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ABSTRACT  

This study reports two novel D–A–D molecules, 2,7-bis(phenothiazin-10-yl)-9,9-

dimethylthioxanthene-S,S-dioxide (DPT-TXO2) and 2,7-bis(1-methylphenothiazin-10-yl)-9,9-

dimethylthioxanthene-S,S-dioxide (DMePT-TXO2), where the latter differs by only a methyl 

group incorporated on each of the donor units. DMePT-TXO2 in solution and solid state shows 

dual charge transfer (CT) emission. The CT states come from two distinctive conformations 

between the D and A units. Experiments show that the emission contribution of each state can be 

controlled by the polarity of the environment and by the excitation energy. Also, how the different 

conformers can be used to control the TADF mechanism is analyzed in detail. These results are 

important as they give a more in-depth understanding about the relation between molecular 

conformation and the TADF mechanism, thereby facilitating the design of new TADF molecules.  
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INTRODUCTION 

Organic light-emitting diodes (OLEDs)1 are established in display and lighting 

applications, but, understanding how to design new molecules which show strong thermally 

activated delayed fluorescence (TADF) is crucial in order to achieve highly efficient OLEDs. The 

TADF mechanism uses thermal energy to vibrationally couple local triplet and triplet CT states 

(dark states) such that the triplet energy can cross back to emissive CT singlet states by reverse 

intersystem crossing (rISC), thereby overcoming the 25% internal quantum efficiency limit 

imposed by spin statistics.2–6 

In order to maximize TADF, the energy splitting between the singlet and triplet states 

(∆EST) should be minimized. A common strategy involves designing organic molecules with 

nearly orthogonal D–A units that show intramolecular excited states with strong charge transfer 

character (CT). We recently identified that the spin orbit coupling (SOC) mechanism in TADF 

systems is a complex second-order process requiring vibronic coupling between 3CT (charge 

transfer state) and 3LE (local state) to mediate the spin flip back to the 1CT state.7,8 Thus, 3CT and 

3LE are equally important in the analysis of the ∆EST. 

However, the near orthogonality of D and A units does not guarantee the existence of strong 

CT characteristics and an efficient TADF mechanism. Ward and co-workers9 showed that 

increasing steric restriction around the D–A bond changes the photophysics and effects the TADF 

mechanism in rigid nearly orthogonal D–A–D molecules. However, further work is still necessary 

to fully understand how the efficiency of the TADF mechanism is affected by this steric restriction. 

In this work, CT states, which show complex photophysics because they are sensitive to 

the environment and molecular conformation, are studied in detail for two novel D–A–D type 
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molecules, 2,7-bis(phenothiazin-10-yl)-9,9-dimethylthioxanthene-S,S-dioxide (DPT-TXO2) and 

2,7-bis(1-methylphenothiazin-10-yl)-9,9-dimethylthioxanthene-S,S-dioxide (DMePT-TXO2). 

These two molecules differ only by a methyl group incorporated on each of the donor units, 

however, dramatic differences in the photophysical properties are observed. Particularly, we show 

that different molecular conformations give rise to different CT states, termed axial (CTax) and 

equatorial (CTeq). Recent works have also observed this dual fluorescence from CT states in 

different organic molecules, and they have assigned the different conformers as a result of the 

folding of the phenothiazine donor units.10–12 Here, we show how the different conformers can be 

controlled by the polarity of the environment and by the excitation energy. Moreover, we discuss 

how the different conformers can be used to control the TADF mechanism. 

EXPERIMENTAL SECTION 

The synthesis and structural characterization of 2,7-bis(phenothiazin-10-yl)-9,9-

dimethylthioxanthene-S,S-dioxide (DPT-TXO2) and 2,7-bis(1-methylphenothiazine-10-yl)-9,9-

dimethylthioxanthene-S,S-dioxide (DMePT-TXO2) are given in detail in the supplementary 

information (S1). Two types of samples were studied in this work: solutions (10−3 to 10−5 M) and 

films produced in zeonex matrix (organic material 2.5 mg/mL:zeonex 180 mg/mL 1:1 v/v). All the 

solutions were diluted in different solvents and stirred for several hours.  They also were degassed 

to remove all the oxygen dissolved in the solutions by four freeze-pump-thaw cycles to perform 

the degas test and delayed fluorescence measurements. The films in zeonex matrix were fabricated 

by drop casting onto quartz substrates.  

