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• A catchment risk modelling framework
is applied to FIO pollution for the 1st
time.

• Performance was variable with assign-
ment of risk to land cover types uncer-
tain.

• Information on livestock densities and
management regimes may improve
performance.

• Modelled results reinforce the impor-
tance of seasonal variation in FIO pollu-
tion.

• Varying land-use mosaic is important
for the success of the SCIMAP fitted
approach.
⁎ Corresponding author at: Biological & Environmental
E-mail address: k.d.porter@stir.ac.uk (K.D.H. Porter).

http://dx.doi.org/10.1016/j.scitotenv.2017.07.186
0048-9697/© 2017 The Authors. Published by Elsevier B.V
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 20 March 2017
Received in revised form 20 July 2017
Accepted 21 July 2017
Available online xxxx

Editor: D. Barcelo
Microbial pollution of surface waters in agricultural catchments can be a consequence of poor farmmanagement
practices, such as excessive stocking of livestock on vulnerable land or inappropriate handling of manures and
slurries. Catchment interventions such as fencing of watercourses, streamside buffer strips and constructedwet-
lands have the potential to reduce faecal pollution of watercourses. However these interventions are expensive
and occupy valuable productive land. There is, therefore, a requirement for tools to assist in the spatial targeting
of such interventions to areas where theywill have the biggest impact on water quality improvements whist oc-
cupying the minimal amount of productive land. SCIMAP is a risk-based model that has been developed for this
purpose but with a focus on diffuse sediment and nutrient pollution. In this study we investigated the perfor-
mance of SCIMAP in predicting microbial pollution of watercourses and assessed modelled outputs of E. coli, a
common faecal indicator organism (FIO), against observed water quality information. SCIMAP was applied to
two river catchments in the UK. SCIMAP uses land cover riskweightings, which are routed through the landscape
based on hydrological connectivity to generate catchment scale maps of relative in-streampollution risk. Assess-
ment of the model's performance and derivation of optimum land cover risk weightings was achieved using a
Monte-Carlo sampling approach. Performance of the SCIMAP framework for informing on FIO risk was variable
with better performance in the Yealm catchment (rs = 0.88; p b 0.01) than the Wyre (rs = −0.36; p N 0.05).
Across both catchments much uncertainty was associated with the application of optimum risk weightings
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attributed to different land use classes. Overall, SCIMAP showed potential as a useful tool in the spatial targeting
of FIO diffuse pollution management strategies; however, improvements are required to transition the existing
SCIMAP framework to a robust FIO risk-mapping tool.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Faecal pollution has the potential to negatively impact upon ecosys-
tem services associated with clean and safe recreational bathing and
shellfish harvesting water (Clements et al., 2015; Wu and Jackson,
2016). Microbial contamination of such aquatic environments can ex-
pose humans to harmful pathogens that may cause gastro intestinal ill-
ness (Wade et al., 2006). Direct measurement of pathogens in
environmental water samples is uncommon due to challenges associat-
ed with their enumeration in the laboratory, e.g. cost, detection limits
etc., and so faecal indicator organisms (FIOs) such as Escherichia coli
and intestinal enterococci provide an internationally accepted frame-
work for the assessment of faecal pollution of water bodies. In the
European Union, the health risks of faecal pollution of aquatic environ-
ments are recognised via the Bathing Water (EU, 2006a) and Shellfish
Water (EU, 2006b) Directives. Regulators must compare measured
FIOs against stringent standards of microbial water quality in order to
comply with these directives. Risk assessment tools that can identify
‘hotspots’ of FIO pollution in catchment systems are therefore wel-
comed by regulatory agencies as a mechanism to help understand ori-
gins of pollution and to spatially target catchment management and
interventions for improvements in microbiological water quality
(Dymond et al., 2016).

Diffuse sources of FIO pollution, such as organic fertilisers applied to
land and excretion of faeces by grazing livestock to pasture, provide
challenges to water quality managers. This is because the loading of dif-
fuse sources, and their propensity to connect to watercourses, varies
spatially and temporally (Heathwaite et al., 2005). The impact of diffuse
sources of microbial pollution on watercourses can be reduced through
the use of mitigation measures such as streamside fencing (Kay et al.,
2007a), vegetated buffer strips (Tate et al., 2006), wetlands (Morató
et al., 2014) and retention ponds (Jenkins et al., 2015). These measures
can be expensive and occupy valuable productive land. Therefore,
methods to spatially identify and target locations in catchments where
interventions will provide the best improvement in water quality are
warranted. Past research has used regression approaches to attribute
sources of FIOs to different land cover types and/or discrete point
sources (Kay et al., 2010; Tetzlaff et al., 2012; McGrane et al., 2014).
However, these approaches do not account for the spatial heterogeneity
of landscape to watercourse connectivity (Tetzlaff et al., 2012).

