unique state.

However, if you have the character χ that assigns Species 1 and 2 state α , Species 3,4 and 5 state β ,
and Species 6 state γ , then this character is convex on some phylogenetic trees on six taxa, but not on all of
them (cf. Fig. 1). Under the convexity criterion, such a character would clearly favour some trees over others
and thus it contains some information about the trees it will fit on (namely, in this example, all trees that
group Species 1 and 2 together versus Species 3, 4 and 5, which will form another group, and Species 6 will
form a third group). Thus the number of states employed by a character as well as the number of species
that are assigned a given state play an important role in deciding how much information is contained in a

1This condition is weaker than the assumption that each state actually evolves only once, since the states at the leaves may have
evolved with homoplasy (reversals or convergent evolution) yet still be homoplasy-free on the tree.
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character. Note that our definition of phylogenetic information is purely combinatorial, and thus differs from
some other approaches that are based on particular statistical models (see e.g. Townsend (2007)).

The aim of this paper is to characterize and analyse the characters that have the highest information
content in this sense (i.e. that are convex on relatively few trees and thus have a preference for these few
trees over all others), when the number of states is either fixed or free to vary. Our first main result, Theorem
1, states that for a fixed number of states, a most informative character will be one in which the subsets
(‘blocks’) of species in each state are roughly the same size; more specifically, their sizes can only differ by
at most 1. Moreover, we note that the optimal number of such blocks in a character in order to make it convex
on only a few trees cannot easily be determined, as it does not grow uniformly with the number of species
because ‘jumps’ appear in the growth function. We analyse these jumps and also provide an approximation
without such jumps, and explore the associated asymptotic estimate of the rate of growth (with the number
of leaves) of the optimal number of states.

2 Preliminaries

We now introduce some terminology and notation. Let X be a finite set of species. Such a set is also often
called a set of taxa. A phylogenetic X-tree T is an acyclic connected graph with no vertices of degree 2 in
which the leaves are bijectively labelled by the elements of X . Such a tree is called binary if all internal
vertices have degree 3. We will restrict our analyses on such trees (for reasons we will explain below) and
will therefore in the following refer to phylogenetic trees or just trees for short, even though we mean binary
phylogenetic X-trees.

Next, we need to define the type of data we are relating to phylogenetic trees. These data are given
as characters: A function χ : X → S , where S is a set of character states, is called a character, and if
|χ(X)|= r, we say that χ is an r-state character.

We may assume without loss of generality that X = {1, . . . ,n}. Rather than explicitly writing χ(1) = c1,
χ(2) = c2, . . . ,χ(n) = cn for some states ci ∈S , we normally write χ = c1c2 . . .cn. The left-hand side of
Fig. 1 depicts the character χ = ααβββγ on six taxa on a tree T .

Note that an r-state character χ on X induces a partition π = π(χ) of the set X of taxa into r non-empty
and non-overlapping subsets X1, . . . ,Xr of X , which can also be called blocks. For instance, the character
χ = ααβββγ induces the partition π = {{1,2},{3,4,5},{6}} (i.e. the blocks X1 = {1,2}, X2 = {3,4,5}
and X3 = {6}). For our purposes, the partition induced by a character is usually more important than the
particular character itself. For instance, the characters χ1 = γγαααβ and χ2 = ββγγγα induce the same
partition π = {{1,2},{3,4,5},{6}} and are thus considered to be equivalent.

Now that we have defined a structure (namely phylogenetic trees) and the partitions associated with
discrete character data, we can introduce a measure of how well these data fit on a tree. A character χ is
called convex on a phylogenetic tree T , if the minimal subtrees connecting taxa that are in the same block do
not intersect. This means that if you consider one state and colour the vertices on the paths from each taxon
in this state to all other taxa in the same state, and if you repeat this (with different colours) for all other
states, there will be no vertex that is assigned more than one colour. An illustration of this idea is given in
Fig. 1, where the character χ = ααβββγ is convex on T but not on T ′. Note that if χ is convex on T and
|χ(X)| > 1, this colouration may leave some vertices uncoloured, and it may also assign different colours
to the endpoints of certain edges. The deletion of these edges would lead to monochromatic subtrees, all of
which are assigned a unique colour (i.e. all leaves in any given subtree are in the same state). This can also
be seen by considering tree T from Fig. 1, where the dotted lines refer to the subtree spanning all taxa that
are in state α and the dashed lines span the taxa in state β . If we delete the edges indicated by the asterisks
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(*) in T , all subtrees of T are monochromatic, either dotted or dashed, or an isolated leaf. Thus a convex
character induces a partition of X that can also be derived by deleting some edges of T .

