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Abstract

The Pan-STARRS (PS1) Medium Deep Survey discovered over 5000 likely supernovae (SNe) but obtained
spectral classifications for just 10% of its SN candidates. We measured spectroscopic host galaxy redshifts for 3147
of these likely SNe and estimate that ∼1000 are Type Ia SNe (SNe Ia) with light-curve quality sufficient for a
cosmological analysis. We use these data with simulations to determine the impact of core-collapse SN (CC SN)
contamination on measurements of the dark energy equation of state parameter, w. Using the method of Bayesian
Estimation Applied to Multiple Species (BEAMS), distances to SNe Ia and the contaminating CC SN distribution
are simultaneously determined. We test light-curve-based SN classification priors for BEAMS as well as a new
classification method that relies upon host galaxy spectra and the association of SN type with host type. By testing
several SN classification methods and CC SN parameterizations on large SN simulations, we estimate that CC SN
contamination gives a systematic error on w (sw

CC) of 0.014, 29% of the statistical uncertainty. Our best method
gives s = 0.004w

CC , just 8% of the statistical uncertainty, but could be affected by incomplete knowledge of the
CC SN distribution. This method determines the SALT2 color and shape coefficients, α and β, with ∼3% bias.
However, we find that some variants require α and β to be fixed to known values for BEAMS to yield accurate
measurements of w. Finally, the inferred abundance of bright CC SNe in our sample is greater than expected based
on measured CC SN rates and luminosity functions.
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1. Introduction

Since the discovery of cosmic acceleration (Riess et al. 1998;
Perlmutter et al. 1999), measuring the properties of dark energy
with Type Ia supernovae (SNe Ia) has been predicated on the
spectroscopic confirmation of SN Ia candidates. However, as
the size of individual SN Ia samples surpasses 1000 SNe,
obtaining spectra for each Type Ia candidate is becoming
prohibitively expensive. Only a small fraction of SNe Ia from
current and future surveys such as the Dark Energy Survey
(DES) and the Large Synoptic Survey Telescope (LSST)
will have spectroscopic classification. Without spectroscopic
classification, core-collapse SN (CC SN) contamination can
bias our estimates of cosmological parameters (Kunz et al.
2007; Falck et al. 2010).

Without SN spectroscopy, the shape and color of a
photometric SN light curve can be used as a less precise
diagnostic of the type. Campbell et al. (2013) used SDSS ugriz
light curves to classify 752 SNe as likely Type Ia, enough to
measure the dark energy equation of state parameter, w, with
∼10% statistical uncertainty. Their sample was selected from
light-curve properties and a classifier that compares each
observed light curve to SN Ia and CC SN templates (PSNID;

Sako et al. 2011). Their final sample comprised just 3.9%
CC SNe. While Campbell et al. (2013) has the only SN Ia-
based measurement of w to date that does not use spectroscopic
classification for its SNe, the measurement did not include
systematic uncertainties. In addition, contaminating CC SNe
bias their measurements of SN Ia dispersion and the correlation
between SN luminosity and light-curve rise/decline rate
by ∼60%.
Many light-curve classifiers use the “naïve Bayes” approx-

imation, which assumes that all observables that indicate SN
type are uncorrelated. Machine learning techniques can often
outperform these classifiers, yielding higher SN Ia classification
efficiency (the fraction of SNe Ia classified correctly) and lower
CC SN contamination (Lochner et al. 2016; Möller et al. 2016).
On SDSS-SN data, the Sako et al. (2014) kd-tree nearest
neighbor (NN) method has a purity comparable to that of
Campbell et al. (2013) but accurately classifies ∼1.4 times as
many real SNe Ia in a given sample.
An important caveat is that nearly all classifiers are

optimized on simulations with little evaluation on real
data. Simulations, in turn, depend on CC SN templates and
knowledge of the CC SN luminosity functions (LFs) and rates.
CC SNe are diverse, far more so than SNe Ia, and only a limited
number of high-quality templates are publicly available.
Training a classifier directly on survey data is possible but
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can be sub-optimal due to limited numbers of CC SNe
observed and the dependence of classifier results on the
specific survey characteristics (e.g., observing cadences, filters,
and signal-to-noise ratios (S/N)).

We can make SN classification less dependent on CC SN
templates, LFs, and rates by incorporating host galaxy data.
Because many SNe Ia have a 1 Gyr delay time between
progenitor formation and explosion (Rodney et al. 2014), they
are the only type of SNe found in early-type galaxies (with very
few known exceptions; Suh et al. 2011). Foley & Mandel
(2013) found that it was possible to accurately classify the
∼20% of SNe Ia found in elliptical galaxies if the morphology
of their host galaxy is known.

Though these results are encouraging, light-curve and host
galaxy classification alone may not be enough to enable a
measurement of w as precise as measurements using spectro-
scopically classified SNe (e.g., Betoule et al. 2014,

= - w 1.027 0.055). A difference in w of 5% corresponds
to a change of 0.02mag from z=0 to z=0.5; if CC SNe are
1 mag fainter than SNe Ia on average, a bias of 0.02mag can
be induced by just a 2% CC SN contamination in a high-z
sample such as PS1. If the contaminating distribution of CC SNe
is more than 1 mag fainter (this depends on survey Malmquist
bias), it takes even fewer CC SNe to bias w by an equivalent
amount.

A Bayesian method, however, could use the probabilities
that SNe are of Type Ia as priors to simultaneously determine
distances to Ia and CC SNe without bias. We refer to this
method as Bayesian Estimation Applied to Multiple Species
(BEAMS) following Kunz et al. (2007, hereafter KBH07; see
also Press 1997 and Rubin et al. 2015). KBH07 test BEAMS
on a simplistic SN simulation and find that it gives near-optimal
accuracy and uncertainties on SN Ia distances.

Hlozek et al. (2012) test BEAMS further with Monte Carlo
simulations of the Sloan Digital Sky Survey SN survey (SDSS-
SN; Frieman et al. 2008; Kessler et al. 2009a). BEAMS biases
measurements of the cosmic matter and dark energy densities, WM

and WL, by less than the statistical uncertainties measured from
their simulations. Their results demonstrated that SDSS SNe
without spectroscopic classification can significantly improve
cosmological constraints relative to the SDSS spectroscopic
sample (Kessler et al. 2009a). Hlozek et al. (2012) did not
measure the systematic uncertainties from their method.

As with SDSS, Pan-STARRS (PS1) discovered far more SNe Ia
than could be observed spectroscopically. Spectroscopically
confirmed SNe Ia from the first ∼1/3 of PS1 have been used to
measure cosmological parameters but constitute only a small
fraction of the available data (Rest et al. 2014, hereafter R14;
Scolnic et al. 2014b). In this study, we use PS1 SNe with and
without spectroscopic classification as a tool for testing SN
classifiers, understanding CC SN contaminants, and measuring the
systematic error due to CC SN contamination. In total, PS1 has
1145 SNe with high-quality light curves and spectroscopic
redshifts—both host galaxy and SN redshifts—that can be used
to measure cosmological parameters (including a ∼few percent
CC SN contamination). Here, we focus on the 1020 likely SNe Ia
with spectroscopic host galaxy redshifts, 143 of which are
spectroscopically confirmed, in order to study a sample with
fewer selection biases (Section 2.1).

The goal of this study is to develop the methods necessary to
measure cosmological parameters robustly using PS1 SNe
without spectroscopic classifications (hereafter referred to as

photometric SNe). Our full cosmological results from these
data will be presented in a future analysis.
In Section 2, we present the sample and our host galaxy

redshift follow-up survey. Section 3 discusses our SNANA
simulations of the PS1 sample and our assumptions about the
CC SN population. Section 4 describes our Bayesian parameter
estimation methodology. In Section 5, we test BEAMS on
simulations and subsamples of PS1 photometric SNe. In
Section 6, we test the robustness of these results by exploring
several variants of the method. The uncertainties in our
simulations and methodology are discussed in Section 7 and
our conclusions are in Section 8.

2. The Pan-STARRS Photometric Supernova Sample

The Pan-STARRS medium deep survey covers ten 7 square
degree fields in five broadband filters, with typical grizP1
observational cadences of 6 images per 10 days and a 5 day gap
during bright time during which yP1 images are taken. Typical
5σ detection limits are ∼23 ABmag for grizP1, albeit with
significant variation. For a complete description of the PS1
survey, see Kaiser et al. (2010) and R14.
PS1 images are processed using an image subtraction

pipeline that is described in detail in Rest et al. (2005)
and R14. To measure final light curves for the PS1 photometric
sample (and the full spectroscopic sample; D. M. Scolnic et al.
2017, in preparation), we made several improvements to that
pipeline. We more than doubled the typical number of images
that are combined to create a deep template for subtraction, we
refined our method of selecting stars to build the point-spread
function (PSF) model, and we improved the zeropoint
calibration. These improvements will be described in detail in
D. M. Scolnic et al. (2017, in preparation).
Pan-STARRS discovered 5235 likely SNe during its four

years of operation and obtained spectra for 520 SNe. We
collected 3147 spectroscopic host galaxy redshifts of these
likely SNe (Section 2.1). In addition to SN candidates, we
observed spectra for thousands of variable stars, active galactic
nuclei (AGN), flaring M dwarfs, and other transients that will
be published in future work.

2.1. Host Galaxy Redshift Survey

During the PS1 survey, many SN host redshifts were measured
using the Hectospec multifiber instrument on the MMT (Fabricant
et al. 2005; Mink et al. 2007). Near the end of PS1 operations, we
began an additional survey with Hectospec to obtain redshifts for
as many host galaxies as possible. Redshifts were also obtained
with the Apache Point Observatory 3.5m telescope11 (APO), the
WIYN telescope,12 and for the southernmost PS1 field, the Anglo-
Australian Telescope (AAT). We chose candidate host galaxies
for follow-up in a largely unbiased way; we did not prioritize SNe
based on their magnitudes, colors, or whether or not an SN
spectrum had previously been obtained. Approximately 600 of
our redshifts come from SDSS (Smee et al. 2013) or other public
redshift surveys.13

11 http://www.apo.nmsu.edu/arc35m/
12 The WIYN Observatory is a joint facility of the University of Wisconsin-
Madison, Indiana University, the National Optical Astronomy Observatory,
and the University of Missouri.
13 We include redshifts from 2dFGRS (Colless et al. 2003), 6dFGS (Jones
et al. 2009), DEEP2 (Newman et al. 2013), VIPERS (Scodeggio et al. 2016),
VVDS (Le Fèvre et al. 2005), WiggleZ (Blake et al. 2008), and zCOSMOS
(Lilly et al. 2007).
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We used the galaxy size- and orientation-weighted R
parameter to identify the most likely host galaxy for each SN
(Sullivan et al. 2006). The isophotal limit of a galaxy
corresponds to R∼3. We use the redshift of the host galaxy
with the lowest R if it has R�5 following Sullivan et al.
(2006). See Gupta et al. (2016) for a similar but more rigorous
method of identifying SN host galaxies.

To estimate the fraction of SNe for which we incorrectly
determined which galaxy was the host, we compared redshifts
derived from the spectroscopic redshifts of SNe to the
spectroscopic redshifts of their most likely host galaxies. We
found that only 2 of 169 hosts with reliable redshifts had
evidence of a host galaxy mismatch, - >∣ ∣z z 0.02SN host . Both
of these hosts had multiple large, nearby galaxies with R<5.
This mismatch fraction suggests that 1.2%±0.5% of our
redshifts are incorrect due to mismatched hosts.

Compared to spectroscopically confirmed SNe, it is unlikely
that photometric SNe have a higher fraction of mismatched
hosts. The spectroscopic targeting preferentially followed SNe
with a larger separation from the center of their host galaxies or
SNe with fainter hosts, as these SNe have spectra with less
galaxy light contamination. Just 11% of photometrically
classified SNe are outside the isophotal radii of their host
galaxies compared to 24% of the 169 SN host pairs. However,
we also note that the 169 SN host pairs have preferentially
brighter hosts than the full sample and have a median redshift
of 0.21 compared to the median redshift of 0.3 for the full
sample. It may be somewhat easier to mismatch a host galaxy
at high-z as galaxies are more difficult to detect, but we expect
this to be a subdominant effect as Gupta et al. (2016) finds the
fraction of mismatched hosts to be approximately constant at
z<0.6 in a DES-like survey (which has similar depth to PS1
templates).

The other source of incorrect redshifts is the measurement of
velocities from host galaxy spectra. We measured redshifts by
cross-correlating our spectra with galaxy templates (the RVSAO
package; Kurtz & Mink 1998) and visually inspecting the
results. Over the course of the survey, we observed over 1500
transient hosts multiple times. For ∼250 of these hosts, at least
one observation yielded a redshift with a high Tonry & Davis
(1979, hereafter TDR) cross-correlation parameter (9–10).

By restricting our sample to hosts with TDR> 4 and
redshifts of 0.01<z<0.75, we measure a false redshift
fraction of 1.4%±1.3%. At z>0.75, few SNe could be
discovered by PS1 or have their host redshifts measured with
our program (Figure 1). Including mismatched hosts, the total
percentage of incorrect redshifts we expect is 2.6%±1.4%. In
Section 3, we simulate this fraction of false redshifts so that this
effect will be incorporated in our BEAMS systematic error
budget.

In total, we observed 3930 host galaxies and have 3147
reliable redshifts. The telescopes and instruments comprising
our redshift survey are summarized in Table 1. Figure 1 shows
the r magnitudes, redshifts, and best-fit SED model for the PS1
photometric sample. Eighty-seven percent of PS1 SNe with
detectable host galaxies were observed with our redshift
follow-up program and reliable redshifts were measured for
73% of those galaxies. We measured redshifts for a large
number of both emission-line and absorption-line galaxies.
These data have a median redshift of 0.30.

2.2. SALT2 Selection Requirements

Throughout this work, we use the SALT2.4 model (Guy
et al. 2010, implemented in B14) to measure SN light-curve
parameters. We use these light-curve parameters to standardize
SNe Ia and select the SNe Ia that can best measure
cosmological parameters. The Tripp estimator uses SALT2
light-curve parameters to infer the SN distance modulus, μ
(Tripp 1998):

m a b= + ´ - ´ - ( )m X C M. 1B 1

mB is the log of the light-curve amplitude, X1 is the light-curve
stretch parameter, and C is the light-curve color parameter.
These parameters are all measured by the SALT2 fitting
program, but deriving the distance modulus from them depends
on the nuisance parameters α, β, and M. M is degenerate with
the Hubble constant, H0, and will be marginalized over during
cosmological parameter estimation.
To avoid unexpected biases in our sample selection, we use

light-curve selection requirements (cuts) from previous ana-
lyses using spectroscopically confirmed SNe. We make the
same series of cuts to PS1 SN light curves as Betoule et al.
(2014) and add one additional cut on the SALT2 fit probability
following R14. These cuts include uncertainty-based cuts that
ensure the shape and time of maximum light of each SN is
well-measured, and shape and color cuts that restrict our
sample to SNe Ia for which the SALT2 model is well-trained.
Our cuts are summarized in Table 2 and Figure 2. Out of 3147
SNe with reliable host redshifts, SALT2 fits run successfully on

Figure 1. Host properties from PS1 as a function of r mag, redshift, and best-fit
SED model. Out of the full sample of 5235 PS1 SNe (white; host galaxy photo-
z), we observed 3930 hosts (black; photo-z) and measured accurate redshifts for
3147 (red; spec-z). Our redshift survey has nearly 100% success to r=21 and
has a median redshift of 0.30. We obtained redshifts for a large number of both
emission-line and absorption-line galaxies.
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2690 SNe (SALT2 parameter fitting often fails due to lack of
light-curve data before or after maximum). A total of 1020 SNe
pass all of our cuts.

