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ABSTRACT
We study present-day galaxy clustering in the EAGLE cosmological hydrodynamical simulation.
EAGLE’s galaxy formation parameters were calibrated to reproduce the redshift z = 0.1 galaxy
stellar mass function, and the simulation also reproduces galaxy colours well. The simulation
volume is too small to correctly sample large-scale fluctuations and we therefore concentrate on
scales smaller than a few mega parsecs. We find very good agreement with observed clustering
measurements from the Galaxy And Mass Assembly (GAMA) survey, when galaxies are
binned by stellar mass, colour or luminosity. However, low-mass red galaxies are clustered
too strongly, which is at least partly due to limited numerical resolution. Apart from this
limitation, we conclude that EAGLE galaxies inhabit similar dark matter haloes as observed
GAMA galaxies, and that the radial distribution of satellite galaxies, as a function of stellar
mass and colour, is similar to that observed as well.

Key words: galaxies: evolution – galaxies: formation – galaxies: haloes – galaxies: statistics –
cosmology: theory – large-scale structure of Universe.

1 IN T RO D U C T I O N

The spatial distribution of galaxies provides a powerful way to
probe both cosmology and galaxy formation. Galaxy clustering
measurements on scales where density fluctuations are only mildly
non-linear, combined with other cosmological data sets such as
cosmic microwave background measurements, put impressively
tight constraints on cosmological parameters (e.g. Hinshaw et al.
2013; Planck Collaboration XIII 2016). In addition, the detection of
baryon acoustic oscillations in the clustering of galaxies (e.g. Cole
et al. 2005; Eisenstein et al. 2005) opened up the way to quantify
the nature of dark energy (e.g. Laureijs et al. 2011), and combined
with redshift-space distortion measurements, test theories of gravity
(e.g. Linder 2008).

From the perspective of galaxy formation, the clustering of galax-
ies informs us about the relation between galaxies and the underly-
ing dark matter and can provide hints about the physical processes
involved in galaxy assembly history. As galaxies reside within the
dark matter haloes, their positions trace the underlying cosmic struc-
ture. While the formation and evolution of the dark matter haloes is
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governed exclusively by gravitational interaction, the assembly of
the galaxies is governed by the more complex baryon physics that
also affects the distribution of galaxies. Such ‘galaxy bias’ may im-
pact as well cosmological inferences made from galaxy clustering
measurements.

The main statistical tool used for characterizing galaxy clustering
is the two-point correlation function ξ (r), which measures the ex-
cess probability over random of finding pairs of galaxies at different
separations r (Peebles 1980). Commonly, when analysing redshift
surveys, the projected correlation function integrated along the line
of sight is used, in order to eliminate, in principle, redshift-space dis-
tortions (Davis & Peebles 1983). Observations show that brighter,
redder and more massive galaxies are more strongly clustered and
related trends are also measured as a function of morphology and
spectral type (e.g. Norberg et al. 2002a; Zehavi et al. 2002, 2005;
Goto et al. 2003; Coil et al. 2006; Li et al. 2006; Croton et al. 2007;
Zheng, Coil & Zehavi 2007; Coil et al. 2008; Zehavi et al. 2011;
Coupon et al. 2012; Guo et al. 2013; Farrow et al. 2015).

The theoretical modelling of galaxies plays an important role in
interpreting clustering data, since, although galaxy clustering on
large enough scales is very similar to that of the underlying mat-
ter distribution, it is not expected to be identical. Such models are
also routinely used to estimate sample variance and verify methods
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for correcting observational biases. Several theoretical schemes are
able to model galaxy clustering in volumes comparable to those
probed observationally. These start from a dark matter only (DMO)
N-body simulation, and populate haloes or sub-haloes with galax-
ies. Halo occupation distribution models (HOD; e.g. Cooray 2002;
Berlind & Weinberg 2002; Tinker et al. 2012) or sub-halo abun-
dance matching (SHAM, e.g. Vale & Ostriker 2004, 2006; Conroy,
Wechsler & Kravtsov 2006) are statistical techniques that match
galaxies with haloes by abundance based on, for example, their
circular velocity. Semi-analytical galaxy formation techniques (e.g.
Kauffmann, White & Guiderdoni 1993; Cole et al. 1994) use phys-
ically motivated schemes to associate galaxies with haloes (see e.g.
Baugh 2006, for a review).

