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Summary12

Estimating the depths of target horizons from seismic reflection data is an important task in exploration13

geophysics. To constrain these depths we need a reliable and accurate velocity model. Here, we build an14

optimum 2D seismic reflection data processing flow focused on pre – stack deghosting filters and velocity15

model building and apply Bayesian methods, including Gaussian process emulation and Bayesian History16

Matching (BHM), to estimate the uncertainties of the depths of key horizons near the borehole DSDP-25817

located in the Mentelle Basin, south west of Australia, and compare the results with the drilled core from18

that well. Following this strategy, the tie between the modelled and observed depths from DSDP-258 core19

was in accordance with the ± 2σ posterior credibility intervals and predictions for depths to key horizons20

were made for the two new drill sites, adjacent the existing borehole of the area. The probabilistic analysis21

allowed us to generate multiple realizations of pre–stack depth migrated images, these can be directly used22

to better constrain interpretation and identify potential risk at drill sites. The method will be applied to23

constrain the drilling targets for the upcoming International Ocean Discovery Program (IODP), leg 369.24
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1. Introduction26

Velocity model building is a critical step in seismic reflection processing. An optimum velocity field can27

generate flat common image gathers (CIGs) and well focused images in time or depth domain. Nevertheless,28

taking into account the noisy and band limited nature of the seismic reflection data and the ambiguity in29

the velocity estimation, the generated velocity field is only our best estimate of a set of possible velocity30

fields [Bickel, 1990; Tieman, 1994; Kosloff & Sudman, 2002]. Hence, all the calculated depths and the31

images produced are just our best approximation of the true subsurface.32

Although incorporating anisotropic parameters [Thomsen, 1986; Alkhalifah & Tsvankin, 1995; Alkhalifah,33

1997] during the velocity analysis stage can assist to constrain better the depth results [Hawkins et al.,34

2001], the non - uniqueness of the velocity field still remains an open problem as different velocity fields35

can lead to nearly equally flat arrivals in CIG [Chitu et al., 2008]. The problem is worse in the absence of36

any well log information, where the velocity field cannot be calibrated, rendering the final structural image37

only a sample among the most probable images, as an optimally focused image doesn’t necessarily mean38

accuracy of depths [Al-Chalabi, 1994, 2014].39

Conventionally, the initial estimation of the reflection time and root mean square velocities (Vrms) for each40

geological layer is based on picking the local maxima on a semblance spectrum [Neidell & Taner, 1971],41

computed from common - mid point (CMP) gathers. The ambiguity associated with the velocity model42

building is shown schematically in figure 1. The CMP gather is Normal Moveout (NMO) corrected with43

3 slightly different velocity fields after 4.2 s TWT, but visually the reflection arrivals appear equally flat44

(Fig. 1a, 1b). Earlier than 4.2 s, the maxima are less ambiguous to pick and the degree of precision of45

each picked value is higher. However, the velocity model building for deeper structures is compromised46

by the low depth to offset ratio and the attenuated frequency and amplitude content of the signal. This47

velocity - depth issue, limits the sensitivity of residual moveout to velocity changes and indicates that the48

semblance spectrum as a tool lacks the resolution to provide us with a unique velocity model [Lines, 1993].49

Tomographic inversion in the migrated domain for velocity estimation is inherently non - unique [Jones,50

2014] as it is trying to match the observed time values by choosing different combinations of depth (z) and51

slowness (s) values [Jones, 2010]. Multiple realizations of the same boundary can be created, all having52

slightly different pairs of z, s (Fig. 1c).53

Attempts have been made to incorporate statistical information in seismic reflection data processing54
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and perform uncertainty analysis for constraining velocities or depth results [Abrahamsen et al., 1991;55

Landa, 1991; Chitu et al., 2008; Lewis et al., 2015; Messud et al., 2017]. The uncertain nature of the56

produced velocity field can be addressed by statistically analysing the given velocity model to quantify the57

uncertainty associated with each pick. In this paper, we will use high resolution 2D seismic reflection data58

and develop a robust processing flow to effectively combine seismic analysis with Bayesian methods such as59

Gaussian Process emulation and Bayesian History Matching (BHM), to quantify uncertainties in velocity60

models using a suite of algorithms called BRAINS (from Bayesian Regression Analysis In Seismology61

[Caiado et al., 2012]). This paper can be considered as an extension of [Caiado et al., 2012], where a part62

of the methodology was initially outlined. However, this is the first time that the model with the statistical63

techniques are formalised and detailed. Also, to our knowledge, this is the first time that a combination of64

Gaussian Process emulators and Bayesian History Matching is implemented as part of a seismic processing65

flow.66

The objective of this study is to estimate the uncertainties associated with the depths of drilling67

targets for the upcoming International Ocean Discovery Program (IODP) project, leg 369, located in68

Mentelle Basin, SW Australia (Fig. 2a) [Borissova, 2002; Direen et al., 2007]. In this area, stratigraphic69

information is available from the Deep Sea Drilling Project (DSDP) borehole 258, which penetrated a series70

of carbonate oozes, limestones, black shales and sands [Davies et al., 1974] (fig. 2b), deposited during the71

Cretaceous Hothouse period (90-70 Ma). Part of the sedimentary sequence may contain evidence for sudden72

decrease in atmospheric CO2 concentrations with associated periods of glaciation [Kuypers et al., 1999].73

By drilling and recovering samples from targeted geological sequences, we can collect valuable information74

about the paleotemperature regime, biotic records, ocean circulation and tectonic history of the region.75

Poor core recovery and the lack of wireline sonic information from DSDP–258, means that the depth76

predictions of key horizons is based entirely on the velocity values inferred from surface seismic data. As77

the sensitivity of differential move out, during the velocity analysis stage using a semblance spectrum, is78

linked to the frequency content of the wavelet in pre - stack data (CMP gathers) [Chen and Schuster,79

1999; Jones, 2010], we opt to follow a complete seismic reflection processing flow with the main focus on80

improving the temporal resolution of the seismic data. This is achieved by eliminating the source and81

receiver ghost notches in the pre – stack domain using inverse deghosting filters. The latter approach82

allows us to perform pre - stack depth migration (preSDM) on the ghost free CMP gathers, and produce83

an image with optimum spatial resolution and focusing, which aids to better constrain the interpretation.84