Recall that a character can be convex on more than one tree. Moreover, whenever a character is convex
on a non-binary tree T , it is automatically convex on all binary trees which are compatible with this tree
(i.e. all binary trees which can be derived from T by resolving vertices of degree greater than three by
introducing additional edges). This is illustrated in Fig. 2, where the tree in the middle is non-binary and
there are several ways to add an additional edge in order to make it binary. These additions always lead to
trees on which the depicted character is still convex. Therefore, and because binary trees are most relevant
in biology (as speciation events are usually considered to split one ancestral lineage into two descending
lineages rather than more), we exclusively consider binary trees in the following.
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Fig. 2: Character χ = ααββγ is convex on the non-binary tree in the middle, but also on all binary trees that are compatible with
this tree. The dashed edge is the one that gives rise to the partition π = {{1,2},{3,4,5}}, which is also induced by χ . Therefore,
χ is convex on all trees which contain this edge.

Let b(n) denote the number of binary phylogenetic trees on X = {1 . . . ,n}. In total, there are

b(n) = (2n−5)!! = (2n−5) · (2n−7) · · ·3 ·1

such trees if n≥ 3, and b(1) = b(2) = 1 (see Semple and Steel (2003)). As explained above, a character can
be convex on more than one tree. However, if a character is convex on all b(n) trees (for some n ∈ N), it is
said to be non-informative. It is a well-known result that all characters in which at least two states appear at
least twice are informative (see Bandelt and Fischer (2008)); in other words, such characters are not convex
on all trees, but only on some. As an example, consider again χ = ααβββγ . As explained above and as
shown in Fig. 1, this character is convex only on some trees, namely those that have an edge separating
Species 1 and 2 from Species 3, 4 and 5; and this character uses two of its three character states, namely α

and β , at least twice (in this case, α is used twice and β three times).
However, the simple distinction between informative and non-informative characters is often not suffi-

cient. In this paper, we want to analyse how much information is contained in an informative character. This
can be done by considering the fraction of trees on which the character is convex. Therefore, we denote the
number of trees on which a character χ with induced partition π is convex by Nπ , and the fraction of such
trees by Pπ = Nπ

b(n) .
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Note that for a given r-state character χ on X = {1, . . . ,n} with the induced partition π = {X1, . . . ,Xr},
the number Nπ can be explicitly calculated with the following formula, which was first stated in (Carter et al,
1990, Theorem 2):

Nπ =
b(n)

b(n− r+2)
·

r

∏
i=1

b(xi +1), (1)

where xi = |Xi| for all i = 1, . . . ,r and b(n) denotes (as stated above) the number of binary phylogenetic trees
on X = {1, . . . ,n}.

We are particularly interested in characters that minimize Pπ , because they are only convex on the small-
est number of trees and therefore contain the most information on which tree they fit ‘best’ (based on the
convexity criterion). Thus, following Steel and Penny (2005), we define the information content of a char-
acter χ with induced partition π as follows:

Iπ =− ln Pπ =− ln
(

Nπ

b(n)

)
. (2)

Note that searching for a character with minimal Pπ (i.e. a minimal fraction of trees on which it is
convex), is equivalent to searching for a character with maximal Iπ (i.e. a character with maximal information
content). Notice also that, by Eqn. (1), we can write Iπ = ln(b(n−r+2))−∑

r
i=1 ln(b(xi+1)), and since b(k)

is a product of consecutive odd natural numbers, we can further write Iπ as a sum of the form ∑ j∈S a j ln j,
where S is a finite set of odd natural numbers and a j is an integer for each j ∈ S. We are now in the position
to state our results concerning characters for which Iπ is maximal.

3 Results

3.1 Maximizing Iπ

We now investigate the character partitions π of a set X of size n that maximize Iπ . Consider an r-state
character χ with the induced partition π = {X1, . . . ,Xr} and let xi = |Xi| (for all i = 1, . . . ,r) denote the block
sizes. The main problem considered in this manuscript, namely maximizing Iπ (or, equivalently, minimizing
Pπ ), consists of two combined problems, namely finding the optimal number r of states (i.e. the optimal
number of blocks in π), as well as the optimal block sizes xi for i = 1, . . . ,r (i.e. the distribution of states on
taxon set X).

