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Summary. Credit rating or credit scoring systems are important tools for estimating the
obligor’s credit worthiness and for providing an indication of the obligor’s future status.
The discriminatory power of a credit rating or credit scoring system refers to its ex ante
ability to distinguish between two or more classes of borrowers. One of the most popular
tools for the validation of the power of credit rating or credit scoring models to distinguish
between two (or more) classes of borrowers is the receiver operating characteristic ROC
curve (hypersurface) and its widely used overall summary, the area (hypervolume) under
the curve (hypersurface). As the end goal of building such models is to predict and quantify
uncertainty about future loans, prediction methods are especially valuable in this context.
To this end, nonparametric predictive inference (NPI) is a promising candidate for such
inference as it is a frequentist statistical method that is explicitly aimed at using few mod-
elling assumptions, enabled through the use of lower and upper probabilities to quantify
uncertainty. The aim of this paper is to introduce NPI for ROC analysis within a banking
context, to which end novel results on ROC hypersurfaces for more than three groups are
presented. Examples are provided to illustrate the method.

Keywords: Nonparametric predictive inference, credit rating systems, receiver oper-
ating characteristic curve, hypervolume under the ROC hypersurface.

1. Introduction

With the financial crisis, many banks and building societies are facing challenges over
loan repayment, which makes decisions on approval of loans crucial. To this end, many
statistical methods have been introduced to classify an applicant into different classes
based on previous loan customers’ records (Hand and Henley, 1997). The problem of
assessing the accuracy of these classifiers is important and thus several statistical tools
have been developed, such as ROC (receiver operating characteristic) curve and Gini
coefficient (Crook et al., 2007). In particular, the ROC approach is a well-known tool
for assessing the discriminating ability of credit rating systems (Crook et al., 2007;
Xanthopoulos and Nakas, 2007).
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As the reality is that the banks and building societies are interested in evaluating
future loan customers, it will be of interest to consider statistical methods for prediction
rather than estimation. Classical methods often focus on estimation to make inferences
about future loans, and they often require the underlying distributions of borrowers to be
known, which is unrealistic in practice. To this end, Nonparametric Predictive Inference
(NPI) is a promising candidate for such inference as it does not require any assumed
distributions and the inference itself is explicitly predictive.

NPI is a statistical method based on Hill’s assumption A(n) (Hill, 1968), which gives
a direct conditional probability for a future observable random quantity, conditional on
observed values of related random quantities (Augustin and Coolen, 2004). A(n) does
not assume anything else, and can be interpreted as a post-data assumption related to
exchangeability (De Finetti, 1974). Inferences based on A(n) are predictive and non-
parametric, and can be considered suitable if there is hardly any knowledge about the
random quantity of interest, other than the n observations, or if one does not want to
use such information, e.g. to study effects of additional assumptions underlying other
statistical methods. A(n) is not sufficient to derive precise probabilities for many events
of interest, but it provides bounds for probabilities via the ‘fundamental theorem of
probability’ (De Finetti, 1974). These bounds are lower and upper probabilities in im-
precise probability theory (Augustin and Coolen, 2004). An informal interpretation for
lower and upper probabilities, is that a lower probability reflects the evidence in favour
of the event of interest while an upper probability reflects the evidence against the event
of interest.

NPI has been introduced for several application areas including reliability, survival
analysis, operations research and finance (Coolen, 2011; Baker et al., 2017; He et al.,
2018). A short introduction to NPI and its applications is given by Coolen (2011). NPI
has also been introduced for assessing the accuracy of a classifier’s ability to discriminate
between two outcomes (or two groups) for binary data (Coolen-Maturi et al., 2012a) and
for diagnostic tests with ordinal observations (Elkhafifi and Coolen, 2012) and with real-
valued observations (Coolen-Maturi et al., 2012b). Recently, Coolen-Maturi et al. (2014)
generalized the results by Coolen-Maturi et al. (2012b) by introducing NPI for three-
group ROC analysis, with real-valued observations, to assess the ability of a diagnostic
test to discriminate among three ordered classes or groups. Coolen-Maturi (2017b)
generalized the results by Elkhafifi and Coolen (2012) by proposing NPI for three-group
ROC analysis with ordinal outcomes. This paper generalizes the methods by Coolen-
Maturi (2017b) for more than three ordered classes or groups. The aim of this paper is
to introduce NPI for ROC analysis within a banking context. In particular to assess the
discriminatory power of a credit rating or credit scoring system refering to its ex ante
ability to distinguish between multiple ordered classes of borrowers.

This paper is organised as follows. Section 2 introduces NPI for ROC analysis for
ordinal outcomes within a banking context including novel results on ROC hypersurfaces
for more than three groups. Two examples are provided in Section 4 and some concluding
remarks are given in Section 5.
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Table 1. Ordinal test data
Credit scoring model outcomes notation

Status C1 . . . Ck1 . . . Ck2 . . . CkG−1
. . . CK Total

Y 1 n1
1 . . . n1

k1
. . . n1

k2
. . . n1

kG−1
. . . n1

K n1

Y 2 n2
1 . . . n2

k1
. . . n2

k2
. . . n2

kG−1
. . . n2

K n2

...
...