We use the probabilistically derived velocity estimates to retrieve the depth information for key bound-85
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aries, tied to borehole 258 and make predictions for the depths of drilling targets for the two planned wells86

4B–4C, located adjacent to the borehole DSDP 258. Finally, as the probabilistic approach produces a pos-87

terior distribution of velocity values, we generate a set of velocity fields and produce different realizations88

of pre - stack depth migration (preSDM) images for the line segment intersecting the planned wells (Fig.89

2a, 2b).90

2. Geological setting of the study area91

The western and southern margins of Australia are defined as the two arms of a triple junction that formed92

during the final stages of the Gondwana breakup [Powell et al., 1988; Royer & Coffin, 1992; Direen et al.,93

2007].94

One of the most important geological features of that region is the Mentelle Basin (MB). It is a sparsely95

explored, deep water sedimentary basin, located between the Naturaliste Plateau and the southern part of96

the Western Australian Shelf. Seismic images based on early seismic surveys showed that Mentelle basin is97

elliptical in shape, with minor and major axes 200 km east-west and 220 km north-south, respectively. Its98

main depocenter, is believed to contain sediments from Cretaceous to Holocene which produce an interval99

of more than 3.0 s two-way-time (TWT) on the seismic image [Borissova, 2002; Bradshaw et al., 2003].100

These sediments are possibly underlain by older sediments from an earlier rifting event. The presence of101

a thick sedimentary sequence in the MB gives a petroleum potential similar to that of the southern Perth102

Basin [Borissova, 2002].103

The stratigraphic features of the MB are not delineated as this area is sparsely drilled. Nevertheless, the104

results of the borehole site (DSDP 258) in conjunction with newly processed and reprocessed seismic data105

from GA S280 and S310 surveys, Shell Petrel Development Survey and Geoscience Australia Continental106

Margins Surveys 18 [Sargent et al., 2011], allowed the division of the stratigraphy of MB into seismically107

derived tectonostratigraphic megasequences [Maloney et al., 2011].108

3. Methods109

3.1 Gaussian Process emulators for modelling seismic velocities110

In the Bayesian framework, the expert’s knowledge about the parameters that govern a system are repre-111

sented using prior distributions, then the available data, in conjuction with a sampling model (likelihood112

function), are used to update our knowledge about these parameters (posterior distribution). In seismic113
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reflection processing, we can use the observed amplitudes of reflection events in a CMP gather {Aij},114

offsets {Xj}, recorded travel times {T (r)
ij } and picked {Vrmsi – T0i} or derived {Vint.i – T0i} pairs as prior115

information and we aim to quantify the uncertainty of {∆T0i , ∆Vrmsi ,Vinti , ∆Zi} for the horizons of inter-116

est. BRAINS suite [Caiado et al., 2012] uses a combination of Bayesian methods, such as emulation and117

Bayesian History Matching, to quantify these uncertainties.118

Our approach is based on a discrete subsurface model (Appendix A.1), with a finite number i of geo-119

physical layers and a given array of source (Sj) – receiver (Rj) pairs, j = 1, ...,m. These are symmetrically120

placed around a CMP, with Xj being the distance between Sj and Rj . For every Xj and hyperbolic event121

(layer) i, we have observed amplitude values Aij and recorded time Tij . Also, for each layer we can assign122

a zero–offset two–way travel time T0i , its time increment ∆T0i , a root-mean-square velocity Vrmsi with its123

velocity increment ∆Vrmsi , an interval velocity Vinti and a thickness ∆Zi. Our model seeks to estimate124

variables {∆T0i , ∆Vrmsi ,Vinti , ∆Zi} and their relevant uncertainties, from observed data {Aij , Xj , T
(r)
ij },125

taking into account the prior information from picked {Vrmsi , T0i} or {Vinti , T0i} pairs derived during the126

velocity analysis stage.127

In the case of isotropic conditions, the recorded travel time of a wave to propagate, under the ray128

assumption, from seismic source Sj to detector Rj , T
(r)
ij , can be expressed as:129

T
(r)
ij =

√
T 2
0i

+

(
Xj

Vrmsi

)2

+ εij + eij (1)

where εij accounts for the model discrepancy due to propagating approximations and isotropic assumptions,130

eij corresponds to recording errors. Although recording error (eij), is present in a construction of a131

statistical model, as the observations are indirect and recorded with a finite accuracy, it is the model132

discrepancy term (εij) that has a key role in our statistical representation. Model discrepancy integrates133

all the simplifications of physical laws, used to describe the model, with our incomplete knowledge about134

the system explored and represents our inability to build a model which depicts reality [Craig et al.,135

1997]. Thus, by including the εij term not only we address the potential issue of overfitting the model to136

the observed data [Andrianakis et al., 2015] but we also produce uncertainty estimations for the output137

variables of interest. As expressed in equation (1), εij term represents effects related with anisotropic wave138

propagation (ε, δ anisotropic parameters) and ray tracing approximation.139

Typically, these error terms are ignored which results in the Dix equation [Dix, 1955], where we can140

relate Vrmsi and Vinti as:141
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Vinti =

√
T0iV

2
rmsi − T0i−1V

2
rmsi−1

T0i − T0i−1

(2)

and calculate the thickness ∆Zi of each layer as :142

∆Zi =
Vinti∆T0i

2
(3)

Equations (2), (3) are based on the hyperbolic approximation of the recorded travel time. Including the143

error terms in eq. 1 allows a more robust approach, which is not restricted to hyperbolic assumptions but144

can express more complex models for incorporating recorded travel time from seismic rays which follow a145

nonnormal trajectory. We use the above equations to construct a Gaussian Process (GP) model. A GP can146

be thought as the generalization of the univariate Gaussian probability distribution and formally is defined147

as “a collection of random variables with any finite number of which having a joint Gaussian distribution”148

[Rasmussen & Williams, 2006]. They are well established models, applied in a variety of spatial and149

temporal problems [Ripley, 1991] including geostatistics [Matheron, 1973; Journel & Huijbregts, 1978] and150

