
IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. X, NO. X, XX. 201X 1

Estimation and Fusion for Tracking Over
Long-Haul Links Using Artificial Neural Networks
Qiang Liu, Member, IEEE, Katharine Brigham, Member, IEEE, and Nageswara S. V. Rao, Fellow, IEEE

Abstract—In a long-haul sensor network, sensors are remotely
deployed over a large geographical area to perform certain tasks,
such as tracking and/or monitoring of one or more dynamic
targets. A remote fusion center fuses the information provided
by these sensors so that a final estimate of certain target
characteristics – such as the position – is expected to possess
much improved quality. In this work, we pursue learning-based
approaches for estimation and fusion of target states in long-
haul sensor networks. In particular, we consider learning based
on various implementations of artificial neural networks (ANNs).
The joint effect of (i) imperfect communication condition, namely,
link-level loss and delay, and (ii) computation constraints, in the
form of low-quality sensor estimates, on ANN-based estimation
and fusion, is investigated by means of analytical and simulation
studies.

Index Terms—Long-haul sensor networks, state estimate fu-
sion, artificial neural networks, estimation bias, error regular-
ization, root-mean-square-error (RMSE) performance, reporting
deadline.

I. INTRODUCTION

Sensor networks have been deployed in many real-world
applications, including military, security, healthcare, and en-
vironmental monitoring, among others [2]. We are primarily
interested in one class of such networks, namely, the long-haul
sensor networks, where sensors with sensing, data processing,
and communication capabilities are deployed to cover a very
large geographical area, such as a continent or even the entire
globe. A remote sensor measures certain parameters of interest
from the dynamic target(s) on its own, and then sends the
state estimates it derives from these measurements to the
fusion center. The fusion center collects data from multiple
such sensors and fuses the data to obtain global estimates
periodically at specified time instants. A global estimate is
expected to be more accurate than those provided by the

Manuscript received ... ; revised ... ; accepted
This work was supported by the Mathematics of Complex, Distributed,

Interconnected Systems Program, Office of Advanced Computing Research,
U.S. Department of Energy, and the SensorNet Project within the Office of
Naval Research, through Oak Ridge National Laboratory managed by UT-
Battelle, LLC for U.S. Department of Energy under Contract No. DE-AC05-
00OR22725.

Q. Liu and N. S. V. Rao are with the Computer Science and Mathematics
Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831. Email:
{liuq1,raons}@ornl.gov.

K. Brigham is with the School of Engineering and Comput-
ing Sciences, Durham University, Durham DH1 3LE, UK. E-mail:
katharine.brigham@durham.ac.uk.

Preliminary versions of this paper were included in Proc. 16th Int. Conf.
Inf. Fusion (FUSION), Istanbul, Turkey, Jul. 2013. and Proc. 18th Int. Conf.
Inf. Fusion (FUSION), Washington, DC, Jul. 2015.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier

individual sensors, and this benefit is often referred to as the
fusion gain.

When sensor data are communicated over long-haul links,
for instance, the satellite links, due to the long distances
(tens of thousands of miles), the signal propagation time can
be significant, with round-trip times (RTTs) of well over
half a second for geostationary earth orbits (GEOs) [27].
Communication over the satellite links is also characterized
by sporadic high bit-error rates (BERs) and burst losses.
The losses incurred during transmission or resulting from the
message drop due to occasional high BERs could further
reduce the number of reliable estimates available at the fu-
sion center. Consequently, the global estimates may not be
promptly and accurately finalized by the fusion center, leading
to degraded fusion performance and even failures to comply
with the system requirements on the worst-case estimation
error and/or maximum reporting delay, both crucial elements
for near real-time performance in many applications. Besides
these communication constraints, some sensors are also prone
to degraded performance, notably in the form of estimation
bias, as a result of poor calibration or environmental factors.
This can be considered as a manifestation of computation
constraints imposed on the fusion center.

Some works have attempted to address estimation and/or
fusion under variable communication loss and/or delay con-
ditions. In [6], [12], [28], [29], estimation and fusion perfor-
mance using Kalman filters (KFs) under variable packet loss
rates have been considered. Studies including [24], [35], [36]
have addressed the so-called out-of-sequence-measurement
(OOSM) issue – where an OOSM is defined as a measurement
that has been generated earlier but arrives later – and their
common goal is to update the current state estimate with an
earlier measurement without reordering the measurements and
recalculating the state estimator recursively. More recently,
[22] and [26] have exploited retransmission to recover some
of the lost messages over time so that the effect of information
loss can be somewhat mitigated. A dynamic online selective
fusion mechanism based on the projected information gain is
proposed in [21] so that the final time for fusion is dynamically
determined depending on if enough information has arrived at
the fusion center. A staggered estimation scheduling scheme
is proposed in [19] that aims to explore the temporal relation-
ships of adjacent data within an estimation interval to improve
the estimation and fusion performance.

A number of data fusion methods have been developed over
the years, with a primary goal of taking the data from multiple
sensors and combining them to produce a condensed set of
meaningful information with the highest possible degree of

2 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. X, NO. X, XX. 201X

accuracy and certainty [3], [30]. Whereas most conventional
state fusion approaches produce fused estimates by linearly
combining the available sensor data, the use of nonlinear fusers
is still fairly unexplored. Essentially, information fusion is
a regression problem, and many existing regression analysis
techniques can be considered. Since in many applications, field
tests may be performed a priori using the available sensor
networks to collect test measurements, we are interested in
the use of learning-based fusers that are able to learn how
to fuse the data based on these measurements in a nonlinear
fashion.

Artificial neural networks (ANNs) have been applied to
tasks such as pattern classification, clustering/categorization,
function approximation, and prediction/forecasting, among
others [14], [16]. In the literature, [7] and [10] proposed using
ANNs to determine the weights for linearly combining sensor
state estimates. More recently, we proposed learning-based
nonlinear fusion [4], [20]; the main contribution of this paper
is to further investigate the ANN-based fusers, accounting for
both communication and computation constraints in long-haul
sensor networks and their effects on fusion performance. In
particular, besides performing the core function of learning
from true target trajectories and sensor data and then applying
such learned patterns to testing data to be combined by the
fusion center, we also consider how to effectively perform
such tasks with (1) limited training data; (2) lost data in both
training and testing stages; and (3) sensor bias. Of concern
here is the performance of generalization capabilities from
training to testing stages, using various ANN implementations,
under variable communication and computation constraints. A
ballistic target tracking application is used to demonstrate the
performance of our learning-based approach.

The remainder of this paper is organized as follows: We
first review the estimation/fusion concepts and two closed-
form (i.e., non-learning-based) fusers in Section II and the
fundamentals of ANNs and the learning algorithm called
backpropagation in Section III. Next in Section IV, the en-
hanced versions of a standard backpropagation algorithm are
considered that could improve the generalization capabilities
of the training-based fuser to new data. We consider the
communication and computation constraints in Sections V and
VI respectively, highlighting the effect of missing data and
bias on the training and testing stages. Simulation results of a
ballistic target tracking application are presented and analyzed
in Section VII before we conclude this paper in Section VIII.

II. STATE ESTIMATION AND FUSION

The goal of a state estimator is to extract the state informa-
tion x from a measurement z corrupted by noise; this is done
by sequentially running a filter that outputs the state estimate
x̂ and its associated error covariance matrix P. A sensor in
a long-haul network assumes the role of such a filter. The
fusion center, on the other hand, simply combines the estimates
generated by sensors using a certain fusion rule.