...
...

...
...

...
Y G nG

1 . . . nG
k1

. . . nG
k2

. . . nG
kG−1

. . . nG
K nG

Total n1 . . . nk1
. . . nk2

. . . nkG−1
. . . nK n

2. NPI for ROC analysis for ordinal outcomes

We consider a credit scoring model with ordinal outcomes, where the outcome for each
borrower indicates one of K ≥ 3 ordered classes, denoted by C1 to CK and representing
a decreasing level of credit worthiness (e.g. from excellent to poor credit worthiness). We
assume that the data available are on borrowers in G ordered groups according to known
status indicated by Y 1, Y 2, . . . , Y G. We assume that there are G − 1 cut-off points (or
thresholds) k1 < k2 < . . . < kG−1 in {1, ...,K} such that a score in classes {C1, . . . , Ck1

}
is interpreted as indication that a borrower is belonging to the first group (status), a
score in classes {Cki−1+1, . . . , Cki

} as indication that a borrower is belonging to the ith
group, and finally a score in classes {CkK−1+1, . . . , CK} as indication that a borrower is
belonging to the final group (the Gth status). The notation for the numbers of borrowers
for each combination of status and model outcomes is given in Table 1, where n is the
total number of borrowers, ni

j is the number of borrowers from group i in class Cj and

ni is total number of borrowers from group i.
For thresholds k1 < k2 < . . . < kG−1, the probability of correct classification of a

borrower from group Y i is pi(ki−1, ki) = P (Y i ∈ {Cki−1+1, . . . , Cki
}), i = 1, 2, . . . , G.

The ROC hypersurface can be constructed by plotting these probabilities of correct
classification {pi(ki−1, ki), i = 1, 2, . . . , G} for all k1 < k2 < . . . < kG−1 in {1, . . . ,K}.
The empirical estimators of these probabilities are p̂i(ki−1, ki) = (1/ni)

∑ki

j=ki−1+1 n
i
j , for

i = 1, 2, . . . , G, where for simplicity of notation we assume k0 = 0 and kG = K, which

in turn form the empirical ROC hypersurface, denoted by R̂OCs.
The hypervolumes under the ROC hypersurface (VUHS) can be used as a global

measure of the discriminatory ability of the test under consideration. It can take values
from 0 to 1, where a value of about 1/G! would occur if the observations from the G
groups would fully overlap, in such a way that the credit scoring model would perform
no better than a random allocation of subjects to the G groups. If there is a perfect
separation of the test results for the G groups, then V UHS = 1. Nakas and Yiannoutsos
(2004) presented the hypervolume under the ROC hypersurface for real-valued data, in
this paper we utilize their findings using a latent variable representations of ordinal data
to obtain the empirical estimator of the hypervolume under the ROC hypersurface. For
the special case when G = 4, the empirical estimator of the hypervolume under the ROC

hypersurface, V̂ UHS, is given in the appendix.
For NPI, we are interested in the inference about the next obligor’s status, where we

consider one next obligor from each group, that is Y 1
n1+1, Y

2
n2+1, . . . , Y

G
nG+1. As the A(n)
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assumption is only suitable for real-valued data, a latent variable representation has been
used for inference about an ordinal random quantity, similar to the method presented
by Coolen-Maturi (2017b) for the case G = 3. Thus in this section we generalise the
results in Coolen-Maturi (2017b) for more than three groups, using the idea of the latent
variables representations. The NPI lower and upper probabilities of correct classification,
for the thresholds k1 < k2 < . . . < kG−1 in {1, 2, . . . ,K}, and for i = 1, 2, . . . , G, where
k0 = 0 and kG = K, are

p
i
(ki−1, ki) = P (Y i

ni+1 ∈ {Cki−1+1, . . . , Cki
})

=



1

ni + 1

ki∑
j=ki−1+1

ni
j if i = 1 or i = G

1

ni + 1

−1 +

ki∑
j=ki−1+1

ni
j

+

if i = 2, 3 . . . , G− 1

(1)

pi(ki−1, ki) = P (Y i
ni+1 ∈ {Cki−1+1, . . . , Cki

}) =
1

ni + 1

1 +

ki∑
j=ki−1+1

ni
j

 (2)

where (x)+ = max(x, 0).

We can define the following ROC hypersurfaces with VUHS values equal to the in-
fimum and supremum of the VUHS values for all NPI-based ROC hypersurfaces. The
equality of the VUHS and the probability of correctly ordered observations enables
us to define lower and upper ROC hypersurfaces in line with the optimization pro-
cedures, similar to the one described by Coolen-Maturi (2017b), to obtain ni

j and ni
j ,

i = 2, . . . , G−1. For simplicity of notation, for the first and last groups, let n1
j = n1

j = n1
j

and nG
j = nG

j = nG
j . These lower and upper ROC hypersurface are defined as follows.