Alternative approaches include the development of fully process-
based models that attempt to account for the mechanisms that govern
FIO fate and transfer in more detail. For example, the modified Soil
and Water Assessment Tool (Cho et al., 2016a) and INCA-pathogens
(Rankinen et al., 2016). There are, however, limitations in our under-
standing of FIO fate and transfer that can amplify uncertainties in fully
quantitative, process-based risk assessment approaches. For example,
there are knowledge gaps regarding the complex behaviour of FIO per-
sistence in differentmatrices such as faecal deposits (Soupir et al., 2008;
Martinez et al., 2013; Oliver and Page, 2016), soil (Muirhead and
Littlejohn, 2009; Park et al., 2016) and stream bed sediment
(Pachepsky and Shelton, 2011; Shelton et al., 2014; Pandey and
Soupir, 2013; Pandey et al., 2016). Such limits in understanding make
it difficult for all processes to be considered in complex process-based
models (Beven, 2006, Cho et al., 2016b). These complexmodels also re-
quire a significant amount of data for model parameterisation and vali-
dation. This is especially problematic in the field of catchmentmicrobial
dynamics due to the relative scarcity of data on FIO concentrations and
loads compared to nutrient and sediment flux (Muirhead, 2015; Oliver
et al., 2016). Semi-quantitative risk assessment frameworks, which pro-
vide a basis for decision support, are therefore useful tools to inform on
relative risk of FIO transfers in space and time. This is because, despite
gaps or limitations in the current evidence-base concerning FIO behav-
iour in complex catchment systems, they are able to provide a ‘1st ap-
proximation’ of risk (Goss and Richards, 2008; Oliver et al., 2010).

The Sensitive Catchment Integrated Mapping Analysis Platform
(SCIMAP) has demonstrated significant potential as a framework to in-
form on catchment-scale risks for diffuse nutrient and sediment pollu-
tion (Reaney et al., 2011). The approach provides an estimate of in-
stream risk relative to the catchment being considered, and provides in-
formation at multiple spatial scales but within a time integrated frame-
work. SCIMAP is underpinned by the source-mobilisation-delivery-
impact (SMDI) continuum (Haygarth et al., 2005) and critical source
area (CSA) concepts, which describe how a source of pollution can
only convert to a pollution risk if there are no interruptions to the
SMDI continuum (Heathwaite et al., 2005). At present, the SCIMAP ap-
proach is optimised for diffuse fine sediment (Reaney et al., 2011) and
nutrient pollution (Milledge et al., 2012) but offers scope for addressing
a number of additional diffuse pollutants, including FIOs. Given the
growing interest and uptake in the use of SCIMAP among different
stakeholder communities in the UK, its continued development to ac-
count for a wider array of pollutants is justified. Furthermore there
are, at present, few risk-based modelling approaches for informing on
FIO impairment of surface waters at the catchment scale.

The aim of this study was to assess the effectiveness of the current
SCIMAP framework for informing on risk of FIO pollution in contrasting
catchment systems by comparing FIO pollution risk predicted by
SCIMAP with observed FIO risk, e.g. FIO concentrations. To deliver on
this aim the objectives were to: (i) quantify variation in model perfor-
mance as a result of risk weightings being assigned to a particular land
cover type; and (ii) determine whether there was an association be-
tween SCIMAP predicted FIO risk and observed FIO risk in our study
catchments. The intention was to develop initial risk weightings for
land cover types and benchmarkmodel performance on the assumption
that FIOs behave similarly to sediment, albeit in a ‘living’ form.