Omitting the SALT2 sX1 cut has the largest single impact on
our final sample. Without it, there would be nearly 1400 SNe in
the sample but also twice as many SNe with Hubble residuals
>0.5 mag (poorly measured SNe Ia or CC SNe). The cut with
the second largest reduction is the cut on C, without which
there would be ∼1200 SNe (though many would be CC SNe).

Although it may be possible to increase the SN sample size
with relaxed cuts, the extent to which SNe Ia with low S/N and
unusual colors are standardizable is not well-characterized.
In addition to the Betoule et al. (2014) cuts, we implement an

additional set of cuts to remove possible AGN that were not
flagged during the PS1 transient search. We tuned our long-
term variability criteria to find known AGN in PS1 data. We
found that sources where >25% of background epochs have 2σ
deviations from 0 are likely AGN (we define background

Table 1
Redshift Follow-up Summary

Telescope Instrument SN Redshiftsa l l–min max Avg. Exp. Time Approx. Resolution zmedian
Å min. Å pix−1

AAT AAOmega 512 3700–8500 180 6 0.15
APO DIS 10 3500–9800 60 2.5 0.24
MMT Hectospec 2348 3700–9200 90 5 0.33
SDSS BOSS 250 3800–9200 45 2.5 0.20
WIYN Hydra 45 3700–6500 180 4.5 0.34
Otherb L 361 L L L 0.19

Total L 3147 L L L 0.30

Notes. Some transient hosts were observed with multiple telescopes. Numbers include host galaxy observations of both spectroscopically confirmed and unconfirmed
SN candidates.
a Number of SN candidates with reliable redshifts.
b Includes redshifts from 2dFGRS (Colless et al. 2003), 6dFGS (Jones et al. 2009), DEEP2 (Newman et al. 2013), VIPERS (Scodeggio et al. 2016), VVDS (Le Fèvre
et al. 2005), WiggleZ (Blake et al. 2008), and zCOSMOS (Lilly et al. 2007).

Table 2
Sequential PS1 Data Cuts

Removed Remaining This Cut Only Without This Cut Comments

Total candidates L 5235 L L L
Host Sep. R<5 774 4461 L L Likely host galaxy can be identified
Good host redshifts 1314 3147 L L L
Fit by SALT2 457 2690 L L SALT2 parameter fitting succeeds
Possible AGN 96 2594 2594 1040 Separated from center or no long-term variability
- < <X3.0 3.01 540 2054 2119 1092 SALT2 light-curve shape
- < <C0.3 0.3 467 1587 1903 1215 SALT2 light-curve color
s < 2peakMJD 30 1557 2630 1021 Uncertainty in time of maximum light (rest frame days)
s < 1X1 379 1178 1930 1386 X1 uncertainty

Fit prob. �0.001 158 1020 2096 1178 χ2- and Ndof -based probabilities from SALT2 fitter
E(B-V) > 0.15MW 0 1020 2690 1020 Milky Way reddening

Figure 2. Effect of Betoule et al. (2014) cuts on the PS1 photometric Hubble diagram. Distance moduli are measured using the Tripp estimator (Equation (1)) with
nuisance parameters from R14. Of the 2594 SNe that are fit by SALT2 and are not possible AGN shape and color cuts remove 1007, while χ2-based fit probability cuts
and S/N-type cuts (shape uncertainty and time of maximum uncertainty) remove an additional 567 SNe, leaving 1020. Each set of cuts removes a mix of SNe Ia with
poor light-curve quality and CC SNe.
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epochs as <20 days before or >60 days after the discovery
epoch). Eighty-six SNe with both evidence of long-term
variability and SN positions within 0 5 of their host centers
were removed. After light-curve cuts, removing likely AGN
reduces our sample by just 18 SNe. To have a sample with
uniform selection, we make these cuts (and all cuts) regardless
of whether or not a given SN Ia is spectroscopically confirmed.

2.3. Low-z SNe

Cosmological parameter constraints are greatly improved
when a large, low-z SN Ia sample is included to anchor the
Hubble diagram. We use the same 197 low-z SNe Ia used in
R14 though we anticipate adding additional low-z SNe in our
full cosmological analysis. These SNe are spectroscopically
confirmed and are assumed to have no CC SN contamination.

The R14 PS1 cosmology analysis has a low-z sample with
higher intrinsic dispersion than the PS1 sample. The intrinsic
dispersion, sint, is defined as the value added in quadrature to
the SN Ia distance modulus uncertainty such that the Hubble
diagram reduced c2 is equal to 1 (Guy et al. 2007). Differences
in SN Ia intrinsic dispersion from survey to survey are typical,
with the likely source of the variation including underestimated
photometric difference image uncertainties and excess scatter
from bright host galaxy subtractions (as seen in R14 and
Kessler et al. 2015). Redshift evolution of the SN Ia population
could also play a role. We added 0.05 mag in quadrature to the
mB uncertainties of the low-z SNe to resolve the discrepancy.
Once added, this additional uncertainty term gives both the PS1
and low-z SNe from R14 the same intrinsic dispersion of
∼0.115 mag.

3. Simulating the Pan-STARRS Sample

To robustly determine how CC SN contamination affects
PS1 measurements of w, we require a simulation that
encapsulates as many elements of the PS1 SN survey as
possible. We used the SuperNova ANAlysis software
(SNANA14; Kessler et al. 2009b) to generate Monte Carlo
realizations of the PS1 survey. SNANA simulates a sample of
SNe Ia and CC SNe using real observing conditions, host
galaxy noise, selection effects, SN rates, and incorrect
redshifts from host galaxy mismatches or measurement error.
Simulations assume a flat ΛCDM cosmology with H0=
70 km s−1 Mpc−1, W = 0.3M , W =L 0.7, and w=−1.

We choose not to simulate one significant effect: the
correlation between SN luminosity and host mass (the host
mass bias; Kelly et al. 2010; Lampeitl et al. 2010). We do not
simulate the host mass bias because R14 did not include it
(finding it had low significance in their sample), and we wish to
compare our PS1 photometric results directly to those of R14.
This effect has been identified at >5σ by Betoule et al. (2014),
and we will include it in our future cosmological analysis with
these data.

Each major component of our simulation is discussed in
detail below.

1. Observing conditions. SNANA generates SN observa-
tions based on a simulation library file with observation
dates, filters, sky noise, zeropoints, and PSF sizes that we
measure from PS1 nightly images.

2. Host galaxies. The observed flux scatter of SNe found in
bright galaxies exceeds what is expected from Poisson
noise alone (R14; Kessler et al. 2015). To correct for this,
SNANA adds host galaxy noise to SN flux uncertainties
by placing each SN in a simulated host galaxy. The SN is
placed at a random location that has been weighted by the
galaxy surface brightness profile. The distribution of PS1
host galaxies was determined from PS1 data; we
measured the magnitudes and shape parameters of PS1
SN host galaxies using SExtractor, with zeropoints
measured from the PS1 pipeline. We then use the noise
model from Kessler et al. (2015, their Equation (4)):

s s= ´ s˜ ( )R , 2flux flux

where sR is a function of host galaxy surface brightness
(the vertical axis of Figure 3). We determine sR for PS1
by comparing host surface brightness to the flux error
scaling that gives light-curve epochs without SN flux a
reduced χ2=1.

3. Selection effects. Two primary selection effects come into
play in a photometric SN Ia survey. The first is detection
efficiency, the fraction of single-epoch detections as a
function of the photometric S/N. The detection efficiency
is computed by dividing the number of epochs detected
by PS1 at a given S/N by the total number of epochs at
that S/N. SNANA uses the efficiency versus S/N,
measured by PS1, to determine which simulated epochs
are detected. SNANA then applies the PS1 survey
requirement of three detections to “discover” an SN.
The PS1 detection efficiency is ∼50% for epochs with an
S/N of 5 in the final light curves.

The second effect is host galaxy redshift selection.
To model this effect, we incorporated a redshift-
dependent “host galaxy efficiency” distribution in our
simulations, which we adjusted such that the redshift
distribution of the simulations matched our data.

4. Uncertainty adjustment. SNANA allows its simulated
uncertainties to be scaled as a function of S/N such that
the mean uncertainties in simulations match the mean
uncertainties of our data. In PS1, this requires a modest

Figure 3. Ratio between “true” and DAOPHOT-derived photometric noise as a
function of host galaxy surface brightness in the grizPS1 filters. We computed
the host galaxy surface brightness by averaging over one PSF FWHM at the
SN location. We computed the true photometric noise by inflating the errors
from DAOPHOT (which do not include host galaxy noise) such that light-
curve epochs without SN light had χ2=1. Possible AGN (gold stars)
comprise many of the outliers in this relation. We incorporated this relationship
into our SNANA simulations to yield an accurate prediction of photometric
uncertainties.

14 http://snana.uchicago.edu/
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∼5%–10% noise increase at low S/N (after excess host
galaxy noise is added). This adjustment is necessary due
to the non-Gaussian wings of the PS1 PSF and the PSF
fitting radius used by the PS1 pipeline.

5. Mismatched host galaxies and incorrect redshifts. As
discussed in Section 2.1, we expect 2.6%±1.4% of our
redshifts to be incorrect due to mismatched host galaxies
and redshift measurement uncertainties. We used
SNANA to simulate incorrect host redshifts by assigning
false, “measured” redshifts to 2.6% of our SNe. These
redshifts are drawn from a flat, random distribution
between z= 0.01 and z= 0.75. This is the range of
redshifts at which PS1 can discover SNe, with the
exception of rare superluminous SNe. Superluminous
SNe typically have hosts too faint for our follow-up
survey to measure their redshifts (Lunnan et al. 2015).

We find that ∼50% of SNe with incorrect redshifts
fail our sample cuts, giving a final contamination fraction
of ∼1%–1.5%. In large part, this reduction is due to cuts
on the SALT2 color parameter. If an SN has an incorrect
redshift, SALT2 is twice as likely to infer that its
observed-frame colors are inconsistent with normal
SNe Ia when transformed to the wrong rest frame.

6. SN Ia model. The SN Ia model used in these simulations
is the Guy et al. (2010) model with SN Ia nuisance
parameters from R14 (SALT2 α=0.147, β=3.13).
The parent X1 and C distributions were determined by
Scolnic & Kessler (2016) for the PS1 spectroscopic
sample. We adjusted the parent means of the X1 and C
distributions by 1σ to better match our data, making X1

lower by 0.17 and C higher by 0.023. This difference is
likely physical; on average, X1 is lower and C is higher in
massive host galaxies (e.g., Childress et al. 2013). Our
host follow-up program preferentially obtained redshifts
of massive galaxies.

7. CC SN templates and diversity. CC SNe are simulated
based on a library of 43 templates in SNANA. The
templates we use were originally created for the SN
Photometric Classification Challenge (Kessler et al. 2010)
and also used by Bernstein et al. (2012). Templates are
based on bright, spectroscopically confirmed SDSS,
SuperNova Legacy Survey (SNLS; Conley et al. 2011;
Sullivan et al. 2011), and Carnegie Supernova Project
(Hamuy et al. 2006; Stritzinger et al. 2011) CC SNe with
well-sampled light curves. Templates were created from
the light curves by warping a model spectrum for each
SN subtype to match the light-curve fluxes in every
broadband filter (see Appendix A.1.1).

SNANA has 24 II-P templates, 2 IIn templates, 1 II-L
template, 7 Ib templates, and 9 Ic templates. In this work,
we make the assumption that reddening in the templates is
approximately equal to reddening in our data. This
assumption allows us to use the Li et al. (2011) LFs,
which have not been corrected for reddening, and SNANA
templates, which also include intrinsic reddening. Correct-
ing these templates, the Li et al. (2011) rates and LFs for
reddening are an important avenue for future work.

We added a subtype-specific magnitude offset to each
CC SN template such that the mean simulated absolute
magnitude of the subtype matched the mean of its Li et al.
(2011) LF. By applying a uniform offset to every template
in a subtype, the brightness of different templates relative

to their subtype is incorporated in our simulations.15 We
also matched the dispersions of the Li et al. (2011) LFs by
adding an additional, random magnitude offset to each
simulated CC SN. This offset was drawn from a Gaussian
with a width we adjusted such that the dispersion of the
simulated absolute magnitudes for each subtype matched
that of Li et al. (2011).

8. SN Rates. SNANA creates a combined SN Ia+CC
simulation, with each SN type normalized by its rate. The
redshift-dependent SN rates used in this work are the
same as the baseline model of Rodney et al. (2014).
SNe Ia follow measured rates, while CC SNe follow the
cosmic star formation history. Relative rates of SN types
and subtypes are anchored at z=0 by Li et al. (2011)
and evolve µ + g( )z1 , where γ is a free parameter tuned
to match theory and observations (only a single value for
γ is needed over the redshift range of PS1). We used
g = 2.15Ia and g = 4.5CC (Rodney et al. 2014).

Figure 4 compares our simulations to the data after fitting all
SNe with the SALT2 model. Note that CC SN information in
this simulation is obtained without any PS1 analysis or input.
SALT2 fitting is an effective way to examine both SNe Ia and
the light-curve parameters of Ia-like CC SNe. Discrepancies in
Figure 4 indicate potential biases when measuring cosmologi-
cal parameters with a CC SN-contaminated sample.
Our simulations agree closely with the data for most light-

curve parameters. The maximum S/N of the simulated light
curves matches the data (Figure 4(B)), as does the distribution
of SALT2 X1 (Figure 4(C)). However, there are too few
simulated SNe with red SALT2 colors (Figure 4(D)). The
simulated redshift evolution of X1 and C matches the data well
(Figures 4(F) and (G)).
Though most simulated light-curve parameters match our

data well, the Hubble residuals (Figure 4(A)) show a
discrepancy. We see ∼3 times more SNe than expected
between  m m- <L0.5 1.5CDM mag (these SNe are fainter
than SNe Ia at their redshifts). For this reason, we used light-
curve-based classifications of our data to adjust the CC SN LFs.
The details of this procedure are discussed in Appendix A. We
find that the peak of the CC SN LF must be brightened by
1.2 mag for SNe Ib/c and 1.1 mag for SNe II in order for our
simulations to match our data (Figure 5). The dispersion of
CC SN templates must be reduced by 55% for SN Ib/c. We
also add four 1991bg-like SN Ia templates and four SN IIb
template to SNANA to include a broader range of SN types.
The CC SNe LFs in our adjusted simulation are ∼5σ brighter

than in Li et al. (2011). However, these results do not
necessarily imply that the true LFs of CC SNe show a ∼5σ
inconsistency with Li et al. (2011). Rather, they indicate that
our SALT2-based shape and color cuts isolate a region of
CC SN parameter space that is not the average. Although we
find it plausible that the CC SNe with shapes and colors most
similar to SNe Ia have brighter and lower-dispersion LFs than
CC SNe as a whole, further work is required to understand the
diversity of CC SN subpopulations. Larger sets of high-
cadence, high-quality spectral time series from which to
construct templates are also necessary. An additional factor is
that the low statistics in the LOSS volume-limited sample

15 We tweaked this procedure for SNe Ib, which had one anomalously bright
template. All SN Ib templates were adjusted by individual magnitude offsets
such that each template matched the mean magnitude of SNe Ib given by Li
et al. (2011).
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require that the shape of the CC SN LFs be extrapolated in
some way. We treat CC SN LFs as Gaussians, which is most
likely a flawed assumption (see Figure 16 of Li et al. 2011).