The NPI lower ROC hypersurface, ROCs, goes through the points
{(

p1(k0, k1),

p∗i (ki−1, ki), pG(kG−1, kG)
)

: p1(k0, k1) ∈
[
p1(k0, k1) − p1(k0, k1 − 1)

]
, pG(kG−1, kG) ∈[

p
G

(kG−1, kG) − p
G

(kG−1 + 1, kG)
]
, k1 < k2 < . . . < kG−1 ∈ {1, . . . ,K}

}
, where

p∗i (ki−1, ki) = (ni + 1)−1
∑ki

j=ki−1+1 n
i
j , i = 2, . . . , G − 1. The NPI upper ROC hy-

persurface, ROCs, goes through the points
{(

p1(k0, k1), p
∗∗
i (ki−1, ki), pG(kG−1, kG)

)
:

p1(k0, k1) ∈
[
p
1
(k0, k1)−p1(k0, k1−1)

]
, pG(kG−1, kG) ∈

[
pG(kG−1−1, kG)−pG(kG−1, kG)

]
,

k1 < k2 < . . . < kG−1 ∈ {1, . . . ,K}
}

, where p∗∗i (ki−1, ki) = (ni + 1)−1
∑ki

j=ki−1
ni
j ,

i = 2, . . . , G− 1.

To present the hypervolumes under the lower and upper ROC hypersurfaces, we
need to introduce further notation. Let Sd = {X ⊂ S : |X| = d} denote the set of

all subsets of S = {1, 2, . . . , G} of size d, where d = 0, 1, . . . , G. That is we have
(
G
d

)
subsets of S of size d. Note that the empty set corresponds to d = 0. Similarly we
can define Sd1

1 = {X ⊂ S : {1, G} ⊂ X ∧ |X| = d1} where d1 = 2, 3, . . . , G, and

Sd2

2 = {X ⊂ S : {2, . . . , G− 1} ⊂ X ∧ |X| = d2}, where d2 = G− 2, G− 1, G.

The hypervolumes under the NPI lower and upper ROC hypersurface, which are equal
to the NPI lower and upper probabilities for the event (Y 1

n1+1 < Y 2
n2+1 < . . . < Y G

nG+1),
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respectively, are

V UHS =
1∏G

g=1(n
g + 1)

K−G+1∑
i1=1

K−G+2∑
i2=i1+1

. . .

K−1∑
iG−1=iG−2+1

K∑
iG=iG−1+1

G∏
g=1

ng
ig

(3)

V UHS =
1∏G

g=1(n
g + 1)

G∑
d2=G−2

 ∑
J∈Sd2

2

K∑
iJ[1]=1

K∑
iJ[2]=iJ[1]

. . .

K∑
iJ[d2]=iJ[d2−1]

∏
g∈J

ng
ig

 (4)

where
∑

J∈Sd2
2

denote the sum over all the subsets in Sd2

2 , and J [j] refers to the jth

element in J , j = 1, 2, . . . , d2.

2.1. Lower and upper envelopes of the set of NPI-based ROC hypersurfaces
One may want to avoid the numerical optimisations (especially for a large data set
with a large number of categories) required to derive the NPI lower and upper ROC
hypersurfaces above, by using envelopes as approximations, benefitting from the fact that
they are available in simple analytical expressions as given in below. These envelopes
provide lower and upper bounds for the NPI lower and upper ROC surfaces, which
provide some further information about the quality of the approximations.

It is easy to show that the lower bound for the NPI lower ROC hypersurface,
ROCsL, goes through the points

{(
p1(k0, k1), pi(ki−1, ki), pG(kG−1, kG)

)
: p1(k0, k1) ∈[

p1(k0, k1) − p1(k0, k1 − 1)
]
, pG(kG−1, kG) ∈

[
p
G

(kG−1, kG) − p
G

(kG−1 + 1, kG)
]
, k1 <

k2 < . . . < kG−1 ∈ {1, . . . ,K}
}

, where p
i
(ki−1, ki) is obtained from (1). On the

other hand, the upper bound for the NPI upper ROC hypersurface, ROCs
U

, goes
through the points

{(
p1(k0, k1), pi(ki−1−1, ki), pG(kG−1, kG)

)
: p1(k0, k1) ∈

[
p
1
(k0, k1)−

p
1
(k0, k1−1)

]
, pG(kG−1, kG) ∈

[
pG(kG−1−1, kG)−pG(kG−1, kG)

]
, k1 < k2 < . . . < kG−1 ∈

{1, . . . ,K}
}

, where pi(ki−1 − 1, ki) is obtained from (2).
Obtaining the NPI lower and upper probabilities for specific orderings of future ob-

servations and thus the corresponding hypervolume under the ROC hypersurface is com-
putationally intensive, while having bounds for both the lower and upper hypervolumes
is likely to be sufficient. Below we present such bounds, the fact that these lower and
upper bounds have explicit formulas makes further optimisation unnecessary. In this
section, we present the main results without formal proofs, as these follow similar steps
as presented for the three-group case by Coolen-Maturi (2017b).