Kalman filters [Ko & Fox, 2009]. A GP is fully defined by its mean, m(a) and covariance k(a, a′) functions151

with a, a′ representing samples from the random vector.152

In this paper we will use the Gaussian Process emulators. An emulator is defined as a stochastic belief153

specification, which expresses probabilistic judgements for a deterministic function f(a) [Craig et al., 1997;154

O’Hagan, 2006; Vernon et al., 2010; Caiado & Goldstein, 2015]. Commonly, they are expressed in the155

following form:156

fh(a) =
∑

βhjghj(a) + uh(a) (4)

where a is input value, βhj unknown scalars, ghj(a), known deterministic functions and uh(a) is a stochastic157

process, normally a GP with zero mean and a square exponential covariance function. Index h represents158

the output variable. As a result, in equation (4) we can incorporate our beliefs and the uncertainties about159

each variable of the system explored.160

In our statistical analysis, we use two emulators for uncertainty quantification. Firstly, a local (1D)161

emulator (Appendix A.1), where we make the assumption that a set of travel times related to a given162

horizon in a single CMP can be approximated as a sample of a continuous function with a hyperbolic163

trend. If any finite set of travel times from this hyperbolic curve is believed to follow a multivariate164

Gaussian distribution, we can assume that the recorded travel time curve is a GP with respect to offset x165
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T (r)
i (x)|∆T0(1,...i) ,∆Vrms(1,...,i) ∼ GP(mti(x), ki(x, x

′)) (5)

or expressed in a form consistent to equation 1 as:166

T (r)
i (x) = (t20i + x2υ−2rmsi)

1/2 + ui(x) (6)

The first term of the right hand side represents the mean function mti(x) and the second term a stationary167

stochastic process with zero mean and a square exponential covariance functions kti(x, x
′), with the mean168

and covariance functions given below:169

mti(x) = (t20i + x2υ−2rmsi)
1/2

kti(x, x
′) = σni + σsiexp

(
−(x− x′)2

di

) (7)

The terms x and x′ define two random points from the offset space within a single CMP. Comparing170

equation (1) with expression (7) we can see that the hyperbolic trend of travel time equation is stored171

under the mean function mti(x) and the error terms εij , eij are stored under the noise parameters σni , σsi172

of the covariance function. The parameter di represents the length – scale of the function and defines how173

far the x, x′ values should be to become uncorrelated. The covariance function, can be adjusted to specific174

applications by correctly tuning its hyperparameters (σni , σsi , di). As our prior knowledge about their175

appropriate values reflects our knowledge about the system, they can be treated as constants that need to176

be set manually or derived from an optimization process using the training data [Rasmussen & Williams,177

2006]. In our case, the training data can be thought of as the set of prior T0i − Vrmsi , T0i − Vinti pairs178

picked during the velocity analysis stage. Based on the velocity analysis interval (spacing between two179

consecutive picked pairs), the picked values and also their variability along the picked velocity layer, we180

can manually calibrate accordingly, the noise, scale and length parameters of the covariance function and181

provide starting points for their values. Subsequently, the parameters are refined using a gradient search182

to find a local maximum in the likelihood and retrieve values in an area of high probability. Equations183

(5)–(7) can be formulated analogously for linking T (r)
i with Vinti and ∆Zi, rendering the Bayesian model184

multidimensional.185

Secondly, a 2D emulator expands the 1D uncertainty estimation into a 2D multi–gather representation186

by assuming that the variables ∆T0i , ∆Vrmsi , Vinti and ∆Zi, for every geophysical boundary, follow a187

GP over the CMP positions (xc) along a profile (Appendix A.2). The latter, is used to constrain the188
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inter–gather areas and produce estimates in regions where we don’t have available prior pick pairs.189

3.2 Bayesian History Matching for model space reduction190

In order to perform model calibration and reduce the parameter input space we use the approach known as191

Bayesian History Matching [Craig et al., 1997; Vernon et al., 2010]. Bayesian History Matching (BHM) is192

an established method and combined with emulation techniques has been tested successfully in a variety of193

different scientific disciplines such as reservoir modelling [Craig et al., 1997; Cumming & Goldstein, 2009]194

climate modelling [Caiado & Goldstein, 2015] and galaxy formation modelling [Vernon et al., 2010]. BHM195

should not be confused with the term History Matching widely used in the oil industry, as in the latter196

case, we are trying to match empirical data, such as production rates and observed pressure from well197

logs, with a complex model (normally called simulator) that is assumed to represent part of the subsurface198

(reservoir), where the parameters that govern the model don’t include any uncertainty estimation. On199

the contrary through the process of BHM, all the possible models that can match our observed data200

are identified [Vernon et al., 2010]. Following the same notation as in equation (4), in BHM, we aim to201

identify and iteratively discard input values, a, of the parameter space for which the evaluation of a function202

(emulator) fh(a) isn’t likely to provide a good match to the observed data L. The parts of parameter space203

that are discarded are called implausible and the process of reducing the space is accomplished using the204

probabilistic criterion of implausibility Ih(a) [Craig et al., 1997; Vernon et al., 2010]. The general definition205

of Implausibility is given below.206

Definition 1. Implausibility207

For a given choice of input value a with modelled output fh(a), observation vector Lh and taking into208

account all the variances present in the system V arh(system), implausibility Ih(a) is defined as:209

I2h(a) =

(
Lh − fh(a)

)2
V arh(system)

(8)

Large values of Ih(a) indicate that, taking into account all the uncertainties of the system (denominator210

of Eq. 8), it is very unlikely to obtain acceptable matches between the model outputs and the observed data211

at input a. However, small values of Ih(a) don’t necessarily mean that the input value a is correct [Vernon212

et al., 2010]. The Implausibility measure Ih(a), as expressed in equation 8, refers to multidimensional213

models (h number of output variables). A one dimensional example of the above form, taking into account214

all the types of uncertainties present in our system (Eq. 1) and based on the GP model as expressed in215
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equation (5), can be formulated as:216

I2i (a) =

(
Li − E∗

(
T
(r)
i (a)

))2
V ar∗(T

(r)
i (a)) + V ar(εi) + V ar(ei)

