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Abstract

Background: An increase in effective malaria control since 2000 has contributed to a decline in global malaria
morbidity and mortality. Knowing when and how existing interventions could be combined to maximise their
impact on malaria vectors can provide valuable information for national malaria control programs in different
malaria endemic settings. Here, we assess the effect of indoor residual spraying on malaria vector densities in a
high malaria endemic setting in eastern Uganda as part of a cohort study where the use of long-lasting
insecticidal nets (LLINs) was high.

Methods: Anopheles mosquitoes were sampled monthly using CDC light traps in 107 households selected
randomly. Information on the use of malaria interventions in households was also gathered and recorded via
a questionnaire. A Bayesian spatio-temporal model was then used to estimate mosquito densities adjusting for
climatic and ecological variables and interventions.

Results: Anopheles gambiae (sensu lato) were most abundant (89.1%; n = 119,008) compared to An. funestus (sensu
lato) (10.1%, n = 13,529). Modelling results suggest that the addition of indoor residual spraying (bendiocarb) in an area
with high coverage of permethrin-impregnated LLINs (99%) was associated with a major decrease in mosquito vector
densities. The impact on An. funestus (s.l.) (Rate Ratio 0.1508; 97.5% CI: 0.0144–0.8495) was twice as great as for
An. gambiae (s.l.) (RR 0.5941; 97.5% CI: 0.1432–0.8577).

Conclusions: High coverage of active ingredients on walls depressed vector populations in intense malaria
transmission settings. Sustained use of combined interventions would have a long-term impact on mosquito
densities, limiting infectious biting.
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Background
Since 2000, there has been a substantial decline in mal-
aria morbidity and mortality globally [1], with preva-
lence of malaria infections in sub-Saharan Africa (SSA)
dropping by a half, associated with the large-scale
deployment of long-lasting insecticidal nets (LLINs),

indoor residual spraying (IRS), and prompt and effect-
ive treatment with antimalarials [2, 3]. However, SSA
still bears the largest Plasmodium falciparum malaria
burden and malaria remains a public health problem
[4]. This is partly because SSA has the most efficient
malaria vector species [5, 6] namely; Anopheles gambiae
(s.s.), An. arabiensis and other members of the An.
gambiae complex; and An. funestus (s.l.) [7]. It is
known that these vectors occur in sympatry across SSA
[6]. They are all highly anthropophilic and prefer in-
door biting [8]. Anopheles arabiensis, however, tends to
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be less endophagic, yet efficient enough to sustain
transmission even if the other species were absent [9].
Vector control is central to the Global Technical Strat-
egy (GTS) for malaria adopted in 2015 by the Global
Malaria Programme (GMP) of the World Health
Organization (WHO) [10]. Many countries are therefore
adding indoor residual spraying (IRS) to the scale up of
long lasting insecticidal nets (LLINs) for P. falciparum con-
trol [1, 11]. However, it remains unclear when and how
best to combine IRS with LLINs [12], especially given an
increasing documentation of pyrethroid resistance [13, 14].
There are a limited number of field-based studies

assessing the combined impact of interventions on mal-
aria vectors. Cluster randomized trial studies in Tanzania
[15], and Benin [16] comparing IRS with bendiocarb
plus LLINs versus LLINs alone remain inconclusive. The
Tanzania study showed protective effect of IRS when
combined with use of insecticide-treated nets (ITNs)
compared to ITNs alone; however, the use of ITNs in
the study population ranged from 53% at the start of the
survey and declined to 36%. No additional protection
was observed in the Benin study and also The Gambia
trial [17], which compared LLINs to LLINs plus IRS
with dichlorodiphenyltrichloroethane (DDT). Mathem-
atical modelling techniques remain sensitive to the pa-
rameters used in the model [18, 19]. Observational
non-randomised studies have also been inconclusive in
terms of morbidity and mortality [20–24], and in most
cases, it is difficult to assess the direct impact of adding
IRS when LLIN or ITN use has not been scaled up in
study populations. A multi-country analysis based on
national representative household surveys from demo-
graphic health surveys (DHS) and malaria indicator sur-
veys (MIS) conducted in 17 SSA countries reported
mixed outcomes [20]. The use of combined interven-
tion was protective for medium parasite rate in children
2 to 10 years old, (PfPR2-10 between 5 and 40%) and
high malaria transmission settings (PfPR2-10 greater
than 40%) but not for low transmission settings (less
than 5% PfPR2-10). Given the heterogeneous distribu-
tion of mosquitoes, a longitudinal analysis based on
field data could reveal how combinations of IRS and
LLINs could impact malaria vectors.
Here, we build a geostatistical framework to estimate