The NPI lower bound for the lower hypervolume under the ROC hypersurface is

V UHSL =
1∏G

g=1(n
g + 1)

G∑
d1=2

(−1)G−d1

∑
J∈Sd1

1

K−G+J [1]∑
iJ[1]=1

K−G+J [2]∑
iJ[2]=iJ[1]+J [2]−J [1]

. . .

. . .

K−G+J [d1]∑
iJ[d1]=iJ[d1−1]+J [d1]−J [d1−1]

∏
g∈J

ng
ig

 (5)
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where
∑

J∈Sd1
1

denote the sum over all the subsets in Sd1

1 , and J [j] refers to the jth

element in J , j = 1, 2, . . . , d1. The NPI upper bound for the upper hypervolume under
the ROC hypersurface is

V UHS
U

=
1∏G

g=1(n
g + 1)

G∑
d=0

∑
J∈Sd

K∑
iJ[1]=1

K∑
iJ[2]=iJ[1]

. . .

K∑
iJ[d]=iJ[d−1]

∏
g∈J

ng
ig

 (6)

where
∑

J∈Sd denote the sum over all the subsets in Sd, and J [j] refers to the jth ele-
ment in J , j = 1, 2, . . . , d.

Similarly, it is easy to show that the upper bound for the NPI lower ROC hyper-
surface, ROCsU , goes through the points

{(
p1(k0, k1), p̃i(ki−1 + 1, ki), pG(kG−1, kG)

)
:

p1(k0, k1) ∈ [p1(k0, k1)− p1(k0, k1 − 1)] , pG(kG−1, kG) ∈
[
p
G

(kG−1, kG) − p
G

(kG−1 +

1, kG)
]
, k1 < k2 < . . . < kG−1 ∈ {1, . . . ,K}

}
, where p̃i(ki−1+1, ki) = (ni+1)−1

∑ki

j=ki−1+1 n
i
j .

On the other hand, the lower bound for the NPI upper ROC hypersurface, ROCs
L

, goes
through the points

{(
p1(k0, k1), p̃i(ki−1, ki), pG(kG−1, kG)

)
: p1(k0, k1) ∈

[
p
1
(k0, k1) −

p
1
(k0, k1 − 1)

]
, pG(kG−1, kG) ∈

[
pG(kG−1 − 1, kG) − pG(kG−1, kG)

]
, k1 < k2 < . . . <

kG−1 ∈ {1, . . . ,K}
}

, where p̃i(ki−1, ki) = (ni + 1)−1
∑ki

j=ki−1
ni
j .

The NPI upper bound for the lower hypervolume under the ROC hypersurface is

V UHSU =
1∏G

g=1(n
g + 1)

K−G+1∑
i1=1

K−G+2∑
i2=i1+1

. . .

K−1∑
iG−1=iG−2+1

K∑
iG=iG−1+1

G∏
g=1

ng
ig

(7)

The NPI lower bound for the upper hypervolume under the ROC hypersurface is

V UHS
L

=
1∏G

g=1(n
g + 1)

G∑
d2=G−2

 ∑
J∈Sd2

2

K∑
iJ[1]=1

K∑
iJ[2]=iJ[1]

. . .

K∑
iJ[d2]=iJ[d2−1]

∏
g∈J

ng
ig

 (8)

where
∑

J∈Sd2
2

denote the sum over all the subsets in Sd2

2 , and J [j] refers to the jth

element in J , j = 1, 2, . . . , d2.
For the sake of illustration, we have provided in the appendix the four formulas, from

equations (5), (6), (7) and (8), for the special case when G = 4, along with the empirical
estimator.

Finally, it is also worth mentioning here the three special cases: (1) when we have
two groups and only two categories, (2) two groups with any number of categories and
(3) three groups with any number of categories. In these cases the results are identical to
those obtained by Coolen-Maturi et al. (2012a), Elkhafifi and Coolen (2012) and Coolen-
Maturi (2017b), respectively. In Section 4 we use the conventional notation AUC for the
area under the ROC curve (two-group case), and VUS for the volume under the ROC
surface (three-group case). For example, V US and V US refer to the NPI lower and
upper volumes under the lower and upper ROC surfaces, and the corresponding lower

and upper envelopes as (V USL, V USU ) and (V US
L
, V US

U
), respectively.
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2.2. The NPI-based optimal decision thresholds
The selection of the optimal cut-off points k1 < k2 < . . . < kG−1 in {1, ...,K}, is an
important aspect of defining the credit scoring model and analysing its quality. One
approach is maximization of Youden’s index (Youden, 1950), which for a continuous
diagnostic test was introduced by Nakas et al. (2010). Similarly, we can define Youden’s
index for an ordinal G-group classifier as