There are some well-known closed-form fusers. For in-
stance, in tracking applications, the track-to-track fuser (T2TF)
[3] is a fuser optimal in the linear minimum mean-square error

(LMMSE) sense. The fused state estimate x̂F and its error
covariance PF are defined for two sensors as

PF = (P−11 + P−12)−1, (1)

x̂F = PF (P−11 x̂1 + P−12 x̂2), (2)

where x̂i and Pi are the state estimate and error covariance
from sensor i, respectively. The error cross-covariance Pij ,
the error cross-covariance between sensors i and j, has been
omitted from the equations since it is generally unknown. This
rule can be readily extended to multiple sensors as well. An
important feature of this fuser is that PF often promises an
estimation error that is lower than the actual error; hence, the
fuser is sometimes considered as an “optimistic fuser” in the
literature [3].

In another fusion method – the covariance intersection
(CI) algorithm, the geometric intersection of the individual
covariance ellipses is considered as the error covariance of
the fused estimate. The intersection is characterized by the
convex combination of sensor covariances:

PF = (ω1P
−1
1 + ω2P

−1
2)−1 (3)

x̂F = PF

(
ω1P

−1
1 x̂1 + ω2P

−1
2 x̂2

)
, ω1 + ω2 = 1 (4)

where ω1, ω2 > 0 are weights to be determined (e.g., by
minimizing the determinant of PF). A fast CI algorithm has
recently been proposed in [31] where the weights are found
based on an information-theoretic criterion so that ω1 and ω2

can be solved for analytically as follows:

ω1 =
D(p1, p2)

D(p1, p2) +D(p2, p1)
, (5)

where D(pA, pB) is the Kullback-Leibler (KL) divergence
from pA(·) to pB(·), and ω2 = 1− ω1. When the underlying
estimates are Gaussian, the KL divergence can be computed
as

D(pi, pj) =
1

2

[
ln
|Pj |
|Pi|

+ dTXP−1j dX + tr(PiP
−1
j)− k

]
,

(6)

where dX = x̂i − x̂j , k is the dimensionality of x̂i, and | · |
and tr(·) denote the determinant and trace respectively. This
fast-CI fuser can also be extended to more than two sensors
[31], although the equations are somewhat more involved. It
is important to note that this fuser, or any CI-based fuser,
is “pessimistic” in the sense that PF indicates a worse-than-
actual error performance. This can be useful in practice since
PF provides a conservative measure of the error performance.

In contrast to these closed-form linear fusers, we are pri-
marily interested in using nonlinear functions to fuse sensor
data, which may potentially yield better results than with
linear fusion. Field tests with known true target states facili-
tate learning-based fuser design as many types of regression
analysis methods exist and can be used to learn or compute
the parameters of the fusing function we wish to estimate from
these field tests. In this work, we look at the use of Artificial
Neural Networks (ANNs) for fusing the state estimates as they
are known to be able to approximate any continuous function
given sufficient parameters.

LIU et al.: ESTIMATION AND FUSION FOR TRACKING OVER LONG-HAUL LINKS USING ARTIFICIAL NEURAL NETWORKS 3

x̂(1)
a1

a2

aLInputs

Hidden
Layer

Outputs




x̂(Ni)

x̂F
(1)

x̂F
(No)

b1

bL

b2

bNo

o

b1
o

Fig. 1: An example of a three-layer feedforward neural network

∑x̂(i)

x̂(1)

x̂(Ni)



 wNi j

ajg1(⋅)
wij

w1 j

bj

Fig. 2: Weights from Ni inputs to the hidden node j

III. ARTIFICIAL NEURAL NETWORKS (ANNS): AN
OVERVIEW

ANNs are a class of statistical models that consist of
sets of adaptive numerical parameters that are tuned by a
learning algorithm, and are capable of approximating non-
linear functions of their inputs. There are different types
of ANNs, but we focus on the simplest feedforward neural
networks where connections between the units do not form a
directed cycle or loop (i.e., no feedback exists in the network).

The structure of a three-layer feedforward neural network
is shown in Fig. 1. This network consists of an input layer, a
hidden layer, and an output layer, interconnected by weights
represented by the arrows between the layers. Information
moves forward in one direction, from the input nodes, through
the hidden nodes, and to the output nodes. In our settings,
the inputs x̂(1), ..., x̂(Ni) can be the state estimates from the
sensors, and the outputs x̂(1)F , ..., x̂(No)

F are the global (fused)
state estimates. There is also a bias unit that is connected to
each node in addition to the input nodes. The output of the
jth hidden node, aj , is given by

aj = g1

(
Ni∑
i=1

wij x̂
(i) + bj

)
, (7)

where the parameters wij and bj are the weights and biases
respectively, x̂(i) is the i-th input element to the ANN, and
g1(·) is a nondecreasing function called the activation function,
typically a bounded function such as the sigmoid. A simple
diagram illustrating this node function is shown in Fig. 2.
If we concatenate all of the hidden node outputs aj into a
vector a = [a1, ..., aL]T and let g1(·) denote the function (of
appropriate dimension, e.g., L here) with a vector argument
where element-wise mapping g1(·) is performed, then we can
write the hidden node outputs as

a = g1(WT
H x̂ + bH), (8)

where WH = [wij]Ni×L is the matrix of weights whose trans-
pose is multiplied by the input vector x̂ = [x(1), ..., x(Ni)]T ,
and bH = [b1, ..., bL]T is a vector of the biases for each hidden
node. The fused output of our network, x̂F , which is an No-
dimensional vector, is then given by

x̂F = g2(WT
o a + bo), (9)

where Wo = [woij]L×No is another weight matrix, bo =
[bo1, ...b

o
No

]T is the vector of biases for each output, and g2(·)
is another activation function that is performed element-wise
in g2(·).

When the target outputs are available, a well-known ap-
proach to determining the neural network parameters is called
backpropagation. Backpropagation is based on gradient de-
scent; the weights and biases are initialized with random val-
ues and then iteratively updated to reduce the error according
to some user-defined error function, e.g., the mean-squared
error. Once the network parameters are learned from training
data, new inputs can simply be fed into the neural network to
obtain fused outputs. The d-dimensional parameter vector w
that contains all of the neural network parameters is

w = [WH(1, 1),WH(1, 2), ...,WH(L,Ni),

bH(1), ...,bH(L),Wo(1, 1), ...,bo(No)]
T .

(10)

Note that if we have Ni network inputs, L hidden nodes,
and No network outputs, then the dimension of w is d =
L(Ni + 1) +No(L+ 1). The state estimates from each sensor
are used as a network input, so Ni = Ns since there are N
sensors generating s-dimensional state estimates, and No = s
so that the neural network outputs a s-dimensional fused state
estimate.

Assume we want to minimize some function S(w) with
respect to the vector w. Then the increment in each step of
the Gauss-Newton method, an iterative method that uses the
first and second derivatives of an error function to find a point
where the derivative is zero, would be

∆w = −[∇2S(w)]−1∇S(w), (11)

where ∇2S(w) and ∇S(w) are the Hessian and the gradient,
respectively, of S(w). If we let S(w) be a sum-of-squares
function over m training patterns and f(·) be the learned
function that maps the ANN input to output, e.g.,

S(w) =

m∑
k=1

(y(k) − f(x̂(k),w))2

=

m∑
k=1

(ek(w))2 = e(w)Te(w), (12)

where y(k) is the true target state in the kth training pattern,
ek(w) = y(k)− f(x̂(k),w) and e(w) = [e1(w), ..., em(w)]T ,
then we can approximate the Hessian and the gradient with the
Jacobian, J, of the error vector e(w), ignoring the common
coefficient 2, and rewrite the weight update equation as

∆w = −(JTJ)−1JTe(w), (13)

where

J =


∂e1(w)
∂w1

. . . ∂e1(w)
∂wd

...
. . .