Notwithstanding the successes of these methods, they suffer from
intrinsic limitations. Stellar and active galactic nucleus (AGN) feed-
back from forming galaxies affect the mass of their halo (Sawala
et al. 2013; Velliscig et al. 2014; Schaller et al. 2015), limiting
the extent to which any DMO simulation predicts the clustering of
haloes as function of mass accurately. Feedback effects are plausi-
bly strong enough to affect the mass distribution itself (Semboloni
et al. 2011; van Daalen et al. 2011) and with it galaxy clustering
(Hellwing et al. 2016). These effects may be relatively small, but
the main limitation of the models is on smaller scales, where several
effects that occur when a galaxy becomes a satellite (tidal interac-
tions, ram-pressure stripping, strangulation, etc.,) come into play.
van Daalen et al. (2014) investigate how physics behind galaxy
formation affect the clustering of galaxies at small scales through
comparing two models of OWLS project (Schaye et al. 2010) with
and without AGN feedback. They found that the physics of galaxy
formation affects clustering on small scales, and, in addition, affects
larger scales through its impact on the masses of sub haloes. Far-
row et al. (2015) show how clustering in galaxy light cone mocks
generated with two versions of the semi-analytical GALFORM code
(Gonzalez-Perez et al. 2014; Lacey et al. 2016) differ significantly
with the observations on small scales. McCullagh et al. (2017) and
Gonzalez-Perez et al. (in preparation) show that once a more de-
tailed merger scheme is considered, such as that described by Simha
& Cole (2013), reasonably good agreement with clustering data on
small scale is achieved. This is in agreement with the findings of
Contreras et al. (2013) in which different families of galaxy for-
mation models were compared to clustering data. McCarthy et al.
(2017) present results from the BAHAMAS cosmological hydrodynam-
ical simulation. These simulations were designed using a similar
calibration strategy as EAGLE but using the OWLS implementation of
galaxy formation described by Schaye et al. (2010). The simulated
volume (400 Mpc h−1 on a side) and mass resolution (initial bary-
onic particle mass 8 × 108 h−1 M�) allow them to probe the galaxy
correlation function on large scales, but not to go to lower mass
galaxies and smaller scale clustering that we concentrate on here,
or to investigate clustering as a function of galaxy property such
as colour. Sales et al. (2015) compare the distribution of satellite
galaxies from the ILLUSTRIS simulation (Vogelsberger et al. 2014) as
a function of colour to Sloan Digital Sky Survey (SDSS; York et al.
2000) observations by Wang et al. (2014). They attribute the better
agreement of the simulations compared to semi-analytical models
to the more realistic gas contents of satellites at infall.

Galaxy clustering on small scales, and as a function of intrinsic
galaxy properties such as luminosity, colour and star formation rate
(SFR), thus might prove to be a stringent test of galaxy formation
models. Performing such a test is the aim of this paper: We explore
the clustering of galaxies in the cosmological hydrodynamical EA-
GLE simulation (Schaye et al. 2015) and its dependence on galaxy

properties. The galaxy formation model of EAGLE uses sub-grid mod-
ules that are calibrated to reproduce the present-day stellar mass
function (as described by Crain et al. 2015). In addition, the EAGLE

simulation reproduces relatively well the colours and luminosities
of galaxies both in the infrared (Camps et al. 2016) and at optical
wavelengths (Trayford et al. 2016).