J(k1, k2, . . . , kG−1) =

G∑
i=1

pi(ki−1, ki) (9)

Using this index, the optimal cut-off points are the values of k1 < k2 < . . . < kG−1 in
{1, ...,K} which maximise J(k1, k2, . . . , kG−1). This index J(k1, k2, . . . , kG−1) is equal to
1 if the G groups fully overlap, while J(k1, k2, . . . , kG−1) = G if the G groups are perfectly
separated. The empirical estimator for J(k1, k2, . . . , kG−1) is obtained by replacing these
probabilities by their corresponding empirical estimators,

Ĵ(k1, k2, . . . , kG−1) =

G∑
i=1

p̂i(ki−1, ki) (10)

The NPI lower and upper probabilities of correct classification for all G groups, Equations
(1) and (2), can be used to obtain the NPI lower and upper bounds for Youden’s index
as follows,

J(k1, k2, . . . , kG−1) =

G∑
i=1

p
i
(ki−1, ki) (11)

J(k1, k2, . . . , kG−1) =

G∑
i=1

pi(ki−1, ki) (12)

These generalize the three-group Youden’s index presented by Coolen-Maturi (2017b).
Note that there is a constant difference between the NPI lower and upper Youden’s
indices which implies that both will be maximised at the same values of k1 < k2 <
. . . < kG−1 in {1, ...,K}. It is further easy to show that, for all k1 < k2 < . . . < kG−1,

J(k1, k2, . . . , kG−1) ≤ Ĵ(k1, k2, . . . , kG−1) ≤ J(k1, k2, . . . , kG−1), where Ĵ(k1, k2, . . . , kG−1)
is the empirical estimate of Youden’s index. These inequalities do not imply that the em-
pirical estimate of Youden’s index is maximal for the same values of k1 < k2 < . . . < kG−1
in {1, ...,K} as the NPI lower and upper Youden’s indices, but we expect that in many
situations the maxima will be attained as the same values, in particular for small K.
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3. Simulation

In this section, a simulation study is provided to evaluate and compare the performance
of the proposed NPI method with the classical empirical method. We consider five cases
(denoted by Case A to Case E) from two different distributions, namely the Uniform and
the Logit-Normal distribution. These five cases are constructed to represent different
(decreasing) levels of overlapping between the three ordered groups (G = 3), where the
three groups in Case A are drawn from relatively separated distrubtions until Case E
where the three groups are drawn from the same distribution (totally overlap). For
each case and per distribution, we consider two data scenarios (n1 = n2 = n3 = 100
and n1 = 180, n2 = 100, n3 = 10) for 10 and 20 classes (K = 10, 20). The later data
scenario (n1 = 180, n2 = 100, n3 = 10) is of a particular interest, because in practice
it is quite likely that numbers in the different groups differ substantially. For example,
individuals in group 3 may lead to severe problems, but one would probably not have
many of such individuals in the data. We use the cut-points 0.1(0.1)0.9 to categorise the
simulated data into K = 10 categories, and the cut-points 0.05(0.05)0.95 to categorise the
simulated values into K = 20 categories or classes. For the Logit-Normal distribution,
the R package logitnorm has been used (Wutzler, 2018). All results in this section are
based on N = 10, 000 simulations.

For the Uniform distribution, the five cases are defined as follows, also displayed in
Fig. 1,
Case A: Y 1 ∼ U(0, 1/3), Y 2 ∼ U(1/3, 2/3), Y 3 ∼ U(2/3, 1)
Case B: Y 1 ∼ U(0, 1/3), Y 2 ∼ U(0.3, 0.65), Y 3 ∼ U(0.6, 1)
Case C: Y 1 ∼ U(0, 1/3), Y 2 ∼ U(1/4, 2/3), Y 3 ∼ U(1/2, 1)
Case D: Y 1 ∼ U(0, 0.4), Y 2 ∼ U(1/4, 0.7), Y 3 ∼ U(0.4, 1)
Case E: Y 1 ∼ U(0, 1), Y 2 ∼ U(0, 1), Y 3 ∼ U(0, 1)

and for the Logit-Normal distribution, the five cases are defined as follows, also dis-
played in Fig. 2,
Case A: Y 1 ∼ LN(−2, 0.4), Y 2 ∼ LN(0, 0.3), Y 3 ∼ LN(2, 0.4)
Case B: Y 1 ∼ LN(−1.5, 0.4), Y 2 ∼ LN(0, 0.3), Y 3 ∼ LN(1.5, 0.4)
Case C: Y 1 ∼ LN(−1, 0.4), Y 2 ∼ LN(0, 0.3), Y 3 ∼ LN(1, 0.4)
Case D: Y 1 ∼ LN(−1.2, 1), Y 2 ∼ LN(0, 0.5), Y 3 ∼ LN(1.2, 1)
Case E: Y 1 ∼ LN(0, 1), Y 2 ∼ LN(0, 1), Y 3 ∼ LN(0, 1)