4. Estimating SN Ia Distances with BEAMS

We use the BEAMS method to obtain SN Ia distance
measurements that are corrected for the CC SNe contaminating
our data (KBH07). The implementation of BEAMS suggested
in KBH07 solved for distances and cosmological parameters in
a single step; here, we first use BEAMS to solve for binned
SN Ia distances and then use CosmoMC (Lewis & Bridle 2002)
to determine cosmological parameters. This procedure will
allow us to more easily combine SN data with complementary
CMB and BAO data in our forthcoming cosmological analysis.
We summarize the method below.

BEAMS simultaneously determines Ia and CC SN distances
by sampling a posterior probability distribution that includes
both SN Ia and CC SN populations in the likelihood. The
BEAMS posterior, the probability of the free parameters θ

given the data, D, is proportional to the product of the
individual likelihoods for each SN multiplied by the priors on
the free parameters:

q qµ ´
=

( ∣ ) ( ) ( )P D P . 3
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The simplest suggested likelihood from KBH07 uses
Gaussian distributions to represent CC SN and SN Ia

populations:
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( )P Iai is the prior probability that the ith SN is of Type Ia.
( )P CCi , the probability that the SN is a CC SN, is equal to
- ( )P1 Iai . mi,Ia, mi,CC and si,Ia, si,CC are the distance modulus

and distance modulus uncertainties for the ith SN, derived
using the Tripp estimator (Equation (1)). We differentiate
between measured Ia and CC distance moduli from the data
because we will allow the Tripp estimator to use different
nuisance parameters for the SN Ia and CC SN terms in the
likelihood (Section 4.1). mIa, sIa and mCC, sCC are the means
and standard deviations of the SN Ia and CC SN Gaussians,
respectively.
The variables mIa and mCC are a function of the redshift, z, of

the ith SN and of cosmological parameters. The variable sCC is
redshift dependent as well, primarily due to the changing mix
of CC SN subtypes that PS1 is able to discover as a function of
redshift. We fit for m ( )zIa , m ( )zCC , and s ( )zCC by allowing
BEAMS to treat them as free parameters at certain fixed

Figure 4. SNANA simulations of a PS1 photometric sample compared to PS1 data. The simulated Hubble residuals (A) of the CC SN distribution are flatter and
fainter than the data. The simulated S/N (B), shapes (C), colors (D), uncertainties (E), and X1/C redshift dependencies (F and G) match our data closely, albeit with
∼3σ discrepancies in the time of maximum uncertainty and SN color. We tuned the simulated redshift distribution (H) to match our data.
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redshifts zb. We refer to the set of fixed redshifts as “control
points” following Betoule et al. (2014).16 Between two control
points, the distance modulus (and dispersion) is interpolated by

a linear function of log(z) defined by

m x m xm
x
= - +
=

+

+

( ) ( )
( ) ( ) ( )

z

z z z z

1

log log , 5
b b

b b b

1

1

where mb is the distance modulus at redshift zb.
Betoule et al. (2014) fit to a set of 30 log-spaced redshift

control points and found that the difference between ΛCDM
and the interpolation is always smaller than 1 mmag. We used
25 control points for the smaller PS1 redshift range of
0.01<z<0.7 (we restrict our sample to z<0.7, as very
few PS1 SNe can be found at higher redshifts). In Figure 6, we
compare the cosmological constraints from 1000 individual
SNe Ia to the approximate results derived from the SN Ia
distances at 25 control points (P(Ia)= 1 for all SNe Ia). We find
that the cosmological constraints are nearly identical.
We use five log-spaced redshift control points for CC SNe. If

true SN type probabilities are known, five CC SN control points
allows BEAMS enough flexibility to avoid biasing the Ia
likelihood with a poor determination of the CC SN distribution.
We allow the intrinsic width of the CC SN Gaussian distribution
(sCC) to vary with redshift, but keeping the intrinsic width of the
SN Ia Gaussian fixed. By using the SALT2mu procedure
(Marriner et al. 2011), we verified that the (simulated)
uncertainty-weighted dispersion of SNe Ia does not change with
redshift for PS1 (this is also a typical assumption in cosmological
analyses; Guy et al. 2010). This physically realistic assumption
gives BEAMS more leverage to discriminate between SNe Ia and
CC SNe, which have much higher dispersion than SNe Ia.
In total, our baseline implementation of BEAMS has 38 free

parameters: 25 SN Ia distance moduli at Ia control points, 5
CC SN distance moduli at CC control points, 5 CC SN
dispersion parameters, 1 SN Ia dispersion parameter,17 and
the SALT2 nuisance parameters α and β which are used to
compute mi and si (discussed below). BEAMS free parameters
can be efficiently estimated by sampling the logarithm of the
posterior with a Markov Chain Monte Carlo (MCMC)
algorithm. This work uses emcee,18 a Python MCMC

Figure 5. Comparison of Hubble residuals before and after empirical
adjustments to CC SN LFs. We enlarge Figure 4(A) (top) and compare to
our adjusted J17 simulations (bottom). Before empirical adjustments, the
simulations contained just 2.4% CC SNe and were a poor match to the data.
After adjustments, the simulations have 8.9% CC SNe. Discrepancies between
data and simulations in the red end of the SALT2 C distribution can be
explained by additional CC SNe.

Figure 6. Comparing the full SN Ia likelihood (filled contours) to the binned Ia
likelihood (black).

16 Note that Betoule et al. (2014) use this method to increase computational
efficiency when combining SN Ia data with Planck priors. However, their
method of reducing SN data to a set of distances at redshift control points is
well-suited for a BEAMS-like algorithm.

17 Throughout, we have written this dispersion parameter as sIa to distinguish
it from sint, the global uncertainty term used in many previous analyses. sint,
defined in Section 2.3, has a different definition from the BEAMS free
parameter sIa.
18 http://dan.iel.fm/emcee/current/
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implementation (Foreman-Mackey et al. 2013). We use
emceeʼs Parallel-Tempered Ensemble Sampler to explore the
multimodal peaks of the likelihood robustly. Figure 7 illustrates
the Hubble residual diagram from BEAMS using simulated
SNe and correct prior probabilities (all SNe Ia with correct
redshifts have P(Ia)= 1 and all other SNe have P(Ia)= 0).
Note that if few or no CC SNe are in a given redshift bin, the
magnitude and uncertainty of CC SN distances are primarily
determined by the priors.

We apply loose Gaussian priors on most BEAMS free
parameters, but find that with samples of 1000 SNe or more,
the difference between Gaussian and flat priors is negligible.
For SN Ia distances, we apply flat priors. Though we assume
some prior knowledge of the CC SN distribution, our priors on
CC SN distance (mCC in Equation (4)) are very loose; we use
broad Gaussians of width 3 mag that are centered at 2 mag
fainter than the SNe Ia at each control point. SALT2 nuisance
parameters have Gaussian priors of width five times the
uncertainties from R14. Our code is available online.19

4.1. SALT2 Light-curve Parameters

We use a SALT2 fitting program to measure SN light-curve
parameters for our sample. However, SALT2 parameters do not
directly measure the distance modulus (Equation (1)). For
BEAMS to measure distances using SALT2 light-curve fits, the
nuisance parameters α and β must either be fixed to the value
from a spectroscopic sample or incorporated into BEAMS as
free parameters. We allow α and β to be free parameters here as
it is a more general test of the method. Different survey
methods, detection efficiencies, and selection criteria can
significantly bias recovered SN parameters (Scolnic &
Kessler 2016), which could make it necessary for future
analyses to be able to fit for these parameters. In the CC SN
component of the BEAMS likelihood, we fixed α and β to the
nominal value for SN Ia spectroscopic samples (allowing them
to float has no effect on our results).

Because we include α and β as free parameters, the
likelihood presented in Equation (4) has a term in the Gaussian
normalization factor, σi, that depends on α and β. The result is
a significant bias in the derived SN parameters (March

et al. 2011). This bias grows for larger SN samples (see
Appendix B of Conley et al. 2011 and Kelly 2007 for details).
The solution adopted in Conley et al. (2011) is to neglect the
normalization term when determining α, β, and sint by using a
simple likelihood  cµ -( )exp 22 . For 1000 SNe, Conley
et al. (2011) find that the bias from this likelihood is well below
the statistical error. Though we cannot use this solution without
biasing determinations of the CC SN and SN Ia distributions,
we use an alternative formalism and treat the uncertainties on
the distance modulus as fixed in the denominator of the
normalization term (independent of α and β). Fixing distance
modulus uncertainties in the denominator does not bias α, β, or
w and is a very modest approximation; in the PS1 sample,
varying α and β within their 1σ errors from R14 gives a mean
change in uncertainty of only 2 mmag. No individual SN has its
uncertainty change by >20 mmag. See Kessler & Scolnic
(2017, Section 8.1) for an alternative solution.

4.2. Prior Probabilities

The BEAMS formalism requires an estimate of the prior
probability that a given SN is of Type Ia. This prior can be
measured by an SN classifier or it can be as simple as setting P
(Ia)= 1/2 for all SNe. For our baseline analysis, we adopt the
PSNID light-curve fitter, as implemented in SNANA (Sako
et al. 2011, 2014). In PSNID, observed SN light curves are fit
with perfect, noise-free simulations of the SALT2 SN Ia model
and SNANA’s CC SN templates to determine the probability
that each SN is of Type Ia.20 PSNID estimates P(Ia) from the
χ2 of the fit and includes type, redshift, and luminosity priors.
The set of SNe with P(Ia)> 0.5 has 2.9% contamination by
CC SNe while including 92% of real SNe Ia.
We allow a remapping of the PSNID prior probabilities by

adding two parameters to BEAMS: one that re-normalizes the
probabilities and a second that shifts them linearly. The first
parameter is a scaling factor that corrects for globally skewed
prior probabilities following Hlozek et al. (2012). This
normalization term allows BEAMS to correct for effects such

Figure 7. Illustration of BEAMS. Simulated CC SNe (left) and SNe Ia (right) with the redshift-dependent BEAMS parameters μCC, mIa (black points) and sCC, sIa

(black bars). Uncertainties on mCC and mIa are in red. We use correct prior probabilities of P(Ia) = 1 for SNe Ia with correct redshifts and P(Ia) = 0 for all others.

19 See Jones (2017), with recent updates at https://github.com/djones1040/
BEAMS. Example input files are also provided.

20 Because the simulated CC SN models in SNANA are the same as the
CC SN models in the PSNID template library, we used an option in PSNID
(SNANA v10_47m and later) that ensures a CC SN simulated using a given
template cannot be classified using a noise-free version of that same template.
This option increases the CC SN contamination by ∼1%.
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as incorrect redshift-dependent SN rates, inaccurate classifier
training, or other P(Ia) biases. The second parameter is a
global, linear shift in probability to handle incorrect typing near
P(Ia)= 0 or P(Ia)= 1 (but requiring 0< P(Ia)< 1). This is
necessary in cases where uncertainty in P(Ia); 1 or P(Ia); 0
is significant (KBH07). The relationship between the normal-
ization factor, A, the shift parameter, S, and the probability
P(Ia) is given by

=
´ +

- + + ´ +
´ < <

˜( ) ( ( ) )
( ( ) ) ( ( ) )

˜( ) ( )

P
A P S

P S A P S

P

Ia
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1 Ia Ia

0 Ia 1. 6

Another solution suggested by KBH07 that could be explored
in future work is adding a probability uncertainty term to the
likelihood.

4.3. Malmquist Bias

mi,Ia, the SALT2-derived distance modulus for the ith SN, is
subject to Malmquist bias for magnitude-limited surveys such
as PS1. We account for the SN Ia Malmquist bias using PS1
and low-z simulations to determine the redshift-dependent bias
of derived SN Ia distances. We used Monte Carlo simulations
of 10,000 SNe and non-parametric spatial averaging to
determine and correct for the trend in distance modulus. Our
spatial averaging algorithm uses local polynomial smoothing to
interpolate the mean distance modulus trend across the redshift
range.

Our simulations of the spectroscopically confirmed low-z SN
sample follow R14, who use the same α and β as our PS1
simulations. The details of these low-z simulations and the
determination of the spectroscopic selection function are
discussed in detail in Scolnic et al. (2014a, see their Figure 6
for a comparison between simulations and data).

Figure 8 shows the simulated, redshift-dependent measure-
ment bias in distance modulus, mB, aX1, and −βC. The average
high-z distance modulus bias in PS1 is nearly identical to the
bias measured for PS1 spectroscopically confirmed SNe
by R14. One difference is that the Malmquist bias is almost
negligible in our sample until z∼0.35. Some differences in
bias are expected because the R14 bias is dominated by their
spectroscopic SN follow-up selection function.

At z>0.5, we find that the bias in X1, C, and μ becomes
large as flux uncertainties near the epoch of peak brightness are
up to a factor of 2 larger than in the lower-z data. Greater than
50% of the mB and C bias at these redshifts is due to our cut on
X1 uncertainty, which is effectively an S/N cut that increases
the selection bias. Distance biases due to cuts on X1 and C are
also expected as the data become noisier and statistical
fluctuations cause more SNe that fall outside the luminosity-
correlated range to appear on our Hubble diagram (Scolnic &
Kessler 2016, see their Figure 4). Our simulations also show
that requiring lower X1 uncertainty tends to select narrower
measured light-curve shapes. Accordingly, Figure 4(F) shows
that the measured X1 distribution remains largely flat with
redshift; although SNe with larger X1 values are intrinsically
more luminous and thus more likely to be discovered, the
measurement bias shown in Figure 8 has an opposite, and
approximately equal, effect.

A discussion of systematic error in Malmquist bias
determination will be presented in our forthcoming cosmolo-
gical analysis. This will include incorporating α and β

uncertainties, which can cause differences in the distance bias
of ∼5 mmag at z>0.5. Although Scolnic et al. (2014a) found
that the Malmquist bias is not one of the dominant sources of
error, the photometric sample may be subject to different biases
than a typical spectroscopic sample due to its lower average
S/N.
We correct all SNe, but only for the SN Ia Malmquist bias

(we do not attempt bias corrections based on P(Ia)). It is not
necessary to correct for the CC SN Malmquist bias, as CC SNe
are not used to derive cosmological parameters. However, we
implicitly model the CC SN Malmquist bias using BEAMS
because BEAMS allows the CC SN mean and dispersion to
vary with redshift.

4.4. Cosmological Parameter Fitting

Finally, once distance moduli at the 25 redshift control
points have been measured with BEAMS, BEAMS distances
and distance covariance matrices can be used as inputs into the
Cosmological Monte Carlo software for cosmological para-
meter fitting (CosmoMC; Lewis & Bridle 2002). For
computational efficiency, we did not use the full Planck chains
in this analysis and instead ran CosmoMC on our BEAMS
results with a Planck-like prior of W = 0.30 0.02M .

