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a b s t r a c t

This paper is concerned with assessing the contribution of grid-scale storage to generation capacity
adequacy. Results are obtained for a utility-scale exemplar involving the Great Britain power system. All
stores are assumed, for the purpose of capacity adequacy assessment, to be centrally controlled by the
system operator, with the objective of minimising the Expected Energy Not Served over the peak demand
season. The investigation is limited to stores that are sufficiently small such that discharge on one day
does not restrict their ability to support adequacy on subsequent days. We argue that for such stores, the
central control assumption does not imply loss of generality for the results.

Since it may be the case that stores must take power export decisions without the benefit of complete
information about the state of the system, amethodology is presented for calculating bounds on the value
of such information for supporting generation adequacy. A greedy strategy is proven to be optimal for the
case where decisions can bemade immediately after a generation shortfall event has occurred, regardless
of the decision maker’s risk aversion. The adequacy contribution of multiple stores is examined, and
algorithms for coordinating their responses are presented.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The flexibility offered by grid-scale electrical energy storage
plays a crucial role in lowering the cost of power delivered by
future low carbon networks, whilst maintaining their reliability
[1–4]. For example, the International Electrotechnical Commission
states in [3] that storage will become indispensable in emerging
energy markets. The World Energy Council in [4] describes recent
developments in storage technology as game-changing in terms of
solving the intermittency challenge of wind and solar generation.

The cost savings associated with the presence of significant
storage capacity in future systems include reductions in capital
expenditure on generation, transmission and distribution infras-
tructure along with reduced operating costs [1]. While it is argued
in [4] thatmany analyses focus on the high costs of storagewithout
fully evaluating potential savings, it was suggested in [2] that these
savings will be of the order of $109 to $1010/year for the GB system
by 2030.

This paper concerns assessing the capacity adequacy contribu-
tion of grid-scale storage, i.e. the contribution of stores in ensuring
that the risk of failing to meet demand is kept appropriately low at
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all times. Previouswork in the literature has examined capacity ad-
equacy for a range of assumed objectives for a storage operator, in-
cluding adequacy support [5,6], smoothing renewable output [5,7],
minimising system costs [8], and maximising profit [9,10].

This paper provides a new approach to assessing the capacity
adequacy contribution of storage, based on a number of reason-
able assumptions which both simplify computation and add trans-
parency in interpretation of results: (a) in a systemwith a relatively
small storage capacity (in the sense described in Section 4.1) the
storage will be able to recharge fully overnight, and (b) within the
adequacy risk assessment storage is modelled as acting entirely
to reduce adequacy risk (which as discussed in Section 4.1 does
not imply that storage will act in this way in normal operation —
storage’s contribution to mitigating adequacy risk is about what it
can do if needed, not what it will do when the system is not under
stress). Even if storage is not directly controlled by the System
Operator, it is reasonable to think that it will act to mitigate risk,
either through prices being high at times of system stress, or the
System Operator coordinating discharge of stores in the real time
market. Making these assumptions greatly simplifies the analysis,
and improves transparency of the model and drivers of results.

Storage’s contribution is assessed assuming that the goal is
to minimise Energy Not Served (ENS), implying a headline risk
index of Expected Energy Not Served (EENS) — using Loss of Load
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Expectation (LOLE) as the headline index, as is more common,
would imply a strong preference for short deep shortfalls over
longer shallow ones which is likely to not be the preference of
actual system operators.

This paper investigates the relationship between a store’s en-
ergy and power export capacities and the consequent reduction
in EENS that can be delivered. All works cite above assume that
operators can and will respond to generation shortfall events in
real time as they occur. Further, these works take as given that
stores able to respond in this should adopt a ‘greedy’ strategy,
i.e. they export sufficient energy as possible to mitigate any short-
fall, without holding back for future periods — a rigorous proof of
the optimality of this strategy is presented here for the case of a
single store.

The cases where storage can be scheduled in real time, and
where it must be scheduled so far ahead of real time that only
a generic storage schedule which can be repeated each day, are
compared – this allows assessment of the benefits of real time
information. In addition, the case of a single store is comparedwith
multiple stores having the same total power and energy capacities,
under a range of possible algorithms for coordinating multiple
stores – To the best of our knowledge, this paper is the first to
consider the multiple store case in this way.

The results obtained are for a utility-scale exemplar based on
the Great Britain (GB) power system. The primary contributions
of this paper are however methodological, and applicable to any
system for which the modelling assumptions are relevant. The
paper proceeds with a literature review in Section 2, presentation
of our general system model in Section 3, and presentation of the
problem to be solved in Section 4, including storage power exports
as decision functions. Section 5 outlines details of the chosen
exemplar, while Section 6 presents results. Section 7 concludes the
paper.

2. Previous work on adequacy and storage

When assessing the adequacy contribution of storage there
are several basic questions that must be addressed at the outset,
including the objective of the storage operator(s) and the extent
to which stores may be coordinated by the system operator, and
the information available at the time decisions on scheduling of
storage must be made. This section reviews the limited existing
literature on the contribution of storage to adequacy, with refer-
ence to the way these questions are addressed. Further citations
may be found in the Ph.D. thesis of Gafurov [11], which presents a
taxonomy of assumed objectives of the storage operator.

The simplest approaches are those where the assumed ob-
jective does not explicitly involve economics. Within this broad
category, the simplest are those assuming that the storage operator
seeks to make the strongest possible contribution to adequacy,
by attempting to mitigate shortfall events whenever they occur.
As discussed in the previous section, this operator objective –
combined with the ability to respond in real time – is assumed in
several works, including Zheng et al. [6]. It is also one of several
objectives explored by Hu et al. [5] which similarly assumes that
storage export decisions are taken in real time. The present paper
extends themethodology presented in such examples by exploring
the impact of making decisions ahead of real time, i.e. with incom-
plete information about the timing and magnitude of shortfalls.

An alternative operator objective assumed by some authors is
smoothing the joint production from variable renewable energy
generators and storage. Variants of this objective are by explored
by Hu et al. in [5], also Wang and Bai in [7]. The motivation for
this operator objective is not precisely specified, but might reflect
a situation where the storage is operated by a generation com-
pany trading energy from variable generators in a futures market,

seeking to minimise penalties associated with generation forecast
errors. It should be noted that this objective is not directly aimed
at mitigating adequacy risk.

Other previous authors have introduced economic considera-
tions directly into their capacity adequacy assessment methodol-
ogy. This can be in the form of stores controlled by the system
operator, seeking to minimise system costs, or independent stores
operated to maximise profit. Tuohy and O’Malley in [8] are an
example of the former, and consider a single pumpedhydro storage
scheme within an economic dispatch for the power system. They
assume that decisions taken ahead of real time are over-ridden
in the event of a generation shortfall, with the store exporting as
much as possible to mitigate the shortfall. However the dispatch
does not explicitly consider the possibility of future shortfalls, and
no full risk calculation is performed (instead a capacity value is
specified based on the energy in store during themost risky subset
of time periods). Broadly the same approach to assessing capacity
value is adopted by Madaeni et al. in [12], who consider a thermal
storage unit integrated with a concentrating solar power plant —
however the operator’s objective in this case is to maximise profit.

Sioshansi et al. [9] develop this approach further, with the
assumed objective of maximising profit. Dynamic programming
is used to schedule storage ahead of real time for price arbitrage,
but these decisions are changed in the event of a shortfall. Un-
like [8,12], this work performs a risk based capacity value cal-
culation. However, within this risk calculation the storage unit
is represented as an equivalent conventional unit based on the
results of the economic optimisation, which (again within the
risk calculation) does not acknowledge the finite energy capacity
of the storage unit. While this finite energy capacity may (to an
extent) be represented indirectly in the way the inputs to the
risk calculation are specified, the complexity of the two (economic
and risk) stage calculation process makes linking the explicit and
implicit assumptions in the study to a given real world situation
challenging.