2. Methods

Mostmodelling frameworks predict in-stream pollution by defining
a function, e.g. a relationship derived from regression analysis, and these
can be described as forward models. Our study adopted an inverse ap-
proach (Reaney et al., 2011; Milledge et al., 2012), because it defined a
function (in the case of SCIMAP, land cover risk weightings) based on
observed FIO concentrations, i.e. the approach queries how a model
needs to be parameterised in order to simulate observed pollution,
and is therefore ‘fitted’ to observed data. This ‘fitted’ approach is de-
scribed in detail in Milledge et al. (2012). Briefly, the fitted approach in-
volves pseudo randomly generating simulations from forward models
whose output is compared to observed data. In this case the forward
model used is SCIMAP and the user definable parameters are risk
weightings for different land cover types. Model outputs were com-
pared against a spatial FIO water quality dataset provided by the Envi-
ronment Agency. This dataset spans 6 years (2007–2012) and was
collected as part of the Catchment Sensitive Farming (CSF) initiative
(Environment Agency, 2016). The FIO dataset reported here concerns
E. coli concentrations, measured using the standard method of mem-
brane filtration, reported across two catchments in England: The River
Wyre, Lancashire and The River Yealm, Devon (Fig. 1).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Fig. 1.Maps illustrating the two study catchments: The Wyre in Lancashire, North West England (left); and The Yealm in Devon, South West England (right). Numbered points indicate
sample locations and associate with the sample locations indicated in Fig. 2 and Table 2. River data is from an Ordnance SurveyMasterMap Topography layer (OSMasterMap Topography
layer [GML geospatial data], 2015).
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To evaluate the SCIMAP approach when applied to a FIO dataset we
used the same SCIMAP framework that was developed for prediction of
diffuse fine sediment risk. This approach was implemented within the
SAGA geographical information system (Conrad et al., 2015). The
SCIMAP risk mapping approach is described in detail in Lane et al.
(2009) and Reaney et al. (2011). Briefly, the approach involves deter-
mining the risk of a sediment (or other pollutant) source being generat-
ed and the risk of the sediment (or other pollutant) source becoming
connected to a watercourse, capturing the CSA concept described earli-
er. For sediment pollution, the risk of a source being generated is de-
fined as a function of topography, land cover and rainfall. These
datasets are used to calculate local erodibility based on the land cover,
and the erosive potential of overland flow, which is driven by the local
slope gradient and the upslope contributing area. Therefore, due to
the combination of these factors, each land cover is associated with its
own riskweighting. The risk of the source connecting to the streamnet-
work is determined using the network index of hydrological connectiv-
ity (Lane et al., 2009), which can be derived from the topographic
wetness index. The topographic wetness index calculates the propensi-
ty for part of the landscape to generate saturation excess overland flow
from topographic information (Beven and Kirkby, 1979). The propensi-
ty for a point in the landscape to connect to a watercourse is then de-
fined as the lowest value of topographic wetness index along the flow
path to the watercourse. If overland flow is not generated at any point
along a flow path, it is not possible for that cell to transmit water further
downslope and hence the source of risk is disconnected from the stream
network (Lane et al., 2009). Once a pollution source has been delivered
to a watercourse, pollution risk is concentrated as it is routed down-
stream and diluted based on the rainfall weighted upslope contributing
area, with higher risk inputs concentrating risk and lower risk inputs di-
luting risk.

SCIMAP adopts a minimum information requirement approach, and
the standard version requires three inputs: the generation of a source of
risk requires a land covermap and spatially distributed rainfall informa-
tion; the derivation of a topographic wetness index requires a detailed
digital elevation model (DEM); and the concentration and dilution of
risk utilises the same rainfall information described previously. In this
study; the land cover map utilised was the Centre for Ecology and Hy-
drology (CEH) Land Cover Map 2007 (Morton et al., 2011); rainfall
information was Met Office UKCP09: 5 km gridded data - annual aver-
ages (Met Office, 2014); and the NextMap digital elevation model
(DEM) at a grid resolution of 5 m × 5 m, developed by Intermap, was
used. It is important to balance the information content of the observed
dataset with the complexity of the modelling approach. Therefore, for
the purposes of this experiment the 23 land cover classes described in
the CEH land cover map were condensed into eight classes: improved
grassland, rough grazing, moorland, bog, arable, urban, woodland and
other. Table 1 showswhich of the CEH land cover classes were included
in each of these new classes. The rationale for the reduction and merg-
ing of classes was that a number of separate classes within the larger
CEH Land Cover map were listed where we would not expect a signifi-
cant difference in the risk weights associated with the cover. For exam-
ple, the deciduous and coniferous woodland classes were merged since
they will have similarly low levels of livestock and represent similar
availabilities of FIOs. Here, the fitted approach was used to establish
how these land covers needed to beweighted in order to best represent
in-stream measured E. coli risk. The SCIMAP fitted approach uses a
Monte Carlo sampling framework based on the Generalized Likelihood
Uncertainty Estimation (GLUE) methodology (Beven and Binley,
1992). Here 25,000 model realisations with varying land cover risk
weightings were generated.

Modelled risk values for 10 locations in the River Wyre catchment
and 13 locations in the River Yealm catchment were comparedwith as-
sociated observed measurements of E. coli concentration. An overview
of catchment characteristics for each location, including land use com-
position, is shown in Fig. 2 and Table 2. Briefly, the dominant land use
in both catchments is agriculture, with expected FIO contributions
from manure management practices and grazing livestock. Previous
studies have found that N90% of FIO loading to water occurs during
high flow conditions following rainfall (Kay et al., 2007b; McKergow
and Davies-Colley, 2010; Kay et al., 2010) and Kay et al. (2007b)
noted that many studies employ a regular sampling regime which
biases toward low flow and while this was observed in the EA dataset,
sufficient data representative of high flow conditions were deemed to
be present. In order to avoid a bias toward the many base flow samples
presentwithin the EA dataset for both catchments, the data that was as-
sociated with flow that was N = 60% of the highest flow were subset.
This operationally defined exceedance threshold retained high flow



Table 1
A description of SCIMAP land cover classes and how they are derived from CEH LCM land
cover classes.