Steady state absorption and emission spectra were acquired using a UV-3600 Shimadzu 

spectrophotometer and a Jobin Yvon Horiba Fluoromax 3, respectively. Time resolved spectra 
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were obtained by exciting the sample with a Nd:YAG laser (EKSPLA), 10 Hz, 355 nm/266 nm or 

by using a Nitrogen laser, 10 Hz, 337 nm. Sample emission was directed onto a spectrograph and 

gated iCCD camera (Stanford Computer Optics). Photoluminescence quantum yelds (PLQY) were 

acquired using PLQY Quantaurus – QY Hamamatsu. The PLQY values (5% error) were calculated 

from the average of 4 values obtained with excitation between 270 and 300 nm (10 nm step), 

region where DPT-TXO2 and DMePT-TXO2 show strong absorption. 

X-ray crystal structures were determined using a Bruker 3-circle D8 Venture diffractometer 

with a PHOTON 100 CMOS area detector, using Mo-K (DPT-TXO2) and Cu-K (DMePT-

TXO2) radiation from IμS microsources with focussing mirrors. Crystals were cooled to 120 K 

using a Cryostream (Oxford Cryosystems) open-flow N2 gas cryostat. The structures were solved 

by direct methods using SHELXS 2013/1 software,13 and refined by full-matrix least squares using 

SHELXL 2014/714 and OLEX215 software. DPT-TXO2 crystallized from DCM/hexane solution 

as a DPT-TXO2·CH2Cl2 solvate.  The structure of DMePT-TXO2 contains infinite solvent-

accessible channels parallel to the x axis and amounting to ca. 20% of the crystal space (Figure 

S2). The channels are occupied by disordered solvent, tentatively estimated as one hexane and 1.5 

CH2Cl2 molecules per unit cell, or half of this per formula unit. The solvent contribution to the 

structure factors was eliminated using PLATON SQUEEZE solvent-masking procedure16 

estimating the diffuse electron density in the voids as 112 e per unit cell.  Full crystallographic 

data have been deposited with the Cambridge Structural Database, CCDC-1426132 (DPT-TXO2) 

and 1426133 (DMePT-TXO2). 
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RESULTS AND DISCUSSION  

1. X-RAY ANALYSES 

Figure 1 shows the X-ray molecular structure of DPT-TXO2 and DMePT-TXO2 in different 

viewing angles. DPT-TXO2 has no crystallographic symmetry but an approximate mirror plane 

through the S, O, C(7) and methyl carbon atoms. The TXO2 system (acceptor unit) is folded along 

the S(1)…C(7) vector, its arene rings i and ii forming a dihedral angle of 139.1º, cf. 137.8º in DPO-

TXO2 and 133.9º in unsubstituted TXO2.17 Both phenothiazine moieties are moderately folded 

along the N…S vectors, with inter-arene angles iii/iv 162.0º and v/vi 154.4º.  The near-

perpendicular twists around C(4)-N(1) and C(10)-N(2) bonds (86.0º and 80.1º, respectively) 

effectively preclude -conjugation between donor and acceptor parts. These bonds are longer than 

N–C bonds within phenothiazine systems, average 1.438(1) vs 1.416(2) Å, indicating that the lone 

pairs of N interact predominantly with the phenothiazine arene rings. In DMePT-TXO2 the folding 

of the TXO2 unit is similar (dihedral angle i/ii 135.9º) but the phenothiazine conformation is 

entirely different. The 1-methylphenothiazine substituent at C(4) is disordered between two 

orientations with methyl groups on opposite sides, with nearly equal probability, 0.482(2) to 

0.518(2). The substituent at C(10), however, is ordered. The latter is folded (dihedral angle v/vi 

134.0º) stronger than the (un-methylated) phenothiazine in DPT-TXO2, but similarly to mono- or 

di-methylated phenothiazine in DBT derivatives (128.7-135.5º).9 The twist around the C(10)-N(2) 

bond is negligible (0.9º) and this bond (1.408(3) Å) is considerably shorter than the other N(2)-C 

bonds (mean 1.434(3) Å). The geometry of the disordered phenothiazine is essentially similar 

(though less accurately determined), with the mean phenothiazine folding of ca. 135º and the twist 

around C(10)-N(2) bond of 16º (A) or 13º (B).  
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Figure 1. Chemical structures and X-ray molecular structures from different angles of a) DPT-

TXO2 and b) DMePT-TXO2 (showing two conformers statistically mixed in the crystal). Thermal 

ellipsoids are drawn at the 50% (DPT-TXO2) and 30% (DMePT-TXO2) probability level.   