Cruise and Zachary in [10] also consider storage operated with
the objective of profit maximisation. They allow revenue to come
both from arbitrage and by offering ‘buffering services’, i.e. a will-
ingness to export in the event of a shortfall. Thus, in their model
storage dispatch is both planned in advance andmay be adjusted in
real time, and in this case the planned dispatch maximises the ex-
pected profit from both sources. While their work does not inves-
tigate the adequacy contribution of storage, the optimal charging–
discharging schedules theyderive could in principle serve as a basis
for such calculations, since the value of real-time decision-making
is accounted for.

3. Systemmodel

3.1. EENS calculations without storage

This section outlines the model for the power system without
storage, and explains how the expected energy not served is calcu-
lated. Without loss of generality we work in hourly time steps, to
reflect the data available and to simplify notation. All results apply
equally to other time steps. Notation is as follows: t is the hour
within the peak demand season (between 0 and T ), and Dt , Xt and
Yt are respectively the demand, available conventional capacity
and available renewable capacity (all in MW) at time t . Capital
letters indicate random variables (with the exception of T ), while
realised values are represented by the same letters in lower case.

Weare interested in the balance of demand and available gener-
ation capacity for each time step (rather than generation dispatch)
i.e.Dt −Xt −Yt . This balance is usually negative, but there is always
some probability that it is positive, which represents a generation



G. Edwards et al. / Sustainable Energy, Grids and Networks 12 (2017) 69–81 71

shortfall event. The energy not served over a period of length T is
then given by:

ENS :=

T∑
t=0

max{0,Dt − Xt − Yt}, (1)

while its expected value is:

EENS = E(ENS) = E

(
T∑

t=0

max{0,Dt − Xt − Yt}

)
(2)

=

T∑
t=0

E(max{0,Dt − Xt − Yt}). (3)

To evaluate this expression, it is necessary to obtain not only
the marginal probability distributions of Dt , Xt , and Yt , but also
their joint distribution at time t . Although the distribution of ENS
will obviously depend also on the time correlations between the
variables, for this case without storage, the EENS does not depend
on time correlations due to the standard result that the expected
value of a sum of random variables is equal to the sum of their
expected values.

There is an active debate regarding whether adequacy assess-
ments in systems with high renewable penetrations should also
consider detail of system operation, such as the ability to man-
age rapid changes in net demand, and uncertainty in short term
forecasts [13]. The methodology described in the present paper
is applicable to the adequacy problem as traditionally specified,
and thus evaluates only the component of the reliability index
arising fromcapacity shortfalls at times of highest demand—wedo
note however that in some systems it will be possible to perform
adequacy and flexibility risk assessments separately, if there is a
very small chance of both being an issue at the same time, even
though in principle they should be considered together in system
planning. Where these issues of system operation are relevant,
higher time resolution data and modelling may be required.

Network constraints are not considered here, as is common
practice in practical adequacy studies. In Great Britain the trans-
mission network is heavily built, and active network constraints
biting are likely to signify high output from remote wind gen-
eration rather than any additional adequacy risk [14]. However
this simplification might be less realistic in other systems when
relating calculated adequacy risk to real world risk to end user
supply, despite it being widespread practice.

The random processes for Dt , Xt and Yt are all assumed to
be statistically independent of each other for the purpose of the
exemplars in this paper. In reality, one would expect some sta-
tistical dependence between renewable generation and demand
due to influence of weather on each of them. In the absence of a
readily available joint time series model for wind and demand in
any system (including GB), this provides a sufficiently represen-
tative model of GB conditions to demonstrate the new proposed
approach to modelling of storage.

Time seriesmodels are used for the conventional and renewable
capacity availability processes. However, due to the highly com-
plex nature of demand, we adopt a hindcasting approach, whereby
the joint distributions are conditioned on historical demand traces.
Assuming that both conventional and renewable generation are
independent of demand, Eq. (3) becomes:

EENS = E(ENS|D0 = d0, . . . ,DT = dT ) (4)

=

T∑
t=0

E(max{0, dt − Xt − Yt}). (5)

3.2. Introduction of storage

In this subsection the system model is extended to include a
single energy store. The store is assumed to have constant power
output capacity s and useable energy storage capacity e. Occasion-
ally, we will also refer to h := e/s, representing the length of time
for which an initially full store can export at maximum capacity
before it is empty.

The storage output at time t is labelled st , with positive values
indicating that energy is being exported. The useable energy re-
maining in the store at the beginning of hour t is

et := e −

t−1∑
τ=0

sτ (6)

so we assume that the store does not leak energy. The dependence
of et on past exports obviously introduces a temporal coupling to
the system model. We also define ht := et/s, i.e. the length of
time for which the store at time t can export at maximum capac-
ity before it is empty. The present formulation excludes pumped
storage schemes where there is significant flow into the upper
reservoir; including this effect would be a simple extension to
the ‘real time decisions’ formulation in Section 4.3. In addition (as
is currently the case in GB and possibly other systems) pumped
storage plants may have a sufficiently high energy to power ratio
that finite energy capacity does not restrict their contribution to
capacity adequacy [14].

The formulation also excludes the possibility of storage recharg-
ing within day (for the GB exemplar used, no example where
this would have been relevant was found in 100,000 Monte Carlo
realisations of the seasonunder study.) The reason for this is seen in
Fig. 1, where there is a single distinct daily demand peak, and thus
the shortfalls seen in the exemplar are all continuous periods of
high demand low wind output. It would be a simple matter to add
within-day recharging during periods where there is no shortfall
if this was important in a different exemplar (for instance in a
summer peaking system with a high solar penetration, where the
daily trace of demand-net-of-solar-outputmight contain two clear
peaks). A further straightforward addition would be to include in
the probabilitymodel the possibility of storage beingmechanically
unavailable.

The storage export at time t is a decision variable, and a function
of the information about the state of the system at time t . We
denote that information here by the vector Rt . This vector might
include the availability of each generator during recent time pe-
riods, recent renewable generation, prices in a balancing market,
amongst other things. As an example, consider the case where
storage is controlled by a system operator (SO), purely concerned
with securing adequate supply. The SO is able to make storage
export decisions in real time, immediately following the realisation
of generation availabilities. In this case, the information vector
might be

Rt := (X0,Y0, . . . ,Xt ,Yt ) (7)

where each Xk might represent the vector of available capacities
over all conventional generators, and each Yk might represent
the vector of outputs over all renewable generators, for k ∈

{0, 1, . . . , t}, and where k = 0 represents the beginning of the
period for which the EENS is to be minimised. Information from
times before t = 0 could also be considered if relevant.

Consider the case where the store is again controlled by the SO,
but for some technical reason decisionsmust be taken ahead of real
time. In this case, the information vector might be

Rt := (X0,Y0, . . . ,Xt−τ ,Yt−τ ) (8)

if the decision must be taken τ hours in advance.
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We assume that knowledge of Rt implies knowledge of R0, . . . ,
Rt−1. In this case, storage export decisions can be written as st (Rt ).
Any vector of export decisions spanning the period of interest is
referred to here as a strategy, and is denoted as s. So,

s(RT ) = (s0(R0), . . . , sT (RT )). (9)

Given a strategy s, the EENS for the period of interest is given by
E[ENS(s)], where

ENS(s) =

T∑
t=0

max{0, dt − st (Rt ) − Xt − Yt}. (10)

3.3. Multiple stores

This paper will explore the capacity adequacy contribution of
multiple stores, and compare the results to a single store with
the same total energy and power capacities. A set of N stores is
considered, with individual energy capacities ei, power capacities
si, and discharge times from full of hi. The discharge time from
full of the set is the largest hi value. At time t , the stores have
energy contents eit , and collectively could fully mitigate a shortfall
of magnitude

s eff
t =

N∑
i=1

min{si, eit}, (11)

where s eff
t may be described as the effective capacity of the set at

time t . Export decisions are written as sit (Rt ).
Since

s eff
t ≤ min

{
N∑
i=1

si,
N∑
i=1

eit

}
, (12)

multiple stores will not always be able to reduce EENS by the
same amount as a single store with the same total energy and
power capacities. Clearly the extent of reduction in performance
depends on theway inwhich the total energy and power capacities
are divided among the multiple stores, along with the method of
coordination for discharging the individual stores.