CEH LCM broad
habitat class

SCIMAP
class

Description

Broadleaved mixed
and Yew woodland

Woodland Deciduous, mixed, conifer, larch, evergreen
and felled forest.

Coniferous woodland
Arable and
horticulture

Arable Freshly ploughed land and annual and
perennial crops.

Improved grassland Improved
grassland

Intensively managed grassland for hay, silage.
and/or grazing of livestock

Rough grassland Rough
grazing

Semi-natural grassland and managed low
productivity grassland.Neutral grassland

Calcareous grassland
Acid grassland
Fen marsh and
swamp

Bog Herbaceous and mossy swards with a peat
depth of N0.5 m. Fen, fen meadows, rush
pasture, swamp, flushes and springs.Bog

Dwarf shrub heath Moorland Heather grassland and exposed rock as well
as habitats occurring at higher altitudes.Montane habitats

Inland rock
Salt water Other Coastal water, rivers, canals and standing

water. Coastal rock and sediment.Fresh water
Supra-littoral rock
Supra-littoral
sediment

Littoral rock
Littoral sediment
Built -up areas and
Gardens

Urban Built up areas including towns, cities, dock
sides, industrial estates and car parks.
Suburban areas with a mix of built up areas
and vegetation.
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events while excluding data associated with base flow conditions. Flow
data was not available for all of the locations used in this experiment so
flow information from a local gauging station was used; location 9 for
Fig. 2. A bar plot illustrating the proportions of the contributing area associated with each sam
colour in this figure legend, the reader is referred to the web version of this article.)
theWyre and location 14 for the Yealm (Fig. 1). This approach assumed
that if it was high flow at one point in the catchment it was also high
flow at the other points in the catchment. While this approach repre-
sented an approximation we argue that it remains valid given that it is
being used within a risk-based framework, i.e. it is the relative magni-
tude of E. coli concentrations that is important rather than the absolute
concentration. The number of records remaining at each site after this
sub-setting procedure was used is shown in Table 2. A high number of
samples were associatedwith locations 1 and 9 in the Yealm catchment
and location 14 in theWyre catchment. These locations were equipped
with autosamplers programmed to sample after a flow threshold con-
sidered to be high flow was met. Samples from other sites were ac-
quired using manual grab sampling.
2.1. Statistical analysis

All statistical analysis was carried out using the R statistics package
(R Core Team, 2015) and third party packages (Auguie, 2015; Carr,
2014; Sarkar and Andrews, 2013; Neuwirth, 2014; Wickham, 2007,
2014, 2015; Wickham and Francois, 2015; Deepayan, 2008). All E. coli
counts underwent log10 transformation prior to statistical analysis.
The observed E. coli measurements used in our study were derived
from a median of the subset data for each location and were converted
into risk values by determining their rank order to allow comparison
with the relative risk nature of the SCIMAP output. The Spearman's
rank correlation coefficient (rs) comparing observed riskwith the simu-
lation outputwas used as the objective function. This statistical compar-
ison measures the extent to which the relative order of the locations in
the observed and simulated datasets match, and avoids assuming the
observed dataset includes the most and least risky locations in the
catchment. For each catchment this assessment provided 25,000
Spearman's correlation coefficients; one associated with the
ple point occupied by different land cover types. (For interpretation of the references to



Table 2
Catchment characteristics of eachof the sub-catchments investigated. Connectivity is defined as the lowest value of topographical wetness index along aflowpath as per Lane et al. (2009).
Number of samples indicates the number of records remaining after sub setting all the available data by the days where flow is N60% of the highest flow recorded.

Location Mean connectivity/standard deviation Mean slope(°)/standard deviation Mean elevation (metres)/standard deviation Number of samples

Wyre 1 0.71/0.04 0.24/0.66 8.6/0.4 706
2 0.63/0.13 5.41/5.63 141.33/129.28 20
3 0.71/0.14 0.89/1.00 13.72/3.71 21
4 0.75/0.13 0.62/0.79 12.06/3.06 21
5 0.69/0.12 1.78/1.93 56.32/33.92 20
6 0.68/0.13 1.75/2.28 45.35/25.38 20
7 0.67/0.12 1.97/1.65 42.62/20.2 19
8 0.62/0.12 7.49/7.26 223.17/95.61 21
9 0.62/0.12 6.88/7.05 199/99.89 888
10 0.64/0.11 3.39/3.36 104.54/42.18 23