The 100-Mpc extent of the largest EAGLE simulation volume anal-
ysed in this paper is too small to properly sample large-scale modes,
and, as is well known, such missing large-scale power quantitatively
affects clustering measures even on smaller scales (e.g. Bagla & Ray
2005; Bagla & Prasad 2006; Trenti & Stiavelli 2008). To estimate the
severity of this, we compare the clustering of haloes in a DMO ver-
sion of the EAGLE volume to that in a much larger volume, simulated
with the same cosmological parameters. This allows us to estimate
the limitations of our approach. We compare the EAGLE predictions
to clustering measurements by Farrow et al. (2015) of galaxies in the
Galaxy and Mass Assembly redshift survey (GAMA; Driver et al.
2011; Liske et al. 2015), which are in accord with the Zehavi et al.
(2011) SDSS measurements. For completeness, we note that Crain
et al. (2017) show that EAGLE reproduces the observed clustering of
z = 0 H I sources.

This paper is organized as follows: In Section 2, we describe
the main characteristics of the simulations used, and briefly discuss
the GAMA survey to which we compare. In Section 3, we define
the notation and present the tools used to measure galaxy cluster-
ing. Simulations and observations are compared in Section 4. In
the discussion, Section 5, we compare EAGLE with the clustering
in GALFORM (following the analysis of Farrow et al. 2015) and our
own clustering measurements using the data base of the ILLUSTRIS

(Vogelsberger et al. 2014) simulation. The conclusions are summa-
rized in Section 6.

Throughout this paper and unless specified otherwise, we use the
Planck Collaboration XVI (2014) values of the cosmological param-
eters (�b = 0.0482, �dark = 0.2588, �� = 0.693 and h = 0.6777,
where H0 = 100 h km s−1 Mpc−1. Observational measures of clus-
tering are (most commonly) specified in ‘h’-dependent units, and
to ease the comparison to other clustering studies, we will express
distances in h−1 Mpc and masses in h−2 M�.

2 SI M U L AT I O N S A N D DATA

This section briefly describes the simulations used and the GAMA
survey to which clustering results of the simulations are compared.

2.1 The EAGLE hydrodynamical simulation suite

We use the ‘reference’ EAGLE simulation from table 2 in Schaye
et al. (2015) (i.e. L0100N1504, but hereafter referred to as the EA-
GLE simulation), a hydrodynamical cosmological simulation that
starts at z = 127 from initial conditions generated using the PANPHA-
SIA multiresolution phases of Jenkins & Booth (2013), taking the
Planck Collaboration XVI (2014) cosmological parameter values.
The simulation is part of the EAGLE simulation suite (Crain et al.
2015; Schaye et al. 2015) and Table 1 lists some of the key simu-
lation parameters. The EAGLE simulations were performed with the
GADGET-3 code, which is based on GADGET-2 (Springel 2005), and
uses ‘sub-grid models’, briefly discussed in more detail below, to
encode physical processes below the resolution limit. These models
are formulated using parameters or functional forms that express
limitations in our understanding of a given process (for example,
star formation) or our inability to simulate accurately a known pro-
cess because of lack of numerical resolution (e.g. the effect of a
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Table 1. Numerical parameters of cosmological simulations considered.
From the left- to right-hand side: simulation identifier, simulation comoving
side length L, initial mass mg of baryonic particles, dark matter particle
mass, Plummer-equivalent comoving length (εcom) and maximum proper
gravitational softening length εprop. The EAGLE and EAGLE-DMO simulations
are referred to as L0100N1504 and L0100N1504-DMO by Schaye et al.
(2015).

Name L mg mdm εcom εprop

(h−1Mpc) (106 M�) (106 M�) (kpc) (kpc)

EAGLE 67.77 1.81 9.70 2.66 0.7
EAGLE-DMO 67.77 – 11.51 2.66 0.7
P-MILLENNIUM 542.16 – 157 3.40 3.40

supernova explosion on the interstellar medium in the presence of
radiative cooling). These parameters and functions are calibrated so
that the simulation reproduces a limited set of observed properties
of galaxies, by performing a large set of simulations in which these
parameters are varied as described by Crain et al. (2015). The set of
constraints is limited, mainly because each simulation takes a long
time to run. In the case of EAGLE, sub-grid parameters were cali-
brated to observations at z ≈ 0 of the galaxy stellar mass function of
Baldry et al. (2012), galaxy sizes as measured by Shen et al. (2003),
and the relation between black hole mass and stellar mass.