4. Optimal storage decisions

4.1. The system operator’s problem

We consider a system operator (SO), concerned with minimis-
ing a suitable capacity adequacy metric by choosing optimal stor-
age export strategies. A commonly adopted adequacy metric is the
Loss of Load Expectation (LOLE): the expected value of the number
of time-periods per year where there is a generation shortfall.
However we believe that the EENS is a more suitable objective to
be minimised than the LOLE, since the latter would unduly reward
shifting unserved energy into fewer but deeper shortfall periods.

When a very large amount of storage is present in power sys-
tems – such as the hydro-dominated systems of Norway, Brazil
and the Pacific North West of the USA – there is an economic
balance to be struck in operation between using zero marginal
cost energy immediately, and holding energy in reserve to support
future adequacy. It is then only meaningful to calculate a risk level
conditional on a particular operational strategy, rather than there
being a single risk level for the system which could be realised in
practise — the risk minimising strategy would be only to discharge
storage when there is insufficient other capacity to meet demand,
which is clearly unrealistic when looking to store energy between
days for price arbitrage.

This paper limits its scope to systems with relatively small total
storage capacities, in the sense that discharge of a store on one

Fig. 1. A 3-day sample of system demand, rescaled from the historic data for winter
2010–11.

day does not restrict its ability to support adequacy on subsequent
days, due to the opportunity to recharge overnight. Moreover, on
days where there is a possibility of a shortfall due to an absolute
shortage of generating capacity, price differences will typically
incentivise storage to charge overnight to the extent required to
make its full contribution to adequacy – thus, for the purpose
of adequacy calculation, such stores may be assumed full each
morning.

‘Small’ for this purpose also implies that the storage capacity
is substantially less than that required to flatten the daily demand
trace, and thus can include grid scale storagewith aggregate capac-
itymeasured inGWh– in order to illustrate the relevant energy and
capacity scales, an example demand trace from GB is provided in
Fig. 1. Theremay also be other considerations in defining ‘small’, for
instance in GB there may be additional detail of system operation
and storage coordination to be considered once storage capacity is
sufficiently large to fill in the early evening darkness peak (which
rises about 5 GW above the daytime demand plateau).

Since prices are high during times of system stress, stores
operated for profit on a merchant basis will naturally tend to be
available at such times. Assuming that they offer their services in
the real timemarket, the System Operator (SO) would then be able
to dispatch them, making a centrally-coordinated view of storage
reasonable for assessing capacity adequacy even in a liberalised
market. If the SO does not have direct control, or for instance can
only incentivise stores to be available at certain times of day, then
thismight best be treated by building a stochasticmodel of storage
availability across the day to reflect this lack of direct control —
however this case is not the subject of the paper.

For the purpose of the adequacy risk model, it will be assumed
that storage acts entirely to support adequacy. This is based on the
observation that storage’s contribution to adequacy is about what
it can do when needed, not what it will do on the large majority of
days when the system is not under stress — thus assuming within
the riskmodel that storage acts to support adequacydoes not imply
that the resulting dispatch will be implemented unless the storage
is required to mitigate a capacity shortfall (a similar argument
about carrying no implication of how storage would operate on
days where there is no system stress applies to the assumption of
recharging overnight). Given the way that the risk calculations for
different days then separate, in this ‘small storage’ regime it is then
meaningful to specify a single level of risk for the system based on
a risk-minimising strategy.

Beyond these economic justifications for the assumptions
made, we also note that the maximum extent to which storage
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can mitigate adequacy risk if fully coordinated is also of interest in
itself — if these assumptions are not deemed to be entirely realistic
in a given system, then clearly making them provides an upper
bound on the true risk level.

4.2. Feasible strategies

The problem faced by a SO may be expressed as

min
s∈S

E[ENS(s)], (13)

where ENS(s) is given by Eq. (10), and S is the set of feasible
strategies. For a strategy to be feasible, it must satisfy both power
and energy constraints. The former, reflecting the finite power
export capacity of a store, is simply

0 ≤ st (Rt ) ≤ s. (14)

Before formulating the energy constraint, it is useful to decom-
pose t in terms of the day within the peak demand season, and the
hour within that day, according to

t = 24u + v (15)

The daily index u ranges from 0 to U =
T+1
24 − 1, while the hour of

day v ranges from 0 to 23. Since it is assumed that stores are full
at the beginning of each day, it follows that if e.g. 6am is chosen as
t = 0, then et = e whenever v = 0. Since total energy exported
from a store during a day cannot exceed its capacity, the energy
constraint is:

∀ u :

23∑
v=0

s24u+v(R24u+v) ≤ e. (16)

As a result of the assumption of nightly recharging, the effi-
ciency of stores does not feature in the analysis. This is because
storage parameters are defined in terms of exportable power and
energy. Round trip efficiency then determines the energy required
to refill the stores, which is irrelevant to the analysis.

For multiple stores, the optimisation problem is essentially the
same, except that the strategy s relates to the output from each
store, and

st (Rt ) := (s1t (Rt ), . . . , sNt (Rt )). (17)

A possible further extension to the system model, as seen
in [15], would be to introduce flexible demand response, which
helps the system avoid shortfalls by deferring some of its demand
away from peak times. Demand response differs from storage only
in that it might not be necessary to pay back all of the deferred
energy demand. Since the approach adopted here does not ex-
plicitly consider the charging of stores – the equivalent of paying
back deferred load – it is irrelevant whether or not this payback
must be in full. There is therefore no distinction between storage
and demand response. That is, a store with capacity parameters e
and s is indistinguishable from demand response where the total
amount of energy that may be deferred from peak hours is e, and
no more than s of load can be deferred at any time. A system with
multiple customer groups with different willingness to defer load
may be represented as a set of multiple stores.

4.3. Real time decisions

Consider first the case of a single store where the SO is in the
ideal position of making power export decisions immediately after
the realisation of the supply–demand balance for each hour. One of
the main contributions of this paper is to demonstrate that there
exists a feasible strategy s∗ which not onlyminimises the expected

value of the ENS, but in fact minimises the ENS for all possible
random outcomes of the system.

For a single discharge cycle, this is the greedy strategy given by:

s∗t (rt ) := min{max{0, dt − xt − yt}, s, e∗

t } (18)

where

e∗

t := e −

t−1∑
τ=0

s∗τ (rτ ). (19)

That is, the store exports as much as possible in the event of a
shortfall — up to the level of the shortfall, or as much as the energy
and power export constraints allow. This result is proven for a
single day (i.e. one discharge cycle) in Appendix.

From Eqs. (10) and (15), we have that

E[ENS(s)] =

U∑
u=0

E[ENSu(su)], (20)

where ENSu is the energy not served on day u, and su is the
strategy for that day. We may therefore decompose the seasonal
optimisation problem into the set of daily problems, i.e.

min
s∈S

U∑
u

E[ENSu(su)] =

U∑
u

min
su∈Su

E[ENSu(su)], (21)

where Su is the feasible strategy space for one day. Therefore, since
it is established in Appendix that the greedy strategy is optimal for
each day, it follows that the greedy strategy is optimal for the entire
season.