We first consider the latter problem for the case when n and r are fixed. Let n ≥ 3 and r ≤ n be natural
numbers. Let N(n,r) denote the minimum value of Nπ over all partitions π of X = {1, . . . ,n} into r blocks.
Formally stated:

N(n,r) = min
π={X1 ,...,Xr}:
|X1|+···+|Xr |=n

Nπ .

Let l = l(n,r) = r · d n
r e−n. It is easily shown that:

l
⌊n

r

⌋
+(r− l)

⌈n
r

⌉
= n,

and so {1, . . . ,n} can be partitioned into l sets of size
⌊ n

r

⌋
and r− l sets of size

⌈ n
r

⌉
. The main result of this

section is the following.
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Theorem 1 For n≥ 3 and r ≤ n:

N(n,r) =
b(n)

b(n− r+2)
·b
(⌊n

r

⌋
+1
)l
·b
(⌈n

r

⌉
+1
)r−l

,

where l = r · d n
r e−n.

Remark 1 Note that in the case where r is a divisor of n, the equation stated in Theorem 1 reduces to
N(n,r) = b(n)

b(n−r+2) ·b(
n
r +1)r, since d n

r e=
n
r and thus l = 0.

The proof of Theorem 1 requires the following technical lemma, which is proved in the Appendix.

Lemma 1 Let m,s ∈ N, m≥ 2 and s≥ 2. We then have:

b(m+ s) ·b(m)> b(m+ s−1) ·b(m+1).

Lemma 1 immediately leads to the following corollary (also derived in Schütz (2016)).

Corollary 1 If a character χ with induced partition π = {X1, . . . ,Xr} and block sizes x1, . . . ,xr maximizes
Iπ , then for xi and x j (i, j ∈ {1, . . . ,r}, i 6= j), we have: |xi− x j| ≤ 1 (i.e. the block sizes differ by at most 1).

Proof Let χ be a character with the induced partition π = {X1, . . . ,Xr} that maximizes Iπ (equivalently,
which minimizes Nπ ). Let xi = |Xi| for all i = 1, . . . ,r. Assume that there exist i, j ∈ {1, . . . ,r} such that
|xi− x j| ≥ 2. Without loss of generality, assume that xi > x j. Set m = x j + 1 and s = xi− x j. Both m and
s are then at least 2 (because x j ≥ 1 by definition of partition π and xi− x j ≥ 2 by assumption). We apply
Lemma 1 and find that

b(xi +1) ·b(x j +1) = b(m+ s) ·b(m)> b(m+ s−1) ·b(m+1) = b(xi) ·b(x j +2).

Note that the contribution of Xi and X j to
r

∏
i=1

b(xi +1) in Nπ of Eqn. (1) is b(xi +1) ·b(x j +1). However, if

we now modify χ so that we remove one element of Xi and add it to X j, the contribution of this modified
character is b(xi) · b(x j + 2), which we have shown to be smaller than the original contribution. This is a
contradiction, as χ was chosen as a minimizer of Nπ . Therefore, the assumption |xi−x j| ≥ 2 was wrong and
thus we have |xi− x j| ≤ 1. This completes the proof. ut

We now use Lemma 1 and Corollary 1 to prove Theorem 1.

Proof (Theorem 1)
Using Eqn. (1), the only thing that remains to be shown is that:

r

∏
i=1

b(xi +1) = b
(⌊n

r

⌋
+1
)l
·b
(⌈n

r

⌉
+1
)r−l

.

Considering Remark 1, we do this by investigating the cases r | n and r - n separately.
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1. Let r | n (i.e. n = k · r for some k ∈ N). Let χ be a character with induced partition π = X1, . . . ,Xr such
that Nπ = N(n,r) (i.e. π minimizes Nπ for given values of n and r). Now assume that not all block sizes
are equal to n

r = k. There is then an i∈ {1, . . . ,r} such that xi 6= k. If xi > k, then as x1+ . . .+xr = n, there
must be a j ∈ {1, . . . ,r} such that x j < k (or vice versa). Let us assume, without loss of generality, that
xi = k+ ŝ and x j = k− s̃ for ŝ, s̃∈N; in particular, ŝ, s̃≥ 1. Then xi−x j = ŝ+ s̃≥ 2. This is a contradiction
because, by Corollary 1, xi and x j can differ by at most 1 as χ minimizes Nπ . Thus in the case where

n = k · r, we have xi = k = n
r for all i = 1, . . . ,r and therefore

r
∏
i=1

b(xi +1) = b( n
r +1)r.