the spatial and temporal distribution and abundance of
primary vectors as part of a longitudinal study in
Nagongera sub-county, eastern Uganda from October
2011 to December 2015. The main objectives were to
inform vector control strategies by investigating the dir-
ect effect of government initiated IRS on malaria vector
species. Secondary objectives involved investigating
their contemporary distribution and identifying extrin-
sic abiotic constraints (environmental and ecological
covariates) associated with mosquito abundance.

Methods
Study area
The study was conducted in an extremely high stable
malaria transmission intensity region of Eastern Uganda,
south eastern border with Kenya, in Nagongera sub-
county [25]. The area has an average altitude of 1,095 m
above sea level and is dominated by subsistence farming
(banana, maize and rice). The valleys are drained by
east-west flowing streams joining the main river flowing
to Lake Kyoga in central Uganda. The area in general
experiences two rainy seasons averaging 1000–1500 mm
of rainfall annually. The first wet and longer season is
experienced early in the year between March to May
and a shorter wet season is from October to November.
The average day temperature is approximately 23 °C
with the hottest months being January and February.
Malaria transmission is characterised by two main peaks
from March to June and November to December. The
main malaria vectors in this area are the An. gambiae
complex and the An. funestus complex [26, 27]. Full de-
scription of the study site and a map, is provided in
Additional file 1.

Entomology survey data
Entomological surveillance was conducted at house-
hold level as part of a cohort study described elsewhere
[28, 29]. Briefly, a sampling frame of all the households
in the area was established and 100 households
selected randomly as part of dynamic cohort study tar-
geting children aged between 6 months and 10 years.
The first round of enrolment of households was con-
ducted in August and September 2011, but, households
could be dropped from the cohort if individuals moved
out of the area. Thus, seven new households were se-
lected in the second round of enrolment in 2013. Con-
sent was obtained from the head of the household as
part of the household survey. Mosquitoes were gath-
ered once a month in selected households using the
miniature CDC light traps (Model 512, John W. Hock
Company, Gainesville, FL, USA). Traps were positioned
at the foot end of the bed, next to a person sleeping
under a LLIN with a light source placed approximately
one meter above the floor [25]. Traps were placed at
1900 h and retrieved at 0700 h the following day. Most
of the adult female Anopheles mosquitoes were identi-
fied using morphological characteristics (95%) with
remaining few identified by polymerase chain reaction
(PCR) technique. A comparison of the CDC light trap
approach to other methods (i.e. the human-landing
catches and pyrethrum spray catches) has already been
undertaken elsewhere [25]. A summary of CDC light
trap data is shown in section 1 of Additional file 1 and
in Additional file 2.
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Climatic and environmental covariates
Plausible environmental covariates used for modelling
vector densities were assembled. These included climatic
(rainfall, temperature), ecological (enhanced vegetation
index, EVI), topography (elevation), a proxy measure of
urbanicity (night-time lights), Euclidean distance of the
household to the water sources, and household density
(defined as number of households within a 50 m radius
of a selected houses). A generalized linear regression
model implemented in the bestglm package in R was
used to check for correlation between covariates that
may result in multicollinearity [30]. Covariates (exclud-
ing intervention effects) were selected based on Bayesian
information criterion (BIC) of most parsimonious non-
spatial regression model. Thus, a model with lowest BIC
was selected after covariates were regressed against the
mosquito counts.