Yealm 11 0.88/0.10 3.42/1.71 128.91/8.76 40
12 0.83/0.12 7.34/4.66 274.93/123.84 40
13 0.59/0.05 7.16/1.79 44.08/2.39 42
14 0.81/0.14 6.51/4.74 125.58/85.16 193
15 0.77/0.04 6.05/3.32 33.49/13.81 47
16 0.45/0.07 14.1/5.06 20.98/4.57 41
17 0.78/0.13 5.96/4.61 59.72/19.29 30
18 0.78/0.14 5.64/4.13 55.08/18.18 50
19 0.83/0.12 5.82/3.62 85.25/32.87 41
20 0.79/0.11 2.45/0.82 57.8/0.56 42
21 0.63/0.13 7.23/2.84 87.19/3.32 27
22 0.49/0.05 20.4/7.14 122.77/10.83 28
23 0.88/0.07 5.00/2.47 262.31/44.18 42
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comparison of each of the randomly generated combinations of land
cover risk values and the observed in-stream E. coli risk. One sample t-
tests were used to assess whether the land cover risk values associated
Fig. 3. SCIMAP fitted results for (a) the Yealm and (b) theWyre. The top panels show hexagona
weighting for each land cover. The colour of the hexagonal bin depicts howmany simulations fa
the risk weighting of the 1% best performing simulations. (For interpretation of the references
with the best modelled outputs (i.e. top 1% of rs) were significantly dif-
ferent from 0.5. Because E. coli concentrations in the Wyre catchment
were not normally distributed, a Kruskal Wallis test was used to
lly binned scatterplots depicting howmodel performance changes with changing the risk
ll into that part of the plot. The bottompanels show boxplots which depict the variation in
to colour in this figure legend, the reader is referred to the web version of this article.)
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investigate differences in E. coli concentration among the observed data
across all sites of the Wyre, with a Dunns test used to determine which
sites were different from one another. Differences at the p b 0.05 level
(95% confidence interval) were considered statistically significant.

3. Results

The SCIMAP fitted approach provided three outputs that elicit infor-
mation on the influence of different land covers on the risk of FIO pollu-
tion in streams and rivers. Two-dimensional density (2-Dd) plots and
boxplots (Fig. 3) depict the relationship between land cover risk
weighting and model performance. The 2-Dd plot is a scatter plot of
risk value against the Spearman's correlation coefficient, derived from
comparing the SCIMAP output associated with that risk value and ob-
served FIO risk. The scatterplot is divided into hexagonal sections
whose saturation determines the number of models that fall into that
part of the plot. Results from t-tests (Table 3) determine the confidence
with which we can reject the null hypothesis that the mean risk
weighting of the 1% best performing models is significantly different
from 0.5 and therefore either contributes to diffuse pollution (risk
weightings N0.5) or dilutes pollution (risk weightings b0.5). Together
these results provide insight into the performance of SCIMAP's predic-
tion of diffuse FIO pollution risk by providing the maximum correlation
achieved and the potential uncertainty associated with model outputs,
which is driven by the ‘identifiability’ of optimum risk weightings for
land cover types. Identifiability, or the ease at which an optimum risk
weighting can be derived, is represented by the standard deviation of
risk value in the 1% best performingmodels. Larger standard deviations
suggest that it is harder to identify an optimum risk weighting for land
cover types.

3.1. The river Yealm catchment

The results for the Yealm catchment suggest that improved grass-
land and woodland should be assigned low risk values with respect to
their contribution to FIO pollution of water. The 2-Dd plots (Fig. 3)
show improvement in model performance as the risk weighting for
Table 3
Table summarising the influence of land cover risk weighting on SCIMAP performance.
Mean risk weightings and associated standard deviation for the 1% best performing
models. p value indicates the results from a t-test and the confidence with which we can
reject the null hypothesis that there is no variation in model performance as a result of
the risk weighting assigned to a land cover type.

Land cover
type

Yealm

Optimum
mean/standard
deviation

p
value

Summary of influence
on
FIO risk

Improved
Grassland

0.08/0.05 b0.001 Low risk

Rough Grazing 0.78/0.16 b0.001 High risk
Moorland 0.5/0.29 N0.05 Not influential
Bog 0.5/0.29 N0.05 Not influential
Urban 0.5/0.29 N0.05 Not influential
Arable 0.54/0.23 b0.01 Medium risk
Woodland 0.19/0.05 b0.001 Low risk

