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Abstract

We are concerned with the non-normal Schrödinger operator H =
−∆ + V on L2(Rn), where V ∈ W 1,∞

loc (Rn) and ReV (x) ≥ c|x|2 − d
for some c, d > 0. The spectrum of this operator is discrete and
contained in the positive half plane. In general, the ε-pseudospectrum
of H will have an unbounded component for any ε > 0 and thus will
not approximate the spectrum in a global sense.

By exploiting the fact that the semigroup e−tH is immediately
compact, we show a complementary result, namely that for every
δ > 0, R > 0 there exists an ε > 0 such that the ε-pseudospectrum

σε(H) ⊂ {z : Re z ≥ R} ∪
⋃

λ∈σ(H)

{z : |z − λ| < δ}.

In particular, the unbounded part of the pseudospectrum escapes to-
wards +∞ as ε decreases.

Additionally, we give two examples of non-selfadjoint Schrödinger
operators outside of our class and study their pseudospectra in more
detail.
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1 Introduction

1.1 Non-Selfadjoint Operators and Pseudospectra

Let H be a Hilbert space and A : H ⊃ D(A)→ H be a closed operator. The
spectrum of A is defined as

σ(A) := {z ∈ C | z −A is not bijective } .

If A is a selfadjoint operator, the spectrum of A contains a large amount of
information about A, such as

- Does A generate a one-parameter semigroup?

- Large t-behaviour of ‖e−tA‖,
- Norm of the resolvent ‖(z −A)−1‖ for arbitrary z ∈ ρ(A),

- Location of σ(A+ V ) if V is a bounded perturbation.

In addition, if A has compact resolvent, the eigenvectors of A form a basis.
For non-selfadjoint operators, however, none of the above properties

can, in general, be deduced from the spectrum. This demonstrates that
for non-selfadjoint operators the spectrum contains very little information
about A. The following example provides an informative illustration of this
fact. For c ∈ R consider the non-normal differential operator

Hc = − d2

dx2
+ ix3 + cx2 (1.1)

on its maximal domain dom(Hc) = {φ ∈ L2(R) : Hcφ ∈ L2(R)}. The spectrum
of Hc is shown in Figure 1.
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Figure 1: The spectrum of Hc for c = 1, obtained in MATLAB using the EigTool
package and a modified code from [Tre01, TE05].

It was shown in [DDT01] that the spectrum of Hc is real and positive.
Moreover, Hc is closed and has compact resolvent [CGM80, Mez01] so the
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spectrum is also discrete. On the other hand, Novak recently obtained the
following result

Theorem 1.1 ([Nov14]). The operator Hc has the following properties:

(i) The eigenfunctions of Hc do not form a (Schauder) basis in L2(R).

(ii) −iHc does not generate a bounded semigroup.

(iii) Hc is not similar to a self-adjoint operator via bounded and boundedly
invertible transformations.

This theorem makes it clear that Hc is very different from a selfadjoint
operator even though its spectrum looks well-behaved.

The above considerations motivate the definition of a finer indicator
than the spectrum for non-selfadjoint operators.

Definition 1.2. For any closed operator A and ε > 0 the set

σε(A) := σ(A) ∪
{
z ∈ ρ(A) : ‖(z −A)−1‖ > 1

ε

}
is called the ε-pseudospectrum of A.

In contrast to the spectrum, the pseudospectrum does contain signifi-
cant information about A, such as [TE05, KSTV15]

- whether the eigenvectors of A form a Riesz basis,

- whether A generates a one-parameter semigroup,

- the large-t behaviour of e−tA.

In addition to the above, one has the following characterization of the
pseudospectrum

σε(A) =
⋃
‖V ‖<ε

σ(A+ V )

showing that the pseudospectrum contains information about the stability
of the spectrum of A under bounded perturbations with small norm. For
c = 0 it was shown by Krejčǐŕık and Siegl [SK12] that the pseudospectrum of
Hc always contains an unbounded component. More precisely, they showed
that for every δ > 0 there exist constants C1, C2 > 0 such that for all ε > 0

σε(H0) ⊃
{
z ∈ C : |z| ≥ C1, | arg z| <

(π
2
− δ
)
, |z| ≥ C2

(
log

1

ε

)6/5
}
. (1.2)

This shows that the large eigenvalues of H0 are highly unstable under small
perturbations. A similar result for c = 1 was shown by Novák in [Nov14]
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Figure 2: Numerical plot of the lines of constant resolvent norm of H1 also obtained
using the EigTool package and a modified code from [Tre01, TE05]. The colour
bar shows the values of log10(‖(λ−H1)−1‖).

and is easily extended to arbitrary c > 0. Figure 2 shows a numerical
computation of the pseudospectrum of H1.

Equation (1.2) and Figure 2 make it clear that for every fixed ε the
pseudospectrum of Hc contains a whole sector in the complex plane for c >
0. Moreover, the opening angle of the sector can be chosen arbitrarily close
to π provided that a ball of sufficiently large radius around 0 is removed. In
particular, large eigenvalues are very unstable under small perturbations.

On the other hand, Figure 2 suggests that the unbounded component
of the pseudospectrum escapes towards +∞ as ε → 0. All of this suggests
that the lower eigenvalues of Hc should indeed be stable (for c > 0) under
small perturbations of Hc, despite the above results.

It should be noted that the operator Hc was first considered in the works
of Bender et al. (see e.g. [BB98, BBM99, Ben07]) who studied it in the
context of Quantum Mechanics.