...
∂em(w)
∂w1

. . . ∂em(w)
∂wd

 . (14)

4 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. X, NO. X, XX. 201X

The Levenberg-Marquardt (LM) modification1 to the Gauss-
Newton method discussed above is

∆w = −(JTJ + ηI)−1JTe(w), (15)

where I is the identity matrix, and η > 0 is a damping factor,
which is adjusted at each iteration of the parameter update. If
a step results in an increased S(w), then η is multiplied by
some factor ν, and if a step results in a decreased S(w), then
η is divided by ν. The Jacobian of e(w) can be computed
using the backpropagation approach as described in [13]. As
the combination of the steepest descent algorithm and the
Gauss-Newton method, the LM algorithm is used in this study
to train the ANNs as it can be implemented efficiently and
is considered to be one of the faster training methods with
relatively good convergence performance [34].

IV. IMPROVING THE GENERALIZABILITY OF THE ANN
TRAINING

Overfitting is one of the most critical issues during neural
network training, or more broadly, for any learning-based
design. The error on the training set is driven to a small value,
but when new testing data are input to the learned network,
the error can be potentially large. In other words, the network
has memorized the training examples, but it has not learned to
generalize to new situations. In this section, we consider a few
techniques for improving the generalizability of the LM-based
ANN training.

A. Multiple ANNs

It is preferable to train several networks to ensure that
a network with good generalization is found. Simple as it
sounds, using multiple neural networks to train the same set
of data2 and averaging their outputs might yield superior
performance by diversifying the training process. Typically
each backpropagation training session starts with different
initial weights and biases and these conditions may lead to
very different solutions for the same problem. In addition,
the network structure can be diversified as well by using a
different number of hidden nodes or even hidden layers. Just
a slight change in the structure would result in a different
neural network with a completely new set of parameters. This
approach can be especially helpful for a small and noisy
dataset.

B. Bayesian Regularization

Another method for improving generalization capabilities
of a learning algorithm is called regularization. This involves
modifying the performance function, which is normally chosen

1There are other variations of the algorithm presented here. For exam-
ple, there are different ways to select the initial damping factor η and
increase/decrease its value. Also, the matrix consisting of only the diagonal
elements of JTJ may be used in place of the identity matrix I.

2In our setting, only a small set of training data from previous field tests are
available and the testing stage occurs in the form of real-time tracking, hence
we do not pursue cross-validation [1] approaches where data are iteratively
divided into training, validation, and testing sets to improve the generalization
capabilities.

to be the sum of squares of the network errors on the
training set, as shown in Eq. (12). An additional term is
added to the original performance function, usually in the
form of a cost or penalty function for complexity, such as
restrictions for smoothness or bounds on the vector space norm
[11]. Examples of such regularization techniques (typically
applied to linear models) include L2, L1, and the more recent
L1/2 [32] regularization methods. In this work, though, we
investigate two regularization techniques specifically designed
for ANNs.

MacKay [23] proposed a Bayesian framework to overcome
the problem in interpolating noisy data, which can be di-
rectly applied to the neural network learning problem. In
this framework, the weights and biases of the network are
assumed to be random variables with specified distributions.
The regularization parameters are related to the unknown
variances associated with these distributions. Another goal
is to reduce the effective number of parameters used by
the model – in this case, the number of network parame-
ters actually needed to solve a particular problem. Hence,
MacKay’s Bayesian regularization expands the original sum-
of-squares cost function to search for the minimum error
using “minimum” parameters by introducing two Bayesian
hyperparameters, α and β, to balance the dual needs during
the learning process. In particular, the objective function to be
minimized is in the form of

S(w) = β

m∑
k=1

(y(k) − f(x̂(k),w))2 + α‖w‖2

= β · SSE + α · SSP. (16)

It can be seen that in addition to the sum-of-squared-errors
term, an additional term, the sum-of-squared parameters (SSP),
is added to the objective function. The SSP is simply the
square of the L2 norm of the d-dimensional vector w intro-
duced in Eq. (10). The hyperparameters are updated as

α =
γ

SSP
, and β =

m− γ
SSE

, (17)

where

γ = d− α tr((JTJ)−1) (18)

is considered as the number of “effective” parameters (weights
and biases) being used by the network, thus giving an indica-
tion on how complex the network should be. These parameter
update steps3 can be easily incorporated into each iteration
of the LM update equation as in Eq. (15). Essentially, this
Bayesian regularization technique can be considered as a spe-
cial L2 regularizer with iteratively updated hyperparameters.

C. Regularization Using Error Covariance Matrices

It is noted that the sensors also provide additional informa-
tion regarding the state estimates: the error covariances. It is

3Poland [25] provided another way to update α as

α = d/(2.0 · SSW + tr((JTJ)−1))

which has been shown to provide more smooth and robust updates compared
to Eq. (17).

LIU et al.: ESTIMATION AND FUSION FOR TRACKING OVER LONG-HAUL LINKS USING ARTIFICIAL NEURAL NETWORKS 5

still an open question of how to best utilize this information,
if at all, when designing or using these nonlinear fusers. It is
proposed here that these error covariance estimates can be used
when training the neural network to improve its generalization
capability. If we assume that the state estimates from the
sensors are equal to the true states plus noise, that is,

x̂i = x + ni, (19)

where i is the sensor index, and ni is zero-mean white
Gaussian noise with covariance Pi, then in fusing these state
estimates, the neural network will also transform and fuse the
noise. We can therefore try to further reduce the variance
of the output in addition to the overall error by adding the
output variance to the objective function that we minimize
when determining the neural network parameters. But if one
were to use a nonlinear activation function such as the tangent
hyperbolic sigmoid function, f(x) = 2

1+e−2x − 1, then the
variance becomes quite difficult to determine analytically.
However, from [5], we have the following upper bound on
the variance of the function g(X) of a random variable X , if
X ∼ N (µ, σ2):

Var[g(X)] ≤ σ2E[g′(X)]2, (20)

where g′(X) is the derivative of g(X). We can write the output
x̂F as a function of the noise n = [nT1 , ...,n

T
N]T , where n ∼

N (0,P). P is a block diagonal matrix where the blocks are
P1 through PN :

P =


P1 0s×s · · · 0s×s

0s×s P2 · · · 0s×s
...

...
. . .

...
0s×s · · · 0s×s PN

 , (21)

where s is the number of states in the true target state x.
For the ANN fuser, if we let the activation function for each
hidden node be g1(x) = 2

1+e−2x − 1 and the output activation
function g2(x) = x, then the ANN fuser output would be
given by

x̂F = WT
o g1

(
WT

H x̂
)

+ bo

= WT
o g1

(
WT

Hx + bH + WT
Hn
)

+ bo.
(22)

Now if we let θ = WT
Hn, which is simply a linear transfor-

mation of the Gaussian random variable n ∼ N (0,P), then
θ ∼ N (0,WT

HPWH). Therefore, using the vector form of
the variance inequality Eq. (20) also found in [5], we have

Var[x̂F (θ)] ≤ E
[
∂x̂F (θ)

∂θ

]
·WT

HPWH · E
[
∂x̂F (θ)

∂θ

]T
.

(23)

However, even determining E [∂x̂F (θ)/∂θ] is still quite com-
plicated. Suppose θ0 = WT

Hx + bH , then we can obtain the
following relationship:

Var[x̂F (θ)] < 16WT
o exp(Θ)WT

HPWHexp(Θ)Wo, (24)

in which Θ = 8WT
HPWH � IL + 4θD0 , where � denotes

the Hadamard product, IL is the L×L identity matrix, θD0 is
the diagonal matrix whose diagonal elements are the elements

of the vector θ0, and finally, exp(·) denotes the exponential
of a diagonal matrix. The proof of Eq. (24) can be found in
the Appendix. Still, this multiplicative relationship is not neat
enough for use in the additional term for error regularization,
considering the complexity of the matrix Θ. Therefore, to
simplify, an extended form of the term WT

HPWH (that can
yield a scalar) will be used to add to the error function for
minimization. We can modify the LM algorithm described in
the previous section to incorporate this additional term using
a tradeoff parameter λ:

S(w) =

m∑
k=1

(y(k) − f(x̂(k),w))2 + λwTΣw, (25)

where

Σ =

[
PR 0NLs×(d−NL)s

0(d−NL)s×NLs 0(d−NL)s×(d−NL)s

]
, (26)

and PR ∈ R(NLs)×(NLs) is a block diagonal matrix with each
block consisting of the matrix P, repeated L times (once for
each hidden node):

PR =


P 0Ns×Ns · · · 0
0 P · · · 0
...

