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Abstract

We present a new implementation of the NNLO QCD corrections to three-jet final states
and related event-shape observables in electron–positron annihilation. Our implementation
is based on the antenna subtraction method, and is performed in the NNLOjet framework.
The calculation improves upon earlier results by taking into account the full kinematical
information on the initial state momenta, thereby allowing the event orientation to be com-
puted to NNLO accuracy. We find the event-orientation distributions at LEP and SLC to
be very robust under higher order QCD corrections.



The production of hadronic final states in electron–positron annihilation at high energies
offers a unique laboratory for testing the theory of the strong interaction, quantum chromody-
namics (QCD). Experiments at LEP and SLD have collected a wealth of precision data on jet
cross sections and event-shape distributions [1–5]. Precision studies of these data included es-
tablishing the gauge group structure of QCD, measurements of the strong coupling constant and
investigations of the all-order structure of large logarithmic effects in QCD [6]. These studies
rely on the comparison between the data and theory predictions, with the inherent uncertainty
of the theoretical calculations due to truncating a perturbative expansion often being a limiting
factor. Most of the original LEP and SLD studies were based on the then available NLO theory
predictions for event shapes and cross sections [7–9]. These calculations are in the form of fixed
order parton-level codes, which produce weighted events containing sets of parton momenta and
which can adapt in a flexible manner to the jet definition and event-shape variables used in the
experimental studies.

The calculation of NNLO corrections to three-jet production and related event-shape ob-
servables [10,11] enabled these data to be confronted with increasingly precise predictions, and
led to a variety of new precision QCD studies [12]. The calculation of jet-like observables at
NNLO requires a method for the cancellation of infrared singular contributions across chan-
nels of different partonic multiplicity. Both early calculations [10, 11] (with the EERAD3 code
of [10] documented in detail in its public release [13]) were based on the antenna subtraction
method [14]. They have been recently complemented by a new calculation [15] based on the
colourful-subtraction method [16].

To apply the antenna subtraction method to a broad number of processes, we are currently
developing the NNLOjet code, which is a fixed order parton-level code that provides the
framework for the implementation of jet production to NNLO accuracy. Besides containing the
necessary event generation infrastructure (phase-space integration, event handling and analysis
routines), it supplies the unintegrated and integrated antenna functions and the phase-space
mappings relevant to all kinematical situations. The multi-dimensional phase space integration
is performed using the adaptive Monte Carlo integrator VEGAS [17]. Processes included in
NNLOjet up to now are Z and Z + jet production [18], H and H + jet production [19] as well
as single-inclusive and di-jet production in hadron–hadron collisions [20] and in deep inelastic
scattering [21].

Our new implementation of the NNLO QCD corrections to e+e− → 3j is performed in the
NNLOjet framework. The relevant matrix elements correspond to different kinematical cross-
ings of the ones already used [22–24] in the Z + j and deeply inelastic jet production processes.
The structure of the antenna subtraction terms for these matrix elements is documented in
detail in [25]. We validated the new implementation against EERAD3 [13] for the canonical set
of LEP event shapes and jet cross sections. While the EERAD3 implementation [13] was based
on the matrix elements for virtual photon decay γ∗ → qq̄g (and higher order corrections to it),
NNLOjet now contains the full e+e− → qq̄g matrix elements through to NNLO in massless
QCD. It therefore allows to properly account for the correlation between the final-state parton
directions and the incoming electron and positron beams.

Most of the LEP and SLC measurements of event shapes and jet cross sections [1–5] were
corrected to a full 4π acceptance. They do not depend on the angular correlation between the
final state hadrons and the incoming electron–positron direction. Measurements of fiducial cross
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Figure 1: Definition of the three Euler angles characterising the event orientation. j1 denotes
the highest-energy jet, j2 the sub-leading jet [32].

sections (restricted to the actual acceptance of the detector) are typically not available, the only
exceptions being a few studies of oriented event-shape distributions [26,27], which are measured
in fixed intervals in the angle between the event’s thrust axis and the incoming beam direction.
An indication of the quality of the extrapolation to full 4π acceptance can however be gained
from studying event-orientation variables, which describe the full angular correlation between
the hadronic final state and the incoming beams.