5. Cosmological Results from BEAMS

5.1. Tests with Simulated Data

We generated 25 simulations of 1000 PS1 SNe each (25,000
total SNe) in order to test BEAMS on samples the size of the
PS1 photometric sample. We add simulated low-z samples of
250 SNe Ia each, the approximate number that will be included
in our forthcoming cosmological analysis. The results pre-
sented here use the J17 CC SN simulations (Appendix A), as
they have CC SN LFs that match our data.
To focus on biases from CC SN contamination, we define the

CC SN bias Δ and the increase in statistical uncertainty due to
CC SNe, sD stat, for a given parameter P:

s s s
D = -

D = -( ) ( ) ( )
P P

P P
,

, 7
m

m

Ia

stat Ia

where Pm is the measured parameter from the BEAMS method
and PIa is the measured parameter from the BEAMS method
using SNe Ia alone and setting all prior probabilities equal to
one. For the 25 simulated samples, the average wIa value is
−1.001±0.009. The rms of wIa is 0.045, consistent with the
mean statistical uncertainty (0.048).
We compare the Ia-only distances, SN parameters, and w

measurements against our results from the BEAMS method in
Table 3. Figure 9 shows that the binned distances are biased by
less than 20% of their uncertainties with the exception of the
final control point. Typical biases are ∼3 mmag and the largest
average bias from the 25 samples (aside from the final high-
uncertainty control point) is 6 mmag at z; 0.6.
The SN parameters α and β are biased by 3%, or 1–1.5 times

the average statistical error. sIa is biased by 4%, 0.3 times the
average statistical error. Note that sIa (in Equation (4)) is
functionally similar to the SN intrinsic dispersion, sint. These
biases are small enough that they would be difficult to measure
in real data. A possible cause of these biases is that Ia-like
CC SNe have color laws more consistent with Milky Way dust
(b ~ 4.1) and different shape−luminosity correlations.
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We find that w has a median bias of −0.005±0.004 due to
CC SN contamination, 10% of the statistical error on w. While
our analysis is consistent with no bias, we assign a systematic
uncertainty on w of 0.005+0.004=0.009, though the true
systematic uncertainty could be higher due to uncertainties in
CC SN simulations (Section 6). The statistical uncertainty on w
in this case is just 3% higher than the statistical uncertainty
from SNe Ia alone. This result is consistent with KBH07, who
find that BEAMS can yield nearly optimal uncertainties (we
discuss BEAMS uncertainties further in Section 7.3).

If we compare the bias on w to a naïve method of measuring
w with photometrically classified SNe, the advantage of using
BEAMS is obvious. For our twenty-five 1000 SN samples, we
take likely SNe Ia ( >( )P Ia 0.5PSNID ) and estimate cosmologi-
cal parameters assuming that all of these SNe are Type Ia
(Campbell et al. 2013 used a similar method of cutting the
sample based on PSNID classifications). Making this cut
removes 8% of the true SNe Ia in our sample and yields a final
sample contaminated by 2.9% CC SNe. In spite of having a
sample comprised of >97% SNe Ia, the average bias on w is
−0.025±0.004, a factor of five higher than our BEAMS
results. The bias is >50% of the statistical uncertainty on w and
has 6σ significance, while the BEAMS result is consistent with
no bias. The statistical uncertainty on w from this method is 6%

higher, compared to 3% higher from BEAMS. Even a cut of
>( )IaP 0.9PSNID yields a bias on w of 0.011±0.003 (>3σ

significance) at the cost of removing 17% of real SNe Ia.
Furthermore, while BEAMS allows these probabilities to be
adjusted by the method, treating them as fixed in this simplistic
method increases the possibility of biased classifications due to
incompleteness in the CC SN template library. It is clear that
BEAMS outperforms this simple cut-based analysis, though
this naïve method could still be effective with significantly
improved classification methods.

5.2. Comparing Real Pan-STARRS Photometric
Supernovae to Rest et al. (2014)

Rather than analyzing the full PS1 sample, we analyze 25
random draws of PS1 SNe to compare R14 measurements—
and uncertainties—directly to measurements from CC SN-
contaminated samples of the same size. Because 96 R14 SNe Ia
pass our sample cuts, we draw samples of 104 photometric SNe
in order that our subsamples each contain an average of 96
SNe Ia (and 8 CC SNe; we also use reprocessed R14 light
curves). We do not explicitly require these random samples to
have the same redshift distribution as the PS1 spectroscopic
sample. However, the redshift distribution of the PS1
photometric sample is similar to that of R14 (a nearly identical

Figure 8. Simulated redshift-dependent bias in (A) distance, (B) peak B magnitude, (C) aX1, (D) and b- C for the PS1 photometric sample using non-parametric
spatial averaging (black lines with 95% confidence intervals in blue) with median bins (points) shown for comparison. The PS1 sample has negligible distance
(Malmquist) bias until z∼0.3 and a maximum bias of ∼0.1 mag at z  0.6.
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range and median redshift, though the photometric sample does
include more faint SNe Ia with red colors).

For subsamples of PS1 data, we report parameter biases
relative to R14:

s s s
D = -

D = -( ) ( ) ( )
P P

P P , 8
m

m

R14

stat R14

where PR14 and s ( )PR14 refer to a parameter and its
uncertainties from R14.

Although R14 does not have enough SNe to test for small
biases in w, the data still allow for a consistency check that is
independent of the myriad assumptions made in simulations. In
addition, the 96 SNe from R14 with low-z SNe can provide
constraints on the bias of the nuisance parameters α, β, and sIa
due to the BEAMS method. We include low-z SNe because
BEAMS is more robust when it has a spectroscopically
confirmed sample as part of the data and has difficulty
measuring accurate SN Ia dispersions for small samples.

We find that the measured distances, SN nuisance para-
meters α and β, and w are consistent with R14 (Table 3). We
may be seeing the same hints of a bias toward higher values of
β that we find in simulations but they have under 2σ
significance. The bias in α is not statistically significant (0.1σ).

The average of w from the twenty-five 104 SN samples is
consistent with the measurements from reprocessed R14 light
curves (0.4σ lower, where σ is the statistical uncertainty
from R14). The uncertainties on w are 15% higher and distance
modulus uncertainties are 14% higher, likely due to the lower
average S/N of photometric PS1 light curves. The median S/N
at peak is 22 for all PS1 SNe, compared to a median S/N at
peak of 38 for spectroscopically classified SNe.

6. Results from BEAMS Variants

The BEAMS method measures w with no significant bias
due to CC SN contamination and a statistically insignificant
bias in PS1 data. However, the reliability of these results could
depend on the assumptions that we made when generating
CC SN simulations and implementing BEAMS. We now
expand our study of systematic uncertainties in simulations
by applying alternative SN classification methods, including
ones with less dependence on the accuracy of our CC SN
simulations and adjusting the CC SN likelihood model.

6.1. Analysis Variants

In total, we test three additional methods of determining the
prior probability P(Ia) (Equation (4))—the Nearest Neighbor
(NN), Fitprob, and GalSNID classifiers—and two additional
CC SN models. The two additional CC SN models include a
two-Gaussian model and a single, asymmetric Gaussian model.
NN and Fitprob are light-curve-based classification methods.
NN uses SALT2 light-curve parameters to classify SNe based
on whether they lie nearer to simulated SNe Ia or simulated
CC SNe in X1, C, and redshift space while Fitprob uses the χ2

and degrees of freedom of the SALT2 light-curve fit to measure
a probability. GalSNID (Foley & Mandel 2013) uses the fact
that, unlike CC SNe, many SNe Ia explode in galaxies with old
stellar populations, and thus uses only host galaxy properties to
derive an SN type probability. We expand the GalSNID
method to use observables from host galaxy spectroscopy in
addition to photometric observations. PSNID is the best
method; NN yields a sample with 6.5% contamination at P
(Ia)> 0.5 and 3.8% contamination at P(Ia)> 0.9, Fitprob
yields a sample with 6.1% contamination at P(Ia)> 0.5 (4.1%
at P(Ia)> 0.9), and GalSNID gives a sample with 9.3%
contamination (7.2% at P(Ia)> 0.9; the total contamination in
the sample is 9.7%). The details of these variants are given in
Appendix B.
We note that the best approach would be a hybrid one that

takes advantage of all classifiers. Though we keep these
classifiers as separate here in order to explore the effect of
different classification assumptions, Kessler & Scolnic (2017),
for example, combine a Fitprob> 0.05 cut with the NN
classifier. Combining GalSNID priors with a light-curve-based
classifier is another promising option for future work.
We test each variant on 25 samples of 1000 simulated PS1

SNe. Though we discuss the ways in which distances and
nuisance parameters are affected by these variants, we focus
primarily on measurements of w. The rms of these variants
gives an estimate of the systematic uncertainty on w, sw

CC, an
error which could be reduced in the future by improved SN
classification methods. It could also be reduced by testing our
best single classifier on a robust set of CC+Ia SN simulations
that include a larger set of CC SN templates and several
methods of adjusting CC SN rates and LFs to match the data.

Table 3
Results from BEAMS

PS1 Simulations PS1 Data

Bias sbias
a sstat

b
bias sstat sD stat Bias sbias

a,c sstat
b

bias sstat sD stat

μd 0.000 0.001 0.031 0.0 0.001 (3%) −0.040 0.019(±0.09) 0.074 −0.4 0.010 (14%)
α 0.004 0.000 0.006 0.6 0.000 (3%) 0.001 0.001(±0.005) 0.012 0.1 0.001 (5%)
β 0.088 0.008 0.073 1.2 0.004 (6%) 0.199 0.018(±0.10) 0.154 1.4 0.009 (6%)
w −0.005 0.004 0.048 −0.1 0.002 (3%) −0.040 0.012(±0.084) 0.095 −0.4 0.008 (8%)

Notes. Bias and increase in uncertainty due to CC SN contamination. All quantities shown are taken from the median of 25 samples. Bias is defined in Equation (7) for
simulations and Equation (8) for data (bias in data is relative to R14 parameter measurements).
a Uncertainty on the median bias.
b Statistical uncertainty on each parameter from a single sample.
c In parentheses, we show the estimated uncertainty on the R14 values. Because our PS1 data are correlated with R14 (they share the low-z sample), we take Monte
Carlo samples of 100 simulated PS1 SNe and combine each with the R14 low-z sample, taking the standard deviation of measurements from these combined data as
the uncertainty.
d Averaged over 0.08<z<0.7.
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6.2. Systematic Uncertainty on w

We examine two situations in this section: one where α and
β are measured by the BEAMS method, and one where α and β
are fixed to the values measured from spectroscopic samples. In
the case where α and β are measured by the BEAMS method,
Figure 10 shows the bias on α and β from each classifier. β
biases in particular can cause large distance biases at z>0.5,
as the average SN color at these redshifts is ∼−0.1 (for a bias
in β of 0.2, bD ´ =C 20 mmag).

If α and β are fixed, BEAMS requires very little information
to give robust measurements of w. We test the effect of fixing α
and β for all variants and also compare to the case where
BEAMS has minimal prior information: we set P(Ia)= 1/2 for
all photometric SNe while still fixing P(Ia)= 1 for low-z SNe.
If α and β are fixed, the largest absolute bias on w is −0.018
(the Fitprob classifier) and the P(Ia)= 1/2 case gives a w bias
of only −0.011. The biases are approximately twice as high if
we instead allow BEAMS to fit for α and β, and four times as
high for the P(Ia)= 1/2 case, worse than all other methods (a w
bias of −0.043).

Table 4 and Figure 11 show the median bias and increase in
uncertainty on w due to each P(Ia) method and CC SN model.
Figure 11 shows the bias before and after fixing α and β. We
find that alternate CC SN models have only a small effect on
the measurement of w. Our lowest w bias of −0.001±0.003
comes from the skewed Gaussian CC SN model; however, the
results from these three CC SN treatments are statistically
consistent (with the exception of the two-Gaussian model with
α and β fixed, which appears to have difficulty robustly
measuring both CC SN Gaussians).

Using all variants, sw
CC has an average value of

0.014±0.007 (30% of the statistical error) if α and β are
fixed for the NN, GalSNID, and Fitprob classifiers (these
classifiers give twice the bias on α and β as PSNID does). The
uncertainty is due to the dispersion of the systematic
uncertainty from sample to sample. BEAMS distances
(Figure 12) and nuisance parameters (Figure 10) are consistent
to within 1σ, regardless of the method.

We note that in some cases fixing α and β may subject the
sample to additional systematic uncertainty. For example, α
and β could be different in a photometric sample because the
host galaxy spectroscopic follow-up selects bright hosts. Host

properties correlate with shape and color, which in turn can
affect the measured α and β (Scolnic et al. 2014b). However,
these biases are well-known and can in principle be simulated
and corrected for (see Scolnic & Kessler 2016).
Current measurements of w (e.g., B14) have approximately

equal statistical and systematic uncertainties. Therefore, a

Figure 9. Left: average distance modulus bias due to CC SN contamination (Equation (7)) as a fraction of the statistical uncertainty. Error bars are the uncertainty on
the median bias from 25 samples. The average absolute biases at z>0.2 are ∼3 mmag, with the point at z ; 0.6 having the largest bias of 6 mmag (with the exception
of the final high-uncertainty point at z ; 0.7). There is a slight z-dependent slope, which could bias cosmological parameters, with at 2.3σ significance. Right: 1σ
cosmological parameter likelihood contours from BEAMS compared to the true likelihood using a representative sample of 1000 PS1 SNe.

Figure 10. Bias in SALT2 α, β, and sIa measured from 25 simulations of 1000
SNe each, with the shaded regions indicating typical uncertainties on each
parameter from SN Ia-only samples. sIa is too low by ∼0.005–0.01, while α
and β are too high by ∼0.005–0.01 and ∼0.1–0.2, respectively (∼1–2σ). It is
likely that reddened CC SNe are responsible for the higher color term (more
consistent with Milky Way dust than the SN Ia color law). “2G CC” and “SG
CC” refer to the two-Gaussian and skewed Gaussian CC SN parameterizations,
respectively.
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measurement of w biased by less than about half the statistical
uncertainty (0.024 in this work), such as the value of
s = 0.014w

CC measured here, does not prohibit a robust
measurement of w. Any bias larger than that—such as the
alternative classifiers discussed in this section without α and β

fixed—will dominate the systematic error budget and make it
unlikely that photometric SN samples can be competitive with
spectroscopically classified samples. For future surveys, such
as DES and LSST, this bias may be approximately equal to the

statistical error and must be reduced through improved
classification methods or a better understanding of CC SNe to
yield accurate results.

7. Discussion

The PS1 photometric SN sample is the largest SN Ia sample,
but using it to optimally measure cosmological parameters—
particularly if the nuisance parameters α and β are unknown or
observationally biased—requires accurate SN type probabilities.
These in turn rely on our understanding of the PS1 sample and
the CC SNe in it. Evaluating how our incomplete knowledge of
CC SNe could bias the results is difficult. In this section, we
discuss how CC SN simulations could be improved in the future.
We also present alternatives to our implementation of BEAMS
and measure the degree to which different methods and priors
affect the statistical uncertainty on w.