For each case we simulate n1 + 1, n2 + 1, n3 + 1 data observations, where n1, n2, n3

observations will be used to find the optimal thresholds k1 and k2 that maximise the
empirical, the lower and the upper Youden’s index (equations (10), (11) and (12), re-
spectively). Then the future observations (one per group) will be used to evaluate the
proposed and the empirical methods, that whether these future observations are cor-
rectly classified. That is whether Y 1

n1+1 ∈ {C1, . . . , Ck1
}, Y 2

n1+1 ∈ {Ck1+1, . . . , Ck2
} and

Y 3
n1+1 ∈ {Ck2+1, . . . , CK}. Let q̂, q and q denote the proportions of correctly classified

future observations (out of N = 10, 000) using equations (10), (11) and (12) for select-
ing the optimal thresholds k1 and k2, respectively. The results are summarised in Table 2.
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Fig. 1. Uniform distributions: Y 1 (black), Y 2 (red) and Y 3 (blue)
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Table 2. Simulation study

Cases K
n1 = n2 = n3 = 100 n1 = 180, n2 = 100, n3 = 10

Uniform Logit-Normal Uniform Logit-Normal
q q̂ q q q̂ q q q̂ q q q̂ q

A 10 0.4876 0.4873 0.4873 0.8533 0.8533 0.8533 0.4543 0.4479 0.4543 0.8568 0.8559 0.8568
20 0.7142 0.7142 0.7142 0.9342 0.9342 0.9342 0.7645 0.7633 0.7645 0.9505 0.9503 0.9505

B 10 0.3567 0.3566 0.3566 0.5421 0.5421 0.5421 0.3902 0.3849 0.3902 0.5245 0.5117 0.5245
20 0.6297 0.6292 0.6293 0.8462 0.8462 0.8462 0.6148 0.6100 0.6148 0.8658 0.8643 0.8658

C 10 0.3295 0.3280 0.3285 0.3226 0.3226 0.3226 0.3422 0.3288 0.3422 0.3478 0.3450 0.3478
20 0.4575 0.4565 0.4570 0.5693 0.5680 0.5691 0.4565 0.4460 0.4565 0.5951 0.5881 0.5951

D 10 0.2913 0.2911 0.2912 0.2671 0.2671 0.2671 0.2788 0.2653 0.2788 0.2752 0.2686 0.2752
20 0.3152 0.3151 0.3154 0.3643 0.3639 0.3639 0.2990 0.2872 0.2990 0.3525 0.3483 0.3525

E 10 0.0159 0.0157 0.0160 0.0109 0.0107 0.0113 0.0173 0.0154 0.0173 0.0130 0.0119 0.0130
20 0.0168 0.0163 0.0167 0.0116 0.0115 0.0121 0.0165 0.0160 0.0165 0.0137 0.0124 0.0137

For the unbalanced sample size scenario (n1 = 180, n2 = 100, n3 = 10) the number
of correctly classified future observations are higher for our NPI method compared to
the empirical one, while for the balanced sample size scenario (n1 = n2 = n3 = 100)
the proposed method performs as good as the empirical one if not better. The equal
performance related to the fact in most cases (in particular for small K) the proposed
method and the empirical methods return the same optimal thresholds. There are also
cases where the lower performs better than the upper and the other way around, but
overall, the proposed method outperforms the empirical method in particular in case of
unbalanced sample sizes. We also notice that all methods perform better for K = 20
than for K = 10, as for fixed G = 3 this may allow the methods to select more accurately
the optimal thresholds k1 and k2 out of 20 classes rather than 10. Unsurprisingly for Case
E, where the data are simulated form the same distribution, the numbers of correctly
classified future observations are quite small.

4. Examples

Example 1
In this example we use the data set from Irwin and Irwin (2013) to compare the Organi-
zation for Economic Cooperation and Development (OECD) ratings made in early 2002
with a country’s recourse to the International Monetary Fund (IMF) during the follow-
ing nine years. The aim is to assess the discriminatory power of the OECD’s country
risk ratings in order to predict whether a country will have a program with the IMF,
which is often used as an indicator of financial distress. Table 3 summarises the OECD
risk classifications for 161 countries, 82 of which had recourse to an IMF program, and
79 of which did not have recourse to an IMF program. The OECD classifies countries
on an eight-point scale from 0 (least risky) to 7 (most risky). Irwin and Irwin (2013)
compared the Cumulative Accuracy Profile (CAP) accuracy ratio and the area under
the ROC curves for the given data set. They showed that ROC analysis has several
merits over the CAP curve, therefore the ROC curve was preferable by the authors. In
this paper, we have compared the proposed method with the empirical area under the
ROC curve.
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Table 3. OECD Risk Rating and IMF Program status, Example 1.
OECD Risk Rating

IMF Program 0 1 2 3 4 5 6 7
Yes 3 0 1 2 5 8 13 50
No 21 2 12 14 8 4 5 13

Total 24 2 13 16 13 12 18 63

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPF

T
P

F

Empirical
Lower
Upper

Fig. 3. The lower, empirical and upper ROC curves of OECD ratings as predictors of borrowing
from the IMF in the following nine years, Example 1.