Spatio-temporal analysis of mosquito vector density
A Bayesian hierarchical generalised mixed model with
spatial and temporal effects was used to predict con-
tinuous maps of vector densities incorporating the
above listed covariates and vector control interventions.
An advantage of this approach is the ability to quantify
uncertainty in the parameters of interest whilst includ-
ing missing data points as NAs [31]. Mosquito counts
for An. gambiae (s.l.) and An. funestus (s.l.), denoted as
yij; i = 1,……, n; j = 1,……, m where i is the household
location, and j is the month were modelled as negative
binomial [32, 33], with

P Y ij ¼ yij
� �

¼
Γ k þ yij
� �

Γ kð ÞΓyij!
pk 1−pð Þyij ð1Þ

Where Γ(⋅) is a gamma function, with dispersion param-
eter k, and variance var(yij) = μij + μij

2/k for mean μij. The
outcome (mean vector density per household per night)
for the general mixed effect regression model was of the
form

y si; ; tj
� � ¼ β0 þ xT si; ; tj

� �
βi þ zTi γ j

þ Season monthj
� �þ ν si; ; tj

� � ð2Þ

where xT(si, tj)βi represented several set of covariate ef-
fects with βi coefficients, β0 as intercept, Ζi

Tγj represent-
ing the random effects, and the last term vi representing
the spatial and temporal effect. Binary variables were in-
cluded for each round of IRS at the household level. The
government IRS campaign, using carbamate bendiocarb,
was first conducted in the study area between December
2014 and February 2015 (round 1) followed by two
rounds in June-July and December 2015. The IRS pro-
gram was part of a national campaign that started in
2006 in epidemic regions (south western Uganda). In

2009, this was expanded to a further 10 districts in the
northern parts of the country and to 14 high burden dis-
tricts covering the mid-north, north east, mid-eastern
and east central in 2014 including the study district
(Tororo) [34]. The proportion of individuals sleeping
under LLIN was included as a continuous variable.
LLINs had been handed out to participating households
at the start of the study in 2011 and through govern-
ment mass campaigns in November 2013. A temporal,
independent effect of month was included and mod-
elled as an autoregressive process of first order ξij ~
N(0, 1/τ(1 − p2)) [35], with initial parameters selected
based on a non-spatial time-series first order autore-
gressive model. Bayesian inference was performed using
the integrated nested Laplace approximations (INLA)
[36, 37] after setting prior distribution to model param-
eters (the intercept, covariates, spatial and temporal ef-
fects, and residual effects). INLA was used because of
computational advantages compared to Markov chain
Monte Carlo (MCMC) algorithms. This is because
Gaussian Markov random fields (GMRFs) are used to
represent the continuous domain Gaussian random
field (GF) via stochastic partial differential equation
(SPDE) approach resulting in computationally efficient
matrices. Several plausible models were considered by
varying the variable specification, i.e. most complex for
all parameters (model 1) to least complex without
spatio-temporal effects and interventions (model 5).
Model goodness-of-fits were assessed using a range of

parameters including the deviance information criterion
(DIC) and the marginal likelihood [38]. Validation was
conducted by creating a subset dataset of n = 20 house-
holds selected randomly from the 107 households. Valid-
ation statistics included the correlation between the
predicted and observed vector densities, and the root
mean square error (RMSE). Full model specification de-
tails are provided in the supplementary.

Results
A total of 133,528 adult female Anopheles mosquitoes
were collected from 107 houses using CDC light traps
between October 2011 and December 2015 (51 months).
Of these, An. gambiae (s.l.) [including both An. gambiae
(s.s.) and An. arabiensis, hereafter An. gambiae (s.l.)]
were most abundant (119,008; 89.1%; 0.3% fed, followed
by An. funestus (s.l.) (hereafter, An. funestus) (13,529;
10.1%; 1.0% fed). Since An. gambiae (s.s.) and An. ara-
biensis are not morphologically distinguishable, the pro-
portion of each was examined molecularly and a small
percentage (0.8%) were An. arabiensis [25]. Mosquito
density was modelled by month and the spatio-temporal
analysis showed highly heterogeneous and declining vec-
tor densities over time, with seasonal peaks twice in a
year in May-June and November-December (Fig. 1).
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Figure 2 shows the predicted density maps pre-IRS
(2011–2014) and post-IRS period (2015). Maps of spatial
variance maps are included in the supplementary
information.
Table 1 summarises the goodness-of-fit statistics for