An interesting feature of this result is that the only information
required to make an optimal decision at time t is the (already
realised) balance of demand and generation, dt − xt − yt . Also
interesting is the implication with regard to the risk aversion of
the SO. Whereas a risk-neutral decision maker is interested in
minimising the expected ENS, a more risk-averse operator is more
motivated by avoiding the most serious possible shortfall events.
Such a decision maker seeks to minimise some high percentile of
the ENS. Since the greedy strategy minimises the ENS for every
possible outcome of available supply, it follows that it is optimal
regardless of the decision maker’s risk aversion level. This makes
Eq. (18) a more powerful result than if the greedy strategy min-
imised the expectation only.

4.4. Decisions ahead of real time

This section considers decisions made ahead of real time, when
the information available to the SO is incomplete. In such cases, the
ENS remains defined by Eq. (10), but Rt may no longer imply full
knowledge of Xt and Yt . Generally, making decisions on the basis
of partial information leads to multi-stage stochastic optimisation
problems which can be very hard to solve.

The situation ismuch simpler for the special casewhere storage
decisions are taken far in advance of real time. In this case no
information is available at time t , so we can set Rt = 0 and we
have a straightforward multi-dimensional single-stage stochastic
optimisation problem. This is referred to as the ‘far ahead case’,
and represents the worst case scenario for the decision maker, in
terms of available information. It allows the analysis to bound the
contribution that a store of a given power and energy capacity can
make to supporting capacity adequacy.

In addition to having no information about Xt and Yt , it is
assumed that the SO does not know the demand in advance — but
does know its empirical distribution for each hour of the day. As a
result, the SO’s objective is to find a single profile, to be repeated
every day, which minimises the seasonal EENS value. Since the
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empirical distribution of demand is represented in the system
model by a hindcast trace, the entire tracemust be used to establish
the optimal repeatedprofile. The SO’s problemmay thenbewritten
as the following optimisation problem:

min
s∈S

{
U∑

u=0

23∑
v=0

E[max{d24u+v − sv − X24u+v − Y24u+v, 0}]

}
, (22)

where through stationarity of the relevant processes the {X24u+v}

are identically distributed, as are the {Y24u+v}. The summand may
thus be rewritten as E[max{d24u+v − sv − X − Y , 0}], where X and
Y are the marginals of the available conventional and renewable
capacity processes respectively.

Using integration by parts, this problem can be reformulated as

min
s∈S

{
U∑

u=0

23∑
v=0

g(d24u+v − sv)

}
, (23)

where

g(ζ ) =

∫ ζ

z=0
FZ (z)dz, (24)

and Z = X +Y . This expression allows efficient numerical solution
of the optimisation, with no subsequent simulation required to
evaluate the EENS.

4.5. Multiple stores

4.5.1. Objective: maintaining effective capacity
This section explores principles and methods for the coordi-

nation of multiple stores, that allow good decisions to be made
when the stores are responding in real time with the objective of
minimising EENS.

Consider a set of N stores responding to a generation shortfall
during some time step t . For convenience, we introduce Φt to
represent the shortfall, with realised values ϕt , i.e.

Φt = max{dt − Xt − Yt , 0}. (25)

We already saw that the optimal greedy strategy with full in-
formation for a single store is to export as much power as possible,
up to the level of the shortfall. Logically, the total output from
a set of stores should also follow the greedy strategy. However,
this condition is not sufficient to arrive at an optimal multi-store
strategy.

The maximum shortfall that may be entirely mitigated by the
set of stores, is s eff

t , as defined by Eq. (11) in Section 3.3. A good
decision at time t is one that follows the greedy strategy, and does
so in such away that retains the effective capacity of future periods
as much as possible. This means taking care to preserve individual
future effective capacities, min{eiτ , si}, as much as possible. To
achieve this, we present and examine two heuristic strategies:

(i) Sequential-greedy approach. The stores are discharged se-
quentially, in some sensible order — e.g. by decreasing hi.

(ii) Proportional discharge. The stores are all discharged simul-
taneously and in proportion to their remaining energy con-
tent— so that each store can contribute something until they
are all empty.

Algorithms to implement these strategies are presented in the
following sections. Aswe shall see, neither strategy is optimal in all
situations. However, the difference in performance is very small
(moreover we have tried further algorithm variants and a wider
range of text systems without finding substantial differences in
performance on realistic examples)— thuswebelieve that for prac-
tical applications, either strategy is near optimal, and that when
making real world predictions any differences in performance will
be dominated by other aspects of modelling uncertainty.

4.5.2. Sequential-greedy coordination
For the sequential-greedy approach, in the event of a shortfall

at hour t the procedure is:

1. Assign a discharge order for the stores.
2. Discharges store 1 according to the greedy strategy, so that

s∗1t = min{φt , e1t , s1}. (26)

3. If φt > s∗1t , i.e. the first store was not able to fully mitigate
the shortfall, then the 2nd store in the order must export in
a greedy manner, such that

s∗2t = min{φt − s∗1t , e2t , s2}. (27)

4. Progress through the ordered set until either the shortfall
has been fully mitigated or all stores are exporting as much
as possible.

Many possibilities exist for establishing the discharge order.
The most simple examples involve establishing a long-term fixed
order, e.g. by ei, by si, or by hi. Some dynamic alternatives, with
the order changing from hour to hour are: by decreasing energy
remaining, eit , and by decreasing discharge times, hit . As wewish if
possible to avoid reducing min{eit , si} for any stores, it is clear that
discharging those with the highest hit first is a good strategy.

4.5.3. Proportional discharge
Another approach for multiple stores is to make coordinated

decisions that seek to export from each store in proportion to its
energy content, known as the ‘proportional discharge’ method.

The approach involves attempting to set s∗it = αeit for some
appropriate value α ∈ [0, 1]. However, it may be the case that
some, or all, stores are limited by their finite power capacity.
Since this approach ensures that every store is able to contribute
to mitigating shortfalls approximately until they are all empty,
no individual store will run out of energy first (if this is indeed
avoidable). The scaling factor α is obtained by solving

N∑
i=1

min{αeit , si} = max{dt − xt − yt , 0} (28)

over α ∈ [0, 1]. If no solution exists, i.e. if
∑N

i=1 min{ei, si} <

dt − xt − yt , then α = 1.
The need to solve such a problemappears tomake this approach

muchmore computationally expensive than the sequential-greedy
alternative. However, a simple algorithm exists which directly de-
termines s∗it . The first step of the algorithm is to order the stores by
decreasing hit . Then we can sequentially calculate each s∗it , through
the following recursive equations:

χ1 = ϕt (29)

Ei =

N∑
j=i

eit (30)

αi = min{χi/Ei, 1} (31)
s∗it = min{αieit , si} (32)

χi+1 = χi − s∗it (33)

This algorithm has been verified through systematic numerical
experimentation, involving a wide variety of shortfall sequences,
and no instances were found where it did not precisely solve Eq.
(28). The authors intend to develop a proof that the algorithm
always solves Eq. (28).
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4.5.4. No universally optimal strategy: examples
Although each of the heuristic strategies in the coordination

approach presented above are clearly good, neither is universally
the best for all storage configurations and shortfall events. This is
demonstrated in the following illustrative examples, where one
method performs better than the other.

Example 1. Consider a set of 2 stores at time t with power export
capacities s1 = 2, s2 = 2. Their energy contents at time t are
e1t = 3, e2t = 2, so that s eff

t = 4. There is a shortfall lasting
2 time-steps, with ϕt = 1, ϕt+1 = 4. The total energy shortfall
therefore exactly matches that contained in the stores, and both
shortfalls can be fully mitigated so long as s eff

t+1 = 4, i.e. if ϕt is
mitigated without reducing the stores’ effective capacity.