So in this example we have a two-group classification problem, so the ROC curve
and its corresponding AUC are used, described in Elkhafifi and Coolen (2012), to asses
the OECD ability to predict whether a country will have a program with the IMF.
The ROC curve is defined as the combination of False Positive Fraction (FPF) and
True Positive Fraction (TPF) over all values of the threshold k in {1, . . . ,K}, where
FPF(k) = P (Y 1 ∈ {Ck, . . . , CK}) and TPF(k) = P (Y 2 ∈ {Ck, . . . , CK}).

Figure 3 shows the lower, empirical and upper ROC curves of OECD ratings as pre-
dictors of borrowing from the IMF in the following nine years. The corresponding areas

under the curves are AUC = 0.7360, ÂUC = 0.8231 and AUC = 0.8944, respectively.
These values show that OECD ratings has a good discriminatory power as a predictor of
borrowing from the IMF. From predictive perspective, the large values of the lower and
upper AUC show a strong evidence for a correct ordering of the two future observations.
In classical method (e.g. the empirical AUC) one often performs a hypothesis testing to
test the significant of the estimated AUC (e.g. H0 : AUC = 0.5). In NPI context we do
not perform any hypothesis testing, instead we see whether the value 0.5 is between the
NPI lower and upper AUC, if this is the case we say that we have no or weak evidence
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Table 4. Youden’s indices, Example 1.
k 0 1 2 3 4 5 6 7

J(k) 0 0.2143 0.2393 0.3773 0.5282 0.5679 0.5215 0.4274

Ĵ(k) 0 0.2292 0.2546 0.3943 0.5471 0.5874 0.5404 0.4452
J(k) 0 0.2389 0.2639 0.4018 0.5527 0.5925 0.5461 0.4520

that the future observations would be correctly ordered.
In addition, our method also attractive if one wants to compare two ROC curves,

e.g. we have a further program in addition to the IMF program, let us refer to these
programs as A and B. Then, instead of performing hypothesis testing as in the classical
method to test the null hypothesis that AUCA = AUCB we compare their lower and
upper AUCs as follows. We say that we have a strong indication that classifier A is better
than classifier B if the AUCA = AUCB. And we say that we have a weak evidence that
classifier A is better than classifier B if AUCA = AUCB and AUCA = AUCB.

Table 4 presents the values of Youden’s index Ĵ(k) for the empirical ROC curve
together with Youden’s indices corresponding to the NPI lower and upper ROC curves,
J(k) and J(k), respectively. These indices are all maximal for k = 5, leading to the
optimal OECD ratings being such that an outcome ratings of 5 to 7 indicates the country
will have a program with the IMF, while an outcome ratings of 4 or less indicates the
country will not have a program with the IMF.

Example 2
In this example, we consider a loan data set from a small Greek bank, a slightly different
version of the data set has been used by Xanthopoulos and Nakas (2007) to introduce
the empirical ROC surface for loan data. The bank used a credit rating system that
assigns ratings from 1 to 8, where rates 7 and 8 are forbidden from getting loans. There-
fore, the former two ratings are excluded from the analysis, and due to bank’s size the
remaining six ratings have been appropriately combined into 4 credit ratings, from 1 to
4, where obligors with rates 1 are considered to have excellent creditworthiness, while
obligors with rates 4 are considered to have poor creditworthiness, and one would expect
difficulties regarding their payment behaviour. Obligors are classified into four groups
according to their delinquency status, i.e. whether or not there is a delay of payment on
the last day of the year under consideration. Thus, they have been classified into group
A if there is no delay of payment, into group B if the maximum delay is between 1 and
90 days, into group C if the delay is between 90 and 180 days, and into group D if they
delay the payment for over 180 days.

First let us consider the following two-class scenarios: A < (B + C + D), (A + B) <
(C+D), (A+B+C) < D. The results are summarised in Table 5. We can see from this
table that this credit rating system can discriminate well between the first three groups
combined and the last group. On the other hand, the credit rating system does not
perform very well in the other two cases, as the areas under the empirical ROC curves
are close to 0.5, while the areas under the lower NPI ROC curves are very small.
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Table 5. Areas under the ROC curves, Example 2.
AUC ÂUC AUC

A < (B + C + D) 0.2745 0.5192 0.7638
(A + B) < (C + D) 0.2875 0.5263 0.7649
(A + B + C) < D 0.4492 0.6363 0.8205

Table 6. Volumes under the ROC surfaces, Example 2.
V USL V US V USU V̂ US V US

L
V US V US

U

(A + B) < C < D 0.0644 0.0644 0.0648 0.2521 0.5695 0.5719 0.5722
A < (B + C) < D 0.0657 0.0657 0.0659 0.2536 0.5734 0.5751 0.5753
A < B < (C + D) 0.0221 0.0222 0.0224 0.1850 0.5233 0.5280 0.5288

Second, we use the three-group ROC methodology in order to assess the discrimina-
tion ability of this credit rating system, considering the three following cases: (A+B) <
C < D, A < (B + C) < D, and A < B < (C + D), where ”+” means that the asso-
ciated groups are combined. The results are given in Table 6. From this table we can

see that V USL < V US < V USU < V̂ US < V US
L
< V US < V US

U
. For the case

A < (B + C) < D, the NPI lower (upper) bound for the lower (upper) ROC surface is
plotted in Figure 4 (Figure 5).