The hydrodynamics used in EAGLE uses a number of improve-
ments to the smoothed particle hydrodynamics implementation col-
lectively referred to as ANARCHY and described by Dalla Vecchia (in
preparation); see Schaller et al. (2015) for a discussion of the rela-
tively small impact of these changes on the properties of simulated
galaxies. We briefly summarize below the sub-grid modules for
unresolved physics relevant for this paper:

(i) Photoheating and radiative cooling by the optically thin evolv-
ing ultraviolet UV/X-ray background of Haardt & Madau (2001)
is implemented element-by-element as described by Wiersma,
Schaye & Smith (2009a).

(ii) Star formation is implemented using the pressure law of
Schaye & Dalla Vecchia (2008) and the metallicity-dependent star
formation threshold of Schaye (2004). Gas particles eligible for
star formation are converted to ‘star particles’ stochastically with a
probability that depends on their SFR and their time-step.

(iii) Stellar evolution and enrichment is implemented as de-
scribed by Wiersma et al. (2009b): Assuming that stars form with
the Chabrier (2003) stellar initial mass function (IMF), spanning
the range [0,1,100] M�, we use stellar evolution and yield tables to
calculate the rate of type Ia and type II (core-collapse) supernovae,
and follow the rate at which stars enrich the interstellar medium
through asymptotic giant branch, type Ia and type II evolutionary
channels.

(iv) Seeding, accretion and merging of black holes is imple-
mented following Springel, Di Matteo & Hernquist (2005) and
Booth & Schaye (2009), modified to account for the angular mo-
mentum of accreted gas as described by Rosas-Guevara et al. (2015).

(v) Thermal feedback from stars is implemented as described
by Dalla Vecchia & Schaye (2012); feedback from accreting black
holes is also implemented thermally.

(vi) Dark matter haloes are identified using the friends-of-friends
(FoF) algorithm, with baryonic particles (gas, stars and black holes)
assigned to the same halo as the nearest dark matter particle, if
any. The mass of the halo is characterized by Mh ≡ M200,c, the mass
enclosed within a sphere within which the mean density is 200 times
the critical density.

Figure 1. Distribution of rest-frame (g − r)0 colour versus r-band absolute
magnitude, for z = 0.1 EAGLE galaxies (coloured points). The rapid colour-
dependent decline of galaxies fainter than Mr − 5 log10(h) = −17 results
from imposing a stellar mass cut of M� > 108.66 h−2 M�. The solid black
line from equation (2) distinguishes red from blue galaxies, EAGLE galaxies
above (below) this line are represented by a red (blue) dot. The black dashed
line is the corresponding colour cut from Farrow et al. (2015) for GAMA
galaxies (their equation 4, and equation 1 in the text).

(vii) Galaxies are identified using the SUBFIND algorithm (Springel
et al. 2001; Dolag et al. 2009). To avoid including ‘intra-cluster’
mass/light to massive galaxies, we calculate (and quote) galaxy
stellar masses/luminosities within 3D spherical apertures of 30 kpc.
The aperture size was chosen to broadly approximate a Petrosian
aperture; see Schaye et al. (2015) for details. We classify the galaxy
that contains the particle with the lowest potential as the ‘central
galaxy’; any other galaxy in the same halo is a ‘satellite’.

(viii) Broad-band absolute magnitudes of galaxies are computed
in the rest frame, as described by Trayford et al. (2015): Stellar
emission is represented by the Bruzual & Charlot (2003) population
synthesis models, with dust accounted for using the two-component
screen model of Charlot & Fall (2000). Dust-screen optical depths
depend on the mass of enriched, star-forming gas in galaxies and
include an additional scatter to represent orientation effects. This
constitutes the fiducial model of Trayford et al. (2015) (referred to
as GD+O in that paper).