If the stores were coordinated according to the proportional
discharge approach, the exports at time t would be s∗1t = 0.6, s∗2t =

0.4. Since h2t = 1, this approach means that s eff
t+1 = 3.6 and there

would be an ENS of 0.4 from step t + 1. However, if coordinated
according to the sequential-greedy method, ordered dynamically
with decreasing hit , the exports would be s∗1t = 1, s∗2t = 0. In
this case there is no reduction in effective capacity and therefore
no unserved energy. So, in this example, the sequential method is
superior.

Example 2. Consider the case where the same stores have energy
content e1t = 3, e2t = 3, and there is a shortfall lasting 2
time-steps, with ϕt = 2, ϕt+1 = 4. So, again the total shortfall
energy exactly matches the stores’ content, and the shortfalls may
be entirely mitigated, as long as s eff

t+1 = 4.
If the stores were coordinated according to the proportional

discharge approach, the exports would be s∗1t = 1, s∗2t = 1, and
since h2t is now 2, this does not decrease the effective capacity and
there is no unserved energy. However, if coordinated according to
the sequential-greedymethod, the exportswould be s∗1t = 2, s∗2t =

0 (where the ordering at time t is arbitrary, since the hit values are
equal), resulting in s eff

t+1 = 3 and an ENS of 1. So, in this example,
the proportional method is superior.

To summarise, in Example 1 the sequential strategy provided an
advantage by ‘getting rid’ of additional energy capacity from store
1, while preserving the effective capacity. Where both stores had
equal hit values in Example 2, the equitable discharging of the pro-
portionalmethodwas superior. However, the relative performance
of the 2 approaches arose from very specific combinations of the
stores’ energy contents, power capacities and the shortfall at time
t .

5. Case study application: data

5.1. Gone Green Scenario

The data used for this paper’s exemplar are based on National
Grid’s Gone Green (GG) Scenario [16], which presents a possi-
ble evolution for the GB power system. Installed generation ca-
pacities – both conventional and wind – were taken from the
2013 edition of the scenario, and were projections for the winter
2013/2014.

The basic method used to calculate EENS and ENS quantile
values was sequential Monte Carlo simulation. Historic demand
series, from the winters 2005–06 to 2011–12, were used directly –
albeit rescaled to match levels in the 2013–14 GG scenario. Co-
incident historical wind speed series were used as an input in
constructing a time series model of wind power. Details of these
historical series are provided in Sections 5.2 and 5.4, respectively.

Individual generating unit capacities were slightly adjusted
from the original GG scenario, and thus the scenario is referred to as

Adjusted Gone Green (AGG). These modifications were necessary
due to the politically sensitive nature of adequacy assessment
results using the original scenario. However, the results presented
remain generally representative of adequacy assessment results
for the GB system.

Since demand levels are considerably higher in winter, it suf-
fices to consider this season alone, and assume that the EENS
contributions from other seasons are negligible. Specifically, the
20-week period starting on the first Sunday in November is inves-
tigated, consistentwith GB Capacity Adequacy Assessment studies.

5.2. Demand

The historic demand traces, upon which the EENS values are
conditional, are transmission-metered values, available from [17].
Traces were obtained for 7 historical seasons: thewinters of 2005–
06 to 2011–12. Each series was normalised by that season’s nom-
inal peak demand, and re-scaled to the level of the chosen AGG
scenario. Separate EENS values were calculated for each of these
re-scaled traces, and averaged — this is described in greater detail
in Section 5.5.

The relevant peak demand here is the Average Cold Spell (ACS)
peak, which is defined as the median out-turn peak demand level
in a winter conditional on the prevailing underlying demand pat-
terns (with the variability in out-turn peak being due primarily
to weather). The value is 55,550 MW for the 2013–14 scenario
studied.

An estimate of embedded generation is added to the traces so
that transmission- and distribution-connectedwind are treated on
a common basis. A fixed 700 MW is also added to each demand
trace to account for the primary reserve response, required by
the SO to cover sudden losses of indeed [18]. The SO will take
emergency actions such as voltage reduction or disconnections in
preference to eroding this response requirement, so a shortfall is
defined in this paper as failing to meet 100% of demand plus the
response requirement.

5.3. Conventional generation

The AGG scenario contains 272 conventional generation units,
with a total capacity of 68,450 MW. Individual conventional gen-
eration units are modelled as being either available at their rated
capacity, or completely unavailable. The availability state of gen-
eration unit g , with capacity cg may therefore be represented
by the binary random variable Xgt , taking the value xgt = cg
when the generator is available and xgt = 0 otherwise. The total
conventional generator availability, assuming a total of g units, is
then given by

Xt =

G∑
g=1

Xgt . (34)

It is assumed that at a given time t , the Xgt are all statistically
independent of each other. Further, each Xgt is a two-state, time-
homogeneous Markov chain in discrete time of hourly steps. That
is, Xg,t+1 only depends on Xgt , and in particular it is independent of
Xg,t−1, Xg,t−2, and so on. The probability of transitioning from the
‘on’ to ‘off’ state is pg , while the probability of transitioning from
the ‘off’ to ‘on’ state is qg . So, 1/pg is themean time to failure (MTTF)
and 1/qg is the mean time to repair (MTTR), both in hours.

The transition probabilities are assumed identical for each gen-
erator with the same fuel type. The availability probabilities for
each type were taken from the original GG scenario. These were
combined with MTTR values for similar units in the 1996 IEEE
Reliability Test System [19], to obtain the transition probabilities.
Table 1 shows the MTTRs and availability probabilities by fuel
type.
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Table 1
Generator availabilities and repair times by fuel type.

Fuel type Availability probability MTTR (h)

Coal/Biomass 0.88 40
Gas CCGT/CHP 0.85 50
Gas OCGT 0.92 50
Oil 0.82 50
Nuclear 0.81 150
Hydro 0.84 20
Pumped storage 0.96 20

This conventional plant model reflects standard practice in the
power system reliability literature, and is sufficient for the aim of
demonstrating the new approach to modelling storage within an
exemplar representative of practical GB adequacy assessment. If
the intent is to provide a realistic prediction of risk level in a real
power system, it would be necessary to consider additional detail
in modelling conventional plant, including the possibility of com-
monmode events, andwhether the failure and repair processes are
Markovian or if Markovian whether they have constant transition
rates.

5.4. Wind generation

The transmission-connected wind generation capacity in the
AGG scenario is 10,120 GW, and there are no other types of
transmission-connected renewable generators. Historical wind
power traces for this scenario were available for the 7 historical
winter period concurrent with the demand series. Thewind power
traces are derived from historical wind speed traces at the wind
farm locations found in the 2013 scenario, according to NASA’s
MERRA dataset [20]. The wind speeds were converted to wind
powers using a common power curve, then scaled to reflect the
capacity at each location, and finally aggregated. The power curve
was statistically calibrated so that the method produced unbiased
estimates of historical metered wind power values, given the true
locations and capacities of wind farms during each historical win-
ter period. This methodology was initially developed as part of
the recent GB Capacity Adequacy Assessment studies, with greater
detail provided in [14].

The time series model fitted to the historical wind power traces
comprises of anAR(5) process, alongwith a randomseasonalmean,
followed by a logistic transform. More detail about the model-
fitting process may be found in [21]. The model equations for the
aggregated wind power during hour t of winter w are:

logit(Y (v, t)) = Y1(w) + Y2(w, t) (35)

Y1(v) ∼ N(µ, σ 2
1 ) (36)

Y2(v, ·)|u ∼ AR(α1(v), . . . , α5(w), σ2(w)) (37)

where Y1(w) captures a yearly effect, and Y2(w, t) is an AR(5) pro-
cess with zero mean. The logit transform is defined by logit(y) =

log(t(y)/(1 − t(y))) where t(y) = (y − a)/(b − a), and in this case
a = 120 and b = 8900. The choice of a, bwas made on the basis of
achieving the best possible approximation to a normal distribution,
after the logit transform is applied. The optimal parameters mean
that load factors of 0 and 1 cannot be generated in the simulation,
but these values do not occur in the historical series either. The
index w identifies years both in the simulation and in the training
data, i.e. the historical series.