2. Next, consider the case where r - n. Using Corollary 1, a character χ with the induced partition π =
{X1, . . . ,Xr} which minimizes Nπ can only lead to sets of sizes xi, x j, which differ by at most 1. As we
need r such sets in total, the only way to achieve this is by allowing l sets of size b n

r c and r− l sets of size
d n

r e for some l ∈ N, l ≤ r (note that d n
r e−b

n
r c= 1 as r - n). This has a unique solution, as n = l · b n

r c+

(r− l) · d n
r e leads to l = r · d n

r e− n. Moreover, this leads to
r

∏
i=1

b(xi + 1) = b(b n
r c+ 1)l · b(d n

r e+ 1)r−l ,

which, together with Eqn. (1), completes the proof.
ut

3.2 The number of states (rn) that maximizes Iπ

As we have seen in Corollary 1 and in the proof of Theorem 1, a character which has maximal information
content Iπ induces a partition π = {X1, . . . ,Xr} of roughly equal block sizes x1, . . . ,xr. In the case where r
divides n, all block sizes are equal to n

r ; otherwise, there are l = r · d n
r e−n blocks of size b n

r c, and all other
r− l sets have size d n

r e.
Recall that in order to find characters that maximize Iπ and thus minimize Nπ , we have to solve two

problems: we have to find the optimal value of r as well as the corresponding block sizes xi.
Let

I(n,r) =− ln
(

N(n,r)
b(n)

)
,

which is the maximal value of Iπ over all partitions of {1, . . . ,n} into r blocks. Let rn be the value of r that
maximizes I(n,r).

Consider the special case where n is a multiple of r. In this case, we know that the block sizes that
maximize Iπ are exactly n

r . If we only look at this fixed distribution of states, the two problems stated above
– namely finding the optimal value of r and the optimal block sizes xi – reduces to just the first problem,
namely finding the optimal value of r.
Note that when r = 1, we have k = n and |X |= n = x1, and thus by Eqn. (1) we get:

Nπ =
b(n)

b(n−1+2)
·b(x1 +1) =

b(n)
b(n+1)

·b(n+1) = b(n).

In other words, in the case where a character χ only employs one character state (say α) the resulting
character χ = αα . . .α on X = {1, . . . ,n} is convex on all b(n) trees on the taxon set X , which means that
Nπ is maximal and therefore Iπ =− ln Nπ

b(n) =− ln b(n)
b(n) = 0, which is minimal. Similarly, if there are |X |= n

different character states employed by χ (i.e. if xi = k = 1 for all i = 1 . . . ,r) we get:

Nπ =
b(n)

b(n−n+2)
·

r

∏
i=1

b(xi +1) =
b(n)
b(2)

·
r

∏
i=1

b(1+1) = b(n) ·b(2)r−1 = b(n).
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Here, the last two equations use the fact that b(2) = 1. In particular, if a character employs r = n character
states, this character is also convex on all trees on taxon set X = {1, . . . ,n}, and thus Iπ = 0.

Therefore, if we wish to minimize Nπ and thus Pπ in order to maximize Iπ , the number rn of character states
must lie strictly between 1 and n; otherwise, Nπ is maximal. Between these boundary cases, it is not obvious
how to find rn. For example, if we fix n = 120 and exhaustively examine all possible values for r between 1
and n, then we find that rn = 24. This scenario is depicted in the left-hand portion of Fig. 3.
Similarly, we randomly sampled values of n between 10 and 10000, and considered just the divisors for each
value of n in order to estimate the divisor r of n that maximizes Iπ , where π is a partition into r blocks. The
results are depicted in the right-hand portion of Fig. 3. However, note that we discarded n whenever our
random choice of n was a prime number, because then it is clear that the only divisors are 1 and n, which
leads to the cases we analysed above for which we know that Nπ = b(n) and thus Pπ = 1 and so Iπ = 0.

r

a)

I(n, r)

b)

n

rn

n = 120, rn = 24

Fig. 3: On the left-hand side, the case n = 120 is depicted, along with all values of r from 1 to n. It can be seen that Iπ =− ln(Pπ )
is maximal when r = 24 is chosen. On the right hand side, the plot shows the divisor r of n for which Iπ is maximal (where π is
a partition into r blocks) for randomly chosen values of n between 10 and 106. The primes in this interval do not allow for any
other equal block sizes than one block of size n or n blocks of size 1 (which have equal Iπ value of 0); the top (blue) line of dots
shows this value rn = n for the latter choice.

3.3 Analysis of the growth of rn

3.3.1 The shape of Iπ and its consequences for rn

By exploiting Theorem 1, exhaustive searches for rn, given n, can be done more efficiently. This is because
for each value of r, we now know the optimal block sizes, so we do not have to look at all possible partitions.
Consequently, an exhaustive search for rn by testing all possible values of r for a fixed value of n is easily
possible up to n = 10000 (and probably even higher than that).