7.1. Generating Reliable CC SN Simulations

Evaluating the reliability of our method would be subject to
fewer uncertainties if CC SN simulations were more robust.
These simulations are currently subject to two primary limiting
factors: the assumption that the CC SN LF is Gaussian with
measured mean and rms from Li et al. (2011) and the limited
CC SN template diversity.

Table 4
Cosmological Results from BEAMS Variants

Method Dwa sstat
b sDw stat sD stat

One Gaussianc −0.005±0.004 0.050 −0.1 0.002 (3%)
Two Gaussiansc 0.004±0.004 0.051 0.1 0.003 (6%)
Skewed

Gaussianc
−0.001±0.003 0.050 −0.0 0.001 (2%)

P(Ia) Methodd

Dw sstat sDw stat sD w

PSNID −0.005±0.004 0.050 −0.1 0.002 (3%)
NNe −0.009±0.004 0.047 −0.2 −0.001 (−2%)
Fitprobe −0.018±0.004 0.047 −0.4 −0.001 (−1%)
GalSNIDe −0.011±0.004 0.048 −0.2 −0.000 (0%)

Notes. Bias of w in simulations from each CC SN model and prior probability
method. We take the median of 25 samples of 1000 PS1 SNe. For each increase
in uncertainty ( sD w), we show its percent increase in parentheses. Methods
with the lowest bias are highlighted in bold.
a The median bias on w and its uncertainty.
b The statistical uncertainty on w from a single sample of 1000 PS1 SNe.
c Using PSNID for the P(Ia) prior probabilities.
d Using a single-Gaussian CC SN model.
e For these classifiers, we keep α and β fixed to their known values. sD w is
negative in some cases, because fixing α and β neglects the contribution of
nuisance parameter uncertainties to the uncertainty on w.

Figure 12. Distance bias due to CC SN contamination as a fraction of the
distance uncertainty for each BEAMS variant. Small systematic discrepancies
begin to appear at z � 0.3.

Figure 11. w bias (top) and increased uncertainties (bottom) due to different P(Ia)
priors and CC SN parameterizations in BEAMS (black points). We show the
median from 25 samples of 1000 simulated SNe. Red points show the biases with
α and β fixed. In the top panel, the statistical error on w from SNe Ia is shown in
the red band and the dispersion of the values given in Table 4 in blue. Red points
have lower uncertainties than the Ia-only uncertainties because fixing α and β
neglects their uncertainties. “2G CC” and “SG CC” refer to the two-Gaussian and
skewed Gaussian CC SN parameterizations, respectively.
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Figure 13 shows that the assumption of the shape of CC SN
LFs could have a strong impact on the fraction of bright
CC SNe. While the Malmquist bias for SNe Ia is ∼0.1 mag at
maximum, Type II SNe observed at the median PS1 survey
redshift are up to 3 magnitudes—and 2–3 standard deviations
—brighter than the peak of their LF. Determining the
frequency of such bright CC SNe requires measuring the
shapes of their LFs with better precision than what is currently
available from volume-limited surveys such as Li et al. (2011).
Due to low statistics, our current simulations treat the LFs of
each SN subtype as Gaussian, a flawed assumption.

Generating more robust simulations also requires additional,
diverse CC SN templates. Our simulations sample the lumin-
osity, shape, and color distribution of most CC SN subtypes
with just a few templates. In addition, the luminosity
distribution of these templates is heavily biased; nearly all
CC SNe currently used as templates are much brighter than the
mean luminosity of their subtypes. Our method makes these
bright templates fainter to match the Li et al. (2011) LFs,
implicitly assuming that faint CC SNe have similar light curves
to bright CC SNe. A better approach would be based on CC SN
templates that sample the full range of luminosity space for
CC SNe.

We note that additional high-S/N CC SN light curves and
spectra exist, but require careful smoothing, interpolation, and
spectral mangling to be a reliable addition to the SNANA
template library. We have added SNe Ia-91bg and SN IIb
templates to SNANA (Appendix A.1.1), but assembling and
mangling all available CC SN light curves and templates is
beyond the scope of this work.

In the absence of additional templates and improved LF
measurements, we can use GalSNID and Fitprob classifications
to give measurements of w some degree of independence from
these sources of uncertainty. Though these classifiers are sub-
optimal compared to classifiers such as PSNID, they give a
unique set of probabilities that do not rely on simulations for
training (though Fitprob is implicitly dependent on the nature
of CC SN light curves contaminating our sample). Fitprob and
GalSNID explicitly depend on simulations only through their
rates priors. Adjusting these priors by a factor of 2 biases w by
∼20% of the statistical uncertainty or less.

7.2. Alternatives in Implementing BEAMS

In determining cosmological parameters with the BEAMS
method, we made a set of choices with a modest number of free
parameters that reproduced the full cosmological parameter
likelihoods. We found that most choices, e.g., varying priors or
adding additional CC SN bins, made little difference, provided
that we had a large number of MCMC steps and few enough
parameters.
Two additional choices can improve the systematic error due

to CC SN contamination. First, though fixing α and β does not
improve the accuracy of the BEAMS method when using
PSNID priors, it does improve the accuracy when using the
NN, Fitprob, and GalSNID methods with less accurate
classifications. With α and β fixed, NN, Fitprob and GalSNID
are competitive with the more sophisticated light-curve-based
methods. If we choose to either keep α and β fixed when
measuring w from these classifiers, we find that the sw

CC

decreases by ∼30% on average. In Pan-STARRS, spectro-
scopically confirmed SNe can measure these parameters with
low uncertainty, and fixing them for our future cosmology
analysis in some or all methods could be advantageous.
The second method of improving BEAMS is by cutting

additional likely CC SNe from the sample. Following Kessler
& Scolnic (2017), we tested a cut on the NN prior probability
by requiring < <( )P0.5 Ia 1NN . Our simulations show that this
cut removes ∼33% of contaminants but just 5% of SNe Ia. The
rejected sample has ∼40% CC SN contamination. We found
that an NN probability cut yields no improvements to our
results using the NN classifier. However, when this cut is added
to our other classification methods, it reduces sw

CC by ∼30% on
average. We have not included this cut in our systematic error
analysis (Section 6) as it makes our classification methods more
correlated and adds an additional dependence on uncertain
simulations to the measured systematic error. However, it is
likely that this cut will increase the consistency of the full PS1
cosmological results. Kessler & Scolnic (2017) use a hybrid
classification approach by requiring Fitprob> 0.05. In our
simulations, this cut reduces the CC SN contamination by an
additional 30% compared to using the NN classifier alone.
A third option for BEAMS is to estimate SN Ia distances

with a stricter CC SN model. Kessler & Scolnic (2017) adopt
an approach where BEAMS CC SN distributions are deter-
mined directly from simulations. For our PS1 analysis, we have
adopted a more general approach to CC SNe at the cost of
several additional parameters to marginalize over and a simpler
form of the likelihood (Kessler & Scolnic 2017 also suggest
free CC SN parameters as a possible improvement to their
method). Tests show our parameterization is capable of
marginalizing over the simulated CC SNe such that the Ia
likelihood is recovered, and our method is slightly more
general than a simulation-based method. A simulation-based
mapping of CC SNe may be more robust, but validating it
thoroughly is beyond the scope of this paper. In particular, the
influence of inaccurate simulations on its recovered results
must be explored fully.

7.3. Uncertainties in BEAMS Distances

By setting P(Ia)= 1/2 for all photometric SNe, the BEAMS
method measures w with a bias of −0.01, 0.2 times the
statistical uncertainty on w. The statistical uncertainty on w
from setting P(Ia)= 1/2, even with no prior information as to

Figure 13. In this work, SNANA II-P templates from SDSS (red) are made
fainter to match Li et al. (2011) LFs (gray) and then used to generate
simulations of the PS1 survey (green). SNANA II-P templates are typically 2σ–
3σ brighter than the mean magnitude of the population from Li et al. (2011).

15

The Astrophysical Journal, 843:6 (23pp), 2017 July 1 Jones et al.



which SNe are of Type Ia, is just 5% higher than using SNe Ia
alone (comparing to SNe Ia alone in the case where α and β are
fixed to known values). This is primarily due to two factors: the
loose priors we employ and the fact that we include a sample of
low-z spectroscopically confirmed SNe Ia for which P(Ia) is
fixed to 1. These low-z SNe Ia help to set the SN Ia dispersion
and the SN parameters α and β, which are fixed as a function of
redshift.

If we remove the low-z sample, the distance and SN
parameter biases increase. Distance uncertainties, which are
higher by just ∼5% when using the P(Ia)= 1/2 prior, increase
by nearly 50%. Nevertheless, BEAMS does remarkably well at
determining the Gaussian distributions of SNe Ia and CC SNe
with relatively little information. This is helped by the fact that
because SNe Ia have a factor of ∼20 lower dispersion than
CC SNe, a loose prior on BEAMS free parameters is sufficient
to find the most probable Gaussian distributions.

If we use a more flexible CC SN model (a two-Gaussian or
skewed Gaussian CC SN model), the requirements on our prior
probabilities must become more stringent to yield precise
distances. In the case of the two-Gaussian model, prior
probabilities can no longer be renormalized or shifted
(Equation (6))—these are parameters that can greatly improve
the results for alternative prior probability methods. Second,
our prior probabilities must be significantly more accurate to
yield results with low uncertainties. With the two-Gaussian
CC SN model, the uncertainty on w increases by 20% when
using GalSNID priors and by 100% when setting P(Ia)= 1/2
for all photometric SNe. Using the skewed Gaussian model, the
GalSNID and P(Ia)= 1/2 priors increase the uncertainties by
13% and 27%, respectively.

Fortunately, a single-Gaussian model for CC SNe appears to
yield unbiased distances even though the simulated distribution
is not perfectly Gaussian. In essence, BEAMS attempts only to
determine the Gaussian distributions of two types of SNe and
fortunately, those distributions are relatively well-separated in
dispersion even if they are not always well-separated in
distance.

8. Conclusions

We measured spectroscopic redshifts for 3147 SN host
galaxies in Pan-STARRS, over 1000 of which are cosmologi-
cally useful, likely SNe Ia. When combined with the full PS1
spectroscopic sample (D. M. Scolnic et al. 2017, in
preparation), we will have 1145 cosmologically useful SNe Ia
from PS1.

We find that currently available CC SN templates and
luminosity functions are biased or incomplete. Our results
suggest there are too few bright CC SNe in our simulations.

We generate 25 simulations that closely resemble the PS1
sample. Each has 1000 photometric PS1 SNe and 250 low-z
spectroscopically confirmed SNe Ia. These simulations show
that our method can measure w with a bias due to CC SN
contamination as low as −0.001±0.003. This equates to a
systematic uncertainty on w of just 0.004, 8% of the statistical
uncertainty, but this uncertainty could be affected by
incomplete knowledge of the CC SN distribution. The SN Ia
dispersion, sIa, is biased by −0.005 (∼0.5σ), the SALT2 shape
parameter α is biased by ∼0.005 (∼1σ), and the color
parameter β is biased by ∼0.1 (∼1.5σ). The statistical
uncertainties on w are nearly equivalent to those using only
SNe Ia.

Using several variants of the method and a CMB-like prior
on WM , we estimate the systematic error introduced by CC SN
contamination to be 0.014±0.007 (29% of the statistical
error). This systematic error would constitute only a 3%
increase on the uncertainty on w in a JLA-like analysis with
CMB priors (s = 0.057w (stat+sys), and + =0.057 0.0142 2

0.059). However, this systematic error assumes that α and β
can be fixed to known values from a spectroscopic sample for
the alternate classification methods. If α and β are fixed, our
least accurate classifiers—including an uninformative prior
probability P(Ia)= 1/2 for all simulated PS1 SNe—give a
median bias on w between −0.01 and −0.02. Systematic error
could be reduced further by using a cut on prior probabilities
from one variant to reduce CC SNe in the sample for the other
variants. We caution that due to uncertainties in CC SN
simulations and statistical fluctuations, the CC SN contamina-
tion systematic affecting our forthcoming cosmological results
may be somewhat lower or higher than the one estimated in this
work. However, that analysis will also include a subset of PS1
SNe with known (spectroscopic) classifications as part of the
data, a scenario that will likely reduce the systematic
uncertainty due to CC SN contamination.
Included in these variants are a total of four different

classification methods to measure cosmology, including a host
galaxy spectrum-based version of GalSNID (Foley & Mandel
2013) that we introduce in this work (see Appendix B.1.3).
GalSNID is based only on SN Ia host galaxy observables and a
rates prior. GalSNID provides a method of measuring w from
photometric data that does not depend on SN light curves and
training on simulated data. Machine learning techniques may
be able to improve on the efficiency of this method in the
future. We caution that even with these multiple variants, if
CC SN simulations are inaccurate it could cause the systematic
error to be underestimated in real data. Additional CC SN
templates and a better measurement of the shape of CC SN LFs
could help to ameliorate these concerns.
By drawing random samples from real PS1 data, we tested

whether the BEAMS method can work on real data within the
confidence intervals of Rest et al. (2014). We found that our
measurements of w were fully consistent with those of Rest
et al. (2014), as were the SN nuisance parameters α and β.
Though our results are robust, w is an extremely sensitive

measurement and the burden of proof for BEAMS is high.
Future validation tests could include SDSS and SNLS
photometric data, as well as simulated tests with a variety of
CC SN LFs. Additional light-curve classification methods
could also help improve the reliability of the BEAMS method.
Future SN Ia samples from DES and LSST will be unable to

rely solely on spectroscopic classification to measure cosmo-
logical parameters. With the light-curve classification and
Bayesian methodologies presented here, we validate some of
the techniques that will be used in future surveys, and
anticipate that PS1 photometric SNe can provide a robust
measurement of w using the largest SN Ia sample to date.
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Appendix A
The Dearth of Simulated CC SNe

A.1. Core-collapse SNe

There are a few potential explanations for the difference in
Hubble residuals m m< - <L( )0.5 1.5CDM between simula-
tions and data. In this appendix, we attempt to identify the
cause of the discrepancy.
First, a large percentage (20%) of inaccurate SN Ia

redshifts could explain the data. However, in addition to
disagreeing with our measurements, this would give too many
simulated SNe with very bright and very faint Hubble
residuals. Requiring a high TDR minimum and a small
separation between the SN location and host galaxy center in
our data does not resolve the conflict.
A second option is that the relative rates or magnitude

distributions from Li et al. (2011) are erroneous or are biased
by the targeted nature of the survey (LOSS searched for SNe in
a set of pre-selected bright galaxies). These rates also do not
take into account that the relative fractions of different CC SN
subtypes could change with redshift. Modest adjustments, such
as “tweaking” the mean magnitudes or dispersions of CC SNe
by 0.5 mag, cannot explain the discrepancy. Simulating
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CC SNe using LFs from Richardson et al. (2014), which are
typically ∼0.3–1.0 mag brighter than those of Li et al. (2011),
produces far too many bright CC SNe compared to our data.
The effect of weak lensing on the data is expected to be an
order of magnitude less than the size of the offset we see here
(Smith et al. 2014). It is also unlikely that strongly lensed SNe
contribute significantly to the discrepancy (Oguri &
Marshall 2010).