In this paper we will study a class of non-normal Schrödinger operators
containing the operators Hc, (c > 0). More precisely, we will prove a bound
on the pseudospectrum of the operator H = −∆+V , where ReV (x) ≥ c|x|2−d
for some c, d > 0 on L2(Rn), which complements the results of [SK12, Nov14].

The next section will contain a precise definition of the operator of
interest and state our main results. Section 4 contains two illustrative
special cases outside of our class, in which more precise bounds can be
obtained. Finally, we will discuss several open problems in Section 5.
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2 The Operator of Interest and Main Results

Unless otherwise stated, the notation L2(Rn) will always denote L2(Rn,C).
The same convention holds for other function spaces. Motivated by the
examples in the introduction, we are going to investigate Schrödinger Op-
erators with growing real parts.

2.1 Definition of the Operator

To begin with, let us quote results by [BST15] and [EE87] which allow the
rigorous definition of a large class of Schrödinger operators.1

Proposition 2.1 ([BST15, EE87]). Let V ∈ W 1,∞
loc (Rn) be a function such

that

(i) ReV ≥ 0

(ii) There exist a, b > 0 such that |∇V |2 ≤ a+ b|V |2

(iii) V is unbounded at infinity: |V (x)| → ∞ as |x| → ∞

Then we have the following.

1. The minimal operator

Hmin := −∆ + V, D(Hmin) := C∞0 (Rn) (2.1)

is closable on L2(Rn) with closure

T = −∆ + V, D(T ) = H2(Rn) ∩ {ψ ∈ L2(Rn) : V f ∈ L2(Rn)};

2. T is m-accretive;

3. The resolvent of T is compact.

Using the above proposition, let us define an operator H on L2(Rn) as
follows.

Definition 2.2. Let V : Rn → C satisfy the conditions of Prop 2.1 and
assume in addition that there exist constants c, d > 0 such that

ReV (x) ≥ c|x|2 − d. (2.2)

We denote by H the linear operator H : D(H)→ L2(Rn) as the closure of

Hmin := −∆ + V on C∞0 (Rn).

according to Proposition 2.1.

1 The original proposition in [BST15] in fact allows even more general potentials than
the one we state here.
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2.2 Main Results

From now on, unless otherwise stated, H will denote the operator defined
in Definition 2.2. Our first result is the following.

Lemma 2.3. The one-parameter semigroup generated by −H is immedi-
ately compact.

This is used to prove our main theorem

Theorem 2.4. Let H be defined as in Definition 2.2. Then for every
δ,R > 0 there exists an ε > 0 such that

σε(H) ⊂ {z : Re z ≥ R} ∪
⋃

λ∈σ(H)

{z : |z − λ| < δ}. (2.3)

We immediately obtain the following corollary about the so-called har-
monic oscillator with imaginary cubic potential.

Corollary 2.5. Let

Hc = − d2

dx2
+ ix3 + cx2

for some c > 0 be defined on D(Hc) = H2(R) ∩ {ψ ∈ L2(R) : x3ψ ∈ L2(R)} ⊂
L2(R). Then one has the inclusion (2.3) for the pseudospectrum of Hc.

Im

Re
λ0

λ1

λ2

λ3

λ4

· · · R

Figure 3: The pseudospectrum
of H is contained in sets of the
above shape.

We remark that the inclusion (2.3) is
optimal in the sense that the unbounded
component of the pseudospectrum cannot
be contained in a sector of opening angle
less than π as (1.2) shows.

Moreover, Theorem 2.4 can be seen as
complementary to the results of [Nov14].
Indeed, while it was shown there that there
always exist infinitely many eigenvalues
which are highly unstable under bounded
perturbations, our result shows that the
lower eigenvalues (that is, those with small
real part) do remain stable if the perturbation is small enough in norm.

The method of proof of Theorem 2.4 is inspired by [Bou02] and based
on estimates of the semigroup generated by −H.
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3 Proof of Theorem 2.4

In this section we will first prove Lemma 2.3 and then use it to prove
Theorem 2.4. Throughout this section, H denotes the operator defined
in Lemma 2.3 and we will make frequent use of properties 1., 2., 3. of
Proposition 2.1 without further reference.

3.1 Proof of Lemma 2.3

It is well-known [Wer08, Bre10] that for all φ0 ∈ L2(Rn) the semigroup
generated by −H is nothing but the solution operator to the initial value
problem {

∂tφ = −Hφ
φ(0) = φ0.

(3.1)

In this section we will show that the operator e−tH is compact on L2(Rn).
The first step will be to turn (3.1) into a coupled system of real equations
and then using the results of [DL11].

Writing the equation as a system. We will use the fact that L2(Rn,C)

is canonically isomorphic to L2(Rn,R2). In the following we will denote this
isomorphism by U : L2(Rn,C)→ L2(Rn,R2).

Now, let us write φ(x) = f1(x) + if2(x). A straightforward calculation
shows that (3.1) is equivalent to the system{

∂tf1 = ∆f1 + Im(V )f2 − Re(V )f1

∂tf2 = ∆f2 − Im(V )f1 − Re(V )f2
(3.2)

which we will write as

∂t

(
f1
f2

)
= [∆ +Q(x)]

(
f1
f2

)

=: −Ĥ
(
f1
f2

)
,

where Q(x) =

(
−ReV (x) ImV (x)

− ImV (x) −ReV (x)

)
. Along the lines of [DL11] we define

κ(x) := −c|x|2 +d (with c, d from Definition 2.2) which satisfies the estimate

〈Q(x)ξ, ξ〉 ≤ κ(x)‖ξ‖2 ∀ξ ∈ R2, (3.3)
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according to our assumptions about V . We also define the scalar differential
operator2

Ĥ2κ := ∆ + 2κ(x) on L2(Rn,R). (3.4)

The operators −Ĥ and H2κ satisfy Hypothesis 2.1 of [DL11] enabling us
to prove the following lemma by following the lines of the proof of [DL11,
Prop. 2.4].