Land cover
type

Wyre

Optimum mean/standard
deviation

p
value

Summary of influence on
FIO risk

Improved
Grassland

0.63/0.32 b0.001 Medium risk

Rough Grazing 0.58/0.26 b0.001 Medium risk
Moorland 0.52/0.29 N0.05 Not influential
Bog 0.49/0.30 N0.05 Not influential
Urban 0.52/0.30 N0.05 Not influential
Arable 0.18/0.22 b0.001 Low risk
Woodland 0.04/0.04 b0.001 Low risk
these land covers decreases. In addition, the boxplots (Fig. 3) show
low mean risk weightings associated with best 1% performing models.
By contrast, the results suggest that rough grazing should be assigned
high risk weightings with the 2-Dd plots showing improving perfor-
mance of SCIMAP as the risk weighting increases. The boxplot shows a
high mean risk weighting for the best 1% performing models affirming
this result. The 2-Dd plot infers that arable land cover should be associ-
atedwith amediumamount of risk,withmodel performance peaking at
risk values approaching 0.54. This was supported further by both the
box plots (Fig. 3) and mean risk weighting of the best 1% performing
models (Table 3). Risk weightings associated with the remaining land
cover types (moorland, bog and urban) were not influential on the per-
formance of the model predicting in-stream FIO risk. The mean risk
weighting for these land covers was approaching 0.5 with a large stan-
dard deviation (Table 3); therefore themean riskweightingwas not sig-
nificantly different from 0.5 (Table 3). This was also apparent in the 2-
Dd plots, as represented by a ‘flat top’ in the output (Fig. 3).

Of the land covers shown to have an impact on FIO diffuse pollution
risk, only the risk weightings associated with improved grassland and
woodland were highly identifiable. The optimum risk weighting for
rough grazingwas harder to identify (Table 3). Overall the performance
of SCIMAP in the prediction of FIO risk in the Yealm catchmentwas good
with a maximum rs of 0.88 (p b 0.01).

3.2. The river Wyre catchment

The performance of SCIMAP in predicting FIO risk in theWyre catch-
ment was poor with no correlation between predicted risk and ob-
served risk (rs = −0.357, p N 0.05). The 2-Dd plots in Fig. 3 provide
little insight into the influence of all land cover risk weightings on
model performance.

However when the risk weightings from the best 1% models are
depicted as boxplots (Fig. 3) relationships can be seen. Arable and
woodland show better model performance with lower risk weightings
while model performance appears to improve when improved grass-
land and rough grazing is assigned a medium risk weighting. Land
covers associated with moorland, bog and urban areas do not appear
Fig. 4. An ordination plot showing the dissimilarity in land cover mosaic across the
contributing catchments associated with sample points from the Yealm (grey) and
Wyre (black). Increasing distance between points illustrates increasing dissimilarity in
land cover make up between catchments.



Fig. 5. Boxplot illustrating the variability in the concentration of E. coli across samples from the Wyre catchment. Letters above the boxes indicate significant differences in FIO
concentrations between sites as determined by a Dunns test.
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to influence model performance. These results are supported by the re-
sults of a t-test (Table 3). The risk weighting associated with woodland
ismore identifiablewhile riskweightings associatedwith the remaining
land covers of influence are less identifiable (Table 3).

Ordination plots can be used to illustrate the variability in land cover
between the contributing catchments associatedwith the sample points
in the Wyre. Here non-metric multidimensional scaling (NMDS)
(Kruskal, 1964) was used, utilising a Bray Curtis dissimilarity index
(Bray and Curtis, 1957) (Fig. 4). Each point on the plot represents one
sub catchment. Increasing dissimilarity in land cover make up is associ-
atedwith increasing distance between points, and in this particular case
the NMDS procedure was associated with a stress value of 0.09. It was
clear from this plot that the sub catchments associated with the Yealm
river basin were more dissimilar than those associated with the Wyre
river basin. There was less variability in the composition of land cover
in the Wyre and sub catchments appear to gather into two clusters.
This similarity between sub catchments was also apparent in the FIO
concentrations observed in theWyre. Fig. 5 shows a boxplot illustrating
the variability in FIO concentration at each of the sampling points in the
Wyre catchment and a significant difference in the distributions of FIO
concentrations at each of the sites was observed (p b 0.01). The Dunns
test did reveal that therewas a degree of clustering of sites. For example
five of the ten sites were associatedwith group a and/or b and fivewere
associated with group c (Fig. 5).
Fig. 6. Boxplot illustrating the variance in performance associated with the 1% best
performing simulations when observed data is subset according to season.
The potential for seasonal differences in SCIMAP's performance can
be investigated by comparing model output with observed data split
into winter or summer months. This revealed that there was some var-
iance in model performance depending on the season of interest (Fig.
6). For the Yealm, SCIMAP performance appeared to reduce duringwin-
ter monthswhile an oppositemore pronounced effect was observed for
theWyre. Fig. 7 shows that as the percent coverage of a land cover class
increased the identifiability of an optimum risk weighting appeared to
decrease. The pattern was more pronounced in the Yealm catchment.