Therefore, both molecules show a conformation with nearly perpendicular D–A orientation. 

The conformation shown by DPT-TXO2 is termed equatorial-equatorial (eq-eq) and DMePT-

TXO2 axial-axial (ax-ax).11,18 Given that in both conformations the D and A units are 

perpendicular, one could imagine strong CT character leading to strong TADF in both systems.  

However, dramatic differences in the photophysical properties of these molecules are observed, 

showing that the nearly perpendicular orientation is not sufficient to design TADF emitters.  

2. SOLUTIONS PROPERTIES  

Figure 2a shows the extinction coefficient spectra of DPT-TXO2 and DMePT-TXO2 and 

their individual D and A units, all in dichloromethane (CH2Cl2) solvent. DPT-TXO2 shows mainly 

the absorption band of the donor unit. DMePT-TXO2 shows a distinct absorption spectrum, at 
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higher energies compared to DPT-TXO2. Figure S3 shows the absorption spectra of DPT-TXO2 

and DMePT-TXO2 also in methylcyclohexane (MCH) and toluene. The absorption peak at lower 

energy shows a slight red shift by increasing the polarity of the solvent, which can be associated 

with π → π* character of the transitions. By comparison to the individual D and A units, the 

extinction coefficients of the low energy bands in both D–A–D molecules is greatly enhanced. 

This increase in oscillator strength does not come from simple conjugation as the D–A units are 

orthogonal precluding such conjugation. Instead, this is a clear signature of state mixing, here the 

π-π* and n-π* states. The effect of state mixing has been described in detail by C. M. Marian19 and 

T. J. Penfold;20 of significance here is the effect of the methyl group on the donors of DMePT-

TXO2. As these groups stabilise the H-extra (axial) conformation of the phenothiazine units11 less 

of the bridging nitrogen lone pair couples into the donor increasing the π-π* character, and hence 

oscillator strength of the lowest energy transition, but at the expense of a blue shift. Whereas in 

DPT-TXO2, the H-intra conformation of the phenothiazine is stabilized and more of the bridging 

nitrogen lone pair couples into the donor increasing the n-π* character, decreasing the oscillator 

strength of the lowest energy transition and giving a more red shift. 
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Figure 2. a) Extinction coefficient spectra of the DPT-TXO2, DMePT-TXO2 and their acceptor 

and donor units, all diluted in dichloromethane (CH2Cl2). b) Normalized photoluminescence (PL) 

spectra of acceptor, donor and DPT-TXO2 and c) DMePT-TXO2 molecules. Donor and acceptor 

units were diluted in methylcyclohexane (MCH) solvent and D–A–D in different solvents: MCH, 
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toluene and 1,2-dichlorobenzene (DCB). DPT-TXO2 molecules were excited at 355 nm and 

DMePT-TXO2 at 337/316 nm. 

Figure 2b shows the emission spectra of DPT-TXO2 in different solvents. The spectra 

show clear and strong CT emission having a Gaussian band shape and strong red shift compared 

to the individual D and A emission spectra. The photoluminescence (PL) spectra move to longer 

wavelength with increasing the solvent polarity, showing a strong positive solvatochromism, as 

observed before in other D–A–D type molecules.6,21–23 A vestige of emission from the donor unit 

or weak axial CT state, around 400 nm, is observed in all solvents. The 1CT emission does not 

depend on the excitation energy (See Figure S4).  

The contribution of triplet excited states to the overall emission was determined by 

comparing the emission intensity in aerated and degassed solutions. The contributions of DF are 

13%, 37% and 42% for MCH, toluene and DCB, respectively (Figure S5). The higher contribution 

of DF in DCB is due to the small CT-3LE energy splitting (∆EST) achieved in this polar 

environment, thus, an efficient repopulation of 1CT state occurs via a reverse intersystem crossing 

(rISC) process from the 3LE state. The phosphorescence (PH) spectrum of DPT-TXO2 was 

identified in the solid state (Figure 6d), demonstrating that the PH onset is closest in energy to 

1CT in DCB solvent, confirming that the shift in the energy of triplet levels is small with the change 

in the polarity of the environment. 