...
. . .

...
0 · · · 0 P

 . (27)

Recall that N is the number of sensors and s is the number of
states, so each block diagonal matrix P is of size Ns×Ns.
Following the LM approach, when we update w with ∆w,
we get the following update to our error function S(w):

S(w + ∆w) =

m∑
k=1

(y(k) − f(x̂(k),w + ∆w))2

+ λ(w + ∆w)TΣ(w + ∆w)

=

m∑
k=1

(ek(w + ∆w))2 + λ(w + ∆w)TΣ(w + ∆w)

= [e(w + ∆w)]
T

e(w + ∆w)

+ λ(w + ∆w)TΣ(w + ∆w)

≈ [e(w) +∇e(w)∆w]
T

[e(w) +∇e(w)∆w]

+ λ(w + ∆w)TΣ(w + ∆w),

(28)

where the following substitutions are made: y(k)−f(x̂(k),w+
∆w) = ek(w + ∆w) (line 1 to line 2), and e(w + ∆w) =
[e1(w + ∆w), ..., em(w + ∆w)]T (line 2 to line 3). In
the fourth line of Eq. (28), we approximate and substitute
e(w + ∆w) with its first-order Taylor expansion about w.
Furthermore, we know that at the minimum of S(w + ∆w),
the gradient with respect to ∆w is zero, so we have:

dS(w + ∆w)

d∆w

≈2 [∇e(w)]
T

[e(w) +∇e(w)∆w] + 2λΣ(w + ∆w)

=2JTe(w) + 2JTJ∆w + 2λΣw + 2λΣ∆w

=0,

(29)

where J is the Jacobian of e(w).

6 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. X, NO. X, XX. 201X

The parameter update equation can then be computed as
∆w = −(JTJ + λΣ)−1(JTe(w) + λΣw), and with the
LM modification to include the damping factor, we obtain the
final parameter update equation which incorporates the error
covariance estimates into the training using the LM method:

∆w = −(JTJ + λΣ + ηI)−1(JTe(w) + λΣw). (30)

Note that when λ = 0, Eq. (30) is reduced to the standard LM
update Eq. (15).

The inclusion of Σ in the regularization term of the objec-
tive function (i.e., Eq. (25)) is meant to limit the effect of large
estimation errors (as represented by the large error covariance
entries in individual P) during the learning process. Indeed,
when Σ = Id×d, then Eq. (25) is reduced to the standard
L2 regularization. However, a close examination of Eqs. (26)
and (27) reveals that only a subset of the elements in w
are used in the regularizer, i.e., those in the weight matrix
WH . Therefore, our covariance-based regularization method
is somewhat of a greedy approach in that only those param-
eters directly related to the sensor inputs are incorporated
into the regularization term. While empirically it eventually
converges just like the other LM-based methods (as verified
in our extensive simulations in Section VII), the convergence
speed depends upon the error covariance information supplied
by the sensors that affects the weight update step size as shown
in Eq. (30). In addition, increased computational complexity
(e.g., matrix multiplication and inversion) leads to overall
longer time toward convergence, a trade-off for achieving
improved error performance to be shown in Section VII.

V. TRAINING AND TESTING WITH MISSING DATA

Having provided the training algorithm and techniques for
its generalization, we now focus on the communication and
computation constraints and their impact on the learning
process. To begin with, the communication link loss and delay
reduces the amount of data that can be effectively used for
training and testing purposes, which must be accounted for by
the fusion center in devising efficient learning-based fusers.

A. Data Loss during Training

As training is performed based on data gathered from
historical field tests, usually the true target states are obtained
via some other sources that are not subject to the same link
loss and delay conditions as from the sensors, whereas some
sensor estimates may have never arrived. As such, the fusion
center simply has a smaller set of training data that are input
to an ANN. Suppose the link-level loss rate is pL across all
training patterns, then the effect this loss has on training can
be interpreted in two different ways. First, the actual number
of available training patterns m̃ is often less than m, and thus
the training objective simply uses SSE terms for the available
m̃ patterns. In other words, in Eq. (12), based on the actual
pattern availability, we have

S(w) =

m̃∑
k=1

(ek(w))2+Rg(w) = ẽ(w)T ẽ(w)+Rg(w), (31)

where ẽ is the error vector containing m̃ elements and Rg(w)
is the regularization term containing the vector w. Alterna-
tively, the number of available patterns follows the following
binomial distribution: m̃ ∼ B(m(1−pL),mpL(1−pL)). As a
result, the original SSE term in Eq. (12) can now be expressed
as

S(w) =

m∑
k=1

ik(ek(w))2 +Rg(w) = e(w)TΛe(w) +Rg(w),

(32)

where ik is the associated Bernoulli random variable, i.e., ik =
1 with probability 1 − pL and 0 otherwise, and the diagonal
matrix Λ = iD, where i = [i1, i2, ..., im]T . These results can
be easily extended to patterns with different link loss rates.

B. Data Loss and Delay during Testing

The testing phase of the learning process, namely, to apply
the learned ANN parameters to new sensor inputs, coincides
with the actual online tracking process. The loss and delay
inherent over the communication link, as a result, plays a
somewhat different role compared to the off-line training
phase.

In most tracking tasks that impose nearly real-time per-
formance, the fusion center is required to finalize its fused
state within a very tight deadline, by which time one or more
sensor estimates may have not yet arrived (although they might
arrive later). Thus, in contrast to the off-line training phase, the
communication delay is a major limiting factor in the desired
performance.

The structure of the ANN-based learning requires that the
input data be complete in order to generate the desired output.
Whereas it is in general difficult to interpolate missing values
in the training phase because the underlying time-domain
relationship between the training data is not readily available,
it is possible that the fusion center uses adjacent sensor
estimates that are available to interpolate the missing ones,
based on the knowledge it has on the possible trajectory of
the underlying target being tracked. Therefore, when some of
the inputs are missing, the fusion center can use prediction and
retrodiction (when applicable) techniques that utilize previous
and subsequent sensor estimates, respectively, to manually
fill in the missing inputs [22]. Of course, should all other
methods fail (as under extremely lossy link conditions), the
fusion center can still bypass the neural network altogether by
using prediction on its previously fused states to generate the
immediate fused value, although this is likely to compromise
the accuracy performance by a large degree.

VI. SENSOR BIAS AND ERROR REGULARIZATION

Another concern arising from the long-haul tracking is
the sensor information quality. Notably, sensor biases could
potentially degrade the fusion performance. To be answered
are questions such as how the ANN-based fuser would perform
with the presence of variable bias levels and whether the
learning process could potentially improve the training and
testing data quality. In this section, we discuss bias-related
issues pertaining to the ANN training and testing.

LIU et al.: ESTIMATION AND FUSION FOR TRACKING OVER LONG-HAUL LINKS USING ARTIFICIAL NEURAL NETWORKS 7

An important fact is that a sensor i might not be aware of its
biases. Sometimes the biases are an integral part of the filtering
process, due to linearization and coordinate conversion; while
other times it is due to poor calibration or environmental
factors that result in sensor measurement biases. As such, the
error covariance matrix Pi – which is also supplied to the
fusion center – is likely to be an optimistic measure of the
actual estimation error. Fortunately, thanks to the available true
target states during the training phase, the fusion center can
evaluate the potential estimation biases from the sensor data
and “correct” the error covariance matrix during its training
process.