The analysis of the EAGLE simulations is greatly simplified by
using the SQL data base described by McAlpine et al. (2016), which
contains all the properties of EAGLE galaxies used here. In particular,
we extract position, velocity, stellar mass, SFR and broad-band
luminosities in a 30-kpc aperture for all galaxies from the data base,
and then convert them to h-dependent units (such as h−1 Mpc for
lengths and h−2 M� for stellar masses).

Galaxies in EAGLE show similar colour bi-modality as those in
GAMA (Trayford et al. 2015, 2017): a blue cloud of star-forming
galaxies and a red sequence of mostly passive galaxies. In the sim-
ulation, the appearance of passive red galaxies is due to the sup-
pression of star formation in satellites and due to feedback from
supermassive black hole, as demonstrated by Trayford et al. (2016).
The colour cut used by Farrow et al. (2015) to separate red from
blue galaxies in GAMA is (their equation 4)

(g − r)0 = 0.618 − 0.03 (Mr,h + 18.6), (GAMA red–blue cut),

(1)

shown as a dashed black line on the rest-frame colour–magnitude
plot of Fig. 1. Here, we separate EAGLE galaxies in a red and blue
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population using

(g − r)0 = 0.7 − 0.028 (Mr,h + 18.6) (EAGLE red-blue cut), (2)

shown as the black line in Fig. 1. Therefore, the aim of the colour cut
is to separate the passive from the active population of galaxies. It
is essential to ensure that comparable cuts are made in the different
data sets. The slopes of observed and simulated colour cuts are
virtually identical, and they are offset in colour by less than 0.1 mag
at Mr, h =−18.6. This offset is comparable to the offset of ∼0.15 (but
in the opposite direction to the EAGLE offset) for the semi-analytical
model considered by Farrow et al. (2015) (see their fig. 2).

2.2 DMO simulations

We use two DMO simulations to study the impact of the limited
simulation volume of the EAGLE simulation on clustering: one with
the same volume and initial conditions as EAGLE (referred to as EAGLE-
DMO below, this is the simulation L00100N1504-DMO described
by Schaye et al. 2015) and one with a much larger simulation
volume (referred to as P-MILLENNIUM below). Combined, they allow
us to assess to what extent missing large-scale power and sample
variance affect inferences on clustering from the relatively small
EAGLE volume.

Simulation EAGLE-DMO has the same volume, gravitational soft-
ening, cosmology and initial conditions as EAGLE. The masses of the
dark matter particles are increased by a factor of (�b + �dark)/�dark

compared to EAGLE, to account for not including the baryonic mass.
We use this simulation to study clustering of haloes compared to
other models – without results being affected by galaxy formation.
The impact of baryonic effects on the density profiles of haloes in
EAGLE was investigated by Schaller et al. (2015).

The P-MILLENNIUM simulation (see Table 1; Baugh et al., in prepa-
ration, and McCullagh et al. 2017) uses identical cosmological
parameters as EAGLE but has a much larger volume (8003 Mpc3

compared to 1003 Mpc3 for the EAGLE simulation used here). With
P-MILLENNIUM, we can quantify the effects of missing large-scale
power and poor sampling of long wavelengths on clustering statis-
tics by comparing the dark matter halo clustering in EAGLE-DMO with
P-MILLENNIUM. For details about P-MILLENNIUM, see Baugh et al., in
preparation, and McCullagh et al. (2017).

In both EAGLE-DMO and P-MILLENNIUM, dark matter haloes were
identified using the FoF algorithm with the standard value of b = 0.2
for the linking length in units of the mean particle separation. The
mass of the halo is represented by M200, c, the mass enclosed within
a sphere with a density 200 times the critical density.