the five models based on a range of parameters. Com-
parisons based on combination of the deviance infor-
mation criterion (DIC) and the marginal likelihood
suggested that inclusion of spatial and temporal effects
(i.e. models 1–3) improved the models, compared to
excluding the spatial effects as in models 4 and 5.
Where two DICs are similar, such as in models 1 and 2,
this suggests that little information was gained by the
more complex model and extra parametrisation. In
terms of spatial parameters of the selected best fitting
model (model 1), the spatial range (degree of similarity
at household level) was 4 km for An. gambiae (s.l.) and
2.2 km for An. funestus. The estimated marginal vari-
ance was similar. Model 1 was therefore used for pre-
senting subsequent results.

Effects of environmental and ecological factors on
vector counts
Preliminary regression selected distance to water, eleva-
tion, night-time lights, EVI, temperature, rainfall, and
household density for An. gambiae (s.l.). Only distance
to water, elevation, EVI, rainfall, and household density
were selected for An. funestus. EVI was positively corre-
lated with precipitation (Spearman’s correlation coeffi-
cient of 0.6) but negatively correlated with temperature
(Spearman’s correlation coefficient of 0.6). Table 2 dis-
plays the posterior mean estimates and 97.5% Bayesian
credible intervals for the fixed effect parameters and
hyperparameters for the spatio-temporal effect, month,
and seasonality. As expected, rainfall and enhanced EVI
had a positive (increasing) effect on mosquito densities.
Distance to water, on the other hand, had a protective
effect (10.6% decrease in adult vector abundance for
every kilometre increase in distance to water body for
An. gambiae (s.l.) and 15.8% for An. funestus). This is
consistent with previous findings on declining mosquito

Fig. 1 Median predicted average density of (a) An. gambiae (s.l.) and (b) An. funestus (s.l.) using household-level Bayesian spatio-temporal
regression model with seasonal effects from September 2011 to December 2015. The bars represent the average observed counts while the
solid line represents the median estimate. The dashed grey lines show the predicted 97.5% credible intervals. The median and quantiles are
summarised quantities of posterior distribution. c The effect of season on both malaria vectors with bar plots for An. gambiae (s.l.) (97.5% credible
interval) while the dashed line shows the median for An. funestus (s.l.) with the 97.5% credible interval shaded. Abbreviations: LLIN, long-lasting
insecticidal nets; IRS, indoor residual spraying
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Fig. 2 Map showing the study region in eastern Uganda. The four maps show the average predicted An. gambiae (s.l.) and An. funestus (s.l.)
relative density per household per night, respectively, before (a, b) and after (c, d) IRS based on the Bayesian spatio-temporal model. The maps
are normalised by the mean at 100 m spatial resolution. Thus, the highest predicted pre-IRS density for An. gambiae (s.l.) was 2.4 times as high
as the mean compared to a prediction of 7.6 for An. funestus (s.l.)

Table 1 Model fit and comparison using goodness-of-fit parameters for An. gambiae (s.l.) and An. funestus (s.l.). Model 1 included
environmental and climatic variables; random effects (household level and seasonal); intervention use; and spatial and temporal
effects. Model 5, the least complex, included only climatic variables and random effects. RMSE and correlation were based on a
holdout validation dataset selected randomly (n = 20) out of a total 107 households

Vector species Model DIC Model complexity Marginal likelihood RMSE Correlation (Observed vs Predicted)