DMePT-TXO2 shows much more complex emission spectra, with different emission bands 

in different polar environments and excitation energies. Figure 2c shows the emission spectra of 

all solutions (MCH, toluene and DCB) excited at 337 nm and also MCH solution excited at 316 

nm. For the least polar solvent, MCH, the emission observed around 370 nm is associated with a 

weak CT state, coming from the axial-axial conformation (CTax-ax); which has strong local excited 
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state character and consequently shows weak solvatochromism. At low excitation energy, 3.68 eV 

(337 nm), this emission is observed together with another peak around 450 nm. This second CT 

emission comes from molecules with the axial-equatorial conformation, CTax-eq, and shows strong 

solvatochromism. For higher energy excitation, 3.93 eV (316 nm), CTax-eq is enhanced and 

becomes the dominant emission. Figure 3 shows how the maximum intensity of each CT state in 

MCH solvent depends on the excitation energy. As can be seen, the emission which comes from 

the axial-axial conformation, CTax-ax, does not depend strongly on the excitation energy. However, 

the emission which comes from the axial-equatorial conformation, CTax-eq, is enhanced when the 

excitation occurs in the absorption peak of the A and D units. When the molecules are excited at 

lower energy, i.e., at the edge of the absorption spectrum, both states emit equally and weakly. The 

emission spectra used to produce this data is shown in Figure S6.  

Thus, higher excitation energy, with a high degree of excess energy, leads to the 

predominant formation of the CTax-eq excited state, and we propose that the excess energy may 

enable molecular rearrangement from the ax-ax to the ax-eq conformation.  

 

Figure 3. Maximum peak intensity of CT axial-axial emission (blue dot) and CT axial-equatorial 

emission (red dot) of DMePT-TXO2 in MCH solution at different energy excitations. Full lines 

are the same extinction coefficient data shown in Fig. 2a. 
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In toluene, the same behaviour is observed; the CTeq and CTex emission have roughly the 

same relative contributions in the overall emission, but with a small red shift of the CTax and a 

much larger red shift of the CTeq. However, when the toluene solution is excited at higher energy, 

3.93 eV (315 nm), the CTeq again dominates (Figure S7). Moving to even higher polarity, DCB 

solvent, the CTeq emission is dominant (337 nm excitation) and just a vestige of CTax remains. This 

shows that the polarity of this environment is high enough to enable molecular rearrangement and 

hence strong stabilization of the CTax-eq conformation, and high excitation energy is no longer 

needed. Thus, the contributions between the CTeq and CTax emission can be controlled by 

increasing the excitation energy (excess energy), i.e., the CTax-eq state has an energy barrier to 

formation/stabilization. However, in a high polarity environment (DCB solution) the ax-eq 

conformation is strongly stabilized even at low excitation energies so that predominantly CTeq 

emission is observed.  

 

Scheme 1. Schematic energy level diagram of DMePT-TXO2 in different solvents. 1LE, CTax, 

CTeq and S0, refers to: local excited state, axial charge transfer state, equatorial charge transfer state 

and ground state, respectively.  



 12 

The peak emission of CTax in MCH (337 nm excitation), toluene and DCB, are 371 nm, 

391 nm and 407 nm, respectively. This leads to a red shift of 36 nm from the lowest-polarity to 

highest-polarity environment. The peak emission of CTeq in MCH, toluene and DCB, are 450 nm, 

479 nm and 528 nm, respectively, showing a large red-shift of 78 nm (see table S1). These results 

enabled us to build a simple potential well scheme of the excited states (1LE and 1CTs) in different 

solvent polarities (Scheme 1). As the solvent polarity increases, the CT energy levels start to 

decrease, because of the large dipole moment of the charge transfer states leading to strong 

screening of the Coulomb term by the reorganization of the solvent shell. On the other hand, 1LE 

remains nearly unchanged because its emission is not affected by the polarity of the solvent 

(Figure S8). In low-polarity solvents, the overall emission has strong LE character, and the energy 

difference between CTeq and CTax is small. By increasing the solvent polarity, the CT states 

gradually red shift, resulting in less LE character and a higher energy difference between CTax and 

CTeq. The contribution of triplet excited states to the overall emission was analyzed in DMePT-

TXO2 (337 nm excitation) (Figure S9). The contributions are 10% for toluene and 16% for DCB. 