Lemma 3.1. Let f0 ∈ S(Rn,R2). There exists a unique classical solution
to the initial value problem [(3.2), f(0, ·) = f0] and one has

|f(t, ·)|2 ≤ etĤ2κ
(
|f0|2

)
, t ≥ 0. (3.5)

Proof. This proof uses the local Hölder continuity of V . By [DL11, Th. 2.6]
there exists a unique classical solution f = (f1, f2) for our choice of initial
condition. Let us now multiply the first equation of (3.2) by f1 and the
second by f2 and add the resulting equations. We obtain

1

2
∂t|f |2 = f ·∆f − Re(V )|f |2.

Using the product rule this may be rewritten as

∂t|f |2 = (∆− 2 ReV )|f |2 − 2|∇f |2

=
(
∆− 2κ(x)− 2W (x)

)
|f |2 − 2|∇f |2

= Ĥ2κ

(
|f |2

)
− 2
(
W (x)|f |2 + |∇f |2

)
,

where we have defined W (x) := ReV (x)− κ(x) ≥ 0. Now, define w := |f |2 −
etĤ2κ

(
|f0|2

)
. We obviously have w(0, ·) = 0 and from the above calculation

we obtain
(∂t −∆ + 2κ(x))w ≤ 0, t > 0.

Thus applying the maximum principle [DL11, Prop. 2.3 (ii)] we obtain
w ≤ 0.

The operator Ĥ2κ. Regarded as an operator on L2(Rn,R), the operator
−Ĥ2κ is of course nothing but the harmonic oscillator with frequency ω =√

8c, shifted by the constant −2d. Its negative is well-known to generate
a one-parameter semigroup etĤ2κ which can be represented by the Mehler
kernel(

etĤ2κg
)
(t, x) = e2td

(2π

ω
sinh(2ωt)

)− 1
2
∫
e
−ω2

cosh(2ωt)(|x|2+|y|2)−2x·y
sinh(2ωt) g(y) dy

=:

∫
K(t, x, y)g(y) dy

2 More precisely, Ĥ2κ should be regarded as the L2-closure of the operator initially
defined on the space S(Rn,R2).
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(cf. [Dav80, Chapter 7.2]).

Lemma 3.2. Let t > 0 and 0 < α ≤ cosh(2ωt) − 1 and define µ(x) :=

e
− αω

2 sinh(2ωt)
|x|2

. Then

|K(t, x, y)| ≤ C µ(x)µ(y), (3.6)

where C depends only on t and ω.

Proof. We only have to check that −α(|x|2 + |y|2) ≥ − cosh(2ωt)(|x|2 + |y|2)−
2x · y. This follows immediately from the assumption on α. Note that
cosh(2ωt)− 1 > 0 for t > 0, so such an α exists.

Note that this lemma implies that etĤ2κ is a Hilbert-Schmidt operator.

Compactness of e−tH. The following lemma states that a cut-off
version of e−tH converges in norm to e−tH .

Lemma 3.3. Let t > 0 and θn ∈ Cc(Rn) such that χBrn (0) ≤ θn ≤ χB2rn (0),
where rn is defined such that

sup
x∈Rn\Brn (0)

(
µ(x)

)
<

1

n2
(3.7)

(where µ was defined in Lemma 3.2) and define the operator Rn(t) by

Rn(t)f := (Ue−
t
2HU−1)

(
θn(Ue−

t
2HU−1)f

)
.

Then
‖Ue−tHU−1 −Rn(t)‖L2(Rn,R2) → 0 (n→∞). (3.8)

Proof. Let n ∈ N and f ∈ S(Rn,R2) and compute

|Ue−tHU−1f(x)−Rn(t)f(x)|2
Lemma 3.1
≤ etĤ2κ

(
|Ue− t2HU−1f − θn(Ue−

t
2HU−1)f |2

)
(x)

=

∫
K
(
t
2 , x, y

)∣∣(1− θn(y))(Ue−
t
2HU−1)f(y)

∣∣2 dy
Now integrate both sides over x.

‖Ue−tHU−1f −Rn(t)f‖2
L2
≤
∫∫

K
(
t
2 , x, y

)∣∣(1− θn(y))(Ue−
t
2HU−1)f(y)

∣∣2 dxdy
≤ C

∫∫
µ(x)µ(y)|1− θn(y)|2 |(Ue− t2HU−1)f(y)|2 dxdy

≤C
(∫

µ(x)dx

)
‖µ(y)(1− θn(y))2‖∞

∫
|(Ue− t2HU−1)f(y)|2dy

≤ C ′
(

sup
y∈Rn\Brn

µ(y)
)
‖(Ue− t2HU−1)f‖2

L2

≤ M

n2
‖(Ue− t2HU−1)f‖2

L2
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for some M > 0. Using the unitarity of U and the fact that e−
t
2H is a

bounded operator on L2(Rn,C) we finally arrive at

‖Ue−tHU−1f −Rn(t)f‖2
L2(Rn,R2) ≤

(
M

n2
‖e− t2H‖2

)
‖f‖2

L2(Rn,R2). (3.9)

By density of S(Rn,R2) we conclude that this inequality is valid for all
f ∈ L2(Rn,R2). This immediately yields

‖Ue−tHU−1 −Rn(t)‖L2(Rn,R2) ≤
L

n
(3.10)

for some L > 0.