By reclassifying LOSS SNe, Shivvers et al. (2017) recently
found that SN Ib relative rates were more than double the
fraction found by Li et al. (2011). This change could reduce the
Hubble residual discrepancy by half or more. However,
Shivvers et al. (2017) determined these rates by reclassifying
a number of LOSS SNe Ic as SNe Ib, which in turn means that
the SN Ib LF should be made fainter. Making the SN Ib LF
fainter will increase the discrepancy in Hubble residuals. We
continue to use Li et al. (2011) in this work, as we can be sure
that the LFs and relative rates are self-consistent.

Finally, we consider that our results could be biased if
SNANA templates have lower average reddening than PS1
data. There are likely substantial differences between the
reddening distribution of the templates and the data. However,
we find that adding additional reddening to our simulations
tends to make the magnitude distribution of CC SNe broader
(we approximately adjust the Li et al. 2011 LFs for dust
following Rodney et al. 2014). This increases the discrepancy
between simulations and data. Correcting for the unknown
intrinsic reddening of these templates is an important future
objective that can allow SNANA simulations to be more
realistic. See Section 7.1 for further discussion of biases in our
simulations and templates.

A.1.1. Adding New Supernova Templates to SNANA

Several CC SN or peculiar Ia subtypes are missing from the
SNANA simulation library but could be present in the PS1
data. Missing SN types include superluminous SNe, SNe IIb,
SNe Ibc-pec, and peculiar, faint SNe Ia such as 1991bg-like
SNe Ia (Ia-91bg) and SNe Iax (Foley et al. 2013). Super-
luminous SNe are unlikely to help resolve the discrepancy, as
they are brighter than SNe Ia and occur preferentially in faint
hosts for which redshifts are difficult to measure (Lunnan
et al. 2015). SNe Ibc-pec have similar LFs to SNe II-P but are
much less common, so it is unlikely that many would fall on
the Hubble diagram so near the SN Ia distribution. SNe Iax are
red, fast-declining SNe that may be relatively common but
have faint (albeit uncertain) LFs more similar to SNe II-P and
Ibc-pec. These also tend to be poorly fit by SALT2, and would
frequently fail our cuts.

SNe IIb and SNe Ia-91bg both have LFs only ∼1 mag fainter
than SNe Ia, though they are relatively uncommon and would
need a high fraction to pass SALT2 light-curve cuts to be major
contributors to our Hubble diagram. We investigated their
impact by adding Ia-91bg and IIb templates to SNANA.

To simulate CC SNe over a wide range of redshifts and
passbands, SNANA templates require relatively high-S/N,
high-cadence spectral and photometric sampling, which exists
for a paucity of CC SNe. Simulating SN light curves at high
redshift often necessitates near-ultraviolet data as well. To
create a template, an interpolated, flux-calibrated spectral time
series is “mangled” to match the observed photometry by using
wavelength-dependent splines with knots at the effective
wavelengths of the photometric filters. Least-squares fitting

determines the best-fit spline that scales the spectrum to match
the photometry. Hsiao et al. (2007) describes the “mangling”
procedure in detail.
To improve the SNANA CC SN simulation, we add four

SN IIb templates—SNe 1993J, 2008ax, 2008bo, and 2011dh—
using spectra and light curves consolidated by the Open
Supernova Catalog (Guillochon et al. 2017).21 Each of these
templates have well-sampled spectra and optical light curves.
We also add Ia-91bg templates using the SN 1991bg spectrum
from Nugent et al. (2002)22, warped to match SNe Ia-91bg with
well-sampled light curves before and after maximum (SNe
1991bg, 1998de, 1999by, 2005bl.23). Using multiple SN
templates helps us obtain better sampling of the shape
−luminosity relation for SNe 91bg (steeper than the relation
for normal SNe Ia; Taubenberger et al. 2008).
Figure 14 shows the interpolated light curves, mangled

spectra, and Hubble residual histograms for SNe IIb and Ia-
91bg. For Ia-91bg, we assume their rates have the same redshift
dependence as SNe Ia. SNe Ia-91bg have magnitude distribu-
tions that could explain the data, but their rates are inconsistent
with the data. SNe IIb are far too rare, as nearly all simulated
SNe IIb have measured colors that are too red to be SNe Ia.
Though we find that Ia-91bg and IIb SNe are not frequent
enough to resolve the difference between PS1 data and
simulations, we incorporate these subtypes in our simulations
hereafter.

A.1.2. Measuring CC SN LFs with PSNID

There is an additional procedure by which PS1 data can
inform CC SN LFs: we use the PSNID light-curve classifier
(Sako et al. 2011, 2014) to separate the likely contributions of
SNe Ia, Ib/c, and II. The SNANA implementation of PSNID
compares the SALT2 SN Ia model and SNANA’s CC SN
templates to the observed data. PSNID determines the fit χ2-
and prior-based probability that a given SN is Type Ia, Type
Ib/c, or Type II. Though the set of templates we use for PSNID
is the same set we use to generate CC SNe in our simulations,
broad priors allow these templates to be shifted in magnitude
and extinction to fit our data.
We compare PSNID’s classifications of PS1 data and

simulations by examining the distribution of m- LmB CDM, a
proxy for absolute magnitude at peak (Figure 15). We find that
likely SNe Ib/c are much brighter and have lower dispersion
than the simulations. To bring our simulations into agreement
with the data, we adjusted the simulated SN Ib/c and II
distributions such that the mean and standard deviations of the
simulated SNe that PSNID classified as Type Ib/c and II
matched the mean and standard deviations of the real PS1 SNe
that PSNID classified as Type Ib/c and II. This requires

21 References for the spectra and photometry are listed here. SN 1993J:
Richmond et al. (1996), Metlova et al. (1995), Barbon et al. (1995), Jerkstrand
et al. (2015), and Modjaz et al. (2014). SN 2008ax: Modjaz et al. (2014),
Brown et al. (2014), Taubenberger et al. (2011), Tsvetkov et al. (2009), and
Pastorello et al. (2008). SN 2008bo: Modjaz et al. (2014), Brown et al. (2014),
and Bianco et al. (2014). SN 2011dh: Ergon et al. (2015, 2014), Shivvers et al.
(2013), and Arcavi et al. (2011). Secondary sources: Yaron & Gal-Yam (2012),
Richardson et al. (2001), Silverman et al. (2012), and the Sternberg
Astronomical Institute Supernova Light Curve Catalogue.
22 https://c3.lbl.gov/nugent/nugent_templates.html
23 References for the photometry are listed here. SN 1998de: Silverman et al.
(2012), Ganeshalingam et al. (2010), and Modjaz et al. (2001). SN 1999by:
Silverman et al. (2012), Ganeshalingam et al. (2010), and Garnavich et al.
(2004). SN 2005bl: Contreras et al. (2010). Secondary sources: the Sternberg
Astronomical Institute Supernova Light Curve Catalogue.
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reducing the dispersion of CC SN templates by 55% for SNe
Ib/c. It also requires brightening the simulated LFs by 1.2 mag
for SNe Ib/c and 1.1 mag for SNe II. We made shape and color
cuts (Section 2.2) in this analysis but neglected sX1

and speakMJD
cuts to increase our SN statistics.

Figure 15 shows the distributions of PSNID-classified PS1
SNe (P(SN Type)> 95%) compared to our simulations before

and after absolute magnitude and dispersion adjustments. We
apply shape and color cuts but neglect additional cuts to
increase our CC SN sample size.
After these adjustments, simulated CC+Ia SNe are consis-

tent with our data. Figure 5 shows Hubble residual histograms
before and after our PSNID-based adjustments. After correc-
tion, CC SNe are 8.9% of our final sample and SNe Ia-91bg
comprise 0.2%. Additional CC SNe can explain the red tail of
the SALT2 C distribution in Figure 4(C) (Figure 16). No
CC SN rate adjustments were made. Although the simulated
absolute magnitudes have been brightened by ∼1 mag, CC SN
in the adjusted simulations are only ∼0.5 mag brighter than the
original simulation on average. This is because as we brighten
the CC SN distribution, the number of detectable faint SNe—
which are nearer to the peak of the LF, and thus occur more
frequently—increases, reducing the mean absolute magnitude.
Note that the ∼2σ–3σ discrepancy on the left (bright) side of
the Hubble diagram can be reduced by simulating a nominal
host mass correction, which tends to very slightly broaden the
simulated distribution of SNe Ia.
Our adjusted simulation matches the Hubble residuals of the

PS1 data. It also resolves the discrepancies in the PS1 C
distribution (Figure 16). Hereafter, we refer to the adjusted

Figure 14. New templates for SNe Ia-91bg (top panels) and IIb (bottom panels) were added to SNANA by mangling a template spectrum to match light-curve data.
From left to right, we show the interpolated SN light curves (light shading indicates interpolated points), the warped template spectra at peak brightness, and the
Hubble residuals of all templates of the new subtype. We compare the Hubble residuals of the new templates to the difference between the data and our simulations;
the new templates cannot explain the discrepancy we observe. Because SN 2011dh has z<0.01, its distance modulus residual is not shown in the left panel.

Figure 15. Empirical adjustments to SNANA simulations motivated by PSNID
classifications, shown using histograms of SN absolute magnitude (SALT2

m- LmB CDM). PSNID-classified PS1 SNe and PSNID-classified simulations
suggest that SNe Ib/c, after shape and color cuts, are brighter than expected.
Our adjusted simulations (solid lines) match the data after we reduce the
simulated dispersions and brighten LFs by ∼1 mag.
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simulation, which adds new CC SN templates and uses PSNID
to infer the true SN Ib/c distribution, as the J17 simulation.24

Appendix B
Expanding the BEAMS Method

We discuss the methodology behind alternative BEAMS
variants in this section. The results from these variants are
given in Section 6.

B.1. Additional P(Ia) Priors

In addition to the PSNID prior probabilities in our baseline
method, we use three additional methods of estimating P(Ia):
Fitprob, NN, and GalSNID. The effectiveness of each method
is illustrated in Figure 17. The NN, Fitprob, and PSNID
classifiers all determine probabilities by fitting to the photo-
metric SN light curve. Fitprob relies on only the SALT2 model
for fitting, while PSNID and NN depend on CC SN simulations
for templates and training, respectively. GalSNID uses host
galaxy information and depends on SNANA simulations only
through the SN rates prior.

B.1.1. Nearest Neighbor

The NN classifier (Sako et al. 2014) uses a set of observables
to define how close a given SN is to the CC SN and SN Ia
populations. In our implementation, we use the SALT2 color
(C), stretch (X1), and redshift (z). The equation
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defines a list of NN distances between the ith SN and simulated
training data. For the ith SN, neighbors are defined as all
simulated events with <d 1i . NN training finds the parameters
DC ,max DX ,1,max and Dzmax that optimize the classification
metric (efficiency× purity) of simulated training data. NN is an
efficient and accurate classifier in PS1 simulations: the set of
SNe with PNN(Ia)> 0.9 has 3.8% contamination compared to
9.7% contamination for the full sample (including CC SNe and
SNe Ia with incorrect redshifts). This set includes 74% of all
SNe Ia. See Kessler & Scolnic (2017) for details on the NN
classification method.

B.1.2. Fitprob

The Fitprob method estimates P(Ia) from the χ2 and number
of degrees of freedom of the SALT2 light-curve fit (the SALT2
fit probability). Because the SALT2 fit χ2 has no knowledge
about the relative frequency of different SN types, we
multiplied ( )P Iafp , the Fitprob probability, by a redshift-
dependent SN rates prior, ( ∣ )P P zIa . ( ∣ )P zIa is the number of
SNe Ia divided by the total number of SNe at a given redshift
(after sample cuts; measured using the J17 simulations):
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Compared to the PSNID (baseline) classifier, Fitprob has twice
the fraction of contaminants at P(Ia)> 0.5. The fraction of
CC SNe with high P(Ia) is also higher by a factor of ∼2.

B.1.3. GalSNID

SNe Ia have much longer average delay times between
progenitor formation and explosion than CC SNe. Because of
this, SNe Ia are the only SN type found in early-type hosts.
This allows methods such as GalSNID (Foley & Mandel 2013)
to classify SNe with host galaxy information. The GalSNID
method in Foley & Mandel (2013) is based on photometric
information and is highly dependent on host morphology.
Because measuring galaxy morphologies at typical PS1
redshifts requires ∼0 1 image resolution, we modified the
method by adding spectral observables. Though GalSNID is a
very inefficient classifier, it measures SN Ia probabilities in a
way that is only minimally subject to light-curve and LF
uncertainties.
To train GalSNID, we used 602 host galaxy spectra from the

Lick Observatory Supernova Search (LOSS; Leaman
et al. 2011) and 354 host galaxy spectra of PS1 spectro-
scopically confirmed SNe. The equivalent widths of spectral
emission lines, and Hα in particular, correlate with SN type.
Another useful diagnostic is the template that cross-correlates
best with the observed host spectrum. Finally, we include host
galaxy R (labeled effective offset in Foley & Mandel 2013),
B−K, colors and absolute K magnitudes from Foley &
Mandel (2013).
We trained GalSNID on spectral information using LOSS

host galaxy spectra and spectroscopically confirmed PS1 SNe
for which we have host galaxy spectra. Relative to the PS1
spectroscopic sample, LOSS has a greater number of total SNe,
and a greater diversity and number of CC SNe on which to train
the data.

Figure 16. Simulated SALT2 C (right), compared to data in the J17 (adjusted)
simulations. Compared to the original simulations (Figures 4(D) and (E)), the
red end of the C distribution is more consistent with our data in the J17
simulations.

24 Templates and simulation input files for this simulation have been added to
the SNANA library.
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Spectra for ∼1/3 of the LOSS sample are available from
SDSS/BOSS (Alam et al. 2015; 297 spectra), and we found an
additional ∼1/3 (305 spectra) by querying the NASA/IPAC
Extragalactic Database. In total, 67% of the 905 SNe
discovered by LOSS have host galaxy spectra. In general, the
S/N of these data are high (much higher on average than our
redshift survey data).

PS1 spectroscopically classified 520 SNe, of which ∼150 are
CC SNe and the rest are SNe Ia. Of the CC SNe, ∼30 are SNe
IIn (M. R. Drout et al. 2017, in preparation), 76 are II-P or II-L
(Sanders et al. 2015), and ∼20–30 are SNe Ib or Ic. We
obtained host galaxy spectra for 354 of these SNe.

We searched for a number of prominent, observational
galaxy diagnostics that correlate with the age of the host, and
found that the equivalent widths of bright emission lines such
as O II, O III, Hα, and Hβ are measurable in many of our
spectra. We required continuum S/N> 5 near a given line
measurement for an observable to be used in training or
classification. As a way to incorporate additional information in
a single diagnostic, we included the best-matched spectral
template based on cross-correlation as an observable.

Although these diagnostics are correlated, in this work we
follow Foley & Mandel (2013) in treating them as independent.
Final probabilities for a given SN can therefore be computed by
multiplying the probability of a Ia given each observable (Foley
& Mandel 2013):

= -

=

( ∣ ) ( ∣ ) ( ∣ ) ( )P D k P z P DIa Ia Ia , 11
i

N
1

1
i

where N is the number of observables and ( ∣ )P D Iai is the
probability of an observable given that the SN is Type Ia
(Table 5). ( ∣ )P D Iai is easy to compute; it is the fraction of SN Ia
host galaxies that have observable Di. ( ∣ )P zIa is a rates prior
informed by our SNANA simulations. k is a normalization
factor that requires + =( ∣ ) ( ∣ )P D P DIa CC 1. See Foley &
Mandel (2013) for additional details on the methodology. In the
future, machine learning techniques may be able to improve
our results by relaxing the assumption that observables are
uncorrelated.