Figure 4a shows the decay curves of DPT-TXO2 in different solvents. The curves are 

normalized for better comparison. The decay curves show two different regimes, a fast decay, 

associated to prompt CT emission (PF), and a slow decay, associated to the delayed fluorescence 

(DF). As expected, the DCB solution shows higher DF contribution because in this environment 

the DPT-TXO2 has the smallest CT-3LE energy splitting (∆EST). Figure 4b shows the same 

analysis for DMePT-TXO2. The decay curves are in agreement with the degassing results, which 

show that the triplet contribution in DMePT-TXO2 is very low, with almost no DF emission. 

DMePT-TXO2 in MCH and toluene solvents show just prompt CT emission, no DF was observed. 
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However, in DCB the DF emission was identified, but is much weaker than that observed from 

DPT-TXO2. 

 

Figure 4. Time resolved fluorescence decay curves of a) DPT-TXO2 and b) DMePT-TXO2 

molecules in different solvents: MCH, toluene and 1,2-dichlorobenzene (DCB). Time resolved 

normalized emission spectra in different time delays of collection of c) DPT-TXO2 and d) 

DMePT-TXO2 molecules in 1,2-dichlorobenzene (DCB) solvent. DPT-TXO2 molecules were 

excited at 355 nm and DMePT-TXO2 at 337 nm, all at RT. 

DCB solutions show stabilized CT formation in both molecules, bringing CT closer to, and 

in resonance with, the 3LE state; thus we analyse the emission spectra in the PF and DF regions. 
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Figure 4c shows that DPT-TXO2 has almost the same emission spectra (shape and position) in 

the entire region of analyses, apart from a vestige of emission around 425 nm in earliest times 

which can be assigned to either donor emission or very weak CTax. The majority of the emission 

in both regions (PF and DF) comes from the same transition, 1CT→S0. The latest emission was 

collected at TD = 35 µs.  

Analogous experiments were performed with DMePT-TXO2 (Figure 4d). In the first 10 

nanoseconds, strong CTax emission is observed competing with CTeq emission, and at later times, 

pure CTeq emission is detected. As both emissions are observed simultaneously and in these area 

normalized spectra an isoemissive point is observed, it is clear that they are independent states and 

that the CTax states are not quenched by CTeq.  In the µs range, the emission was very weak, as can 

be seen at TD = 1 µs, and the last DF spectrum detected was at TD = 15 µs. The emission spectra 

of DMePT-TXO2 in DCB solution at different time delays were also analyzed for lower excitation 

energy, 355 nm (Figure S10). These results show that less CTeq states are formed compared to the 

case shown in Figure 4d; this is because in the first few nanoseconds the spectra show a higher 

contribution of CTax than CTeq.  

Interestingly, in DCB, the CTax state still lives a few nanoseconds, making it possible to 

detect clearly its emission in the iCCD camera. However, for MCH and toluene solutions, the CTax 

emission is detected weakly, due to the very fast decay of this state in these less polar environments 

(See Figure S10). Thus, it suggests that the high polarity environment stabilizes the CTax, even 

though its contribution, in the overall emission (PL spectra), is much weaker than the CTeq  and the 

lifetime is much faster.  

The intensity dependence of the DF emission in the DF region of both molecules was 

analyzed as a function of the laser excitation dose.  A linear gradient of 0.970 ± 0.005 was found 
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for DPT-TXO2 and 1.19 ± 0.02 for DMePT-TXO2 (Figure S11). These results confirm the 

thermally assisted mechanism as opposed to triplet-triplet annihilation (TTA) for DPT-TXO2 and 

DMePT-TXO2 in DCB solvent.  

Therefore, the analyses of the solution measurements show that the incorporation of a 

methyl group on the phenothiazine D units profoundly changes the photophysics of the D–A–D 

molecules. DMePT-TXO2 shows two clearly different CT states (337 nm excitation). These two 