To illustrate, consider a generic sensor estimate as x̂i
whereas the true target state is x. Then the error covariance
matrix is defined as Pi = E[(x̂i−x)(x̂i−x)T]. Now suppose
x̂i = x̂i,u + bi, where x̂i,u is a (hypothetically) unbiased
estimate for sensor i and bi is the bias vector, then we have

Pi = E[(x̂i − x)(x̂i − x)T]

= E[(x̂i,u − x + bi)(x̂i,u − x + bi)
T]

= E[(x̂i,u − x)(x̂i,u − x)T]

+ E[bib
T
i] + 2E[(x̂i,u − x)bTi]

= Pi,u + E[bib
T
i] + 2E[(x̂i,u − x)bTi]

≈ Pi,u + bibTi , (33)

where Pi,u is the error covariance matrix for an unbiased
estimate. In the extreme case where a sensor is fully oblivious
to its bias, this is the matrix it communicates to the fusion
center. The last line has used two approximations: (1) the bias
is largely uncorrelated with the true target state, and (2) the
empirical average, as denoted by the term bibTi , is used for
the expectation of the outer (tensor) product of the bias vector
and itself.

In an ideal scenario, the estimation bias at a sensor is
deterministic and consistent, and the fusion center can easily
obtain the bias vector and subtract it from the associated sensor
estimates during the testing stage. However, with more com-
plex forms of bias, instead of correcting the sensor estimates,
the fusion center may want to use Eq. (33) for error regulation
so that the updated matrices more closely match the actual
error levels of the sensor estimates. Doing so might be of better
benefit to the prediction (and retrodiction) when the fusion
center encounters missing data during online tracking. The
performance comparison using different error regularization
methods will be shown in the next section.

VII. PERFORMANCE EVALUATION

In this section, the performance of the ANN-based fusers
is evaluated for a coasting ballistic target tracking application
via simulations. The tracking performance is characterized by
position root-mean-square errors (RMSEs) during the testing
stage. Different configurations during the learning process are
considered, along with variable communication and computa-
tion constraints. The tracking performance with ANN-based
fusers is also compared against that using the track-to-track
fuser and fast-CI fuser introduced in Section II.

A. Simulation Models

The trajectory of a ballistic target, from launch to impact,
is divided into three basic phases: boost, coast, and reentry.
We model two sensors tracking a ballistic target in the exo-
atmospheric coast phase whose trajectory is determined by
a nonlinear state-space model. These sensors generate state
estimates of the target’s position and velocity, which are
subsequently sent to the fusion center where they are combined
to produce a final state estimate of the target. Furthermore,
state-dependent errors are introduced with the use of a simple
radar model in simulating the sensor measurements.

1) Target Model: The state-space model of a ballistic coast
target has the form ẋ = [v a]T , where x = [pT vT]T is the
state vector consisting of the target’s position p = [x y z]T

and velocity v = [ẋ ẏ ż]T in the Earth-centered inertial
(ECI) coordinate system (i.e., the coordinate system does not
rotate; it is fixed relative to the “fixed stars”, and its origin is
at the center of the Earth [18]).

In the coast phase, gravity is considered to be the dominat-
ing force acting on a ballistic target, so the total acceleration is
a = aG, where aG is the gravitational acceleration. Assuming
a spherical Earth model [18], we have aG = −(µ/‖p‖3)p,
where p is the target position vector from the Earth’s center
to the target, ‖p‖ =

√
x2 + y2 + z2 is its length, and

µ = 3.986012 × 105 km3/s2 is the Earth’s gravitational
constant. The continuous-time model of the system is given
by

d

dt


x
y
z
ẋ
ẏ
ż

 =


ẋ
ẏ
ż

−µx/r3
−µy/r3
−µz/r3

 , (34)

where r =
√
x2 + y2 + z2. An algorithm for computing the

state propagation can be found in [33].
2) Sensor Measurement Model: In tracking applications,

the target dynamics are usually modeled in Cartesian coor-
dinates, while the measurements are typically available in
sensor coordinates (most often spherical coordinates) [37]. We
simulate the measurements following [17] for a ballistic coast
target. The measurement model is given by z = h(x) + zw,
and the measurements of the range (r), elevation (E), and
azimuth (A) of the target are computed as follows:

z =

 rE
A

 =


√
x2 + y2 + z2

tan−1
(
z/
√
x2 + y2

)
tan−1 (x/y)

+ zw, (35)

where zw is white Gaussian noise with covariance R =
diag

(
[σ2
r σ2

E σ2
A]
)
.

A simplified radar model is used to generate state values
for σr and σE so that the errors are state-dependent and
correlated across sensors. We will only consider the error
that is dependent on the signal-to-noise ratio (SNR) for both
the range and angle measurement accuracy since they usually
dominate their overall respective radar error [8]. From [8], we
have the following relationship between the standard deviation

8 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. X, NO. X, XX. 201X

of the SNR-dependent random range and angle measurement
errors and the SNR: σr, σE , σA ∝ 1√

SNR
. The SNR (from

the well-known radar range equation) is inversely proportional
to r̃4, where r̃ is the range from the sensor to the target. To
simplify, we assume a number of the radar parameters from
the radar range equation are constant (e.g., the radar pulse
duration, antenna gain, etc.) so that σr, σE , σA ∝ r̃2. The
range and elevation errors of a ballistic target/satellite tracking
phased array radar, the Cobra Dane, are found in Table 1 of
[9] as 15 ft and 0.05◦, respectively. These parameters are
used to find reasonable values for scaling the σr, σE , and
σA values used in these simulations to generate the state-
dependent measurement noise.

3) Generating State Estimates: Since the measurement
noise is additive in spherical coordinates, a bias is introduced
into the state estimates in Cartesian coordinates. A recursive
best linear unbiased estimator (BLUE) was developed in [37]
for a linear system and shown to be theoretically optimal
(in the mean-squared error sense) among all linear unbiased
filters in Cartesian coordinates. This filter is used to generate
the state estimates in these simulations to account for the
converted measurements. As in [37], the filter is initialized
with an effectively large state error covariance and a highly
inaccurate state estimate.

4) Communication Loss and Delay Profiles: The message-
level loss and delay characteristics are determined by the long-
haul link conditions. Again, we assume that each message
sent by a sensor is lost during transmission with probability
pL, whereas a probability density function h(t) models the
overall delay t that any message experiences to be successfully
delivered to the fusion center, and the shifted exponential
distribution [22] h(t) = exp ((T − t)/µD) /µD for t ≥ T
where T is the fixed initial delay and µD is the mean of
the additional random delay. We consider the case where
T = 0.5 s and µD = 0.3 s. The fusion deadline DF describes
the time by which the fusion center must have combined the
individual sensor estimates and generated a fused estimate. For
example, when pL = 0.4, the probability that a sensor estimate
is available by the deadline is (1 − 0.4) × H(1.5) = 0.579,
where H(·) is the corresponding distribution function for h(·).
In our studies, the performance over such a lossy link is
compared with that in an ideal communication scenario, i.e.,
when there is no loss or delay.

5) Training and Testing Data Setup: The initial states of
the training and test targets are randomly generated from a
normal distribution with the mean set to the following (in km
for position, and km/s for velocity):

x(0) = [x(0) ẋ(0) y(0) ẏ(0) z(0) ż(0)]T

= [71.31, 0.946, 3794.5, 3.577, 5413.0, −5.676]T ,

with a standard deviation of 500 m and 5 m/s for each position
and velocity component, respectively. In our default setting,
two target trajectories are available for training. Measurement
data are generated according to the sensor measurement model
introduced earlier, and state estimates (and the associated error
covariance matrices) – also available in the training data set
– are computed from these measurements for each trajectory.