We can now use Lemma 3.3 to prove Lemma 2.3. By closedness of the
set of compact operators and Lemma 3.3 we only have to show that Rn(τ)

is compact for every n (cf. Theorem 7.1.4 in [Dav07]). Since furthermore
Ue−

τ
2HU−1 is a bounded operator on L2(Rn,C), we only show that Tn(τ) :=

θnUe
− τ2HU−1 is compact.

This compactness can be established by a standard local regularity ar-
gument for parabolic PDE. Consider thus the function

v(x, t) := η(t)ξn(x)f(x, t),

with η(t) ∈ C∞([0, 1]) such that η(0) = 0 and η(t) = 1 for t > τ/4 and with
ξn ∈ C∞(Rn), ξn ≥ 0 such that χB4rn

≤ ξn ≤ χB8rn
. A simple calculation

shows that v satisfies
vt +Hv = wn

where wn = ξn(∂tη)f−η(∆ξn)f−2η∇ξn ·∇f . Note that wn is in the dual space
of H1 with bounded norm ‖wn‖L2(0,1;H−1(Rn)) ≤ C‖f‖L2(0,1;L2(Rn)) for some
C > 0 as it contains only first spatial distributional derivatives of an L2

function. By a standard Galerkin approximation we therefore immediately
obtain an L2(0, 1;H1(Rn))-bound on v, which implies the same bound on u

on the domain (τ/4, 1)×B4rn(0) where f and v agree.
Repeating this procedure, but cutting off between τ/4 and τ/2 in time

and 2rn and 4rn in space, yields higher regularity of f on (τ/2, 1)×B2rn(0)

by noting that the new wn is now bounded in L2(0, 1;L2(Rn)). The bound
we obtain is thus

‖f‖L∞(τ/2,1;H1(B2rn )) ≤ C‖f‖L2(0,1;L2(Rn)) ≤ C‖f0‖L2(Rn),

Since θn is smooth and supp θn ⊂ B2rn(0), this implies that

‖Tn(τ)f0‖H1(Rn) ≤ C‖f0‖L2(Rn).

The desired compactness result follows immediately.
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Corollary 3.4. The semigroup e−tH is norm-continuous.

Proof. This follows from the above compactness result, together with com-
pactness of (H − λ)−1; cf. [EN00, Th. 4.29]

Note that by Corollary 3.4, we obtain the following bound on the spec-
trum of H (cf. [EN00, Th. 4.18]):

Corollary 3.5. Let b ∈ R. Then the set

{λ ∈ σ(H) : Reλ ≤ b}

is bounded.

3.2 Bound on the Pseudospectrum

Let us first quote several theorems from the theory of one-parameter semi-
groups of operators which will be needed in the sequel. Throughout this
section, T (t) denotes a (strongly continuous) one-parameter semigroup and
−A its generator.

Theorem 3.6 ([Dav80, Ch. 2.2]). Let T (t) be a one-parameter semigroup
and assume T (a) is compact for some a > 0. Then, the spectrum of A
consists of a countable discrete set of eigenvalues each of finite multiplicity,
and

σ(T (t)) = {0} ∪ {e−tλ |λ ∈ σ(A)}. (3.11)

Theorem 3.7 ([Dav80, Ch. 1.2]). If T (t) is a one-parameter semigroup on
a Banach space then

a := lim
t→∞

t−1 log ‖T (t)‖ (3.12)

exists with −∞ ≤ a <∞. Moreover

r(T (t)) := max{|λ| : λ ∈ σ(T (t))} = eat ∀t > 0, (3.13)

Theorem 3.8 ([Wer08, Ch. VII.4]). Let T (t) be a one-parameter semigroup
with ‖T (t)‖ ≤Meat for all t ≥ 0. Then

‖(z −A)−1‖ ≤ M

a− Re z
∀z : Re z < a. (3.14)
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Example: The imaginary Airy Operator. The theorems in the pre-
vious section can be used to estimate the pseudospectra of m-accretive
operators. As an illustrative example, let us treat the imaginary Airy op-
erator defined as

HAi = − d2

dx2
+ ix on {φ ∈ L2(R) | − φ′′ + ixφ ∈ L2(R)}. (3.15)

This operator is m-accretive, and thus generates a one-parameter semi-
group. Using the Fourier transform one can show that [Dav07]

‖e−tHAi‖ = e−
t3

12 . (3.16)

Let now a > 0. Choosing Ma = supt≥0
(
eat−

t3

12
)

we have

e−
t3

12 ≤Mae
−at

and so
‖e−tHAi‖ ≤Mae

−at. (3.17)

Thus Theorem 3.8 tells us that

‖(z −HAi)
−1‖ ≤ Ma

a− Re z
∀z : Re z < a. (3.18)

(note that the generator of the semigroup is not HAi but −HAi). In partic-
ular, we have for (say) Re z < a− 1 that

‖(z −HAi)
−1‖ ≤Ma. (3.19)

This shows that for ε < 1
Ma

the set {z | Re z < a − 1} does not intersect
the ε-pseudospectrum. In more suggestive terms: The ε-pseudospectrum
wanders off to the right as we decrease ε.

A simple calculation shows that Ma = supt≥0
(
eat−

t3

12
)

= e
4
3a

3/2
. This

even enables us to estimate how fast the pseudospectrum moves with de-
creasing ε. To this end, let z ∈ σε(HAi) for some fixed ε > 0. Then by (3.19)
we have

1

ε
≤ ‖(z −HAi)

−1‖

≤ e 43 (Re z+1)3/2

≤ ew(Re z)3/2

12



for some w > 0 and Re z large enough. This inequality immediately leads
to

Re z ≥ w−1
(

log
1

ε

)2/3

, (3.20)

with w independent of ε. This shows that indeed every point in the ε-
pseudospectrum moves towards +∞ with velocity at least

(
log 1

ε

)2/3
.