(9)

where Li our observed data, E∗(T
(r)
i (a)), V ar∗(T

(r)
i (a)) the posterior mean and posterior variance of217

Gaussian Process emulator and V ar(εi), V ar(ei) are the variances of the modelling and observation error,218

respectively. Index i, represent each velocity layer. The observed data Li, for every discrete velocity layer219

associated with a hyperbolic event in a CMP gather, is the local maximum value of the semblance spectrum220

of that hyperbolic trend calculated from the observed offset Xj , amplitude values Aj and recorded time221

Tj . The non – implausible space is gradually reduced by applying multiple iterations of BHM. In order222

to identify the region of implausible input values, we use a cut - off limit based on Pukelsheim’s 3σ rule223

(any continuous unimodal distribution at least 95% of the probability is within three sigma of the mean)224

[Pukelsheim, 1994]. Based on that rule, input values a for which Ih(a) > 3σ are considered implausible and225

are discarded. The iterative BHM procedure is usually repeated until the difference between the regions,226

after successive iterations, becomes small or the posterior variance is suitably small [Andrianakis et al.,227

2015].228

As BRAINS model is multidimensional (T
(r)
i is linked with ∆T0i , ∆Vrmsi , Vint.i and ∆Zi, referred as229

index h in Eq. 8), we opt to built separate implausibilities for every output h. A simple combination230

between the implausibility measures can be performed by taking the maximum implausibility IM (a) =231

maxIh(a) which can be used to find regions of input values a with large IM (a) values. Note that the232

application of BHM is a fast process as it excludes the implausible space without considering the full input233

and output space simultaneously, dissimilar to other calibration methods such as Markov Chain Monte234

Carlo (MCMC) or maximum likelihood methods where the calibration is performed taking into account235

all input / output parameters [Andrianakis et al., 2015].236

A pictorial example of GP emulation with BHM calibration in seismic reflection data processing is237

presented in figure 3. The conventional semblance spectrum plots (Fig. 3a), for a number of CMP’s238

along a profile, are picked to derive an initial estimate of T0 − Vrms pairs (red circles) associated with239

a number of seismic boundaries (fig. 3b). The pairs don’t include any sort of uncertainty measurement240

and are linearly interpolated between non - adjacent CMP positions (gray dashed lines). As a result, this241

process leads to unique T0 − Vrms and Z − Vint. volumes and unique subsurface images in time and depth242

domain. For the statistical approach, the T0 − Vrms pairs along with CMP gathers which contain the243
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observed parameters L = [Aj , Xj , Tj ] transformed in the semblance space, are used as input data to the244

local (1D) GP emulator to derive an estimate of the most probable functions evaluated at each picked245

pair. By means of calibration, we reduce the parameter space substituting the semblance spectrum by an246

implausibility spectrum which is calculated using equation (8). In fig. 3c, a Z − Vint. map is presented,247

with the picked pairs being spatially linked with the preSDM image shown in fig. 3d. The coloured band248

inside the trend indicates different levels of implausibility. In the regions where the posterior mean is far249

from the observed values the implausibility is considered large (red color), indicating that an input pair in250

that band is unlikely to give an output that will match the observations L. On the contrary, if we choose251

to make our pick in the lower implausibility regions (green areas), the posterior variance will decrease,252

with a simultaneous decrease of the non - implausible region. A further decrease of parameter space can253

be achieved by iteratively performing BHM in the non-implausible regions.254

The process continues in all CMP locations where we provided prior pick information and terminates255

when one of the aforementioned criteria is reached. The posterior mean and variance estimations for the256

picked pairs, serve as a guide to perform uncertainty analysis along the profile using the multi – gather 2D257

emulator aiming to produce probabilistic estimates in the intra – CMP gathers area.258

Note that the implausibility map is not restricted to the Z − Vint. space but it is calculated for any259

combination of T0 or Z with Vrms or Vint. pairs. Each implausibility pair has different shape and size,260

locally (in every CMP location) and also laterally (along CMP locations), incorporating the different level261

of uncertainty in each picked pairs and spatial positions. Also, the regions between the prior information262

picks in each map are bounded by the posterior ± 2σ curves (blue dashed curves), with the posterior263

mean function curve (solid black curve) intersecting regions of lowest implausibility. This inter - layer264

representation of uncertainty can be achieved by interpolating the posterior results.265

The final output of this process is a set of uncertainty quantification for all T0, Vrms, Vint and Z266

parameters for each horizon of interest (fig. 3d). An important by-product of the technique is that by267

quantifying the uncertainty of Vint. values, we can generate a set of velocity fields bounded by the ±2σ268

curves and produce different realizations of preSDM images. The latter tool can be critical in regions with269

complex geology or for data rich in low frequency content and noise level, where a sole realization of imaged270

structures may not adequately identify risk at proposal drill sites.271
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3.3 Data preconditioning for input to BRAINS272

As our primary goal is to develop a horizon based velocity model discretized in a number of layers (Appendix273

A.1), the final version of the velocity field aims to produce flat CIG gathers and focused images in time274

and depth domain. Therefore, the processing steps are tailored appropriately to build an optimum velocity275

field which will be used as prior information to BRAINS algorithm. Concurrently, in order to clarify the276

target horizons of the profile we shaped the amplitude spectrum by eliminating the source bubble pulse277

coda and the source and receiver ghost notches in the shot domain.278

The pre-stack de-signature and deghosting process combined with the reposition of the data through279

the application of preSTM / preSDM, are the two key steps in the processing flow described below and280

they have a dual effect in improving BRAINS estimation. Firstly, by improving the temporal resolution281

pre - stack, sharper reflections events become apparent in CMP domain, which are transformed into well282

defined local maxima in the semblance space. As BRAINS and the process of BHM use the semblance283

spectrum (L observed data) as a tool to constrain the posterior results, the pre - stack deghosting gives284

extra precision to the model’s outputs. Secondly, the pre - stack reposition of the data is mandatory, as285

it focuses the reflection events and eliminates the dip-dependence of stacking velocity (Vst.), providing a286

better constrain to prior information (T0, Z with Vrms, Vint. pairs).287

3.3.1 Time domain processing288

The raw shot gathers for line S310-07 are provided by Geoscience Australia (detailed acquisition parameters289

in Table 1, processing sequence in Table 2). Initially, geometry acquisition information is imported to the290

profile and gun and receivers static corrections are applied to the shot gathers to compensate for the tow291

depths of the source and streamer. A time - invariant low cut filter is used to reduce the low frequency292

swell noise. The first step for the spectrum shaping is to create a debubble operator to eliminate the293

source’s bubble pulse coda. The inverse operator is modelled using the Nucleus source modelling package294