Three-particle (or three-jet) production in the e+e− centre-of-momentum frame always re-
sults in a final state with momenta in a plane, due to momentum conservation. The orien-
tation of this event plane with respect to the initial state is described by three Euler angles:
(Θ,ΘN , χ) [28]. Taking the event plane in (x, z) and using the highest-energy final state object
to define the z-axis, the incoming electron direction is defined through the polar angle Θ and the
azimuthal angle χ. The third angle ΘN is then formed by the electron direction and the event
plane normal. The choice of coordinate system and the definition of the angles is displayed in
Figure 1, reproduced from [32].

For three-jet final states, event orientation distributions were measured initially by TASSO [29]
and subsequently by DELPHI [30], L3 [31], and SLD [32]. In all measurements, the JADE algo-
rithm was used to identify the final-state jets, and one-dimensional distributions in Θ, ΘN or χ
were measured. These measurements were compared with the leading-order, leading-logarithmic
multi-purpose event generator simulations HERWIG [33] and JETSET/PYTHIA [34], which all
provided a very good description of the data. This observation motivates the use of these sim-
ulation programs to extrapolate the canonical event shape and jet cross sections measurements
to full 4π acceptance.

For this procedure to be reliable, it is however vital that the shapes of the leading order
event-orientation distributions are not distorted by higher-order QCD corrections. Surprisingly
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enough, this issue has never been investigated in a systematic manner. By using an approx-
imation to the real-radiation contributions, NLO QCD corrections to event orientation were
estimated to be small in [35]. Comparing the JETSET predictions with exact real-radiation ma-
trix elements and parton-shower approximation, SLD [32] attempted to quantify the potential
magnitude of real-radiation effects at NLO, which were found to be of limited impact.

With the NNLOjet implementation of jet production in e+e− annihilation, we are now able
to compute the NLO and NNLO corrections to the event orientation distributions. We consider
the kinematical situations that were investigated by L3 [31] and SLD [32], which provide more
precise measurements than in the earlier studies. Both experiments perform their measurements
on an exclusive three-jet sample. The jets are identified using the JADE algorithm [36], with a
range of jet resolution parameters ycut for L3, and for fixed ycut = 0.02 for SLD. The distributions
in (Θ,ΘN , χ) are normalised to the three-jet cross section, such that they all integrate to unity by
construction. Besides cancelling potential sources of systematic uncertainty, this normalisation
condition makes the theoretical predictions at leading order independent of αs. Consequently, the
variation of the renormalisation scale will not necessarily be a good quantifier for the potential
impact of higher order corrections, and one should rather look order-by-order into the relative
size of the corrections.

The experimental data have all been corrected to 4π acceptance, with SLD [32] also providing
the uncorrected data. By comparison, it can be seen that the corrections affect the event
orientation distributions only for cos(Θ) � 0.7, cos(ΘN ) � 0.7, χ � π/4. These can be identified
from Figure 1 as the regions where the event plane comes close to the beam direction, such that
the final state particles can be partly outside the detector coverage.

Figure 2 displays the event orientation distributions at LO, NLO, and NNLO for exclusive
three-jet events and compares them to the SLD data [32]. The error bands on the NLO and
NNLO predictions are obtained by varying the renormalisation scale in the strong coupling
constant within a factor [1/2; 2] around the central scale μR = MZ. We also indicate the
numerical integration error on the NNLO coefficients by a red error bar in the ratio plot. We
observe that the perturbative corrections modify the leading-order shape of the distributions
only at the level of four per mille at NLO and at most one per cent at NNLO. The corrections
are most pronounced in cos(Θ), where they modify the slope of the distribution, and are even
smaller in χ and cos(ΘN ).