Let us compare this to the results of [KSTV15]. Using semiclassical
techniques the authors showed that there exist constants C1, C2 > 0 such
that for all ε > 0

σε(HAi) ⊃
{
z : Re(z) ≥ C1, Re(z) ≥ C2

(
log

1

ε

)2/3}
.

Equation (3.20) confirms that the scaling found in [KSTV15] is in fact
optimal. The same result has previously been obtained in [Bor13] using a
different method of proof.

Note that together with the observation that ‖(HAi − z)−1‖ is indepen-
dent of Im(z) (see [Dav07, Problem 9.1.10]) the pseudospectrum of HAi

is (essentially) completely characterized: it consists of half-planes moving

towards +∞ with asymptotic velocity
(

log 1
ε

)2/3
.

The General Case: A First Estimate. Let us now turn back to the
operator H = −∆ + V of Definition 2.2. To conclude the proof of Theorem
2.4 we will need several lemmas which will be established next. By Theorem
3.6 we know that

σ(e−tH) = {0} ∪ {e−tλ |λ ∈ σ(H)}. (3.21)

Let us denote the eigenvalues of H by λj such that Reλj ≤ Reλi for j ≤ i.
Thus, λ0 denotes an eigenvalue with minimal real part. In fact, up to
now we could have Reλ0 = −d. We will account for this problem below in
Lemma 3.9. With this notation, we obtain from eq. (3.21) that

r(e−tH) = e−tReλ0 , (3.22)

Thus by Theorem 3.7 we have

−Reλ0 = lim
t→∞

t−1 log ‖e−tH‖. (3.23)

In other words, we have that for every α < Reλ0 that

lim
t→∞

eαt‖e−tH‖ = 0. (3.24)

13



Let such an α < Reλ0 be fixed and choose tα such that eαt‖e−tH‖ < 1 for all
t > tα. On the whole we have

‖e−tH‖ < e−αt ∀t > tα

‖e−tH‖ ≤ 1 ∀t > 0 (since it is a contraction semigroup),

so we finally arrive at

‖e−tH‖ ≤Mαe
−αt ∀t > 0, (3.25)

with Mα = eαtα .
We are now in the position to proceed as for the imaginary Airy oper-

ator. Theorem 3.8 tells us that

‖(z −H)−1‖ ≤ Mα

α− Re z
∀z : Re z < α. (3.26)

Note, however, that this time we cannot simply let α → +∞ since we are
restricted to α < Reλ0.

Pushing the Pseudospectrum Towards Infinity. Let Qn = 1
2πi

∮
γ
(H−

z)−1dz denote the Riesz projection associated with H, where γ encloses
only the n-th eigenvalue λn (which is possible since the spectrum of H is
discrete). Moreover, define Pm :=

∑m
n=0Qn. Then each of the operators

Qn, Pm commutes with the resolvent of H.
Since H has compact resolvent, we have that dim(RanQn) < ∞ ∀n.

For each m ∈ N the space L2(Rn) decomposes into a direct sum of closed,
H-invariant subspaces3

L2(Rn) = RanQ0 ⊕ · · · ⊕ RanQm ⊕ Ran(I − Pm) (3.27)

Because e−tH commutes with the resolvent of H, each of the above sub-
spaces is invariant under e−tH and hence, by [EN00, Sect. II.2.3] the gen-
erator of e−tH |RanQn is −H|RanQn . The same is true for Ran(I − Pm).

Since the spectrum of H|Ran(I−Pm) is {λn : n > m} (and since the restric-
tion of a compact operator is compact), applying Theorem 3.6 again gives

σ
(
e−tH

∣∣
Ran(I−Pm)

)
= {0} ∪ {e−tλn}∞n=m+1. (3.28)

3 H-invariance follows from the fact that the Qn commute with H and closedness of
Ran(I − Pm) follows from the Fredholm alternative.
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Lemma 3.9. For all z ∈ ρ(H), one has

‖(H − z)−1‖ ≤ C
(

m∑
n=0

‖(H|RanQn − z)−1‖+ ‖(H|Ran(I−Pm) − z)−1‖
)

(3.29)

where C depends only on ‖Qn‖ (n ≤ m).

Proof. Let z ∈ ρ(H) and ξ, ψ ∈ L2(Rn) such that (H − z)ξ = ψ and ‖ψ‖ = 1.
We want to estimate ‖ξ‖. To do this, note that by surjectivity of (H − z)
we have

L2(Rn) =

(
m⊕
n=0

Ran(H|Ran(Qn) − z)
)

+ Ran(H|Ran(I−Pm) − z). (3.30)

Note that the first term on the right hand side is actually equal to
⊕m

n=0 RanQn,
since RanQn is H-invariant.

Claim: We have Ran(I − Pm) = Ran(H|Ran(I−Pm) − z).

Proof of Claim: Since the Qn commute with H, we have

Ran(H|Ran(I−Pm) − z) = Ran
(
(H|Ran(I−Pm) − z)(I − Pm)

)
= Ran

(
(I − Pm)(H|Ran(I−Pm) − z)

)
⊂ Ran(I − Pm).

Now, suppose there was a 0 6= φ ∈ Ran(I − Pm)\Ran(H|Ran(I−Pm) −
z). Since (3.27) is a direct sum φ cannot have any components in⊕m

n=0 RanQn. But then φ /∈ Ran(H − z), by (3.30), which contradicts
surjectivity.