4. Discussion

This study provides a novel application of the SCIMAP model fitted
against historical E. coli data collected across two UK catchments. The
performance of SCIMAP in the prediction of diffuse FIO risk in the catch-
ments studiedwas variable, with a higher degree of agreement between
predicted and observed FIO risk in the Yealm than in the Wyre catch-
ment. Even where SCIMAP performed well there was variability in the
certainty with which risk weightings could be applied to land cover
types. Nonetheless, the outcomes from this study are positive. While
in its current form SCIMAP is not yet optimised for mapping FIO risks,
it would be surprising for amodel developed to describe an inert pollut-
ant such as fine sediment to perfectly describe the fate and transfer of a
living organism and these results should not be viewed as a failure of a
Fig. 7. A scatterplot of optimum risk weighting identifiability and percent coverage of the
associated land cover.
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modelling framework, but rather as a learning process in which the de-
velopment of newhypotheses can be framed, and further developments
of SCIMAP for predicting FIO risks can occur (Beven, 2007).There are
several reasons why model performance might be poor or why assign-
ment of land cover risk weightings was uncertain. First, high risk
weightings may offset low risk weightings resulting in a wide range of
optimum risk values; this problem is associated with covariance be-
tween one or more land covers where the land cover mosaic is similar
between catchments. Second, it is possible that a land use either does
not exist in a catchment or represents only a small proportion of the
catchment meaning that the signal from this land use is weak. Third, a
land cover class may be too broad combining too many different avail-
abilities of FIOs (Reaney et al., 2011). Finally processes that influence
FIO fate (e.g. die-off, persistence, affinity to particles, etc.) may be im-
portant to consider alongside processes that govern transfer and
SCIMAP, in its current form, does not adequately account for the former.

In the Wyre catchment, areas associated with improved grassland
and rough grazingwere assigned amedium riskwhichwas unexpected
as these areas are associated with agricultural practices such as in-
creased spreading of farmyard manure and slurry and livestock grazing
providing a high availability of FIOs (Kay et al., 2010).When the relative
coverages of land covers are similar between catchments the fitted ap-
proach cannot determine which land cover is responsible for a change
in in-stream risk, resulting in high risk weightings being offset by low
riskweightings or vice versa. It is possible that therewas toomuch sim-
ilarity in land cover between the sub-catchments investigated in the
Wyre catchment. The overall composition of land covers in the sub
catchments shows how sub catchments of the Wyre largely fall into
two groups of similar land cover mosaic. Statistical analysis revealed
that there was a difference in the E. coli concentration between sites of
the Wyre, however it was not apparent whether this difference was
large enough for the SCIMAP fitted approach to delineate risk values
for the different land covers. In a previous study, Milledge et al. (2012)
investigated 11 catchments across England and that dataset was used
to determine how identifiability of land cover risk values associated
with increasing diversity of land cover types in catchments. However,
Milledge et al. (2012) used a diffuse nutrient pollution dataset, whereas
for FIOs we were limited to two catchments, largely because in the UK
there are a limited number of spatial datasets of FIOs across catchment
systems (Oliver et al., 2016).

Previously, a positive relationship between percentage coverage of
land cover in a catchment and the identifiability of its optimum
weighting has been observed when considering nutrient pollution
(Milledge et al., 2012). This also appeared to be the case for FIO pollu-
tion, with decreasing standard deviation in optimum risk weightings
as percent coverage of a land cover class increased. All of the catchments
studied in theWyrewere dominated by improved grassland leaving lit-
tle space for other land covers. This may, in part, explain the large stan-
dard deviations observed for this catchment for all of the land covers. In
contrast, the increased variation in land covers in the Yealm may have
resulted in smaller standard deviations recorded for improved grass-
land, rough grazing and woodland land covers. It has been shown that
the use of the SCIMAP fitted approach can be improvedwhen close con-
sideration is given to the location of sampling points (Reaney et al.,
2011). Thus, ensuring that contributing catchments of monitoring
points vary in their land covermakeup asmuch as possible is a clear pri-
ority in order to maximise the identifiability of land cover risk
weightings and this reinforces the need for good qualitymonitoring dis-
tributed across stream networks, not just end-point receptors.

Optimum risk weightings may be hard to identify if a land cover
class is too broad encompassing many different availabilities of FIOs. It
is possible that the availability of FIOs in the landscape depends, in
part, on livestock density and that livestock density will vary between
farms. Incorporating this information into land cover classes associated
with agriculture is possible through use of Agricultural Census data
which provides information on livestock density in 2km2 grid squares.
However there are potential issues with using this information
(Winter et al., 2011). Nevertheless such data may provide an adequate
compromise in terms of understanding the variation of FIO pollution
risk across catchments resulting from variable stocking densities.