An. gambiae (s.l.) Model 1 11083.56 122.05 -5743.87 1.1059 0.7963

Model 2 11080.09 119.87 -5745.77 1.0565 0.7800

Model 3 11082.78 120.42 -5757.49 1.0516 0.7777

Model 4 11330.18 58.34 -5838.05 1.0883 0.7594

Model 5 11329.69 56.37 -5827.67 1.0884 0.7592

An. funestus (s.l.) Model 1 7188.35 134.51 -3783.64 0.9657 0.6937

Model 2 7221.12 129.62 -3756.08 0.9615 0.6984

Model 3 7194.15 119.54 -3764.33 0.9172 0.6930

Model 4 7385.89 51.22 -3815.50 0.9259 0.6233

Model 5 7385.90 50.89 -3806.26 0.9244 0.6252

Abbreviations: DIC Deviance information criterion, RMSE Root mean square error
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densities with increasing distance from larval sources
[39, 40]. The results for temperature and night-time
lights were similar (protective effect) but not important.
Day temperature varied between 19 °C and 40 °C and
previous studies showed that higher temperatures (35 °C)
decrease mosquito survival [41].

Temporal effects
Figure 1 shows the modelled seasonal patterns associ-
ated with the two vector species. While the seasonal pat-
terns were similar for the pre-IRS period (2011–2014),
the uncertainty increased post-IRS in 2015 for both spe-
cies. For An. funestus, model predictions showed damp-
ened peaks in 2015 with a large range of uncertainty
(the orange band). While similar patterns were predicted
for An. gambiae (s.l.) across the years, the range of un-
certainty between months increased slightly in 2015.
Seasonal peaks and troughs established here provide
guidance for targeting IRS before peak transmission
[42], but, the dampened effect in 2015 (reduced seasonal
peaks) highlights a reduced number of vectors observed
at household level after spraying.

Malaria intervention effects
At the start of the cohort study in 2011, all the enrolled
households were provided with LLINs. Over 99% of co-
hort study participants reported sleeping under a LLIN
the prior evening to the time of routine assessments,
done every 3 months [43]. From cross-sectional surveys
conducted in the surrounding community (non-cohort
households), the proportion of households with at least
one LLIN increased from 71.0% in January 2013 to
95.5% in January 2015, following a universal LLIN cam-
paign conducted in November 2013. Modelling results
show the community-wide deployment of LLINs

(Table 2) did not reduce vector densities. In contrast,
the government initiated IRS campaign implemented in
December 2014 in the study area with rounds of bend-
iocarb sprayed approximately every 6 months, had an
impact on vector densities. Nationally, IRS campaign in
the high burden 14 districts in 2014 and 2015 (includ-
ing Tororo district) achieved a coverage of 93.5% [34].
From the cohort, IRS was not done in only 5 houses in
the first two rounds of IRS, and in 3 houses in the third
round (excluding the 15 houses that dropped from the
cohort before round 1 of the IRS). Modelling results
showed that IRS was associated with a 40.6% decrease
in mosquito densities for An. gambiae (s.l.), compared
to 84.9% for An. funestus, suggesting a two-fold greater
effect on the latter species. Separate bioassays of vector
susceptibility in Nagongera conducted in May 2014
showed 100% mortality rates for bendiocarb but less
than 40% mortality for pyrethroids 24 h after exposure
(unpublished data). This suggests a possible biological
mechanism for the additional benefit of bendiocarb in
settings with high coverage with pyrethroid-treated
LLINs.

Discussion
Vector control with large-scale deployment of LLINs
and IRS are the major methods for malaria control in
SSA [1]. However, as countries expand their malaria
control programmes, there is a need to assess the impact
of combined interventions on malaria vectors as well as
health outcomes in routine conditions. The present
study focused on entomological outcomes rather than
clinical outcomes and the results provide an understand-
ing of seasonal variation in the dominant malaria vectors
as well as showing that IRS had an impact on malaria
vectors in the setting of high LLIN coverage.