5.5. Simulation details

For each historic demand trace, Monte Carlo simulation was
used to create large samples of the balance of supply and demand,

without storage.Wind traceswere generated using the best-fitting
AR(5) coefficients for that winter, e.g. only traces for Y2(w, ·)|(w =

2005) ∼ AR(α1(2005), . . .) were used in conjunction with the
demand trace for the 2005/06 winter. However, unique values
for the year effect Y1(w) were sampled (from N(µ, σ 2

1 )) for each
simulated wind power trace. The simulations were run until either
10,000 years were obtained with non-zero ENS values, or until the
number of simulated years reached a ceiling of 100,000.

Stores of different sizes were then introduced, and modelled as
responding to the same samples of the supply–demand balance,
according to the greedy scheme. The sample mean ENS values
provided estimates of the EENS values, while ordering the sample
provided estimates for ENS quantiles. Using the same samples
for each investigated set of storage parameters reduced both the
sampling error and the computational effort.

5.6. The far ahead case

The optimisation problem to be solved for the case of far ahead
decisions is that expressed in Eq. (23). The {Xt} form a stationary
process, with a distribution that may be obtained by convolution
of the 2-state distribution for each conventional generator. The {Yt}

are also a stationary process in this case, but might possess diur-
nal variability in other countries. Their marginal distribution was
established from a sample of 70,000 wind traces (10,000 for each
variant of the time series parameters). Themarginal distribution of
the Zt was finally established through convolution of the Yt and Xt
distributions.

ENS values were calculated for the same 90-day demand traces
used for the real-time calculations, and indeed for the same sam-
ples of generation. Solving the optimisation problem of Eqs. (23)
and (24) in practice required an analytical expression for the nu-
merically derived function gt (st ). It was found that a 4th-order
polynomial was a good fit to log(gt (st )), so that

gt (dt − st ) ≈ exp [a0 + a1(dt − st ) + a2(dt − st )2

+ a3(dt − st )3 + a4(dt − st )4]. (38)

One set of coefficients was fitted to 0 < dt − st ≤ 55,000 MWh
and another for dt − st > 55,000 MWh, as accuracy in the peak
demand region is particularly important.

6. Case study application: results

6.1. Single stores

6.1.1. Real-time decisions
Fig. 2 shows calculated EENS values for single stores making

decisions in real time, after the balance of demand and available
generation has realised. Investigated stores had energy capacities
ranging from 0 to 10,000 MWh in increments of 200 MWh. Values
were calculated for full discharge times of h = 1, . . . , 5 hours. This
means that for a store with an energy capacity of e.g. 1000 MWh,
results were calculated for we calculated for s = 200, . . . , 1000
MW.

The figure demonstrates that EENS values decrease smoothly
with increasing energy capacity. For all h values the gradient
is much steeper for smaller stores, with the sharpest change in
gradient occurring at about 3000 MWh. This changing gradient is
much less pronounced for higher h values. Larger stores are able to
fully mitigate the majority of shortfall events, so there are limited
occasions during which any further additional capacity provides
any further advantage.

Fig. 2 also shows that EENS values are very similar for h = 1
and h = 2 h, but each further restriction on the maximum power
output has a similar, significant impact on EENS values. This is
because there are two ‘darkness peak’ hours that dominate the
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Fig. 2. EENS versus energy capacity, real-time decisions, single store, various
discharge times.

Fig. 3. The 95th quantile of ENS versus energy capacity, real-time decisions, single
store, various discharge times.

daily EENS. It is clearly advantageous to be able to export all/almost
all energy during the 2 peak hours, but there is little advantage in
being able to export it all during just one of those hours. Results
will vary between power systems, butmany have a sharply defined
daily peak, so that a small number of hours dominate the EENS.

Fig. 3 is similar to Fig. 2, but shows the 95th percentiles of the
ENS values (rather than expected values) versus energy capacity.
At small storage penetrations the 95th percentile of ENS is, as
expected, greater than the EENS. However at very large storage
penetrations the 95th percentile of ENS is zero (i.e. the probability
of there being any energy unserved in the winter is below 5%),
while the EENS remains non-zero — thus above a certain storage
penetration the 95th percentile of ENS is less than the EENS.

6.1.2. Far ahead decisions
Similar results to those presented in Fig. 2 were obtained for

stores making decisions far ahead of real time, with the same set
of energy and power export capacities investigated. The results
are very similar to those for real-time decisions, to the extent that
their plot is visually indistinguishable, and is therefore omitted.
The same is true for the high quantiles of ENS.

A different type of plot is helpful to highlight subtle differences
in the results. It is useful to think in terms of the reduction in
EENS resulting from the presence of the stores, written as∆EENSFA
and ∆EENSRT for stores making far ahead and real-time decisions,
respectively. From these quantities, one can define the EENS reduc-
tion ratio (EENSRR), given by ∆EENSFA/∆EENSRT. The EENSRR was

Fig. 4. Ratio of EENS reductions for far ahead and real-time decisions, as a function
of energy capacity, single store, various discharge times.

calculated for each investigated combination of store parameters e
and h, and the results are presented in Fig. 4.

It can be seen that for h = 4 and h = 5 h, the EENSRR is
very close to 1 for the entire e range, while the minimum value
for h = 3 h is 0.99. For h = 2 h, the value of updated information
is somewhat greater, with a minimum EENSRR value of 0.97. For
h = 1 the minimum is 0.88, for small stores. The reduction ratio
concept was extended to the high quantiles of ENS, and the results
found to be similar.

The very high overall levels of EENSRR may be attributed to the
fact that the highest values of net demand (dt − Yt ) occur when
renewable generation is unavailable (i.e. calm days for the chosen
exemplar) and demand is high. Since the demand profile is highly
consistent across all days in the historical traces, shortfall events
are highly predictable — almost always occurring during 3 evening
hours. Strategies in the far ahead case therefore involve releasing
all energy during those hours, albeit unevenly, limiting the value
of real-time shortfall information. Exporting all energy during the
evening is obviously not possible for h > 3, but such constraints
affect stores similarly for both decision-making conditions.

Some shortfall events last only 1 or 2 h within the evening
period. When such events occur, stores that can respond imme-
diately afterwards – and are not constrained by power capacity –
can release all of their energy to mitigate the shortfall. However
for the far ahead case, the release of energy remains split across all
high-risk h. This is why some EENSRR values for h = 1 h are not as
close to 1 as all others in the exemplar results.

The value of information would be greater than for the cho-
sen exemplar if the daily net demand profile were broader. One
factor that obviously affects this is the width of the raw demand
profile — countries with a significant air conditioning load, for
example, might have a broader peak. The width of the net demand
peak could also be affected by strong diurnal variability in the
renewable energy resource. If the renewable resource peak were
well-separated form the raw demand peak, this could lead to a
broadening of the net peak. However the opposite can also occur, as
is the case with solar in many parts of the US, as described in [22].

6.2. Multiple stores

This section presents results obtained for 3 scenarios involving
sets of 5 stores, making decisions in real time, for a number of
different coordination methods. Results were obtained for many
more scenarios — involving different numbers of stores, and con-
siderable diversity between them. Itwas discovered that for almost
all of these scenarios, themulti-store setswere able tomake almost
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Table 2
Details of the 3 scenarios for which results are presented. Each was scaled to match
all values of energy and power capacities investigated for single stores.