[Petroleum Geo services (PGS)] which takes into account the acquisition parameters, the volume and type295

of air – guns and the physical parameters of the water (sound speed and temperature) during the seismic296

acquisition. The filter is convolved in the pre-stack (shot) domain as the periodicity of the bubble pulse297

is close to constant from shot to shot [Sargent et al., 2011]. The source’s notch effect was eliminated298

in the same domain, using a deterministic inverse filter constructed following the approach of Sargent et299

al. (2011). Although the deterministic inverse filters can be applied pre - stack, their periodicity and300

shape is tailored to the average observed notches observed in the stack amplitude spectrum. Similarly, the301
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receiver’s notch amplitude compensation is performed on a shot by shot basis by applying an automatic302

receiver’s deghosting filter in the f-x domain, after plane wave decomposition and separation of up–going303

and down–going waves [Amundsen, 1993].304

The deep water environment of the segment (more than 2.5 Km depth from sea level) generates long305

path multiples that don’t interfere with the signal of the sedimentary sequence. As a result, we chose not306

to apply any demultiple techniques. After sorting shot gathers into Common Mid Point (CMP) gathers,307

several passes of manual velocity analysis and subsequent straight ray isotropic Kirchhoff pre – stack time308

migration (preSTM) are performed, aiming at building a smooth velocity field appropriate to produce flat309

image gathers. The final velocity model is also used for divergence correction to compensate for geometrical310

spreading. Before stacking, the flat time gathers underwent an outer trace mute to avoid any stretch effects311

at far offsets.312

In the post - stack domain, random noise elimination is achieved by application of frequency - distance313

(f-x) deconvolution [Canales, 1984] and amplitude/phase inverse Q filter is applied to compensate for the314

attenuation during seismic wave propagation [Wang, 2002]. Time - variant bandpass filtering and cosmetic315

sea noise mute complete the processing of the profile in the time domain.316

In figure 4, we present the comparison between images with (Fig. 4a, 4b) and without (Fig. 4c, 4d)317

notch compensation. The ghost free image shows optimum focusing and is characterized by a broadband318

amplitude spectrum (Fig. 4e). The retrieved frequency content improves the temporal resolution of319

the profile, which results to sharper seismic boundaries and by inference more constrain interpretation,320

especially at the shallow sedimentary sequence (arrows and curly brackets in Fig. 4b, 4d). Note, however,321

that the presence of basalts at around 4.5 seconds TWT [Maloney et al., 2011] attenuates the high frequency322

content of the seismic energy [Maresh et al., 2006] resulting in a poor reflectivity in the sub-basalt region.323

3.3.2 Depth domain processing324

Although the processing flow in the time domain yielded acceptably focused images, the 1D representation325

of the velocity model used in the time migration algorithm [Hubral, 1977; Black and Brzostowski, 1994]326

sets a limit to the precision of the velocity model building [Jones, 2010, 2012]. Thus, we opted to use327

the final version of the preSTM velocity field as a starting model to perform isotropic Kirchhoff pre -328

stack depth migration (preSDM) on the deghosted CMP gathers. As our well positions lie in an area with329

a relatively simple geological structure (Fig. 2b), we chose to run subsequent passes of vertical update330

[Deregowski et al., 1990] to refine our input velocity field until acceptably flat CIG gathers were produced.331
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The resulted depth migrated images gathers are stretched back to time using the smoothed version of the332

final velocity field for filtering and cosmetic final residual moveout correction (RMO) and converted back333

to depth domain for stacking. This additional editing of velocity field assisted to constrain better the prior334

information for input to the Bayesian model and simultaneously assured that the velocity model is suitable335

to preSDM applications.336

Even in an environment with subhorizontal layers and relatively simple subsurface structure like our337

area of interest, the preSTM and preSDM profiles show some structural differences, with the latter showing338

local sharpening of the faulted zones close to well locations (Fig. 5a, 5b). Furthermore, the amplitude339

compensation in the seismic gathers in time domain has generated a profile in depth domain with optimum340

spatial resolution and focusing (Fig. 5a, 5b). Thus, the application of pre-stack inverse filters serves as an341

amplitude shaping tool in both domains, in contrast with implementing deterministic post-stack inverse342

filters [Sargent et al., 2011], which can produce flat amplitude spectrum and improved image resolution343

only in the time domain.344

4. Results - Discussion345

Using the final version of the t0 − Vrms, t0 − Vint. pairs as prior information for BRAINS along with the346

deghosted preSTM image gathers and performing BHM to reduce the parameter space, we calculate the347

posterior distribution of t0, Vrms, Vint and z for each CMP value and make uncertainty estimations for348

the variables of interest. Initially, the posterior mean Vint. field was used as input to the depth migration349

algorithm. A comparison between the images produced using the prior and posterior mean Vint fields is350

given in fig 6. The preSDM profiles don’t indicate any major structural differences as the models used are351

nearly identical. This is a direct consequence of the Gaussian Process model used and the prior picks made,352

as the mean function in eq. (5) encodes the hyperbolic approximation of the seismic wave propagation.353