For the case where we compare the four groups A < B < C < D, using the for-
mulas given in the appendix, the empirical hypervolume under the ROC hypersurface

is V̂ UHS = 0.0646, the NPI lower and upper bounds for the lower hypervolume under
ROC hypersurface are V UHSL = 0.00032, V UHSU = 0.00033, the NPI lower and upper

bounds for the upper hypervolume under the ROC hypersurface are V UHS
L

= 0.37337,

V UHS
U

= 0.37940. One can see that the lower (upper) bounds are very close to each
other, therefore they provide a good approximation for the exact lower (upper) ROC
hypersurface. We can also see that the empirical hypervolume is between the NPI lower
and upper hypervolumes, however it is much closer to the lower hypervolume than to

the upper. The small value of the empirical VUHS, V̂ UHS = 0.0646, indicates poor
performance of the bank’s adopted credit rating system, yet it is somewhat better than a
random classier (1/24=0.04167). However, from predictive perspective the lower VUHS
indicates that we have very little evidence that the four next borrowers, one from each
group, would all be correctly ordered but the upper VUHS shows that we have large im-
precision, and hence there is no strong evidence against the possibility of such a correct
ordering. Although this is a considerable data set, several categories have only very few
observations leading to substantial imprecision.
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Fig. 4. The lower bound for the lower ROC surface, Example 2.
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Fig. 5. The upper bound for the upper ROC surface, Example 2.
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5. Concluding remarks

In this paper we introduced NPI for ROC analysis within a banking context, which
includes NPI lower and upper bounds for the hypervolumes under the lower and upper
ROC hypersurfaces. The presented work can be extended in many ways. For example,
Coolen-Maturi (2017a) introduced NPI for combining real-valued diagnostic tests taking
into account the problem of limits of detection, that is when data are unobservable
above or below certain limits. Such methods can also be used in case of many ordinal
categories, if one cannot get perfect observations. Furthermore, NPI has been presented
for direct selection of the optimal thresholds of a diagnostic test based on multiple future
observations, which shows some promising results compared to the use of the Youden’s
index for three-group classification problems (Coolen-Maturi et al., 2018). Extending
that for ordinal data and for more than three groups is an interesting topic.
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Appendix

In this section we write out the formulas presented in Section 2 for the special case when
G = 4 as follows:
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1∏4

g=1 n
g

[
K−3∑
i1=1

K−2∑
i2=i1+1

K−1∑
i3=i2+1

K∑
i4=i3+1

n1
i1n

2
i2n

3
i3n

4
i4 +

1

2

K−2∑
i1=1

K−1∑
i2=i1+1

K∑
i3=i2+1

n1
i1n

2
i1n

3
i2n

4
i3

+
1

2

K−2∑
i1=1

K−1∑
i2=i1+1

K∑
i3=i2+1

n1
i1n

2
i2n

3
i2n

4
i3 +

1

2

K−2∑
i1=1

K−1∑
i2=i1+1

K∑
i3=i2+1

n1
i1n

2
i2n

3
i3n

4
i3

+
1

6

K−1∑
i1=1

K∑
i2=i1+1

n1
i1n

2
i1n

3
i1n

4
i2 +

1

6

K−1∑
i1=1

K∑
i2=i1+1

n1
i1n

2
i2n

3
i2n

4
i2 +

1

24

K∑
i1=1

n1
i1n

2
i1n

3
i1n

4
i1

]

V UHSL =
1∏4

g=1(n
g + 1)

[
K−3∑
i1=1

K−2∑
i2=i1+1

K−1∑
i3=i2+1

K∑
i4=i3+1

n1
i1n

2
i2n

3
i3n

4
i4

−
K−3∑
i1=1

K−1∑
i3=i1+2

K∑
i4=i3+1

n1
i1n

3
i3n

4
i4 −

K−3∑
i1=1

K−2∑
i2=i1+1

K∑
i4=i2+2

n1
i1n

2
i2n

4
i4 +

K−3∑
i1=1

K∑
i4=i1+3

n1
i1n

4
i4

]

V UHSU =
1∏4

g=1(n
g + 1)

K−3∑
i1=1

K−2∑
i2=i1+1

K−1∑
i3=i2+1

K∑
i4=i3+1

n1
i1n

2
i2n

3
i3n

4
i4



16 T. Coolen-Maturi, et al.
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