In addition, the improved grassland land cover class is likely to en-
compass many different management regimes that are likely to repre-
sent different availabilities of FIOs, which may have influenced
modelled outputs from SCIMAP. For example improved grassland can
be managed for livestock grazing and the source of FIOs will come in
the form of faecal deposits from livestock. Improved grasslands can
also bemanaged for silage productionwhere spreading of slurry is likely
to present a risk of FIO pollution. Further, some dairy farms are now
opting to house dairy cows on a permanent basis, particularly in wetter
regions of the UK, whereas others continue to adopt a more traditional
split between summer pasture grazing and winter housing for cows,
and the environmental risks that these contrasting management sys-
tems pose will differ (Harmel et al., 2010). The concentration of FIOs
and dynamics of their mobilisation will vary between faecal, slurry
and manure matrices driving variability in their respective risk to wa-
tercourse microbial quality (Hodgson et al., 2009; Guber et al., 2013;
Blaustein et al., 2015). Thus, augmenting the improved grassland land
cover with management regime and livestock density may improve
SCIMAP's characterisation of the spatial variability of FIO risk.

At present SCIMAP's prediction of diffuse pollution risk is time inte-
grated and an annual average risk is predicted. An approach which con-
siders seasons separately may be more appropriate when considering
diffuse FIO pollution because the extent to which watercourses receive
FIO pollution is likely to vary between seasons (Kay et al., 2008a). For
example the persistence of FIOs in the landscape is dependent on abiotic
conditions such as temperature (Martinez et al., 2013) and moisture
(Moriarty and Gilpin, 2014), which will vary between seasons (Oliver
and Page, 2016). Additionally, mobilisation of FIOs from landscape res-
ervoirs will vary depending on patterns of rainfall (Blaustein et al.,
2015) and, from a UK perspective, the regulatory end-point receptors,
i.e. bathingwaters, aremonitored seasonally over the summer. The sea-
sonal differences in SCIMAP's performance were more pronounced in
theWyre catchment. Therefore it may be possible that an improvement
in model performance can be achieved through accounting for charac-
teristics of FIO fate and transfer that vary seasonally.

An interesting and surprising observation in this study was that for
the Yealm catchment improved grassland was assigned a low risk
value. This was unexpected because this land cover type can be associ-
ated with activities that might produce a high availability of FIOs
(McGrane et al., 2014). Improved grassland is used to graze livestock,
which deposit fresh faeces into the landscape or it can be amended
using slurry and manure for silage production creating a source of
FIOs in the environment. This has been further supported by regression
(Kay et al., 2010; Tetzlaff et al., 2012) and export coefficient (Kay et al.,
2008b) approaches that have suggested an association between FIO pol-
lution and land covers linked with the management of livestock and
their manure. Our study assigned risk to land cover types relative to
all other land cover types in the catchment. It is possible that, for this
particular catchment, another land cover type was more risky than im-
proved grassland. In the Yealm catchment, areas of rough grazing were
assigned a high risk value and an optimummean value of 0.78. Perhaps
rough grazing in this catchment providesmore FIOpollution to the river
network than improved grassland and therefore inputs from extensive
grazing, most likely via sheep, are more important than inputs from
areas of improved pasture for this particular catchment. Similarly, in
the Wyre catchment, a medium risk value (0.58) was assigned to
areas associated with rough grazing but our confidence in the interpre-
tation of this finding is low given the covariance of land cover types in
the catchment. Of course, the fact that land cover information is derived
from remote sensing techniques may also influence results. There is
some overlap in the spectral properties of improved grassland and
rough grazing, neutral, acid and calcareous grasslands meaning in
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some cases it can be difficult to delineate between these land covers
(Morton et al., 2011), which are likely to vary in their susceptibility to
FIO contamination.

5. Conclusion

This research has provided a ‘bench-marking’modelling experiment
to determine how well the current SCIMAP framework for diffuse fine
sediment pollution can be applied to map diffuse FIO pollution risk in
catchment systems. Overall performance was variable with reasonable
performance of the model for the Yealm catchment but poor outputs
when tested in the Wyre catchment. In addition, assignment of risk
weightings to land cover types exhibited uncertainty for all land covers,
excluding woodland in both catchments and improved grassland in the
Yealm catchment. However, a number of opportunities for the develop-
ment of SCIMAP to account for diffuse FIO pollution risks have been
identified. SCIMAP has proven useful for the targeting of interventions
for conservative nutrient and fine sediment pollution and the frame-
work shows promise in its consideration of FIOs. However the un-
conservative nature of FIOs undoubtedly provides a different set of chal-
lenges for this model. Opportunities for addressing these challenges
exist and this study has provided the necessary evidence to highlight
that the adaptation of SCIMAP to account for FIO fate and transfer will
likely mark a significant departure from previous iterations of this
risk-based framework. In doing so, it should provide a useful tool for
those attempting to reduce the impact of faecal contamination ofwater-
courses at the catchment scale.
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