Data are available for each trajectory segment that lasts 30
seconds.

6) ANN Setup: The ANN used for training and testing
has one hidden layer with a number of hidden nodes. The
number of hidden nodes needed depends on the complexity of
the function we are trying to estimate. Using too few hidden
nodes may yield a poor approximation to the actual function.
Using too many hidden nodes results in overfitting of the
data so that while the neural network may precisely give the
desired outputs for the training data, it may not generalize
well to unseen data. Unfortunately, there is no precise method
that provides the optimal number of hidden nodes needed to
properly model the data. But a good rule of thumb [15] is that
it lies between the number of input and output nodes. Hence,
we select three hidden nodes in our default setting. The tangent
hyperbolic sigmoid function is used as the activation function
from the input to hidden layers.

B. Fusion Performance without Sensor Biases

In Fig. 3(a), tracking performances using variations of the
ANN-based fuser, including the regular ANN (“reg-ANN”),
multiple ANN with 5 component ANNs of the same struc-
ture (“mul-ANN”), ANN with Bayesian regularization (“bys-
ANN”), and ANN with error covariance regularization (“cov-
ANN”), along with that of the T2TF/CI fuser4 are plotted.
From these plots, we observe that although the original ANN
fuser does not yield estimates as good as those from the
T2TF/CI by using only two available training trajectories,
some of the enhanced variations do, especially “cov-ANN”.
In practice, Bayesian regularization is often applied when
combined with other techniques, such as multiple ANNs;
as a stand-alone technique, its performance is not always
superior to that of the regular ANN as the Bayesian formula-
tion depends on how the trade-off parameters are selected.
From our simulations, there are a total of 33 parameters
to be determined in the regular ANN, and after applying
regularization about 3 or 4 parameters are removed, which
means the performance of the two should not differ by much
under normal circumstances. In general, the multiple ANN
approach would outperform the original ANN-based fuser
by varying levels, depending on such factors as how the
parameters are initialized in each component network. The
covariance error regularization method can effectively use the
extra information from the covariance matrices supplied by
the sensors and provide improved performance compared to
all other techniques.

As the link-level loss goes up, there is an increasing chance
that the fusion center cannot receive both sensor estimates
for any time epoch during the testing stage. In addition, the
training data are also likely to be obtained from past testing
data – that experienced similar losses – with the addition of
the true target states being revealed later, but not the sensor
estimates. The communication delay also reduces the chance
that a message is successfully received by the fusion center
by a certain deadline. Therefore, with incomplete sensor data,

4When pL = 0, due to the lack of process noise, these two fusers yield the
same performance.

LIU et al.: ESTIMATION AND FUSION FOR TRACKING OVER LONG-HAUL LINKS USING ARTIFICIAL NEURAL NETWORKS 9

10 15 20 25 30
1

2

3

4

5

time (s)

p
o
si

tio
n
 e

st
im

a
te

 R
M

S
E

 (
km

)

reg ANN
mul ANN
bys ANN
cov ANN
T2TF/CI

(a) pL = 0, DF = 2 s

10 15 20 25 30
1

2

3

4

5

time (s)

p
o
si

tio
n
 e

st
im

a
te

 R
M

S
E

 (
km

)

reg ANN
mul ANN
bys ANN
cov ANN
T2TF
CI

(b) pL = 0.5, DF = 1 s

Fig. 3: Position RMSEs: 2 training trajectories, 3 hidden nodes

10 15 20 25 30
1

2

3

4

5

time (s)

p
o
si

tio
n
 e

st
im

a
te

 R
M

S
E

 (
km

)

reg ANN
mul ANN
bys ANN
cov ANN
T2TF/CI

(a) pL = 0, DF = 2 s

10 15 20 25 30
1

2

3

4

5

time (s)

p
o

si
tio

n
 e

st
im

a
te

 R
M

S
E

 (
km

)

reg ANN
mul ANN
bys ANN
cov ANN
T2TF
CI

(b) pL = 0.5, DF = 1 s

Fig. 4: Position RMSEs: 5 training trajectories, 3 hidden nodes

10 15 20 25 30
1

2

3

4

5

time (s)

p
o
si

tio
n
 e

st
im

a
te

 R
M

S
E

 (
km

)

reg ANN
mul ANN
bys ANN
cov ANN
T2TF/CI

(a) pL = 0, DF = 2 s

10 15 20 25 30
1

2

3

4

5

time (s)

p
o
si

tio
n
 e

st
im

a
te

 R
M

S
E

 (
km

)

reg ANN
mul ANN
bys ANN
cov ANN
T2TF
CI

(b) pL = 0.5, DF = 1 s

Fig. 5: Position RMSEs: 2 training trajectories, 6 hidden nodes

10 15 20 25 30

2

4

6

8

10

time (s)

p
o

si
tio

n
 e

st
im

a
te

 R
M

S
E

 (
km

)

reg ANN
mul ANN
bys ANN
cov ANN
T2TF
CI

(a) pL = 0, DF = 2 s

10 15 20 25 30

2

4

6

8

10

time (s)

p
o

si
tio

n
 e

st
im

a
te

 R
M

S
E

 (
km

)

reg ANN
mul ANN
bys ANN
cov ANN
T2TF
CI

(b) pL = 0.5, DF = 1 s

Fig. 6: Position estimate RMSE with unlearned bias

the fusion center could use predicted estimates it derives for
the individual sensors, and once these predicted values are
obtained5, the inputs to the ANNs are complete. Training data
may contain such predicted estimates too. As a result, all
the training algorithms can be run with a full set of input
to the ANN, even when a portion of the training data are
not from the sensors, but rather derived by the fusion center
during earlier tracking. Fig. 3(b) shows the performance with
50% sensor data loss in both training and testing data. In the
previous case, a fusion deadline DF of 2 s can effectively
reduce any effect of early cutoff; in contrast, here the deadline
DF is 1 s, resulting in even more unavailable original sensor
data by the deadline. Comparing among different cases, there
is an increase in the tracking error in non-learning based
T2TF and CI fusers compared to their respective no-loss case.
However, the ANN learning-based approaches are largely able
to retain most of their respective lossless tracking performance,
thereby demonstrating the major benefit of adopting these
fusers in counteracting the negative effect of communication
constraints.

Next, we explore how the learning-based fusion perfor-
mance can be potentially improved with the use of more
training data and/or an ANN of a larger size. In Fig. 4, the plots
for the same settings except with five trajectories are shown.
From these plots, the error curves for ANN-based fusers are
variably lower compared to those in Fig. 3, reflecting the
benefit of training more data. On the other hand, with the same
amount of training data (two trajectories), we increase the
number of hidden nodes from three to six, and the error plots
are shown in Fig. 5. It can be seen here again that using more
hidden nodes can, by and large, improve the error performance
somewhat for both loss cases, although the training process
becomes more complex with more network parameters to be
determined. But regardless of the chosen data or network size,

5To ensure fair comparison, all fusers adopt the same prediction method.

a consistent observation is the superiority of the proposed
covariance-based ANN fuser over others in terms of tracking
accuracy.

C. Fusion Performance with Sensor Biases

We examine the cases where the training and/or testing data
contain biased estimates. First, suppose in the test data, a posi-
tive uniform bias is added to the (unbiased) measurement noise
at one of the sensors, with its mean magnitude set at 0.1% of
the noise level. The fusion performance is shown in Fig. 6.
Even such a small bias results in the error curves now trending
upward across the board. Due to the mismatch between the
training and testing data in terms of bias profiles, the unlearned
bias (i.e., the bias not present in the training data) reduces the
generalization capability of the trained parameters, resulting in
elevated estimation errors across all learning-based cases. It is
interesting to note that the learning-based fusers with more
than half the original sensor data missing, as in Fig. 6(b),
would yield even better tracking performance than those of
the same type in the lossless case thanks to the reduced effect
of the mismatch between the training and testing data.