Now, decompose

ψ =

m∑
n=1

Qnψ + (I − Pm)ψ

=:

m∑
n=1

ψn + ψ̃.

Choose ξn ∈ RanQn such that (H− z)ξn = ψn and ξ̃ ∈ Ran(I−Pm) such that
(H − z)ξ̃ = ψ̃ (which is possible since Ran(I − Pm) = Ran(H|Ran(I−Pm) − z)).
But now it is clear that

‖ξn‖ ≤ ‖(H|RanQn − z)−1‖‖ψn‖ ≤ ‖(H|RanQn − z)−1‖‖Qn‖‖ψ‖
‖ξ̃‖ ≤ ‖(H|Ran(I−Pm) − z)−1‖‖ψ̃‖ ≤ ‖(H|Ran(I−Pm) − z)−1‖‖(I − Pm)‖‖ψ‖
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Finally, using the triangle inequality we obtain

‖ξ‖ ≤
m∑
n=1

‖ξn‖+ ‖ξ̃‖

≤
(

m∑
n=0

‖Qn‖‖(H|RanQn − z)−1‖+ ‖(I − Pm)‖‖(H|Ran(I−Pm) − z)−1‖
)
‖ψ‖

≤
(

1 +

m∑
n=0

‖Qn‖
)(
‖(H|RanQn − z)−1‖+ ‖(H|Ran(I−Pm) − z)−1‖

)
which concludes the proof.

We are finally able to complete the proof of Theorem 2.4. In (3.29) the
first term on the right hand side is nothing but a sum of the resolvents
of matrices. These are well-known to decay in norm at infinity. In fact, a
simple calculation shows that one has ‖(T−λ)−1‖ ≤

(
|λ|−‖T‖

)−1
as |λ| → ∞.

As a consequence, the ε-pseudospectra of (H|RanQn − z)−1 are contained in
discs around the λn for ε small enough.

For the second term we can use (3.28) in Theorems 3.7 and 3.8 to obtain
an estimate similar to (3.26), but with α < Reλm+1 instead. By Corollary
3.5 we necessarily have Reλn →∞ as n→∞. Thus we obtain a bound on
‖(H − λ)−1‖ on vertical lines with arbitrarily large real part and the proof
of Theorem 2.4 is completed.

4 The cases of vanishing and negative real part of
the potential

It is natural to ask whether the condition ReV (x) ≥ c|x|2−d can be relaxed.
In this section we will discuss two examples giving hints as to what might or
might not be possible. First, we will consider an example of a Schrödinger
operator with ReV = 0 which still satisfies the inclusion (2.3). Second, we
will show that in the case ReV (x) ≤ −c|x|2 one can not expect any inclusion
of the form (2.3).

4.1 Example: The Imaginary Cubic Oscillator

In this section we consider the operator

HB = − d2

dx2
+ ix3 on L2(R), (4.1)

defined in the sense of Proposition 2.1. HB is sometimes called the imag-
inary cubic oscillator, or the Bender oscillator. We immediately obtain
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closedness of HB, compactness of its resolvent and m-accrevity from Propo-
sition 2.1. Moreover, it is known [DDT01, Shi02] that the spectrum of HB

is entirely real and positive which enables us to number the eigenvalues λi
of HB such that λi ≤ λj for i ≤ j and λ0 > 0. In this section, we will prove
the following result about HB.

Theorem 4.1. For the pseudospectrum of HB the inclusion (2.3) holds and
in addition there exists a C > 0 such that for every δ > 0 there is an ε > 0

such that

σε(HB) ⊂
{
z : Re z ≥ C

(
log

1

ε

)6/5
}
∪

⋃
λ∈σ(HB)

{z : |z − λ| < δ}. (4.2)

In particular, apart from disks around the eigenvalues, the ε-pseudospectrum

is contained in the half plane
{

Re z ≥ C
(
log 1

ε

)6/5}
.

Proof. As in the previous section we want to estimate ‖e−tHB |Ran(I−Pm)‖
for m ∈ N. We know that the eigenfunctions of HB form a complete set
in L2(R) and the algebraic eigenspaces are one-dimensional [SK12, Tai06].
Thus, we can use Lemma 3.1 of [Dav05]:

Lemma 4.2 ([Dav05]). Let T (t) be a strongly continuous semigroup and
{ψn}∞n=1 a complete set of linearly independent vectors. Let Tn(t) denote the
restriction of T (t) to span{ψ1, . . . , ψn}. Then

‖T (t)‖ = lim
n→∞

‖Tn(t)‖ (4.3)

for all t ≥ 0.

From now on, let {ψn}∞n=1 denote the set of eigenvectors of HB and let
V nm := span{ψm, . . . , ψn} =

⊕n
k=m Ran(Qk). The Lemma now implies

‖e−tHB |Ran(I−Pm−1)‖ = lim
n→∞

‖e−tHB |V nm‖.

The analytic functional calculus (see [TL80, Ch.V.]) shows that
∑n
k=mQk

is a projection again and thus we have ψ =
∑n
i=mQiψ for every ψ ∈ V nm

which we can use as follows.