CT states are correlated with two different conformations of the molecule. It is likely that when 

the molecules are excited at higher energies (high excess energy) or are in a high polarity 

environment, the initial configuration between D and A units, namely CTax-ax, can re-orient to yield 

the CTax-eq configuration. However, at low excitation energies or low polarity environments, the 

formation of the weak CT state, CTax-ax, is also strongly observed. Recent research has also enabled 

the observation of two switchable conformations for D–A–D molecules with phenothiazine donor 

units, due to the intrinsic nature of this donor unit, and its ability to form H-intra and H-extra folded 

conformers that allow formation of parallel quasi-axial and perpendicular quasi-equatorial CT 

states in the DPTZ-DBTO2 molecule.11  

SOLID STATES PROPERTIES 

The solid state properties of DPT-TXO2 and DMePT-TXO2 were analyzed in zeonex 

matrix (low polarity environment). Figure S12 shows the steady steady emission of both 

molecules in air and under vaccum. DPT-TXO2 shows just 1CT emission in air and a large 

contribution of phosphorescence (PH) when the oxygen is removed. DMePT-TXO2 in zeonex 

shows results similar to that observed in MCH solution: two different CT states are observed; CTax-

ax around 370 nm, and CTax-eq around 450 nm. When the oxygen is removed, a large contribution 
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of PH is also observed. Hence, three distinct emissions are observed simultaneously in DMePT-

TXO2 zeonex film.  

Figure 5 shows how the maximum intensity of each CT state in zeonex matrix depends on 

the excitation energy. The emission spectra used to produce this data is shown in Figure S13.  

Contrary to the result in MCH, the maximum peak intensity of the CT states does not change much 

by changing the excitation energy. This can be attributed to the fact that in solid state, the 

molecules are confined and are not free to re-orient as in solution. 

 

Figure 5 Maximum peak intensity of CT axial-axial state (blue dot) and CT axial-equatorial state 

(red dot) of DMePT-TXO2 in zeonex matrix at different energy excitations. Full lines are the same 

extinction coefficient data shown in Fig. 2a. 

Figure 6a shows the decay curve in different temperatures of DPT-TXO2 zeonex film. 

The PF emission does not show dependence with the temperature, however the DF emission shows 

higher intensity at higher temperatures, as expected for a TADF mechanism. Figure 6c shows the 

time resolved emission decay of DPT-TXO2 film at 80 K. In the first nanoseconds, DPT-TXO2 

shows emission spectra that peaks around 450 nm. This emission is associated with the 1CT state; 

however, some emission from 1LE may occur because the 1CT is very close in energy to the donor 

unit emission. Increasing the time delay, the emission spectrum progressively shifts to longer 

wavelengths, moving from 1LED
 to 1CT and then to 3LED.  



 17 

The observed triplet emission comes from the localized triplet state of the donor unit, as 

seen by comparison of the PH spectra of DPT-TXO2 and pure phenothiazine taken with the same 

experimental conditions (Figure S14). DPT-TXO2 PH emission has a relatively long lifetime, and 

it was easily detected even after 89 ms. The same spectral analyses were made at 290 K (Figure 

S15). At higher temperature, the DF emission contribution, which comes from the 1CT states, is 

stronger, and the PH weaker, as expected for TADF, due to the increased thermally activated 

energy for rISC.  

 

Figure 6. Time resolved fluorescence decay curves of a) DPT-TXO2 and b) DMePT-TXO2 in 

zeonex matrix at different temperatures. Time resolved normalized emission spectra in different 
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time delays of collection of c) DPT-TXO2 at 80 K and d) DMePT-TXO2 at 80 K. DPT-TXO2 

molecules were excited at 355 nm and DMePT-TXO2 at 337 nm. 

Figure 6b shows the decay curves for DMePT-TXO2 in zeonex matrix, excitation at 337 nm. 

Initially, a fast decay, related to the prompt emission, is observed, followed by an interval during 

which no emission was above the detection noise floor of the iCCD camera, and then, at longer 

time delays, phosphorescence appears. Figure 6d (left) shows the emission spectra in the PF 

region. At TD = 1.1 ns a shoulder around 375 nm is observed which may be associated with the 

CTax-ax state, which has faster decay than CTax-eq. As the TD increases, the CTeq emission shows a 

slight red shift to ca. 400 nm, and can be associated with the relaxation of this state, as also seen 

in the DPT-TXO2. The emission spectra in the PH region, Figure 6d (right), shows an interesting 

feature. As the TD increases, an emission on the blue edge of the spectra grows in. This PH 

emission on the blue edge is assigned as the PH from the axial conformation, 3LEax, which acts as 

an effective loss pathway in the emission of this molecule. This higher energy triplet state cannot 

couple with the 1CTeq state identified in the prompt emission, thus the rISC is suppressed and any 

TADF is observed.  