The L3 experiment measured the event orientation distributions for two ranges in exclusive
three-jet events (using the JADE algorithm). Results are given for two jet resolutions: 0.02 ≤
ycut ≤ 0.05 (fine jet resolution) and ycut = 0.25 (coarse jet resolution). The application of a
range in ycut instead of a fixed value is uncommon and requires further explanation: events are
classified as three-jet final states if and only if they yield a three-jet final state for all values of
ycut in the interval. Since the JADE algorithm yields a monotonous increase in jet multiplicity
with decreasing resolution parameter, it is sufficient to find a three-jet final state for both the
upper and lower edge of the ycut interval. The event orientation distributions for both values of
jet resolution parameters at LO, NLO, and NNLO (with error bands and bars defined as above
for SLD) are shown in Figure 3, where they are compared to data from L3 [31]. For the fine jet
resolution, we observe a pattern that is very similar to what we saw for SLD, with corrections
at the level of at most one per cent throughout. For the coarse jet resolution, we observe that
the corrections to the cos(Θ) distribution increase to a maximum of two per cent at NNLO, and
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Figure 2: Event orientation distributions for three-jet events (JADE algorithm, ycut = 0.02),
compared to SLD data [32].

that the slope of the corrections to the cos(Θ) and χ distributions is inverted compared to the
fine jet resolution.

For all distributions, we observe that the scale variation bands at NLO and NNLO do not
overlap and that their size increases from NLO to NNLO. Given that the distributions are
normalised such that they become independent of αs at leading-order, scale variation should not
be considered a good indicator of residual theoretical uncertainty from missing higher orders
for these particular observables. The small absolute magnitude of the corrections both at NLO
and NNLO is however a strong indicator for the perturbative stability of the event orientation
distributions. It is worth pointing out that the event orientation distributions are normalised
to the three-jet cross section, which itself receives sizeable NLO and NNLO corrections [10,11]:
the observed smallness of the corrections to the normalised distributions indicates that the NLO
and NNLO corrections are substantial in absolute terms, but uniform in the event orientation
variables. Consequently, further corrections from quark mass effects (which are known to be
small compared to the massless NLO and NNLO terms, [37]) will not modify our findings on
the event orientation distributions.

In summary, we presented a new implementation of the NNLO QCD corrections to e+e− →
3jet and related event-shape observables, using the antenna subtraction method for the can-
cellation of infrared singularities between real-radiation and virtual contributions. Our imple-
mentation is in the form of the fixed order parton-level code NNLOjet, which can compute
infrared-safe quantities using the jet definition and event selection criteria as used in the experi-
mental measurements. Compared to previous implementations, we retain the full dependence on
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Figure 3: Event orientation distributions for three-jet events (JADE algorithm) compared to L3
data [31]. Left: 0.02 ≤ ycut ≤ 0.05, right: ycut = 0.25.

the initial-state lepton kinematics, which allows us to compute fiducial cross sections and event
orientation distributions. The latter are particularly relevant in view of precision measurements
of event shapes and cross sections at LEP and SLD. In these experiments, results were typically
extrapolated from the actual measurements done with restricted detector acceptance to full 4π
acceptance, using leading order multi-purpose event simulation programs. By computing the
NLO and NNLO corrections to the event-orientation distributions, we can now quantify the
impact of higher order QCD effects on these extrapolations. We find that the event orientation
distributions are extremely robust under QCD corrections. For a fine jet resolution (where the
bulk of precision QCD studies is performed), the corrections up to NNLO modify the distribu-
tions up to at most one per cent. By going to a more coarse jet resolution, the magnitude of
the corrections increases slightly to two per cent, and the slopes of the corrections in some of
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the distributions are inverted. Our findings support the validity of the acceptance correction
procedure applied in precision QCD studies at LEP and SLD. When aiming for per-mille level
precision in QCD measurements at a future Z factory, these corrections will become of relevance,
and it should be considered to concentrate on measurements and interpretation of fiducial cross
sections instead of extrapolating to full acceptance.
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