In order to understand the growth of rn, we first explicitly searched for rn for each value of n between 1
and 360 (cf. Fig. 4)) and between 1 and 10000 (cf. Table 1)). Although Fig. 4 shows that rn has an increasing
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trend as n grows as well as piecewise linear growth, there are jumps back to a smaller number of blocks from
time to time. Clearly, the growth of rn is not uniform. It seems as if the size of the intervals between the
jumps increases roughly threefold. Table 1 gives the exact numbers for the jumps for n ≤ 10000. Note that
not only does the distance between the jumps increase, but also the size of the jumps rn− rn+1. However, if
we consider the size of the jumps relative to rn, then the jump sizes actually decrease. The sequence of jumps
(9,30,104,345, . . .) does not follow any obvious pattern and could not be matched to any known series of
numbers in the On-Line Encyclopedia of Integer Sequences (Sloane (2010)).

Fig. 4: The values of rn for values of n between 1 and 360. Note that rn drops down at n = 9 (from rn = 4 at n = 8 to rn+1 = 3),
as well as at n = 30, n = 104 and n = 345, as can also be seen in Table 1.

n rn
⌊ n

r

⌋ ⌈ n
r

⌉
− lnPπ

8 4 2 2 4.654

9 3 3 3 5.953

29 9 3 4 41.016

30 8 3 4 43.151

103 25 4 5 242.696

104 21 4 5 245.854

344 68 5 6 1141.630

345 58 5 6 1145.770

1108 184 6 7 4756.330

1109 159 6 7 4761.460

3484 497 7 8 18376.200

3485 436 7 8 18382.300

Table 1: All jumps of rn for n≤ 10000.
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I(n, r)

r
rn

Fig. 5: A simplified sketch of the shape of Iπ as presented in Fig. 3.

I(n, r)

Fig. 6: The value rn jumps between n = 3484 and n = 3485 as the maximum switches from the right edge of the convex section
to the left edge.

3.3.2 The shape of I(n,r)

We now investigate the shape of the function I(n,r) as r increases. For a fixed value of n, a closer look at the
graph of I(n,r) reveals the reason for the jumps in the block sizes; namely, that the graph is not as smooth
as it may seem at first glance. It is instead a concatenation of several convex functions. This can already be
guessed from Fig. 3 (left-hand graph), but in order to make it a bit more obvious, we sketched the plot again
(enhancing the shape) in Fig. 5. Note that the value of rn jumps when the maximum of I(n,r) shifts from
one edge of a convex section to the other. Fig. 6 shows an example for such a shift at n = 3485. Here, rn
drops down from 497 to 436. This means that the optimal partition for n = 3485 contains 61 fewer blocks
than the optimal partition for n = 3484. As can be seen in Fig. 6, the jump in rn is accompanied by a shift of



On the information content of discrete phylogenetic characters 11

the maximum from being on the right-hand side of a convex segment being on the left-hand side of the next
convex segment.

Table 1 describes the values of r at which downward jumps in the value of rn occur. Before the jump,
most of the subsets in an optimal partition π are of size

⌊ n
r

⌋
, whereas after adding one additional leaf, the

optimal partition contains mostly subsets of size
⌈ n

r

⌉
. As rn does not grow linearly, the block sizes

⌊
n
rn

⌋
and⌈

n
rn

⌉
do not grow linearly either. But contrary to rn, the block sizes only alternate by ±1.

3.4 Approximating the rate of growth of rn with n

In this section, recall the notation ∼ for asymptotic equivalence, in which f (n) ∼ g(n) is shorthand for
limn→∞ f (n)/g(n) = 1. We want to investigate the growth of rn as n grows. Therefore, we need a differ-
entiable approximation of Iπ , as Iπ is not differentiable (its shape consists of piecewise-convex segments).
From Theorem 1 we have:

I(n,r) =− ln
(

N(n,r)
b(n)

)
=− ln

(
b(b n

r c+1)l ·b(d n
r e+1)r−l

b(n− r+2)

)
. (3)

Now b(n+ 1) ∼ γ(n) for the real-valued function γ defined for x > 0 by γ(x) = 1√
2

( 2
e

)x
xx−1 (cf. Mc-

Diarmid et al (2015)). Let Iγ(n,r) denote the approximation to I(n,r) obtained by first approximating d n
r e

and b n
r c by n/r (these approximations assume that n/r� 1), and then using γ(x) in place of b(x+ 1) in

the resulting expression for I(n,r). Making these substitutions, the expression on the far right of Eqn. (3)
becomes independent of l and we can write:

Iγ(n,r) =− ln

(
γ
( n

r

)r

γ(n− r+1)

)
=−r ln

(
γ

(n
r

))
+ ln(γ(n− r+1)).