2.3 The GAMA survey

To put the EAGLE simulation results into context, we will compare
them primarily to results from the GAMA survey data, and in par-
ticular to clustering measurements made by Farrow et al. (2015).
The GAMAsurvey (Driver et al. 2011; Liske et al. 2015) is a spec-
troscopic and multiwavelength survey of galaxies carried out on the
Anglo-Australian telescope. In this work, we make use of the main
r-band limited data from the GAMA equatorial regions
(∼180 deg2), which consists of a highly complete (>98 per cent)
spectroscopic catalogue of galaxies selected from the SDSS DR7
(Abazajian et al. 2009) to rpetro < 19.8. Further details of the GAMA
survey input catalogue, tiling algorithm, redshifting and survey
progress are described by Baldry et al. (2010), Robotham et al.
(2010), Baldry et al. (2014) and Liske et al. (2015), respectively.

For the clustering comparisons presented in Section 4, we are pri-
marily interested in the following GAMA galaxy properties: r-band
absolute magnitude, stellar mass and rest-frame (g − r)0 colour. We
describe in turn how each of those properties have been estimated
in the clustering measurements of Farrow et al. (2015):

(i) r-band absolute magnitude (Mr, h): We apply evolution cor-
rections and k-corrections to zref = 0 Petrosian r-band absolute
magnitudes, where Mr, h ≡ Mr − 5 log10(h). For further details, see
section 2.1.4 of Farrow et al. (2015).

(ii) (g − r)0 colour: The rest-frame colours are derived from
SDSS model magnitudes, with colour- and redshift-dependent k-
corrections as per Loveday et al. (2012) and McNaught-Roberts
et al. (2014). For further details, see section 2.1.4 of Farrow et al.
(2015).

(iii) Stellar mass (M� in units of h−2 M�): The clustering mea-
surements in Farrow et al. (2015) use the relation between rest-frame
(g − i)0 colour and stellar mass as derived by Taylor et al. (2011),
using the Bruzual & Charlot (2003) synthetic stellar population
models with a Calzetti et al. (2000) dust attenuation law to correct
for dust in the Milky Way. For further details, see section 2.1.5 of
Farrow et al. (2015) and Taylor et al. (2011).

For completeness, we refer the reader to section 3 of Farrow
et al. (2015) for the modelling of the GAMA selection function.
Accurate modelling of the selection function of a redshift survey is
key for precise clustering measurements. The modelling approach
described in Farrow et al. (2015), which is based on the method of
Cole (2011), enables a uniform modelling for all galaxy samples
split by stellar mass, luminosity and colour.

3 G A L A X Y C L U S T E R I N G

In this section, we present the analysis methods used, starting with
the estimators we use for calculating the two-point correlation func-
tion and its associate errors. We then briefly discuss how we compute
the effective bias.

3.1 The two-point correlation function

The spherically averaged two-point correlation function, ξ (r), de-
fined as (e.g. Peebles 1980)

ξ (r) = 1

〈n〉
dP

dV
− 1, (3)

provides a statistical description of a sample’s spatial distribution.
Here, dP/dV is the probability of finding a galaxy in the volume
dV at a given (comoving) distance r from another galaxy, and 〈n〉 is
the mean (comoving) number density of galaxies. In practice, for a
volume with periodic boundary conditions, the correlation function
can be estimated by counting the number of pairs of galaxies, Ns(r),
in a shell of volume, Vs(r), at distance r from each other using (e.g.
Rivolo 1986)

ξ (r) = 1

〈n〉2V

Ns(r)

Vs(r)
− 1, (4)

where V is the total volume of the periodic simulation.
However, when the volume has boundaries (as is the case for any

observed survey, or when we want to restrict the analysis to a small
region within a larger periodic simulation volume), these equations
cannot be used. In such cases, ξ can be computed by comparing
the distribution of galaxy pairs to the clustering of a set of points
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uniformly distributed within the survey volume, using, for example,
the Landy & Szalay (1993) estimator:

ξ (r) = DD − 2DR + RR

RR
, (5)

where DD is the suitably normalized number of galaxy pairs at
a distance r from each other, RR is the corresponding normalized
number of pairs from the random distribution and DR is the suitably
normalized numbers of galaxies and random pairs separated by
distance r.