As the latter is also used to define the moveout trajectory for semblance spectrum calculation associated354

with hyperbolic events in CMP positions along a profile, the closest the prior t0 − Vrms or t0 − Vint. picks355

are to the local maxima semblance value, the less difference will be observed between prior and posterior356

mean models and by inference depth images.357

Differences are resolved after subtracting the posterior mean preSDM image (Fig. 6b) from its prior358

equivalent (Fig. 6a), resulting in a structural difference plot (Fig. 6c, Fig. 6d). The images’ dissimilar359

features are now emphasized, indicating regions of differential depth shift. As the migration algorithm360

repositions the time signal to the depth domain in a top – down basis, the cumulative differences of361
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velocity field with respect to depth get larger and map to more pronounced depth image shifts. Note that362

as the velocity fields show minor differences, this effect generates only a vertical structural stretch with no363

resolvable lateral structural changes.364

In terms of depth predictions, although we used an isotropic approximation of preSDM, the tie with the365

borehole information is acceptable with a misfit of approximately 4 % (21 m) at the glauconitic sandstones366

level (Fig. 7a, 7b). The large misfit at the bottom shales level is attributed to the indistinct reflectivity367

boundary between limestones and shales (Fig. 7a. 7b). Note, however, that the observed depths from368

DSDP-258 are consistent with the ± 2σ credibility intervals. This result reassures us that our posterior369

mean velocity field is a good representation of the local velocity field and, by inference, can be used to370

make predictions about the depths to horizons in the new well locations (Fig. 7a, 7b).371

The uncertainty quantification not only results in a numerical estimation of depth values for key hori-372

zons, but can be also used to generate a set of probabilistic images by sampling Vint. values from the373

posterior distribution and using the latter as input to preSDM algorithm. In figure 7c, we present a num-374

ber of structural difference plots, produced by subtracting each resulted preSDM image realization, derived375

using a probabilistic velocity field, from the posterior mean image. The plots display a number of probable376

depth and shape positions for geological boundaries of interest, in accordance with the differences between377

the sampled velocity fields and the posterior mean velocity field (Fig 7c(i), 7c(iii) ± 2σ end members for378

posterior black shales velocity, 7c(iv), 7c(v), 7c(vi) randomly generated values for all velocity layers, 7c(ii)379

posterior mean image). In positions where the differences are closer to extreme values, the local image380

features start changing in shape (localised red maxima in 7c(iii), 7c(iv)).381

The randomly generated values, bounded by the ± 2σ credibility intervals for every CMP position and382

every velocity layer, incorporate a confidence measure associated to each picked pair which is a combination383

of the observed data (amplitude values Aij , recorded travel time T
(r)
ij , distance Xj), and prior picks384

positions. Thus, the retrieved vertical pattern of blue (negative) and red (positive) regions in the normalized385

velocity difference plots of figure 7c approximates the Gaussian Process pattern depicted in figure 3c, where386

the ± 2σ curves, along a velocity layer, show decreased uncertainty close to the prior picked CMP positions387

and increased between them. These regions have a spacing of approximately 50 CMPs positions, driven388

by the velocity picking spacing used to generate the prior velocity model for time and depth migration389

(Table 2). We expect that the mapping of the uncertain nature of velocity models to image realizations,390

especially in areas with complex geological structures such as salt diapirs or basalt intrusions, is critical to391

constrain better the most probable interpretations and risk.392
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The observed misfit between the modelled mean and true depths at the glauconitic sandstones level393

can be primarily attributed to the isotropic approximation of BRAINS and the migration algorithm used.394

As described in expressions (5), (6) and (7), the Gaussian process emulator does not include an explicit395

representation of epsilon (ε) and delta (δ) anisotropic parameters [Thomsen, 1986], therefore these terms396

are not statistically quantified as an output from the model. The uncertainty related with anisotropic397

conditions is integrated in our system into the model discrepancy term which value is set accordingly to398

accommodate the mismatch in the predicted depths and observed data, driven primarily by excluding399

Thomsen’s ε and δ parameters. This approach was chosen in order to avoid narrow posterior variances400

which would indicate overconfident depths predictions for the drilling targets, predictions that couldn’t401

be supported for the result extracted using an isotropic depth migration algorithm alone, without the402

confirmation from independent observations (well logs).403

Although indirect, this compensation of the anisotropic parameters through a unified discrepancy term404

can be considered as the optimum solution in our system. Firstly, the lack of any wireline log information405

concerning seismic velocities does not facilitate the process of anisotropic velocity model building as the406

true velocity values could be implemented to better constrain the prior information in our model and simul-407

taneously be used as a starting point for higher order NMO correction (4th order correction, η parameter).408

Furthermore, due to the uncertain tie between the observed reflectivity in the final preSTM / preSDM409

images and the lithological boundaries (especially at the boundary between limestones to black shales),410

any scaling of the target horizons to match the observed depths [Davies et al., 1974] using an inferred δ411

parameter value is impractical and contains the risk of assigning observed reflectivities to incorrect geolog-412

ical boundaries and hence depths. As a result, trying to infer the anisotropic parameters and provide their413

uncertainty estimations, without any well control, was a task prone to uncertainties that could compromise414

the predictions of velocities and depths for the horizons of interest.415

However, there is an additional, more subtle reason that justifies our approach. It has been shown [Al-416

Chalabi, 2014], that the inclusion of a 4th order term during NMO correction (estimation of η parameter)417

is associated with a large increase in the observed variance compared to the simpler 2nd order hyperbolic418

approximation mainly due to the strong anti - correlated nature between Vnmo and η variables. This419

result indicates, that an anisotropic approach during the velocity analysis stage combined with anisotropic420

migration algorithms, although may result to better focusing of the final image and possibly better prior421

/ posterior mean depth results, does not lead to a better uncertainty quantification of velocity values.422
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5. Conclusion423

We have presented a method to quantify the uncertainty of depths and related values in seismic reflection424

data processing. Our seismic reflection processing strategy was separated into two distinct parts. First,425

we aimed to improve the temporal and spatial resolution of the region close to the planned well locations426

by performing source’s and receiver’s notch compensation in the pre - stack domain. Then, we focused427

on the velocity model building in the time and depth domain in order to generate well focused images428

and constraint prior information for input to the BRAINS model. By using Gaussian Process emulators429

conjointly with iterative Bayesian History Matching (BHM), we managed to retrieve the depths of the430

key horizons as known from DSDP–258 borehole and make predictions about the expected depths of same431

horizons for wells 4B, 4C respectively.432

As the probabilistic approach results in a distribution estimation for Vint., we generated sets of new433

velocity models and perform preSDM to produce different image realizations. In this way, we were able to434

map differences in velocity models to differences in image features for our horizons of interest.435