Let r̃n denote a value of r that maximizes Iγ(n,r). We want to use r̃n as an estimator for rn. Fig. 7 shows
the values of r̃n in comparison to rn as n ranges from 1 to 1000 (over this range there is a unique value for
r that maximizes Iγ(n,r)). Here, it can be seen that r̃n gives a reasonable approximation to rn over the range
shown (note that Iγ(n,r) deviates from I(n,r) for values of r close to n, however in this region I(n,r) is far
from its maximal value).

Theorem 2 The value(s) of r = r̃n at which Iγ(n,r) achieves its maximum value satisfies the asymptotic
equivalence r̃n ∼ n

ln(n) as n→ ∞.

Proof Consider the graph of Iγ(n,r) against r. The behaviour of Iγ(n,r) is slightly involved, and so our proof
uses the following strategy. Let t denote the ratio r/n, and so 0 ≤ t ≤ 1, and let θ > 0 be a parameter that
will take different values in the cases we consider (mostly we are concerned with the cases where 0 < θ < 1
and θ > 1). For any δ ∈ (0,0.5) and any choice of θ we show that for n sufficiently large, the graph of Iγ

has a gradient that is:

– greater than 1 for t up to θ

ln(n) , provided that θ <1;

– less than −1 for t between θ

ln(n) and δ , provided that θ > 1;
– less than −1 for t between δ and 1−δ ;
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r̃n

rn

r

n

Fig. 7: A comparison of rn (broken curve segements) and r̃n (continuous curve) for n from 1 to 1000. It can be seen that as
opposed to rn, r̃n does not have any jumps back to a smaller value, but is instead increasing uniformly.

– bounded by C ∼ 0.65 for t between 1−δ and 1.

It follows that the (global) maximal value of Iγ is given asymptotically (as n grows) by t ∼ 1
ln(n) . Note that the

global maximal value cannot occur asymptotically (with n) at t = 1 since the gradient of Iγ is less or equal
to −1 for t over an interval of length (asymptotically with n) at least 0.5, and the gradient is then bounded
above by C∼ 0.65 for the remaining interval (i.e. between 1−δ and 1) which has length less than 0.5 (recall
δ ∈ (0,0.5)).

Next we differentiate Iγ(n,r) with respect to r. Writing

Iγ(n,r) = ln

(
γ(n− r+1)

γ
( n

r

)r

)
,

and then replacing γ(n− r+1) with 1√
2

( 2
e

)n−r+1
(n− r+1)n−r and γ

( n
r

)
with 1√

2

( 2
e

) n
r
( n

r

) n
r−1 and simpli-

fying, we get

Iγ(n,r) = (1− r) ln

(√
2

e

)
+(n− r) ln

(
r(n− r+1)

n

)
.

Differentiating Iγ(n,r) with respect to r gives:

d(Iγ(n,r))
dr

= y(r)− z(r), (4)

where

y(r) = ln
(

e√
2
· n

r(n+1− r)

)
and z(r) =

(r−n)(n+1−2r)
r(n+1− r)

.

Thus d(Iγ (n,r))
dr = 0 precisely at values of r for which y(r)− z(r) = 0. Note here that for Iγ(n,r), the value r

can take any real value, not just integer values. Let t = tn = r/n. We may assume that 0≤ tn ≤ 1 for all n. We
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will show that any value of tn that maximizes Iγ satisfies the asymptotic relationship tn ∼ 1/ ln(n) (in other

words, r̃n ∼ n/ ln(n)). Notice that if we let C = ln
(

e√
2

)
then we can write:

y(r) =C− ln(t)− ln(n)− ln
(

1+
1
n
− t
)
. (5)

In addition,

z(r) =
(

1− 1
t

)
·
(1+ 1

n −2t)

(1+ 1
n − t)

. (6)

We apply these equalities to firstly establish the following claims (which show that r̃n = o(n)). Suppose
that δ ∈ (0,0.5). We claim that:

(i) If t ∈ [δ ,1− δ ], then dIγ (n,r)
dr ≤ h(n,δ ), where h(n,δ ) does not depend on t and h(n,δ ) < −1 for all n

sufficiently large.
(ii) If t ∈ [1−δ ,1] and n≥ 1, then dIγ (n,r)

dr ≤ Kδ , for a constant Kδ that converges to C as δ → 0.