The photoluminescence quantum yields (PLQY) of each material also show strong 

dependence on the TADF mechanism.  DPT-TXO2 in zeonex matrix has PLQY values of   

(10±1)%, in nitrogen atmosphere and (4.2±0.4)% in air. Whereas, DMePT-TXO2 has PLQY 

values of (4.5±0.4)% in nitrogen atmosphere and (4.1±0.4)% in air.  The latter values are very 

close each other, due the fact that DMePT-TXO2 has no TADF contribution in zeonex matrix, 

therefore the PLQY value is not enhanced by removing the oxygen (See table S2). 
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Figure 7a and b show the PH time dependent spectra with different excitation energies, 

and longer integration time than the spectra showed in Figure 6d. The PH spectra of the donor 

and acceptor units in pristine film are also displayed, in dash-lines, for comparison.  The PH 

spectrum of 1-methylphenothiazine is very similar to phenothiazine, and we have previously 

reported the PH spectrum of the acceptor unit.21 

With excitation at 355 nm, the earliest PH spectrum displayed in the graph (TD = 2 ms) 

shows just a shoulder due to the 3LEax contribution, as described above. For excitation at 266 nm, 

the PH shows a different feature. A PH emission from the A units is also observed, which becomes 

the dominant triplet emission at later TD. This strong triplet emission arises from the strong 

absorption of the A units at 266 nm (See Figure 2a). Both 3LEA and 3LED, emit strongly until the 

end of the measurement (TD=89 ms). 

Therefore, the PH of DMePT-TXO2T in zeonex matrix highlights different features at 

different excitations energies. Excitation at higher energy shows dual PH emission from the 3LE 

states of both the donor and acceptor units, which behave as independent emitting species, showing 

that the D and A units of these molecules are totally electronically decoupled. The contribution 

from the acceptor is stronger at later times, indicating a longer triplet state lifetime. On the other 

hand, for DPT-TXO2 in zeonex matrix, the PH spectra come from the lowest triplet state, 3LED 

which may imply some D–A conjugation within the molecules.  
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Figure 7. a) Time resolved normalized emission spectra of DMePT-TXO2 in the phosphorescence 

emission region for excitation at a) 266 nm and b) 355 nm at 80 K.  

Regarding the 1CT-3LE energy splitting, ∆EST, DMePT-TXO2 should show more efficient 

TADF than DPT-TXO2. Both molecules have similar 1CTeq states, but DMePT-TXO2 has closer 

local triplet levels, due to the contribution of the 3LEax. However, 3LEax cannot couple with 1CTeq, 

and the 1CTax has much higher energy, resulting in a huge energy gap between 1CTax and  3LEax, 

suppressing any rISC process.  

Therefore, the solid-state analysis reveals that the methyl group incorporated in the D units 

also gives rise to the formation of two distinct PH states, 3LEeq and 3LEax; the latter one does not 
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undergo rISC, preventing the TADF mechanism from occurring and giving rise to PH at RT. The 

3LEax state thus is an energy sink in the DMePT-TXO2 system, as has also been observed in other 

molecules where phenothiazine is in an axial conformation.11  

CONCLUSION 

In summary, DMePT-TXO2 molecules shows dual fluorescence clearly coming from two 

different CT states in solution and solid state. These two CT states are correlated with two different 

conformations of the molecule. Likely, when the molecules are excited at higher energies (high 

excess energy) or are in a high polarity environment (polar solvents), the initial configuration 

between D and A units CTax-ax can re-orient to yield the CTax-eq configuration. However, when 

molecular motion is suppressed, by dispersing the molecules in a solid state host, this re-orientation 

is not observed and strong phosphorescence at room temperature is detected, besides the 

fluorescence emission.  

Additionally, the solid state analysis enables an in-depth study of the triplet states of these 

D–A–D molecules. Experiments identify that the PH of DMePT-TXO2 has a main contribution 

from 3LEeq but also shows 3LEax emission. Regarding the TADF mechanism, DPT-TXO2 

molecules show repopulation of the 1CT state via a reverse intersystem crossing process in 

solutions and solid state. On the other hand, DMePT-TXO2 molecules show this characteristic 

only in polar solutions, that is in an environment where the molecules are free to rotate; in contrast, 

in the solid state, the rISC process is completely suppressed.  

Therefore, the comparison between DPT-TXO2 and DMePT-TXO2 is important for 

gaining a better understanding about the subtle relationship between molecular conformation of 
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the constituent units and the TADF mechanism, making easier the design of novel TADF materials 

in the future.  
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