The GP emulators are deliberately parametrized to exclude explicit uncertainty estimations for anisotropic436

parameters (ε, δ). Instead, the anisotropic effects during seismic wave propagation are unified in the model437

discrepancy term (εij or σni), a term which is easier to tune and with the synergy of prior information of438

picked {Vrms, t0} or {Vint., t0} pairs, it allows constrained posterior results. The inclusion of the anisotropic439

terms as independent variables in our model along with their explicit uncertainty estimation, would require440

well log information concerning true seismic velocities and also well to seismic tie to unambiguously map441

observed reflectivities from seismic data to lithological boundaries. Even in that case, their incorporation442

could pose problems concerning the robustness of their uncertainty estimations, as in time domain the443

terms are accessed solely through η parameter [Alkhalifah & Tsvankin, 1995; Alkhalifah, 1997], a term that444

is strongly coupled to the small - offset moveout velocity (Vnmo), that a useful uncertainty estimation is in445

question.446

The statistical model described in this paper is based on the discrete layer velocity model representation447

and can be easily coupled with a layer – based tomographic inversion scheme. The challenge will be to448

incorporate an analogous model to gridded or hybrid velocity model representations [Jones et al., 2007]449

for complex geological structures, where the velocity regime is controlled by a combination of vertical450

compaction gradients and sharp velocity contrasts.451
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Table 1: Acquisition specifications for line S310-07
Parameter Value

Source type Tuned point-source air-gun array

Gun type Bolt 1500LL air guns

Nominal source volume 70.3 L (4290 cu in)

Nominal source pressure 13.7 Mpa (2000 psi)

Nominal source depth 7 ±1 m

Shotpoint interval 37.5 m

Streamer type Sercel Seal Solid

Number 1

Streamer Length 8100 m

Number of groups 648

Group length 12.5

Nominal streamer depth 10 ±1 m

Nominal inline offset 94

Recording system Sercel SEAL v5.2

Record length 12 s

Sample interval 2 ms

Low-cut filter/ slope 2Hz at 6dB/Oct, Digital Low-Cut: OFF

High-cut filter/ slope 200Hz at 370 dB/Oct

Recording format SEGD 8058 rev.1 32bbit IEEE
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Table 2: Processing sequence applied to seismic line S310-07 (time domain)
S310-07

Reformat and geometry import - CDP spacing = 6.25 m - Nominal CDP fold = 108

Instrument delay correction = 100 ms, Source-Receiver datuming

Zero phase low cut Butterworth filter 4 Hz, 18 db/octave

Modelled debubble inverse filter (shot gathers)

Deterministic inverse filter for source’s notch compensation (shot gathers)
derived from post - stack amplitude spectrum

Receiver’s notch compensation in f – x domain (shot gathers)

CMP Sorting and Velocity analysis (every 312.5 m / 50 CMPs)

Straight ray isotropic Kirchhoff Pre Stack Time Migration (PreSTM)

Spherical Divergence Correction

Outer Trace Mute and Stack

Time variant zero phase Butterworth filter:
10-20-100-125 at seabed (sb),
10-20-100-125 at sb + 0.3 s,
8-15-100,120 at sb + 0.6 s,
5-10-90-110 at sb + 0.9 s,

3-8-50-70 at sb + 2.5 s

Frequency - distance (f-x) deconvolution for random noise attenuation

Amplitude–phase Inverse Q compensation = 200

Cosmetic sea noise mute
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Figure 1: Uncertainty in velocity model building. (a): The semblance spectrum as a velocity estimation
tool gives robust time - velocity picks for the shallow parts, but for later times the envelope of possible
picked pairs (dashed black lines) becomes broader due to attenuation effects and poor depth to offset ratio.
(b): The 3 velocity models (under colors red, purple, green), having differences only after 4.2 seconds TWT,
result in equally flat gathers but can lead to different shapes and depths for the same horizons after pre
- stack depth migration (preSDM). (c): Tomographic inversion in the depth migration domain preserves
the observed invariant time (t1) of an arrival by using different values of thickness (z) and slowness (s).
As a consequence, the mapping from time to depth can result in slightly different realizations of the same
boundary. (panel c, modified from Jones, 2010, Fig. 5.23).
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Figure 2: (a): Bathymetric map of Mentelle Basin. The positions of 2D seismic lines (dashed black lines)
and planned well locations (red circles) are shown. Red dashed line represent the segment reprocessed in
this paper. Insert, the two new planned well positions adjacent to DSDP - 258 are marked in blue (4B - 4C).
(b): DSDP - 258 borehole tied to ghost free Pre - Stack time migrated (preSTM) profile S310-07. In the
lithological interpretation: vertical hatching carbonate oozes; horizontal hatching chalks; wavy hatching
black shales; black stipples glauconitic sands. Blue dashed lines intersecting profile S310-07, indicate the
positions of Wells 4C, 4B respectively.
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Figure 6: Comparison betweeen prior and posterior mean preSDM images. (a): Image generated using
the prior Vint velocity field (superimposed). (b): Image using the posterior mean Vint velocity field (super-
imposed). (c): The velocity fields and images don’t present any significant differences, therefore possible
structural changes can become apparent after using a structural difference plot, which is the result of
subtracting the posterior mean image (b) from prior image (a). The image features’ changes are more
pronounced in the deeper parts of the profile as a direct consequence of top – down reposition of the signal.
(d): Example of signal difference extracted from a depth window of CDP number 4100 (red dashed line in
panel (c)), as calculated by subtracting the posterior from the prior signal.
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Figure 7: Posterior depth results and probabilistic imaging: (a): PreSDM image for S310-07 profile. Dashed
vertical lines represent the wells’ locations, with the posterior range of interval velocity/depth values for
each layer superimposed as filled coloured regions (red, green, blue colours for Well 4C, DSDP - 258 (Well
4A) and Well 4B respectively). Zoomed panel shows the region associated with the yellow rectangle as an
example of the posterior mean and ± 2σ trends for top glauconitic sandstones (red solid trend in zoom
represent posterior mean values, dashed lines in zoom the ± 2σ intervals respectively). (b): The predictions
for the cumulative thickness of drilling targets for each well location, associated with the lithological
interpretation from figure 2. (c): A number of preSDM structural difference plots, using Vint. sampled
from the posterior distribution. The superimposed coloured map represents the normalized difference
between the randomly generated Vint. velocity fields used to produce each profile and the posterior mean.
Panels c(i), c(iii) demonstrate the ± 2σ end members for black shales velocity layer with the remaining
layers preset to take random values from the posterior distribution. Zoomed panel from c(i) shows how the
difference plot is generated. Figure c(ii) same as in (a). Panels c(iv), c(v), c(vi) represent fields allowed to
span the total Vint. space of the posterior distribution.
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Appendix A: Bayesian Models and Gaussian Process in seismic reflection579