The probabilities from our LOSS+PS1 training sample are
provided in Table 5. We also include the effective offset,
B−K colors, and K absolute magnitudes using probabilities

measured from Foley & Mandel (2013) and SED fits using PS1
host galaxy photometry. Note that because Hα and Hβ are
almost perfectly correlated (the correlation coefficient is 0.94),

Figure 17. Simulated prior probabilities from the four classification methods discussed in this work for SNe Ia (red) and contaminants (blue; includes CC SNe and
SNe Ia with incorrect redshifts). For each method, we show the percentage of contaminants fC and the fraction of SNe Ia included,  Ia, in a P(Ia) > 0.5 sample.

Table 5
Probability of Host Properties Given Type

Bin ( ∣ )P D Iai ( ∣ )P D Ibci ( ∣ )P D IIi

Cross-correlation Template

Absorption 0.502 -
+

0.048
0.054 0.256 -

+
0.055
0.069 0.286 -

+
0.033
0.036

Ellipt+A stars 0.431 -
+

0.045
0.050 0.598 -

+
0.085
0.097 0.609 -

+
0.048
0.051

Late-type 0.029 -
+

0.012
0.017 0.037 -

+
0.020
0.035 0.030 -

+
0.010
0.015

Emission 0.029 -
+

0.012
0.017 0.098 -

+
0.034
0.047 0.071 -

+
0.016
0.021

Hα Equivalent Width

<−5.0 0.005 -
+

0.004
0.011 0.000 -

+
0.000
0.033 0.000 -

+
0.000
0.010

−5.0–0.0 0.323 -
+

0.039
0.045 0.054 -

+
0.029
0.051 0.116 -

+
0.024
0.031

0.0–5.0 0.219 -
+

0.033
0.038 0.250 -

+
0.066
0.086 0.217 -

+
0.034
0.039

5.0–10.0 0.095 -
+

0.022
0.026 0.125 -

+
0.046
0.067 0.143 -

+
0.027
0.033

>10.0 0.358 -
+

0.042
0.047 0.571 -

+
0.100
0.120 0.524 -

+
0.052
0.058

Hβ Equivalent Width

<−5.0 0.000 -
+

0.000
0.007 0.000 -

+
0.000
0.026 0.000 -

+
0.000
0.007

−5.0–0.0 0.504 -
+

0.043
0.046 0.338 -

+
0.068
0.084 0.333 -

+
0.035
0.040

0.0–5.0 0.399 -
+

0.038
0.041 0.451 -

+
0.079
0.094 0.441 -

+
0.041
0.044

5.0–10.0 0.069 -
+

0.016
0.019 0.070 -

+
0.030
0.048 0.149 -

+
0.023
0.028

>10.0 0.029 -
+

0.010
0.014 0.141 -

+
0.044
0.060 0.077 -

+
0.017
0.021

O II Equivalent Width

<−5.0 0.000 -
+

0.000
0.027 0.000 -

+
0.000
0.183 0.000 -

+
0.000
0.056

−5.0–0.0 0.103 -
+

0.038
0.055 0.000 -

+
0.000
0.183 0.152 -

+
0.066
0.101

0.0–5.0 0.676 -
+

0.098
0.115 0.400 -

+
0.191
0.315 0.545 -

+
0.126
0.161

5.0–10.0 0.132 -
+

0.043
0.060 0.300 -

+
0.163
0.290 0.182 -

+
0.072
0.108

>10.0 0.074 -
+

0.032
0.049 0.300 -

+
0.163
0.290 0.121 -

+
0.058
0.096

O III Equivalent Width

<−5.0 0.000 -
+

0.000
0.007 0.000 -

+
0.000
0.027 0.000 -

+
0.000
0.007

−5.0–0.0 0.215 -
+

0.028
0.032 0.101 -

+
0.037
0.055 0.079 -

+
0.018
0.021

0.0–5.0 0.674 -
+

0.050
0.054 0.739 -

+
0.103
0.118 0.728 -

+
0.053
0.058

5.0–10.0 0.067 -
+

0.016
0.019 0.058 -

+
0.028
0.046 0.059 -

+
0.015
0.019

>10.0 0.041 -
+

0.012
0.016 0.101 -

+
0.037
0.055 0.134 -

+
0.023
0.027
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we do not use Hβ as an observable when Hα is present in
optical spectra (z  0.35). Figure 17 shows the GalSNID
probabilities of SNe Ia and CC SNe in PS1 and our simulations
(we redshift and add noise to LOSS spectra to determine
simulated GalSNID probabilities). Figure 18 shows GalSNID
probabilities for real spectroscopically classified PS1 SNe.

To create GalSNID probabilities for the simulated sample,
we artificially redshifted LOSS host galaxy spectra, added
noise to make them consistent with the S/N of PS1 host
spectra, and used GalSNID to measure the probability that each
host observed an SN Ia. We took the distributions of GalSNID
probabilities for the redshifted, noisy spectra corresponding to
LOSS SNe II, Ib/c, and Ia hosts in each simulated redshift bin
and assigned the probabilities drawn from those distributions to
simulated SNe II, Ib/c, and Ia. This gave our simulated SNe the
same probability distributions as the redshifted LOSS data.
Figure 17 shows that GalSNID is a relatively imprecise
classifier, but it provides constraints that are independent of SN
light curves and their associated uncertainties. We have not
taken into account the redshift evolution of SN host galaxies in
this work.

On PS1 data, GalSNID is by far the least efficient classifier.
Because classifications are highly influenced by the rates prior,
GalSNID considers just 5% of contaminants to be likely
CC SNe. If we set a higher threshold of P(Ia)> 0.9, GalSNID
removes ∼25% of CC SNe and keeps ∼70% of SNe Ia.
GalSNID is also most effective at z  0.35, where Hα is
present in our optical spectra (the best indicator of SN type in
our spectra). Unfortunately, the largest SN Ia distance biases
are at z>0.4, where the CC SN distribution becomes blended
with the SN Ia distribution.

GalSNID would also be useful as an additional prior on SN
type in conjunction with other methods. However, due to the
uncertainty in CC SN models and LFs, in the present analysis
we consider it most powerful as a stand-alone tool that can
measure SN Ia probabilities without using light-curve data.

B.2. Varying the CC SN Model

PS1 and other spectroscopic data show that SNe Ia are well-
represented by a Gaussian Hubble residual model, but CC SNe
are not. We investigated replacing the CC SN likelihood in
Equation (4) with two likelihoods that are more consistent with

our CC SN simulations. We tested a two-Gaussian model with
10 additional free parameters for CC SNe (the means and
standard deviations of the second Gaussian at five redshift
control points). We also tested a single, asymmetric Gaussian
model with five additional free parameters (skewness at each
CC SN control point).
If we allow BEAMS to shift and/or rescale the prior

probabilities that an SN is of Type Ia (Equation (6)), BEAMS
can give unphysical results. The alternative CC SN models are
significantly more flexible and that flexibility must be
constrained by accurate, fixed prior probabilities such as those
from NN (see Section 7.3). We fix the parameters that allow
BEAMS to adjust the priors (A= 1 and S= 0 in Equation (6))
or else the uncertainties on SN Ia distances will inflate to
>0.1 mag for even our best-measured redshift control points.

References

Alam, S., Albareti, F. D., Allende Prieto, C., et al. 2015, ApJS, 219, 12
Arcavi, I., Gal-Yam, A., Yaron, O., et al. 2011, ApJL, 742, L18
Barbon, R., Benetti, S., Cappellaro, E., et al. 1995, A&AS, 110, 513
Bernstein, J. P., Kessler, R., Kuhlmann, S., et al. 2012, ApJ, 753, 152
Betoule, M., Kessler, R., Guy, J., et al. 2014, A&A, 568, A22
Bianco, F. B., Modjaz, M., Hicken, M., et al. 2014, ApJS, 213, 19
Blake, C., Brough, S., Couch, W., et al. 2008, A&G, 49, 5.19
Brown, P. J., Breeveld, A. A., Holland, S., Kuin, P., & Pritchard, T. 2014,

Ap&SS, 354, 89
Campbell, H., D’Andrea, C. B., Nichol, R. C., et al. 2013, ApJ, 763, 88
Childress, M., Aldering, G., Antilogus, P., et al. 2013, ApJ, 770, 108
Colless, M., Peterson, B. A., Jackson, C., et al. 2003, arXiv:astro-ph/0306581
Conley, A., Guy, J., Sullivan, M., et al. 2011, ApJS, 192, 1
Contreras, C., Hamuy, M., Phillips, M. M., et al. 2010, AJ, 139, 519
Ergon, M., Jerkstrand, A., Sollerman, J., et al. 2015, A&A, 580, A142
Ergon, M., Sollerman, J., Fraser, M., et al. 2014, A&A, 562, A17
Fabricant, D., Fata, R., Roll, J., et al. 2005, PASP, 117, 1411
Falck, B. L., Riess, A. G., & Hlozek, R. 2010, ApJ, 723, 398
Foley, R. J., Challis, P. J., Chornock, R., et al. 2013, ApJ, 767, 57
Foley, R. J., & Mandel, K. 2013, ApJ, 778, 167
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP,

125, 306
Frieman, J. A., Bassett, B., Becker, A., et al. 2008, AJ, 135, 338
Ganeshalingam, M., Li, W., Filippenko, A. V., et al. 2010, ApJS, 190, 418
Garnavich, P. M., Bonanos, A. Z., Krisciunas, K., et al. 2004, ApJ, 613, 1120
Guillochon, J., Parrent, J., Kelley, L. Z., & Margutti, R. 2017, ApJ, 835, 64
Gupta, R. R., Kuhlmann, S., Kovacs, E., et al. 2016, AJ, 152, 154
Guy, J., Astier, P., Baumont, S., et al. 2007, A&A, 466, 11
Guy, J., Sullivan, M., Conley, A., et al. 2010, A&A, 523, A7
Hamuy, M., Folatelli, G., Morrell, N. I., et al. 2006, PASP, 118, 2
Hlozek, R., Kunz, M., Bassett, B., et al. 2012, ApJ, 752, 79
Hsiao, E. Y., Conley, A., Howell, D. A., et al. 2007, ApJ, 663, 1187
Jerkstrand, A., Ergon, M., Smartt, S. J., et al. 2015, A&A, 573, A12
Jones, D. H., Read, M. A., Saunders, W., et al. 2009, MNRAS, 399, 683
Jones, D. O. 2017, Measuring Dark Energy With Photometrically Classified

Pan-STARRS Supernova: Bayesian Estimation Applied to Multiple Species
Algorithm, https://doi.org/10.5281/zenodo.572990

Kaiser, N., Burgett, W., Chambers, K., et al. 2010, Proc. SPIE, 7733, 77330E
Kelly, B. C. 2007, ApJ, 665, 1489
Kelly, P. L., Hicken, M., Burke, D. L., Mandel, K. S., & Kirshner, R. P. 2010,

ApJ, 715, 743
Kessler, R., Bassett, B., Belov, P., et al. 2010, PASP, 122, 1415
Kessler, R., Becker, A. C., Cinabro, D., et al. 2009a, ApJS, 185, 32
Kessler, R., Bernstein, J. P., Cinabro, D., et al. 2009b, PASP, 121, 1028
Kessler, R., Marriner, J., Childress, M., et al. 2015, AJ, 150, 172
Kessler, R., & Scolnic, D. 2017, ApJ, 836, 56
Kunz, M., Bassett, B. A., & Hlozek, R. A. 2007, PhRvD, 75, 103508
Kurtz, M. J., & Mink, D. J. 1998, PASP, 110, 934
Lampeitl, H., Smith, M., Nichol, R. C., et al. 2010, ApJ, 722, 566
Le Fèvre, O., Vettolani, G., Garilli, B., et al. 2005, A&A, 439, 845
Leaman, J., Li, W., Chornock, R., & Filippenko, A. V. 2011, MNRAS,

412, 1419
Lewis, A., & Bridle, S. 2002, PhRvD, 66, 103511
Li, W., Leaman, J., Chornock, R., et al. 2011, MNRAS, 412, 1441
Lilly, S. J., Le Fèvre, O., Renzini, A., et al. 2007, ApJS, 172, 70

Figure 18. GalSNID classifications of spectroscopically classified CC SNe and
SNe Ia in Pan-STARRS, neglecting rates priors.

22

The Astrophysical Journal, 843:6 (23pp), 2017 July 1 Jones et al.