‖e−tHB |Ran(I−Pm)ψ‖ = lim
n→∞

‖e−tHB |V nmψ‖

= lim
n→∞

∥∥∥∥∥
n∑

k=m

e−tλkQkψ

∥∥∥∥∥
≤ lim
n→∞

n∑
k=m

e−tλk‖Qk‖‖ψ‖

=

( ∞∑
k=m

e−tλk‖Qk‖
)
‖ψ‖
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so we obtain

‖e−tHB |Ran(I−Pm)‖ ≤
∞∑
k=m

e−tλk‖Qk‖. (4.4)

In [Hen14b] it was shown that limk→∞
log ‖Qk‖

k = π√
3
. Accordingly, for every

µ > π√
3

there exists a C > 0 such that

‖Qk‖ ≤ Ceµk. (4.5)

In particular, choosing µ = 2, we obtain ‖Qk‖ ≤ Ce2k for some C > 0.
On the other hand, it is well-known from [Sib75] that

λk ≥ ck6/5. (4.6)

Combining these two facts, we arrive at

‖e−tHB |Ran(I−Pm)‖ ≤
∞∑
k=m

e−tck
6/5

Ce2k

= C

∞∑
k=m

e−tck
6/5+2k

Clearly, there exists a k0 such that 1
2 tck

6/5 > 2k for all k > k0 and k0 is
independent of t as long as (say) t ≥ 1. So we can decompose

‖e−tHB |Ran(I−Pm−1)‖ ≤ C
k0∑
k=m

e−tck
6/5+2k + C

∞∑
k=k0+1

e−
c
2 tk

6/5

Since k0 is independent of m and t, the first term in this estimate is only
present as long as m < k0.

Since we are interested in asymptotics, let us assume m > k0 ≥ 1 from
now on. Our task is thus to estimate the second term in the above inequal-
ity. This is easily done by using bx+ 1c ≥ x for all x > 0 and calculating

∞∑
k=m

e−
c
2 t(k+1)6/5 ≤

∫ ∞
m

e−
c
2 tx

6/5
dx

≤
∫ ∞
m

(
6
5x

1/5
)
e−

c
2 tx

6/5
dx

= 2
ct

[
−e−

c
2 tx

6/5
]∞
m

= 2
cte
− c2 tm

6/5

This finally shows our main ingredient
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Lemma 4.3. There exist constants k0,M, ω > 0 such that

‖e−tHB |Ran(I−Pm−1)‖ ≤Me−ωm
6
5 t

for all m > k0, t ≥ 1.

This immediately leads to4

‖(HB |Ran(I−Pm−1) − z)
−1‖ ≤ M̃

ωm
6
5 − Re z

(4.7)

for all Re z < ωm
6
5 , where M̃, ω are independent of m. On the whole, the

resolvent of HB is estimated by (see the proof of Lemma 3.9)

∥∥(HB−z)−1
∥∥≤(1+

m∑
k=1

‖Qk‖
)( m∑

k=1

∥∥(HB |RanQk
−z)−1

∥∥+
∥∥(HB |Ran(I−Pm)−z)−1

∥∥)

≤
(

1 +

m∑
k=1

‖Qk‖
)( m∑

k=1

1

|λk − z|
+

M̃

ω(m+ 1)
6
5 − Re z

)

The first summand in the second factor gives the discs around the eigen-
values in (2.3), the second gives the half-plane. If we keep the distance of
Re(z) to ω(m+1)6/5 constant, the second factor on the right-hand side stays
bounded as m→∞. Since the first factor grows as e(constant)·m, we have

‖(HB − z)−1‖ ≤ CeC
′(Re z)5/6 (4.8)

uniformly in z as long as dist(z, σ(HB)) is bounded below by a positive
constant.

Keeping this in mind, suppose now that z ∈ σε(HB)∩{dist(z, σ(HB)) > 1}.
We deduce

log

(
1

ε

)
≤ log ‖(HB − z)−1‖ ≤ C ′′(Re z)5/6

⇔
(

log
1

ε

)6/5

≤ C ′′ Re z

Together with the complementary estimate in (1.2) this proves the scaling
in (4.2).

4 Since we only know that ‖e−tHB‖ is bounded by 1 between t = 0 and t = 1, we
might need to increase M to obtain (4.7).
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Let us compare Theorem 4.1 to the results of [SK12] . As noted in the
introduction, it was shown there that for every δ > 0 there exist constants
C1, C2 > 0 such that for all ε > 0

σε(HB) ⊃
{
z ∈ C : |z| ≥ C1, | arg z| <

(π
2
− δ
)
, |z| ≥ C2

(
log

1

ε

)6/5
}
.

Clearly, we have found the same scaling in (4.2). Thus, Theorem 4.1 shows
that the scaling (1.2) obtained in [KSTV15] is sharp.

Moreover, we obtain as a byproduct the following two statements about
the semigroup and the resolvent of HB.

Corollary 4.4. The semigroup e−tHB is immediately differentiable.

Corollary 4.5. The resolvent norm of HB satisfies

lim
r→∞

‖(HB − s− ir)−1‖ = 0 (4.9)

for all s ∈ R.

Proof. By [EN00, Cor. II.4.15] and the estimate (4.7) the semigroups
e−tHB |Ran(I−Pm) are immediately differentiable for every m and hence im-
mediately norm-continuous. By [EN00, Cor. II.4.19] one has

lim
r→∞

∥∥(HB |Ran(I−Pm−1) − (s+ ir)
)−1∥∥→ 0 ∀s < ωm

6
5 .

Together with the estimate (3.29) the assertion follows.

Notice that the strategy of the proof of Theorem 4.1 also applies to
more general operators for which the norms of the spectral projections are
known such as those considered in [Hen14a, MSV13]

4.2 Counterexample: An Operator with Negative Real Part

Let c > 0 and consider the operator

Hc = − d2

dx2
+ ix3 − cx2 (4.10)

on L2(R), where Hc is defined in the sense of Proposition 2.1. This
operator is still well-behaved in the sense that it is closed and its resolvent
is compact. Moreover, its spectrum is still well-behaved in the sense that
it is closed and its resolvent is compact. Moreover, its spectrum is still
real and positive. However, as we will show, its pseudospectrum is not
well-behaved at all. In fact, Hc does not even generate a one-parameter
semigroup in this case.