Next, suppose in one of the training trajectories data share
the same bias profile as described above whereas estimates in
the other remain unbiased. The fusion performance is shown
in Fig. 7, where performance of the “cov ANN” under the bias
correction method introduced earlier has been plotted as well
(“b-cov ANN”). We can observe improved generalization per-
formance for both lossless and lossy conditions compared to
their respective performance with bias mismatch as shown in
Fig. 6. With an additional bias correction step, the covariance
regularization method is able to output even better estimates,
although from the plots, this improvement is somewhat limited
and can be reduced when a higher loss rate is encountered.

Finally, all others kept equal, the mean bias level is now
increased to 0.2% of the unbiased measurement noise, and

10 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. X, NO. X, XX. 201X

10 15 20 25 30
1

2

3

4

5

6

time (s)

p
o

si
tio

n
 e

st
im

a
te

 R
M

S
E

 (
km

)

reg ANN
mul ANN
bys ANN
cov ANN
b−cov ANN
T2TF
CI

(a) pL = 0, DF = 2 s

10 15 20 25 30
1

2

3

4

5

6

time (s)

p
o

si
tio

n
 e

st
im

a
te

 R
M

S
E

 (
km

)

reg ANN
mul ANN
bys ANN
cov ANN
b−cov ANN
T2TF
CI

(b) pL = 0.5, DF = 1 s

Fig. 7: Position estimate RMSE with bias correction

10 15 20 25 30
0

2

4

6

8

10

time (s)

p
o

s
it
io

n
 e

s
ti
m

a
te

 R
M

S
E

 (
k
m

)

reg ANN
mul ANN
bys ANN
cov ANN
b−cov ANN
T2TF
CI

(a) pL = 0, DF = 2 s

10 15 20 25 30
0

2

4

6

8

10

time (s)

p
o

si
tio

n
 e

st
im

a
te

 R
M

S
E

 (
km

)

reg ANN
mul ANN
bys ANN
cov ANN
b−cov ANN
T2TF
CI

(b) pL = 0.5, DF = 1 s

Fig. 8: Position estimate RMSE with bias correction: higher bias

the estimation errors are plotted in Fig. 8. Whereas the T2TF
and the CI fuser output increasingly error-prone estimates
(more so for the T2TF), the ANN-based fusers are able to
retain much of their error levels as in the previous case,
thereby demonstrating their superior performance in tracking
with potentially more biased sensor data. Nevertheless, with
such an elevated bias level and over half the original sensor
data missing, the improvement in tracking accuracy over the
non-learning fusers is reduced, as a result of the increased
mismatch level (from extended prediction over biased esti-
mates) between the training and testing data. Thus, in order to
improve the generalizability of the training process, one needs
to ensure a good match in features such as bias levels between
training and testing data.

VIII. CONCLUSIONS

In this work, we have provided a quantitative study on
the potential benefits of artificial neural network learning-
based fusers for sensor fusion in target tracking over long-
haul sensor networks. In particular, the effects of variable
communication link-level loss and delay conditions as well as
sensor bias profiles on the performance of a variety of ANN
implementations have been investigated. The extra covariance
information provided by the sensors has been shown to provide
better generalization guarantees in the presence of the above
communication and computation uncertainties. Extensions of
this work may be studied in a setting with a much larger
training dataset comprising of heterogenous trajectories and/or
variable data quality levels, so that prior to training, a classi-
fication process should be carried out in order to reduce the
potential mismatch between the training and testing datasets
and improve the overall generalizability of the learned patterns.

APPENDIX
PROOF OF EQ. (24)

Proof: From Eq. (22), let

ξ(θ) =
2

1 + e−2(θ+θ0)
− 1, (36)

θ = {θk, k = 1, 2, ..., L}, and θ0 = {θ0,k, k = 1, 2, ..., L},
so that the concatenated L-vector ξ(θ) represents the out-
put of the hidden nodes. Its derivative with respect to
θ, ∂ξ(θ)/∂θ, is an L × L diagonal matrix with entries

4 (1 + exp(−2(θk + θ0,k)))
−2, k = 1, 2, ..., L. Next we focus

on finding the expected value of (1 + exp(−2(θk + θ0,k)))
−2:

E[(1 + exp(−2(θk + θ0,k)))
−2

]

< E[(exp(−2(θk + θ0,k)))
−2

]

= E[exp(4(θk + θ0,k))]. (37)

It can be shown that θk is a Gaussian random variable with
θk ∼ N

(
0, (WH,[:,k])

TPWH,[:,k]

)
, where WH,[:,k] denotes

the kth column of matrix WH . Consequently, exp(4(θk +
θ0,k)) is a log-normal random variable. Recall the mean
of a log-normal random variable Y ∼ Lognormal(µ, σ2) is
exp(µ+ σ2/2). Consequently, the mean of exp(4(θk + θ0,k))
is found to be exp(4θ0,k+8(WH,[:,k])

TPWH,[:,k]). To aggre-
gate the result for all entries, after some matrix manipulation,
we have

E [∂ (ξ(θ)/4) /∂θ] < exp(8WT
HPWH � IL + 4θD0), (38)

where � denotes the Hadamard product, IL is the L × L
identity matrix, θD0 is the diagonal matrix whose diagonal
elements are the elements of the vector θ0, and finally exp(·)
denotes the exponential of a diagonal matrix. Accounting for
the coefficient 4 left out earlier, we let Θ = 8WT

HPWH �
IL + 4θD0 , plug everything into Eq. (23) and then obtain
Eq. (24).

REFERENCES

[1] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H. T. Lin. Learning from
Data – A Short Course. AMLbook.com, 2012.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey
on sensor networks. IEEE Communications Magazine, 40(8):102–114,
Aug. 2002.

[3] Y. Bar-Shalom, P. K. Willett, and X. Tian. Tracking and Data Fusion:
A Handbook of Algorithms. YBS Publishing, Storrs, CT, 2011.

[4] K. Brigham, B. V. K. Vijaya Kumar, and N. S. V. Rao. Learning-based
approaches to nonlinear multisensor fusion in target tracking. In Proc.
16th International Conference on Information Fusion (FUSION), pages
1320–1327, Istanbul, Turkey, Jul. 2013.

[5] T. Cacoullos and V. Papathanasiou. On upper bounds for the variance
of functions of random variables. Statistics and Probability Letters,
3(4):175–184, Jul. 1992.

[6] A. Chiuso and L. Schenato. Information fusion strategies and perfor-
mance bounds in packet-drop networks. Automatica, 47:1304–1316, Jul.
2011.

[7] F. Chowdhury. A neural approach to data fusion. In Proc. 14th American
Control Conference (ACC), pages 1693–1697, Seattle, WA, Jun. 1995.

[8] G. R. Curry. Radar system performance modeling, 2005.
[9] E. Filer and J. Hartt. Cobra dane wideband pulse compression system.

In Proc. IEEE EASCON, pages 26–29, Washington, DC, Sep. 1976.
[10] L.-W. Fong and C.-Y. Fan. Multisensor fusion algorithms for maneu-

vering target tracking. In Proc. 1st IEEE International Conference on
E-Learning in Industrial Electronics, pages 80–84, Hammamet, Tunisia,
Dec. 2006.

LIU et al.: ESTIMATION AND FUSION FOR TRACKING OVER LONG-HAUL LINKS USING ARTIFICIAL NEURAL NETWORKS 11

[11] F. D. Foresee and M. T. Hagan. Gauss-Newton approximation to
Bayesian learning. In Proc. 4th International Conference on Neural
Networks, pages 1930–1935, Houston, TX, Jun. 1997.