https://doi.org/10.1088/0067-0049/219/1/12
http://adsabs.harvard.edu/abs/2015ApJS..219...12A
https://doi.org/10.1088/2041-8205/742/2/L18
http://adsabs.harvard.edu/abs/2011ApJ...742L..18A
http://adsabs.harvard.edu/abs/1995A&amp;AS..110..513B
https://doi.org/10.1088/0004-637X/753/2/152
http://adsabs.harvard.edu/abs/2012ApJ...753..152B
https://doi.org/10.1051/0004-6361/201423413
http://adsabs.harvard.edu/abs/2014A&amp;A...568A..22B
https://doi.org/10.1088/0067-0049/213/2/19
http://adsabs.harvard.edu/abs/2014ApJS..213...19B
https://doi.org/10.1111/j.1468-4004.2008.49519.x
http://adsabs.harvard.edu/abs/2008A&amp;G....49E..19B
https://doi.org/10.1007/s10509-014-2059-8
http://adsabs.harvard.edu/abs/2014Ap&amp;SS.354...89B
https://doi.org/10.1088/0004-637X/763/2/88
http://adsabs.harvard.edu/abs/2013ApJ...763...88C
https://doi.org/10.1088/0004-637X/770/2/108
http://adsabs.harvard.edu/abs/2013ApJ...770..108C
http://arxiv.org/abs/astro-ph/0306581
https://doi.org/10.1088/0067-0049/192/1/1
http://adsabs.harvard.edu/abs/2011ApJS..192....1C
https://doi.org/10.1088/0004-6256/139/2/519
http://adsabs.harvard.edu/abs/2010AJ....139..519C
https://doi.org/10.1051/0004-6361/201424592
http://adsabs.harvard.edu/abs/2015A&amp;A...580A.142E
https://doi.org/10.1051/0004-6361/201321850
http://adsabs.harvard.edu/abs/2014A&amp;A...562A..17E
https://doi.org/10.1086/497385
http://adsabs.harvard.edu/abs/2005PASP..117.1411F
https://doi.org/10.1088/0004-637X/723/1/398
http://adsabs.harvard.edu/abs/2010ApJ...723..398F
https://doi.org/10.1088/0004-637X/767/1/57
http://adsabs.harvard.edu/abs/2013ApJ...767...57F
https://doi.org/10.1088/0004-637X/778/2/167
http://adsabs.harvard.edu/abs/2013ApJ...778..167F
https://doi.org/10.1086/670067
http://adsabs.harvard.edu/abs/2013PASP..125..306F
http://adsabs.harvard.edu/abs/2013PASP..125..306F
https://doi.org/10.1088/0004-6256/135/1/338
http://adsabs.harvard.edu/abs/2008AJ....135..338F
https://doi.org/10.1088/0067-0049/190/2/418
http://adsabs.harvard.edu/abs/2010ApJS..190..418G
https://doi.org/10.1086/422986
http://adsabs.harvard.edu/abs/2004ApJ...613.1120G
https://doi.org/10.3847/1538-4357/835/1/64
http://adsabs.harvard.edu/abs/2017ApJ...835...64G
https://doi.org/10.3847/0004-6256/152/6/154
http://adsabs.harvard.edu/abs/2016AJ....152..154G
https://doi.org/10.1051/0004-6361:20066930
http://adsabs.harvard.edu/abs/2007A&amp;A...466...11G
https://doi.org/10.1051/0004-6361/201014468
http://adsabs.harvard.edu/abs/2010A&amp;A...523A...7G
https://doi.org/10.1086/500228
http://adsabs.harvard.edu/abs/2006PASP..118....2H
https://doi.org/10.1088/0004-637X/752/2/79
http://adsabs.harvard.edu/abs/2012ApJ...752...79H
https://doi.org/10.1086/518232
http://adsabs.harvard.edu/abs/2007ApJ...663.1187H
https://doi.org/10.1051/0004-6361/201423983
http://adsabs.harvard.edu/abs/2015A&amp;A...573A..12J
https://doi.org/10.1111/j.1365-2966.2009.15338.x
http://adsabs.harvard.edu/abs/2009MNRAS.399..683J
https://doi.org/10.5281/zenodo.572990
https://doi.org/10.1117/12.859188
http://adsabs.harvard.edu/abs/2010SPIE.7733E..0EK
https://doi.org/10.1086/519947
http://adsabs.harvard.edu/abs/2007ApJ...665.1489K
https://doi.org/10.1088/0004-637X/715/2/743
http://adsabs.harvard.edu/abs/2010ApJ...715..743K
https://doi.org/10.1086/657607
http://adsabs.harvard.edu/abs/2010PASP..122.1415K
https://doi.org/10.1088/0067-0049/185/1/32
http://adsabs.harvard.edu/abs/2009ApJS..185...32K
https://doi.org/10.1086/605984
http://adsabs.harvard.edu/abs/2009PASP..121.1028K
https://doi.org/10.1088/0004-6256/150/6/172
http://adsabs.harvard.edu/abs/2015AJ....150..172K
https://doi.org/10.3847/1538-4357/836/1/56
http://adsabs.harvard.edu/abs/2017ApJ...836...56K
https://doi.org/10.1103/PhysRevD.75.103508
http://adsabs.harvard.edu/abs/2007PhRvD..75j3508K
https://doi.org/10.1086/316207
http://adsabs.harvard.edu/abs/1998PASP..110..934K
https://doi.org/10.1088/0004-637X/722/1/566
http://adsabs.harvard.edu/abs/2010ApJ...722..566L
https://doi.org/10.1051/0004-6361:20041960
http://adsabs.harvard.edu/abs/2005A&amp;A...439..845L
https://doi.org/10.1111/j.1365-2966.2011.18158.x
http://adsabs.harvard.edu/abs/2011MNRAS.412.1419L
http://adsabs.harvard.edu/abs/2011MNRAS.412.1419L
https://doi.org/10.1103/PhysRevD.66.103511
http://adsabs.harvard.edu/abs/2002PhRvD..66j3511L
https://doi.org/10.1111/j.1365-2966.2011.18160.x
http://adsabs.harvard.edu/abs/2011MNRAS.412.1441L
https://doi.org/10.1086/516589
http://adsabs.harvard.edu/abs/2007ApJS..172...70L


Lochner, M., McEwen, J. D., Peiris, H. V., Lahav, O., & Winter, M. K. 2016,
ApJS, 225, 31

Lunnan, R., Chornock, R., Berger, E., et al. 2015, ApJ, 804, 90
March, M. C., Trotta, R., Berkes, P., Starkman, G. D., & Vaudrevange, P. M.

2011, MNRAS, 418, 2308
Marriner, J., Bernstein, J. P., Kessler, R., et al. 2011, ApJ, 740, 72
Metlova, N. V., Tsvetkov, D. Y., Shugarov, S. Y., Esipov, V. F., &

Pavlyuk, N. N. 1995, AstL, 21, 598
Mink, D. J., Wyatt, W. F., Caldwell, N., et al. 2007, in ASP Conf. Ser. 376,

Astronomical Data Analysis Software and Systems XVI, ed. R. A. Shaw,
F. Hill, & D. J. Bell (San Francisco, CA: ASP), 249

Modjaz, M., Blondin, S., Kirshner, R. P., et al. 2014, AJ, 147, 99
Modjaz, M., Li, W., Filippenko, A. V., et al. 2001, PASP, 113, 308
Möller, A., Ruhlmann-Kleider, V., Leloup, C., et al. 2016, JCAP, 12, 008
Newman, J. A., Cooper, M. C., Davis, M., et al. 2013, ApJS, 208, 5
Nugent, P., Kim, A., & Perlmutter, S. 2002, PASP, 114, 803
Oguri, M., & Marshall, P. J. 2010, MNRAS, 405, 2579
Pastorello, A., Kasliwal, M. M., Crockett, R. M., et al. 2008, MNRAS,

389, 955
Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, ApJ, 517, 565
Press, W. H. 1997, in Unsolved Problems in Astrophysics, ed. J. N. Bahcall &

J. P. Ostriker (Princeton, NJ: Princeton Univ. Press), 49
Rest, A., Scolnic, D., Foley, R. J., et al. 2014, ApJ, 795, 44
Rest, A., Stubbs, C., Becker, A. C., et al. 2005, ApJ, 634, 1103
Richardson, D., Jenkins, R. L., III, Wright, J., & Maddox, L. 2014, AJ,

147, 118
Richardson, D., Thomas, R. C., Casebeer, D., et al. 2001, BAAS, 33, 1428
Richmond, M. W., Treffers, R. R., Filippenko, A. V., & Paik, Y. 1996, AJ,

112, 732

Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, AJ, 116, 1009
Rodney, S. A., Riess, A. G., Strolger, L.-G., et al. 2014, AJ, 148, 13
Rubin, D., Aldering, G., Barbary, K., et al. 2015, ApJ, 813, 137
Sako, M., Bassett, B., Becker, A. C., et al. 2014, arXiv:1401.3317
Sako, M., Bassett, B., Connolly, B., et al. 2011, ApJ, 738, 162
Sanders, N. E., Soderberg, A. M., Gezari, S., et al. 2015, ApJ, 799, 208
Scodeggio, M., Guzzo, L., Garilli, B., et al. 2016, arXiv:1611.07048
Scolnic, D., & Kessler, R. 2016, ApJL, 822, L35
Scolnic, D., Rest, A., Riess, A., et al. 2014a, ApJ, 795, 45
Scolnic, D. M., Riess, A. G., Foley, R. J., et al. 2014b, ApJ, 780, 37
Shivvers, I., Mazzali, P., Silverman, J. M., et al. 2013, MNRAS, 436,

3614
Shivvers, I., Modjaz, M., Zheng, W., et al. 2017, PASP, 129, 054201
Silverman, J. M., Foley, R. J., Filippenko, A. V., et al. 2012, MNRAS,

425, 1789
Smee, S. A., Gunn, J. E., Uomoto, A., et al. 2013, AJ, 146, 32
Smith, M., Bacon, D. J., Nichol, R. C., et al. 2014, ApJ, 780, 24
Stritzinger, M. D., Phillips, M. M., Boldt, L. N., et al. 2011, AJ, 142, 156
Suh, H., Yoon, S.-c., Jeong, H., & Yi, S. K. 2011, ApJ, 730, 110
Sullivan, M., Guy, J., Conley, A., et al. 2011, ApJ, 737, 102
Sullivan, M., Le Borgne, D., Pritchet, C. J., et al. 2006, ApJ, 648, 868
Taubenberger, S., Hachinger, S., Pignata, G., et al. 2008, MNRAS, 385, 75
Taubenberger, S., Navasardyan, H., Maurer, J. I., et al. 2011, MNRAS,

413, 2140
Tonry, J., & Davis, M. 1979, AJ, 84, 1511
Tripp, R. 1998, A&A, 331, 815
Tsvetkov, D. Y., Volkov, I. M., Baklanov, P., Blinnikov, S., & Tuchin, O.

2009, PZ, 29
Yaron, O., & Gal-Yam, A. 2012, PASP, 124, 668

23

The Astrophysical Journal, 843:6 (23pp), 2017 July 1 Jones et al.

https://doi.org/10.3847/0067-0049/225/2/31
http://adsabs.harvard.edu/abs/2016ApJS..225...31L
https://doi.org/10.1088/0004-637X/804/2/90
http://adsabs.harvard.edu/abs/2015ApJ...804...90L
https://doi.org/10.1111/j.1365-2966.2011.19584.x
http://adsabs.harvard.edu/abs/2011MNRAS.418.2308M
https://doi.org/10.1088/0004-637X/740/2/72
http://adsabs.harvard.edu/abs/2011ApJ...740...72M
http://adsabs.harvard.edu/abs/1995AstL...21..598M
http://adsabs.harvard.edu/abs/2007ASPC..376..249M
https://doi.org/10.1088/0004-6256/147/5/99
http://adsabs.harvard.edu/abs/2014AJ....147...99M
https://doi.org/10.1086/319338
http://adsabs.harvard.edu/abs/2001PASP..113..308M
https://doi.org/10.1088/1475-7516/2016/12/008
http://adsabs.harvard.edu/abs/2016JCAP...12..008M
https://doi.org/10.1088/0067-0049/208/1/5
http://adsabs.harvard.edu/abs/2013ApJS..208....5N
https://doi.org/10.1086/341707
http://adsabs.harvard.edu/abs/2002PASP..114..803N
https://doi.org/10.1111/j.1365-2966.2010.16639.x
http://adsabs.harvard.edu/abs/2010MNRAS.405.2579O
https://doi.org/10.1111/j.1365-2966.2008.13618.x
http://adsabs.harvard.edu/abs/2008MNRAS.389..955P
http://adsabs.harvard.edu/abs/2008MNRAS.389..955P
https://doi.org/10.1086/307221
http://adsabs.harvard.edu/abs/1999ApJ...517..565P
http://adsabs.harvard.edu/abs/1997upa..conf...49P
https://doi.org/10.1088/0004-637X/795/1/44
http://adsabs.harvard.edu/abs/2014ApJ...795...44R
https://doi.org/10.1086/497060
http://adsabs.harvard.edu/abs/2005ApJ...634.1103R
https://doi.org/10.1088/0004-6256/147/5/118
http://adsabs.harvard.edu/abs/2014AJ....147..118R
http://adsabs.harvard.edu/abs/2014AJ....147..118R
http://adsabs.harvard.edu/abs/2001BAAS...33.1428R
https://doi.org/10.1086/118048
http://adsabs.harvard.edu/abs/1996AJ....112..732R
http://adsabs.harvard.edu/abs/1996AJ....112..732R
https://doi.org/10.1086/300499
http://adsabs.harvard.edu/abs/1998AJ....116.1009R
https://doi.org/10.1088/0004-6256/148/1/13
http://adsabs.harvard.edu/abs/2014AJ....148...13R
https://doi.org/10.1088/0004-637X/813/2/137
http://adsabs.harvard.edu/abs/2015ApJ...813..137R
http://arxiv.org/abs/1401.3317
https://doi.org/10.1088/0004-637X/738/2/162
http://adsabs.harvard.edu/abs/2011ApJ...738..162S
https://doi.org/10.1088/0004-637X/799/2/208
http://adsabs.harvard.edu/abs/2015ApJ...799..208S
http://arxiv.org/abs/1611.07048
https://doi.org/10.3847/2041-8205/822/2/L35
http://adsabs.harvard.edu/abs/2016ApJ...822L..35S
https://doi.org/10.1088/0004-637X/795/1/45
http://adsabs.harvard.edu/abs/2014ApJ...795...45S
https://doi.org/10.1088/0004-637X/780/1/37
http://adsabs.harvard.edu/abs/2014ApJ...780...37S
https://doi.org/10.1093/mnras/stt1839
http://adsabs.harvard.edu/abs/2013MNRAS.436.3614S
http://adsabs.harvard.edu/abs/2013MNRAS.436.3614S
https://doi.org/10.1088/1538-3873/aa54a6
http://adsabs.harvard.edu/abs/2017PASP..129e4201S
https://doi.org/10.1111/j.1365-2966.2012.21270.x
http://adsabs.harvard.edu/abs/2012MNRAS.425.1789S
http://adsabs.harvard.edu/abs/2012MNRAS.425.1789S
https://doi.org/10.1088/0004-6256/146/2/32
http://adsabs.harvard.edu/abs/2013AJ....146...32S
https://doi.org/10.1088/0004-637X/780/1/24
http://adsabs.harvard.edu/abs/2014ApJ...780...24S
https://doi.org/10.1088/0004-6256/142/5/156
http://adsabs.harvard.edu/abs/2011AJ....142..156S
https://doi.org/10.1088/0004-637X/730/2/110
http://adsabs.harvard.edu/abs/2011ApJ...730..110S
https://doi.org/10.1088/0004-637X/737/2/102
http://adsabs.harvard.edu/abs/2011ApJ...737..102S
https://doi.org/10.1086/506137
http://adsabs.harvard.edu/abs/2006ApJ...648..868S
https://doi.org/10.1111/j.1365-2966.2008.12843.x
http://adsabs.harvard.edu/abs/2008MNRAS.385...75T
https://doi.org/10.1111/j.1365-2966.2011.18287.x
http://adsabs.harvard.edu/abs/2011MNRAS.413.2140T
http://adsabs.harvard.edu/abs/2011MNRAS.413.2140T
https://doi.org/10.1086/112569
http://adsabs.harvard.edu/abs/1979AJ.....84.1511T
http://adsabs.harvard.edu/abs/1998A&amp;A...331..815T
https://doi.org/10.1086/666656
http://adsabs.harvard.edu/abs/2012PASP..124..668Y

	1. Introduction
	2. The Pan-STARRS Photometric Supernova Sample
	2.1. Host Galaxy Redshift Survey
	2.2. SALT2 Selection Requirements
	2.3. Low-z SNe

	3. Simulating the Pan-STARRS Sample
	4. Estimating SN Ia Distances with BEAMS
	4.1. SALT2 Light-curve Parameters
	4.2. Prior Probabilities
	4.3. Malmquist Bias
	4.4. Cosmological Parameter Fitting

	5. Cosmological Results from BEAMS
	5.1. Tests with Simulated Data
	5.2. Comparing Real Pan-STARRS Photometric Supernovae to Rest et al. (2014)

	6. Results from BEAMS Variants
	6.1. Analysis Variants
	6.2. Systematic Uncertainty on w

	7. Discussion
	7.1. Generating Reliable CC SN Simulations
	7.2. Alternatives in Implementing BEAMS
	7.3. Uncertainties in BEAMS Distances

	8. Conclusions
	Appendix AThe Dearth of Simulated CC SNe
	A.1. Core-collapse SNe
	A.1.1. Adding New Supernova Templates to SNANA
	A.1.2. Measuring CC SN LFs with PSNID


	Appendix BExpanding the BEAMS Method
	B.1. Additional P(Ia) Priors
	B.1.1. Nearest Neighbor
	B.1.2. Fitprob
	B.1.3. GalSNID

	B.2. Varying the CC SN Model

	References