20



Theorem 4.6. For Hc no inclusion of the type (2.3) is possible. More
precisely, for every C,R,M > 0 there exists z ∈ C such that Re z < −R, |z| >
M and

‖(Hc − z)−1‖ ≥ C. (4.11)

In particular, Hc does not generate a one-parameter semigroup.

Proof. We will use Theorem 3.1 and Lemma 4.1 of [Nov14]. Similarly to
their strategy, let us define the unitary transformation

(Uψ)(x) := τ1/2ψ(τx),

where τ > 0. This transformation takes Hc to its semiclassical analogue

Hh
c := τ−3UHcU = −h2 d

2

dx2
+ ix3 − ch2/5x2,

where h = τ−5/2.
The semiclassical pseudospectrum (cf. (3.2) in [Nov14]) for this operator

is the set (cf. Figure 4)

Λh = {ξ2 + ix3 − ch2/5x2 : ξ, x 6= 0}.

We obviously have i ∈ Λh for every h > 0 (remember that c < 0). By [Nov14,
Theorem 3.1] and the unitarity of U there exists a C > 0 such that

‖(Hc − iτ3)−1‖ = τ−3‖(Hh
c − i)−1‖

≥ h6/5C1/h

Sending τ = h−2/5 → ∞, we see that the resolvent norm of Hc diverges
exponentially on the imaginary axis.

To show divergence on vertical lines with strictly negative real part we
may shift Hc by a real constant and then apply the above procedure. More
precisely, let α > 0 and consider the operator Hc + α. Its semiclassical
analogue is

τ−3U(Hc + α)U = Hh
c + h6/5α

and its semiclassical pseudospectrum

Λh = {ξ2 + ix3 − ch2/5x2 + h6/5α : ξ, x 6= 0}

is shifted to the right by h6/5α. Its boundary curve intersects the imaginary
axis when −ch2/5x2+h6/5α = 0 the solution of which is h2/5

(
α
c

)1/2
. Since this

tends to 0 as h→ 0 one can always find h0 > 0 such that i ∈ Λh for all h < h0.
This enables us to apply the above procedure for the shifted operator and
obtain again exponential divergence on the imaginary axis.
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Figure 4: The semiclassical
pseudospectrum of Hh

c . The
boundary curve approaches
the imaginary axis as h→ 0.

Remark: Given the above lower estimate
of ‖(Hc − z)−1‖, let us mention that it is still
possible to obtain weaker upper bounds on
the resolvent norm of Hc. Boegli, Siegl and
Tretter have shown in [BST15] that for a very
general class of Schroedinger operators, in-
cluding H,Hc and HB, the resolvent norm al-
ways decays in a sector in the complex plane
which opens to the left.

In other words, operators such as Hc are
still sectorial in the sense of [Haa06]. In
particular, there exists an analytic functional
calculus for these operators which, in turn,
yields the existence e.g. of fractional powers
of Hc.

5 Conclusion and Outlook

We have shown that for ReV ≥ c|x|2 the unbounded component of the
pseudospectrum of H = −∆ +V moves towards +∞ as ε→ 0. We note that
this result holds for arbitrary imaginary part of the potential.

For a similar operator with ReV = 0 we were able to give a precise
scaling for how fast this happens. To obtain this scaling the knowledge of
the norms of the Riesz projections was crucial.

Let us remark that an analogous result to Theorem 2.4 trivially holds
for operators which are m-sectorial (in the sense of [Kat95]). This is due to
the fact that the resolvent norm decays outside the numerical range. This
includes e.g. the Bender oscillator − d2

dx2
− (ix)ν , 2 < ν < 4 (cf. [Mez01] for a

precise definition). The conclusion of Theorem 2.4 holds for H if 2 < ε ≤ 3.
Furthermore, by semiclassical methods, the conclusion of Theorem 4.6 holds
if 3 < ε < 4.

More generally, Schrödinger Operators with a potential whose range is
contained in a sector belong to the above category (cf. [BST15, Prop. 2.2]
for a precise study).

A number of open questions remain.

- To the authors’ knowledge the norms of the Riesz projections of the
harmonic oscillator with imaginary cubic potential have not been
computed yet, but we strongly suspect that the scaling ‖Qk‖ ∼ eωk

(which holds for the Bender oscillator) is also true in this case.
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- Furthermore, we have seen that the resolvent norm of the Bender
oscillator HB goes to zero on vertical lines in the complex plane.
However, we do not know the rate of the decay. Clearly, there exists
no C > 0 such that

‖(Hc − s− ir)−1‖ ≤
C

|r| , ∀s ∈ R

because this would imply that HB generates an analytic semigroup
(which is false by (1.2)). The question remains exactly how slow the
decay is. The answer could be used to confirm the results of [Bor13]
who computed the asymptotic shape of the level sets of the resolvent
norm.

- Finally, there is the obvious question as to whether the central as-
sumption ReV ≥ c|x|2 can be relaxed. It is not obvious how to gener-
alize our method of proof to potentials which do not satisfy this lower
bound. Indeed, our compactness proof of the semigroup heavily relied
on the fundamental solution of the harmonic oscillator. However, the
examples of the imaginary cubic oscillator and the imaginary airy
operator suggest that the lower bound on ReV is not essential. It
seems likely to the authors that under suitable conditions on ImV

the semigroup of −∆ + V will be compact even for ReV = 0.
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