Scenario Relative ei Relative si Absolute hi

1 [4,5,6,7,8] [1,2,3,4,5] [4, 2.5, 2, 1.75, 1.6]
2 [4,7,10,13,16] [1,1,1,1,1] [1.6, 2.8, 4, 5.2, 6.4]
3 [4,7,10,13,16] [5,4,3,2,1] [0.48, 1.05, 2, 3.9, 9.6]

Table 3
Ratio of EENS reduction values for multiple and single stores, various coordina-
tion methods, real-time decisions. Coordination methods: M1 = Decreasing ht ,
M2 = Proportional Discharge, M3 = Random Order, M4 = Increasing ht .

Scenario EENSRR

etot = 200 MWh etot = 5000 MWh

M1 M2 M3 M4

1 0.99 1 1 0.99 0.99
2 0.95 0.98 0.97 0.97 0.96
3 0.71 0.92 0.92 0.91 0.89

exactly the same contribution to capacity adequacy as their single-
store counterparts. The only exception is for sets where there is
rather extreme variability in the relative sizes of hi within the set,
and even then, the difference vanishes towards the high end of the
investigated e range. Therefore, results for only a small sample of
scenarios is presented here.

The scenarios vary in 3 ways: (i) the relative sizes of the ei
within the set; (ii) the relative sizes of the si within the set; and (iii)
the ratio of total energy and power capacities for the set. Details
are presented in Table 2. Given the scenario definitions, absolute
values of individual energy and power capacities may be defined
by either the total energy or total power capacities for the set. The
latter was chosen, labelled etot , and values were matched to the
values investigated for single stores.

Results were calculated for 4 methods of multi-store coordina-
tion, for each scenario. Three of these were variants on the sequen-
tial greedy discharging approach: ordering by decreasing hit – close
to optimal strategy; ordering randomly – i.e. no effort to coordinate
beneficially; and ordering by increasing hit – deliberately poor, to
assess sensitivity. The final choice was the proportional discharge
method. The coordination method had only a slight effect on the
results. Indeed, the EENS values were identical across all methods
for the smallest stores, although some difference emerge towards
the middle of the investigated range (for each scenario), but the
values converge towards the large capacity end of the range.

EENSRR values were again calculated, where the ratios in this
case aremulti-store EENS reductions divided by the corresponding
single store EENS reductions. Table 3 presents a summary of these
values — across scenarios and coordination methods. The table
presents reduction ratios for both the smallest stores (200 MWh)
and mid-range stores (5000 MWh). For the latter, separate results
are presented for the various coordinationmethods. Only one value
is presented for 200MWstores, since the coordinationmethod had
no impact on EENSRR in this case.

The EENSRR values for scenarios 1 and 2 are consistently very
high, indicating that multiple stores following a greedy strategy
can contribute very nearly as much to capacity adequacy as a
single store with the same total power and energy capacity — even
when the method of coordination is deliberately bad. Differences
in performance are more pronounced for scenario 3, reflecting the
rather extreme hi values within that scenario, yet most EENSRR
values are again very high.

The good sequential method performed either very slightly
better, or indistinguishably from the coordinated ‘proportional
discharge’ method for each scenario. This was also true for almost
all of the other scenarios investigated, but omitted here for brevity.
Results for the most ‘interesting’ scenario, 3, are presented in

Fig. 5. EENS versus etot for scenario 3 and single store with same capacities —
real-time decisions, various coordination strategies. The curve for the ‘decreasing
ht ’ method is omitted since it is indistinguishable from the ‘proportional’ method
curve.

Fig. 6. Ratio of EENS reductions for multiple and single stores, as a function of etot ,
for scenario 3, real-time decisions, various coordination strategies.

Figs. 5 and 6. The former presents EENS versus etot , while Fig. 6
presents EENSRR versus etot . It was found that, for each scenario,
the EENSRR is strictly increasing with increasing etot , if slight noise
is disregarded. Reduction ratio curves were also calculated for the
95th and 99th quantiles of ENS, and the results were very similar
to those for EENSRR.

The extent to whichmulti-store and corresponding single store
results differ is determined by complicated relationships involving
the typical size and length of shortfalls, and the power capacity
and discharge times of the stores. For example, for a power system
where the most shortfall events last only one hour, then results
will mostly be identical —with the exception of multiple store sets
where (

∑N
i=1ei /

∑N
i=1si) ≥ 1 h, but some stores have hi < 1 h,

andwhere the shortfalls are commonly of a similar size to the total
power capacity of the set. If the single-period shortfalls are smaller
than the total storage power capacity, then almost any conceivable
set can mitigate them just as well as the corresponding single
stores. If the shortfalls are typically much bigger than the power
capacity, then there will be fixed difference in the stores’ abilities
to mitigate the shortfalls, and this difference becomes increasingly
insignificant as the shortfall size increases, when EENS results are
expressed as a ratio.

If the shortfall lengths are often 2 h, then once again dif-
ferences in performance can be significant for store sets where
(
∑N

i=1ei/
∑N

i=1si) ≥ 1 h, but some hi < 1 h. In this case, even if the
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shortfall during the first time step is small compared to the total
storage power capacity, the group’s performance will generally
be worse than the corresponding single store. For such shortfall
patterns, then some differences in performance will emerge for
store sets where (

∑N
i=1ei /

∑N
i=1si) ≥ 2 h, but some hi < 2, so

long as both shortfalls are both roughly the same size as the total
storage power capacity. Generally: as the distribution of shortfall
lengths shifts towards longer events, a greater variety of store sets
will under-perform compared to their corresponding single stores.

6.3. Computation times

This section presents computation times for the main calcula-
tion stages involved in producing the results, using a PC with a
2.50 GHz Intel Core i5—6500T processor and 16 GB memory. The
stages were:

• Fitting the time series model for wind and generating synthetic
traces in R: 56 s. The majority of the computational expense
here was in simulating the season-long wind power traces,
with a total of 70,000 season-long traces taking about 49 s
(about 0.0007 s per trace).

• Constructing shortfall sequences through Monte Carlo Simula-
tion in C++: 30 min. The task here was to take the demand
and wind power traces, and combine these with simulated
traces of available conventional capacity to produce season-
long traces of max(dt − Xt − Yt , 0). 1,520,220 traces were
generated in order to obtain 10,000 simulated seasons with
at least one shortfall event for each historical demand trace
(about 0.001 s per trace).

• Calculating EENS values for single stores responding in real
time, using R: 2 h 45 min. There were 250 storage parameter
pair combinations (5 h values and 50 e values), and 7 histor-
ical seasons with 10,000 season-long traces each, making a
total of 17.5 million calculations (about 0.0006 s per case).

• Calculating EENS values for multiple stores responding in real
time, using R: 9 h 20 min. Again there are 17.5 million
combinations of storage parameters and margin traces, but
separate EENS calculations for each coordination algorithm,
all involving more complex algorithms than for a single
store. For a single time step with a shortfall, calculating the
response from multiple stores with the ‘sequential greedy’
algorithm took between 1 and 5 times longer than for a
single store, with an average of about 1.5. The ‘proportional
discharge’ approach took an average of about 3.5 times
longer than for a single store (reflecting the equal number
of storage scenarios with 2 and 5 stores). The total run time
increased by on average slightly under half these factors, as
there are other steps in the computation beyond the storage
dispatch.

• Constructing probability distributions for the total generation
for each historical season, in R: 18 minutes. The same con-
ventional plant distribution is used for all cases, so this need
only be generated once, taking about 1 min. The marginal
probability distributions associated with each of the 7 sets
of wind model parameters must be generated, taking about
1.5 min each, and convolved with the distribution of avail-
able conventional plant, taking just under 1 min each. Fi-
nally, each of these distributions was approximated with a
polynomial function, taking about 3 s for all cases.