Table 2 Posterior rate ratio estimates and 97.5% credible interval (CI) for the best fitting model (Model 1) for An. gambiae (s.l.) and
An. funestus (s.l.). The model includes all data range (2011–2015) and incorporates the effects of interventions. For the spatio-temporal
specification, a parameter for the spatial range of influence is shown

Variable An. gambiae (s.l.) Rate Ratio 97.5% CI An. funestus (s.l.) Rate Ratio 97.5% CI

Mean 2.5% 50% 97.5% Mean 2.5% 50% 97.5%

Distance to water (estimated in km) 0.8941 0.8520 0.8940 0.9367 0.8421 0.7819 0.8421 0.9064

Elevation (m above sea level) 0.9805 0.9162 0.9804 1.0520 1.0089 0.9294 1.0089 1.0955

Night-time light (intensity) 0.9749 0.9118 0.9748 1.0420 – – – –

EVI 1.1434 1.0512 1.1433 1.2429 1.1606 1.0150 1.1605 1.3267

Temperature (estimated in °C) 0.9982 0.9166 0.9981 1.0868 – – – –

Precipitation (mm) 1.0745 1.0185 1.0745 1.1331 0.9419 0.8438 0.9419 1.0475

Number of households within 50 m 0.9739 0.9153 0.9739 1.0371 0.9603 0.8885 0.9603 1.0384

IRS 0.5941 0.1432 0.5783 0.8577 0.1508 0.0144 0.1472 0.8495

LLIN 1.0026 0.9242 1.0025 1.0884 0.9770 0.8581 0.9769 1.1140

Spatial range (km) for Matérn covariance 4.6341 0.2772 4.6231 5.5876 2.2395 0.1996 2.2284 3.7029

Abbreviations: EVI Enhanced vegetation index, IRS Indoor residual spraying, LLIN Long lasting insecticide net
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A longitudinal dataset was used to examine the tem-
poral changes of malaria vector species in a high malaria
transmission intensity setting. Such entomological sur-
veillance data are rarely available to assess the impact of
IRS on vector densities when there is a high coverage of
pyrethroid-treated LLINs. The IRS effect was more evi-
dent on An. funestus species compared to An. gambiae
(s.l.). While fewer An. gambiae (s.l.) were captured in
2015, IRS campaigns led to an almost total disappear-
ance of An. funestus in the study cohort after two con-
secutive rounds (data shown in Additional files). Indeed,
model estimates of the proportional effect of IRS were
twice as high on An. funestus (RR 0.1508, 97.5% CI:
0.0144–0.8495) compared to An. gambiae (s.l.) (RR
0.5941, 97.5% CI: 0.1432–0.8577). In addition, An. funes-
tus was only present in south-eastern parts of Nagongera
after spraying when compared to the distribution before
spraying rounds. This is consistent with other studies
showing disproportionate impact of IRS on An. funestus
[44]. Along with the quality of spraying (not quantified),
the Uganda malaria control programme’s policy of con-
ducting IRS after every 6 months, potentially increased
its impact on the indoor-biting and resting anopheline
mosquitoes in this area.
The results on declining vector density support find-

ings on clinical outcomes elsewhere [28], and are also
congruent with other entomological indicators such as
the human biting rate [25]. Countries in SSA are chan-
ging to the use of carbamates and organophosphates, be-
cause of increasing evidence of DDT and pyrethroid
resistance [13, 45–47]. One challenge of these insecti-
cides is that they are more expensive than DDT and py-
rethroids, which may lead to fewer houses being
sprayed. However, it has been shown previously that the
use of DDT or pyrethroids for IRS had less impact on
morbidity compared to bendiocarb in other parts of
Uganda [47, 48]. WHO tube bioassays on the effect of
DDT and pyrethroids on An. gambiae (s.l.) in Nagongera
showed moderate to high resistance (68, 24, and 37%
mortality rate on An. gambiae (s.l.) for DDT, deltameth-
rin, and permethrin, respectively, unpublished data).
Elsewhere in SSA, there were mixed results on the use
of carbamates and DDT for IRS. For example, IRS with
DDT did not offer an additional protective effect in
communities with moderate malaria transmission and
high coverage of LLINs in a cluster randomized trial in
The Gambia where vector susceptibility was high [17]. A
different observational study in the same country
showed that carbamates and organophosphates were
more effective compared to using DDT [45]. Additional
empirical evidence from Benin also showed a high effi-
cacy of bendiocarb [49]. On the contrary, there has been
some evidence on the resistance of An. gambiae (s.l.) to
carbamates particularly in West Africa in Côte d’Ivoire