[12] V. Gupta, B. Hassibi, and R. M. Murray. On sensor fusion in the
presence of packet-dropping communication channels. In Proc. 44th
IEEE Conference on Decision and Control (CDC), pages 3547–3552,
Seville, Spain, Dec. 2005.

[13] M. T. Hagan and M.-B. Menhaj. Training feedforward networks with the
Marquardt algorithm. IEEE Transactions on Neural Networks, 5(6):989–
993, Nov. 1994.

[14] S. Haykin. Neural Networks and Learning Machines. Prentice Hall,
Upper Saddle River, NJ, 2008.

[15] J. Heaton. Introduction to Neural Networks with Java. Heaton Research,
Inc., Chesterfield, MO, 2008.

[16] A. K. Jain, J. Mao, and K. M. Mohiuddin. Artificial neural networks: a
tutorial. Computer, 29(3):31–44, Mar. 1996.

[17] T. H. Kerr. Streamlining measurement iteration for EKF target tracking.
IEEE Transactions on Aerospace and Electronic Systems, 27(2):408–
421, Mar. 1991.

[18] X. R. Li and V. P. Jilkov. Survey of maneuvering target tracking. Part
II: Motion models of ballistic and space targets. IEEE Transactions on
Aerospace and Electronic Systems, 46(1):96–119, Jan. 2010.

[19] Q. Liu, N. S. V. Rao, and X. Wang. Staggered scheduling of sensor
estimation and fusion for tracking over long-haul links. IEEE Sensors
Journal, 16(15):6130–6141, Aug. 2016.

[20] Q. Liu, X. Wang, and N. S. V. Rao. Artificial neural networks for
estimation and fusion in long-haul sensor networks. In Proc. 18th
International Conference on Information Fusion (FUSION), pages 460–
467, Washington, DC, Jul. 2015.

[21] Q. Liu, X. Wang, and N. S. V. Rao. Fusion of state estimates over
long-haul sensor networks with random loss and delay. IEEE/ACM
Transactions on Networking, 23(2):644–656, Apr. 2015.

[22] Q. Liu, X. Wang, N. S. V. Rao, K. Brigham, and B. V. K. Vijaya Kumar.
Effect of retransmission and retrodiction on estimation and fusion in
long-haul sensor networks. IEEE/ACM Transactions on Networking,
24(1):449–461, Feb. 2016.

[23] D. J. Mackay. A practical Bayesian framework for backpropagation
networks. Neural Computation, 4(3):448–492, May 1992.

[24] M. Mallick and K. Zhang. Optimal multiple-lag out-of-sequence
measurement algorithm based on generalized smoothing framework. In
Proc. SPIE, Signal and Data Processing of Small Targets, San Diego,
CA, Apr. 2005.

[25] J. Poland. On the robustness of update strategies for the Bayesian hyper-
parameter α. http://www-alg.ist.hokudai.ac.jp/∼jan/alpha.pdf. Accessed
on Jan. 11, 2017.

[26] N. S. V. Rao, K. Brigham, B. V. K. Vijaya Kumar, Q. Liu, and X. Wang.
Effects of computing and communications on state fusion over long-haul
sensor networks. In Proc. 15th International Conference on Information
Fusion (FUSION), pages 1570–1577, Singapore, Jul. 2012.

[27] D. Roddy. Satellite Communications. McGraw-Hill, New York, NY,
2006.

[28] E. I. Silva and M. A. Solis. An alternative look at the constant-
gain Kalman filter for state estimation over erasure channels. IEEE
Transactions on Automatic Control, 58(12):3259–3265, Dec. 2013.

[29] S. Sun, L. Xie, W. Xiao, and Y. C. Soh. Optimal linear estimation for
systems with multiple packet dropouts. Automatica, 44:1333–1342, May
2008.

[30] P. K. Varshney. Distributed Detection and Data Fusion. Springer-Verlag,
New York, NY, 1997.

[31] Y. Wang and X. R. Li. Distributed estimation fusion with unavailable
cross-correlation. IEEE Transactions on Aerospace and Electronic
Systems, 48(1):259–278, Jan. 2012.

[32] Z. Xu, X. Chang, F. Xu, and H. Zhang. L1/2 regularization: A
thresholding representation theory and a fast solver. IEEE Transactions
on Neural Networks and Learning Systems, 23(7):1013–1027, Jul. 2012.

[33] M. Yeddanapudi, Y. Bar-Shalom, K. R. Pattipati, and S. Deb. Ballistic
missile track initiation from satellite observations. IEEE Transactions
on Aerospace and Electronic Systems, 31(3):1054–1071, Jul. 1995.

[34] H. Yu and B. M. Wilamowski. Levenberg–Marquardt training. In
Industrial Electronics Handbook, volume 5, chapter 12, pages 1–15.
CRC Press, Boca Raton, FL, 2011.

[35] K. Zhang, X. R. Li, and Y. Zhu. Optimal update with out-of-sequence
measurements. IEEE Transactions on Signal Processing, 53(6):1992–
2004, Jun. 2005.

[36] S. Zhang and Y. Bar-Shalom. Optimal update with multiple out-of-
sequence measurements with arbitrary arriving order. IEEE Transactions
on Aerospace and Electronic Systems, 48(4):3116–3132, Oct. 2012.

[37] Z. Zhao, X. R. Li, and V. P. Jilkov. Best linear unbiased filtering
with nonlinear measurements for target tracking. IEEE Transactions
on Aerospace and Electronic Systems, 40(4):1324–1336, Oct. 2004.

Qiang Liu is currently a Research Associate in the Computer Science and
Mathematics Division at Oak Ridge National Laboratory in Oak Ridge, TN.
He received his Ph.D. in Electrical and Computer Engineering from Stony
Brook University, Stony Brook, NY, in 2014. His research areas include
networked data and information fusion, signal/target detection and estimation,
statistical signal processing, wireless sensor networks, cognitive radios, cyber-
physical systems, transport protocols, high performance computing, and
software defined networking. Dr. Liu has published over 20 peer-reviewed
papers in prestigious conference proceedings and journals, and has reviewed
dozens of works by others. He has been invited to present his work at various
venues and is the recipient of several best paper and travel grant awards.

Katharine Brigham received a B.E. degree in Electrical Engineering and
Mathematics from Vanderbilt University, Nashville, TN, in 2003, and an M.
Eng. in Systems Engineering from Cornell University, Ithaca, NY, in 2008. She
later obtained her Ph.D. degree in electrical and computer engineering from
Carnegie Mellon University, Pittsburgh, PA, in 2015, and started work for Voci
Technologies as a Senior Engineer in Pittsburgh, PA. There, she worked on
several government grants involving automatic language recognition, speaker
recognition, and dereverberation in speech. In 2016, Dr. Brigham joined the
School of Engineering and Computing Sciences at Durham University as
a Teaching Fellow in Electrical Engineering. Her research interests include
machine learning/pattern recognition, signal and image processing, and speech
recognition.

Nageswara S. V. Rao received his B.Tech from National Institute of
Technology, Warangal, India, in Electronics and Communications Engineering
in 1982, M.E. in Computer Science and Automation from Indian Institute of
Science, Bangalore, India, in 1984, and Ph.D. in Computer Science from
Louisiana State University, Baton Rouge, LA, in 1988. He is currently a
Corporate Fellow in the Computer Science and Mathematics Division, Oak
Ridge National Laboratory, Oak Ridge, TN, where he joined in 1993. He was a
Technical Director of C2BMC Knowledge Center at Missile Defense Agency
from 2008 to 2010. He has published more than 350 technical conference
and journal papers in the areas of sensor networks, information fusion, and
high-performance networking. He is a Fellow of IEEE, and received 2005
IEEE Technical Achievement Award and 2014 R&D 100 Award.