• Solving the far ahead problem optimisation problem, using the
optimisation modelling language AIMMS: 11 hours. Here the
optimisation problem of Eqs. (23) and (24) must be solved
for the same 90-day demand traces as used in the real time
case, using the analytical approximation of Eq. (38). Separate
solutions were required for each of the 7 historical seasons,
and for each of the 250 storage parameter combinations —
thus the average time per demand trace is about 20 s.

The language R was used for some calculation steps as built
in statistical functions greatly reduce development time — it is
likely that computation time could be reduced significantly by
using a compiled language such as C++ (as used for simulating
conventional plant traces). Thus, taking into account the software
environment, the most intensive computational task in the real
time case (where time seriesmodelling is needed) is the generation
of conventional plant traces.

7. Conclusions

This paper has presented a methodology for assessing the po-
tential contribution of storage in supporting the capacity adequacy
of a power system, based on a clearly stated probability model
and operational strategy for the store. Results were presented
for a specific exemplar based on the GB system, for stores with
energy capacities ranging from 200–10,000 MWh. Issues explored
include the optimal strategy for a single store in mitigating energy
not supplied, comparison between benefits of single and multiple
stores, and the benefits of being able to wait until real time to
dispatch storage instead of using a single generic storage discharge
plan for all days.

The primary contribution of the paper is the methodology de-
veloped, which clearly extends to other systems where the under-
pinning assumptions are relevant. Caution is clearly required in
extrapolating observations of modelling results obtained using the
GB exemplar to other systems, however it is possible to comment
on the extent to which these phenomena are likely to be GB-
specific.

The similarity between risk levels when storage can be con-
trolled in real time, and when a single generic storage schedule is
used for all days, is clearly a consequence of how in GB high net
demand (i.e. demand minus VG) occurs on days of high demand
and low wind — and thus high net demand peaks are always
similar in shape and timing to the demand peak. Thus this same
observation might be made in some other systems, but not (for
instance) in a system where depending on the interplay between
demand and VG high net demand peaks could occur at different
times.

In contrast, the similarity in performance between different
algorithms for scheduling multiple stores in real time may well be
repeated in most systems, as long as the depth of shortfall within
a single event evolves reasonably smoothly over time. The authors
hope in future work to look at data from other systems in detail,
particularly for examples (such as summer peaking systems with
solar generation) where the shape of the daily net demand curve is
very different from that of raw demand.
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Appendix. Proof of optimality of real-time greedy strategy

We wish to solve the following optimisation problem:

min
s

E(A(s)) (A.1)

where

A(s) :=

T∑
t=0

b(Rt , st (Rt )) (A.2)

b(Rt , σ ) :=max{0, ϕ(Rt ) − σ } (A.3)
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subject to the constraints

0 ≤ st (rt ) ≤ s (A.4)

and
T∑

t=0

st (rt ) ≤ e (A.5)

For the proof, the ϕt (Rt ) can be any functions, and the Rt can be
any random variables, as long as they form a filtration, i.e. as long
as Rt implies knowledge of R0, . . . , Rt−1. In our example, we have

ϕt (Rt ) := max{0, dt − Xt − Yt} (A.6)
Rt := (X0, Y0, . . . , Xt , Yt ) (A.7)

but we do not rely on this in the proof.

Theorem 1. The strategy s∗ defined by

s∗t (rt ) := min{ϕt (rt ), s, e∗

t } (A.8)

where

e∗

t := e −

t−1∑
τ=0

s∗τ (rτ ) (A.9)

minimises A(s) under all possible realisations of RT . In other words, s∗
is feasible and

A(s∗)(rT ) ≤ A(s)(rT ) (A.10)

for all rT and all feasible strategies s.

Before we move on to the proof, we first simplify the problem
slightly.

Lemma 1. For every feasible strategy s there is a feasible strategy s′
such that A(s) = A(s′) and s′ ≤ ϕ.

Proof. Let s′t (rt ) := min{ϕt (rt ), st (rt )}. Clearly s′ ≤ ϕ. We are left
to show that s′ is feasible, and that A(s) = A(s′).

Clearly, it holds that 0 ≤ s′ ≤ s because both ϕ and s are non-
negative and s ≤ s. Also,

T∑
t=0

s′t (rt ) ≤

T∑
t=0

st (rt ) ≤ e (A.11)

because s′ ≤ s. Finally,

b(rt , st (rt )) = max{0, ϕt (rt ) − st (rt )} (A.12)
= ϕt (rt ) + max{−ϕt (rt ), −st (rt )} (A.13)
= ϕt (rt ) − min{ϕt (rt ), st (rt )} (A.14)
= ϕt (rt ) − s′t (rt ) (A.15)

and because this expression is non-negative,

= max{0, ϕt (rt ) − s′t (rt )} = b(rt , s′t (rt )) (A.16)

so it follows that A(s) = A(s′).

The above lemma shows that, without loss of generality, for the
purpose of finding an optimal feasible strategy s, we may impose
that s ≤ φ, and in that case the objective function becomes linear:

A(s)(rT ) =

T∑
t=0

ϕt (rt ) − st (rt ) (A.17)

We are now ready identify an analytical solution.

Proof. Wenow show that (i) s∗ is feasible, and that (ii) A(s∗) ≤ A(s)
for all feasible strategies s.

(i) By construction, 0 ≤ s∗ ≤ s so the feasibility constraint in
Eq. (A.4) is satisfied. Next, if we substitute the definition of e∗

T (Eq.
(A.9)) into the definition of s∗T (Eq. (A.8)), then we immediately see
that

s∗T (rT ) ≤ e −

T−1∑
t=0

s∗t (rt ), (A.18)

from which it follows that
T∑

t=0

s∗t (rt ) ≤ e (A.19)

and so the feasibility constraint in Eq. (A.5) is satisfied as well. So
s∗ is feasible.

(ii) By Lemma 1, we only need to show that A(s∗) ≤ A(s) for
feasible strategies s that satisfy s ≤ ϕ. For such feasible strategies s,

A(s)(rt ) − A(s∗)(rT ) =

(
T∑

t=0

ϕt (rt ) − st (rt )

)

−

(
T∑

t=0

ϕt (rt ) − s∗t (rt )

)
(A.20)

=

T∑
t=0

s∗t (rt ) − st (rt ) ≥ 0 (A.21)

provided that we can show that
∑T

t=0s
∗
t (rt ) ≥

∑T
t=0st (rt ):

a. Suppose min{ϕt (rt ), s} ≤ e∗
t for all t . Then

T∑
t=0

s∗t (rt ) =

T∑
t=0

min{ϕt (rt ), s, e∗

t } =

T∑
t=0

min{ϕt (rt ), s}

(A.22)

and now because s ≤ ϕ and s ≤ s,
T∑

t=0

s∗t (rt ) ≥

T∑
t=0

st (rt ) (A.23)

b. Now suppose that there is a time τ such that

min{ϕτ (rτ ), s} > e∗

τ (A.24)

In this case,

s∗τ (rτ ) = min{ϕτ (rτ ), s, e∗

τ } = e∗

τ = e −

τ−1∑
t=0

s∗t (rt ) (A.25)

and therefore
τ∑

t=0

s∗t (rt ) = e (A.26)

But because s∗ is feasible, we know that
∑T

t=0s
∗
t (rt ) ≤ e and

also that s∗ ≥ 0. Combined with the above equality, it can
only be that

T∑
t=0

s∗t (rt ) = e (A.27)

and now using the feasibility of s,
T∑

t=0

s∗t (rt ) ≥

T∑
t=0

st (rt ) (A.28)
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