To establish Claim (i), Eqn (5) implies that y(r) ≤ C− ln(δ )− ln(n)− ln(δ + 1
n ) and from Eqn. (6) with

t ∈ [δ ,1−δ ] we have |z(r)| ≤
( 1

δ
−1
)
·
∣∣∣∣ 1+ 1

n−2t
1+ 1

n−t

∣∣∣∣, the second factor of which satisfies the inequality:

∣∣∣∣∣1+ 1
n −2t

1+ 1
n − t

∣∣∣∣∣≤max

{
1,
|−1+2δ + 1

n |
δ + 1

n

}
. (7)

Thus, |z(r)|<
( 1

δ
−1
)

a(n,δ ), where a(n,δ ) is the bound on the right of Inequality (7), and so

y(r)− z(r)≤C− ln(δ )− ln(n)− ln
(

δ +
1
n

)
+

(
1
δ
−1
)

a(n,δ ). (8)

If we now let h(n,δ ) denote the term on the (entire) right-hand side of Inequality (8) then h(n,δ )→−∞ as
n→ ∞, which together with Eqn. (4) establishes Claims (i).

To establish Claim (ii) note that when t ∈ [1−δ ,1] we have y(r)≤C− ln(1−δ ) and the right-hand-side

converges to C as δ → 0. Also, −z(r) =
( 1

t −1
)
· (1+

1
n−2t)

(1+ 1
n−t)

is less or equal to zero for any value of δ < 1
2

once n is sufficiently large. This establishes Claim (ii).

We next establish the following two claims:

(iii) If t ∈ [0, θ

ln(n) ] and if θ < 1, then dIγ (n,r)
dr ≥ h′(n,θ), where h′(n,θ) does not depend on t, and h′(n,θ)> 1

for all n sufficiently large.
(iv) If t ∈ [ θ

ln(n) ,δ ] and if θ > 1 and 0 < δ < 1
θ

, then dIγ (n,r)
dr ≤ h′′(n,θ), where h′′(n,θ) does not depend on

t, and h′′(n,θ)<−1 for all n sufficiently large.

To establish Claim (iii) observe that − ln(t)> 0 (since t < 1) and − ln
(
1+ 1

n − t
)
≥− ln(2). Thus,

y(r)≥C′− ln(n), (9)
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where C′ =C− ln(2). Moreover, since 0≤ t ≤ θ

ln(n) and since θ < 1 the second factor in the expression for

z(r) namely, 1+ 1
n−2t

1+ 1
n−t

is bounded above by 1−ε(n), where ε(n) is a function only of n that converges to zero

as n grows. Thus we can write

−z(r)≥
(

ln(n)
θ
−1
)
(1− ε(n)). (10)

Combining Inequalities (9) and (10) gives dIγ (n,r)
dr = y(r)− z(r)≥ h′(n,θ), where

h′(n,θ) =C′− ln(n)
(

1− 1
θ
(1− ε(n))

)
− (1− ε(n)).

Now h′(n,θ)→ ∞ as n→ ∞ (since 1− 1
θ
(1− ε(n))< 0 for all n sufficiently large), establishing Claim (iii).

To establish Claim (iv), note that y(r) ≤ C− ln
(

θ

ln(n)

)
− ln(n)− ln

(
1+ 1

n −
1
θ

)
. Moreover, −z(r) ≤( 1

t −1
)
≤
(

ln(n)
θ
−1
)
, and so

y(r)− z(r)≤−
(

1− 1
θ

)
ln(n)+ ln

(
ln(n)

θ

)
+C−1.

If we take h′′(n,θ) to be the term on the right-hand side of this last inequality, we see that h′′(n,θ) tends to
−∞ as n→ ∞, since

(
1− 1

θ

)
> 0, thereby establishing Claim (iv).