[50], Mali [46], and Burkina Faso [51]. This supports the
need for continuous local monitoring of insecticide re-
sistance and rotations or combinations of insecticides in
areas with pyrethroid-treated LLINs as proposed by the
WHO [52].
Modelling the seasonal cycles of malaria vectors pro-

vides useful information as to when IRS can be targeted
for maximum efficacy and provide insights into trans-
mission seasonality. From an operational perspective,
the current WHO guidelines propose that the comple-
tion of indoor spraying should coincide with the build-
up of vector density before the peak transmission season
[42]. The modelled seasonality was similar for both vec-
tors with bimodal peaks in June and December. This not
only suggests that both species can be targeted for spray-
ing at similar times or months of the year, but also
shows that optimal targeting would aim at finishing
spraying rounds before these peaks, such that there are
fresh deposits of insecticides by May and December,
respectively.
Rainfall and EVI were important drivers of vector

density and seasonality while increasing distance from
water sources was associated with lower mosquito dens-
ity for both An. gambiae (s.l.) and An. funestus. It is im-
portant to use these abiotic factors in modelling adult
vector densities as well as for spatial prediction. While
past studies have shown that environmental variables are
important drivers of seasonal patterns [6], the precise re-
lationships and lag periods of these environmental vari-
ables are not well understood or generalizable for
different malaria endemic settings [53]. In this study, the
time-varying variables (rainfall, EVI and temperature)
were not lagged. A separate analysis using a similar
model specification but relaxing prior specification for
covariates (i.e. using smoothing functions such as
second-order random walks on continuous covariates)
did not improve the goodness-of-fit. Thus, we opted to
use these covariates with fixed prior specification [54].
In employing a longitudinal spatio-temporal analysis,
the modelling framework addresses jointly the spatial
and temporal correlation between sampled vector spe-
cies at the household level [55]. A different model
formulation, such as one that considers only spatial ef-
fects, may lead to different spatial variation and poten-
tially mask the effect of time. Adult mosquito dispersal
mechanisms can alter their spatial and temporal distri-
bution substantially [56].
There are some additional caveats. The data used in

this methodology focused on indoor biting malaria vec-
tors and outdoor biting was not explored. Besides, the
micro level effects of mosquito movement (i.e. indoor or
outdoor) were not included in the analysis due to lack of
empirical data. Although CDC light traps tend to sample
indoor vectors [25], a recent study suggested that even
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the outdoor vectors attempt indoor biting [9]. A major
finding by Kilama et al. [25] is the ethical suitability and
acceptability of CDC light traps compared to the gold
standard human landings or exit traps that can be logis-
tically challenging, may be affected by collector biases,
and the former also increases the risk of human infec-
tion. More importantly, different sampling strategies
for the exophagic vectors should be considered [25],
along with biotic interactions (competition and preda-
tion). Future studies should also consider an analysis of
the influence of changing environment, interactions,
and interventions on these exophagic vectors. However,
while it is easier to assemble data on the environment,
it is rather difficult to assemble longitudinal data on in-
secticide susceptibility or insecticide residual activity.
This limits the form and type of analysis. Nonetheless,
use of current environmental factors unearthed import-
ant seasonal patterns useful for vector control.

Conclusions
The study demonstrated that there were major reduc-
tions in indoor-biting malaria vectors associated with
IRS using bendiocarb when introduced in a community
with high coverage and use of LLINs. The maps provide
a spatial view of areas that can be targeted by spraying
teams, for example, targeting the western parts of
Nagongera. In Uganda, results elsewhere suggest that
the use of bendiocarb complemented the high LLIN
coverage [47, 48]. While these interventions are being
scaled up nationally, insecticide resistance should be
monitored continuously by the various national malaria
control programmes. It is clear that the combination of
vector control tools will not be sufficient to eliminate
transmission from this area and that further interven-
tions such as improved housing (ongoing trial in The
Gambia [57]) are required to achieve this.
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