In the following, we will briefly describe the 1D and 2D Gaussian Process emulators used. See [Caiado et580

al., 2012] for a full description of the models.581

A.1 1D emulator582

Suppose a discretized subsurface model, with a finite number of interfaces bi and a given array of source –583

receiver pairs, Sj and Rj , containing m pairs. All the pairs are symmetrically placed around a Common584

Mid Point (CMP), with Xj being the distance between Sj and Rj . As the medium is discretized, we can585

associate to every layer i, a two way travel time T0i with its time increment ∆T0i , a root–mean–square586

velocity Vrmsi with its increment ∆Vrmsi and a thickness ∆Zi. Furthermore, let Tij be the real time for a587

wave ray to propagate from seismic source Sj to detector Rj , by refracting at interfaces bi to bi−1, reflecting588

at bi and refracting back to the receiver’s position. In case of parallel boundaries and isotropic conditions,589

the real travel time Tij is defined as590

Tij =

√
T 2
0i

+

(
Xj

Vrmsi

)2

+ εij (A-1)

where εij counts for the modelling error due to propagating approximations and isotropic assumptions.591

Now, the recorded travel time T (r) is a combination of the real travel time Tij plus a set of recording592

errors eij , resulting in the equation593

T
(r)
ij =

√
T 2
0i

+

(
Xj

Vrmsi

)2

+ εij + eij (A-2)

A generalization of equations (A-1) and (A-2), uses Gaussian Process techniques, works in function594

space instead of weight space and compensates for the lack of flexibility of the standard regression methods595

[Rasmussen & Williams, 2006].596

For 1D case, we assume that a set of travel times, related to a certain interface in a CMP gather, is597

a sample of a continuous function with a hyperbolic trend. If a finite set of times in that curve follows598

a multivariate Gaussian distribution, we can think that every reflection hyperbola in a CMP gather is a599

Gaussian Process (GP) over offset x.600

In a function form, the recorded travel – time curve, for a particular layer, T (r)
i is a Gaussian Process601
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T (r)
i (x)|∆T0(1,...i) ,∆Vrms(1,...,i) ∼ GP(mti(x), ki(x, x

′)) (A-3)

with mean and square exponential covariance functions602

mti(x) = (t20i + x2υ−2rmsi)
1/2

ki(x, x
′) = σni + σsiexp

(
−(x− x′)2

di

) (A-4)

where x and x′ define two random points from the offset space in a single CMP, σsi is a scale parameter,603

σni is a noise parameter and di is a length parameter. The last parameters are regarded as constants or604

can be set manually. The joint prior for both ∆T0(1,...i) and ∆Vrms(1,...,i) is given by605

 ∆T0(1,...i)

∆Vrms(1,...,i)

 ∼ N

µt0i

µυ(i)

 ,Σ(t0,υrmsi )

 (A-5)

and their prior distribution is written as606

π(υrms, t0) =
n∏
i=1

π(∆t0i ,∆υrmsi
) (A-6)

with π(∆t0i ,∆υrmsi
), the density of the joint prior in (A-5).607

In a similar manner, we can express the likelihood function of the GP in (A-3) as608

π(t
(r)
i (x)|υrmsi , t0i) = π

(
t
(r)
i (x)|∆t0(1,...,i) ,∆υrms(1,...,i)

)
(A-7)

Finally, the posterior distribution is given as the combination of the prior distribution (A-6) and the609

likelihood (A-7), resulting in the following expression610

π(υrms, t0|t(r)) = π(υrms, t0)

∫
x

π
(
t
(r)
i (x)|∆t0(1,...,i) ,∆υrms(1,...,i)

)
π(t(r)(x))

dx (A-8)

with π(t(r)(x)), a normalizing constant that can be evaluated numerically.611
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A.2 2D emulator612

For the 2D case, we expand the 1D Gaussian Process into a multi–gather representation by assuming that613

the variables ∆T0i , ∆Vrmsi , Vint.i and ∆Zi, for every geophysical boundary, follow a GP over the CMP614

positions (xc) along a profile. As a result, for the recorded travel time T (r)
i we have615

T (r)
i (x, xc)|∆T0(1,...i)(xc),∆Vrms(1,...,i)(xc) ∼ GP

(
mti(x, xc), ki(x, x

′, xc)
)

(A-9)

with mean and square exponential covariance functions616

mti(x, xc) =
(
t0i(xc)

2 + x2υrmsi(xc)
−2)1/2

ki(x, x
′, xc) = σni(xc) + σsi(xc)exp

(
−(x− x′)2

di(xc)

) (A-10)

In a similar manner, as ∆Vrmsi and ∆T0i follow a GP, they take the following form617

∆Vrmsi(xc) ∼ GP
(
mυ(xc), σnυi + σsυiexp

(
(xc − x′c)2

dυi

))
(A-11)

∆T0i(xc) ∼ GP
(
mt0(xc), σnti + σstiexp

(
(xc − x′c)2

dti

))
(A-12)

with mυ(xc), mt0(xc) polynomial functions, xc, x
′
c two different CMP locations along the profile and618

σnυi , σsυi , dυi , σnti , σsti , dti noise, scale and length parameters for ∆Vrmsi(xc) and ∆T0i(xc) respectively.619

The multi – gather case model, compensates for lateral variations in the velocity field. Analogous ex-620

pressions can link the recorded travel time T (r)
i (x, xc) with Vint(i)(xc) and ∆Zi(xc) allowing probabilistic621

estimations for all variables of interest in seismic reflection processing.622
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