It now follows from Claims (i) – (iv) that Iγ(n,r) attains its maximal value at a value (or values) that can
be written r = cn · n

ln(n) where cn that converges to 1 as n→ ∞. This completes the proof. 2

3.5 Remarks and questions

For n = 120, Theorem 2 gives the value r̃n ≈ 25, which is close to the exact value of rn = 24. Fig. 7 shows
that r̃n provides a reasonable approximation to rn except for deviations near the ‘jumps’. Nevertheless it may
well be that r̃n and rn are asymptotically equivalent (i.e. r̃n

rn
converges to 1 as n→ ∞) and the main step in a

proof would be to first show that n− rn and rn both tend to infinity as n→ ∞.
Also, we have observed that ‘jumps’ from rn to a smaller value rn+1 tend to occur at values of n for

which n
rn

is slightly greater than some integer (say k) while n+1
rn+1

is slighly smaller than k+ 1 (for example,

for the jump at n = 3484, n
rn
= 7.01, while n+1

rn+1
= 7.99). In that case:

n
rn
≈ n+1

rn+1
−1,

which rearranges to give the following estimate of the magnitude of a ‘jump’ when rn > rn+1:

rn− rn+1 ≈
rn(rn+1−1)

n
.

This is a partly heuristic (non-rigorous) argument, nevertheless the approximation provides a reasonable
estimate of the jump sizes for the values reported in this paper. For example, for the jump that occurs at
n = 3484 where rn = 497, while rn+1 = 436, we have

rn− rn+1 = 61 while
rn(rn+1−1)

n
≈ 62.05.



On the information content of discrete phylogenetic characters 15

4 Discussion

In this manuscript, we analysed which characters have the highest information content. One of our main
results is that in an optimal character with rn character states, all these states have to appear roughly equally
often, as such a character can only induce at most two block sizes (which can differ by 1 at most). If r divides
the number n of taxa, every block has the same size, n

r .
Concerning the behavior of rn, the optimal number of states in order to maximize Iπ , we found that

although it has a generally increasing, partially linear trend, jumps occur (i.e. there are values of n for which
rn+1 < rn). We analysed the reasons for these jumps, namely the shape of Iπ , which is a concatenation of
convex segments. Moreover, we presented an approximation for Iπ , for which n/r̃n ∼ ln(n). Note that this
does not directly imply that n/rn also tends to infinity, and formally establishing such a result could be an
interesting exercise for future work. All our theoretical statements were underlined by explicit calculations
for up to n = 10000. In order to be able to perform exhaustive searches for such large values of n, we had to
find a region on which we can restrict the search. This, too, was done with the help of our approximation.
Some questions for future research have been raised (see Section (3.5)). More generally, determining the
location of jumps as well as the location of block size changes (in terms of n) should lead to a deeper
understanding of the most informative characters.

Finally, as noted earlier, given any binary tree T (involving any number of leaves) just four characters
(on a large enough number of states) suffice to ensure that T is the only tree on which those four characters
are convex (Huber et al (2005), Bordewich et al (2006)). A natural question is whether these four characters
are of the ‘maximally informative’ form as described in this paper. It turns out that for certain trees they
divide up the leaf set [n] quite differently. In particular, for a caterpillar tree, two of the characters described
in Huber et al (2005) partition the leaf set into (roughly) n/2 blocks of size 2 while the other two characters
partition the leaf set into one block of size (roughly) n/2 while the remaining leaf blocks are of size 1.
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5 Appendix

Proof of Lemma 1
We first consider the case m = 2. In this case, we have b(m+ s) = b(2+ s) and b(m) = b(2) = 1 as well

as b(m+s−1) = b(s+1) and b(m+1) = b(3) = 1. In total, we have b(m+s) ·b(m) = b(s+2)> b(s+1) =
b(m+1) ·b(m+ s−1), which is true for all s≥ 2.

We now consider the case m≥ 3. As s≥ 2, we have:

2m+2s > 2m+2
⇒ 2(m+ s)−5 > 2m−3

⇒ (2(m+ s)−5) · (2(m+ s)−7)!! · (2m−5)!! > (2m−3) · (2(m+ s)−7)!! · (2m−5)!!
⇒ (2(m+ s)−5)!! · (2m−5)!! > (2m−3)!! · (2(m+ s)−7)!!
⇒ (2(m+ s)−5)!! · (2m−5)!! > (2(m+1)−5)!! · (2(m+ s−1)−5)!!

⇒ b(m+ s) ·b(m) > b(m+1) ·b(m+ s−1).

The last line uses the fact that b(m) = (2m−5)!! for all m≥ 3. This completes the proof. ut
Note that Lemma 1 is only stated for m ≥ 2. If m = 1, the lemma only holds for s ≥ 3. To see this,

consider the case m = 1 and s = 2. Then, b(m + s) · b(m) = b(1 + 2) · b(1) = b(1 + 1) · b(1 + 2− 1) =
b(m+ 1) · b(m+ s− 1), as b(1) = b(2) = b(3) = 1. Therefore the strict inequality stated in the lemma no
longer holds.
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