The comoving distance between galaxies cannot be measured
directly from a redshift survey due to galaxy-peculiar velocities
and large-scale redshift-space distortions. However, by splitting the
information into a projected separation, rp, and distance parallel
to the line of sight, π , one can estimate the two-dimensional (2D)
correlation function, ξ (rp, π ), which, in turn, is used to estimate the
projected correlation function

wp(rp) = 2
∫ πmax

0
ξ (rp, π )dπ, (6)

with πmax set to a value adequate for the sample considered (here
πmax is fixed to ∼34 Mpc h−1, which represents ∼L/2 of EAGLE

simulation; see Table 1). We select πmax to be sufficiently large
to account for most redshift-space distortions. In addition, the πmax

value chosen is in line with what is commonly used in observational
clustering measurements. To a very good approximation, wp(rp) is
independent of redshift-space effects, making this statistic ideal
for model comparisons. Furthermore, we tested the systematic dif-
ferences between ξ (r) and wp(rp) and their dependence on πmax,
finding that the systematic difference is significantly smaller than
the statistical errors. We compute wp(rp) along three orthogonal di-
rections in the simulations, to improve the signal-to-noise ratio of
the clustering measurements.

To reduce the dynamical range when plotting wp, we will often
divide it by the projected correlation function of the reference power
law, ξ (r) = (r0/r)γ , with r0 = 5.33 h−1 Mpc and γ = 1.8, from
Zehavi et al. (2011) for the galaxy sample with
−21.0 < Mr, h < −20.0, and where the constants are from
the fitted function that corresponds to this power law as

wref
p (rp) = rp

( r0

rp

)γ 	(1/2)	((γ − 1)/2)

	(γ /2)
, (7)

where 	 denotes the Gamma function.

3.2 Error estimates on clustering statistics

We compute and quote jackknife errors on the simulated two-point
correlation function in EAGLE to mimic observational errors. How-
ever, sample variance is likely to dominate the error budget. We
estimate sample variance by sub-sampling EAGLE-sized-volumes in
the P-MILLENNIUM simulation, which also allows us to examine any
effects due to missing large-scale power. Unfortunately, we can es-
timate these errors for only the clustering of haloes – not galaxies –
since the P-MILLENNIUM simulation is DMO.

We apply the jackknife technique by partitioning the EAGLE (or
EAGLE-DMO) simulation volume in Nsub tiles of equal volume, with
Nsub = 8. We then compute the two-point correlation function ξJK

k

by omitting the kth tile, and compute the variance

σ 2(r) = (Nsub − 1)

Nsub

Nsub∑
k=1

(ξJK
k (r) − ξ tot(r))2, (8)

where ξ tot(r) is the correlation function of the total volume. Such
jackknife error estimates have been used extensively to estimate
errors in galaxy clustering (e.g. Zehavi et al. 2002, 2011; Favole et al.
2016), and Zehavi et al. (2002) shows that such errors accurately
reflect uncertainties in the clustering on the scales investigated here.
However, it has, of course, its limitations, as pointed out by, for
example, Norberg et al. (2009). For example, the technique may
underestimate errors when a few systems dominate the signal. We
will see below that this is in fact the case in EAGLE, where the
clustering of low-mass red galaxies on small scales is dominated by
satellites in a few massive clusters, as we illustrate in Fig. 7 below.

We estimate errors on the clustering of haloes due to sample
variance and missing large-scale power on EAGLE volumes using the
P-MILLENNIUM simulation as follows: We partition the P-MILLENNIUM

simulation in Nsub = 512 tiles of volume equal to that of EAGLE. We
then calculate the correlation function of haloes in the ith tile, ξ i(r),
using equation (5), as well as the correlation function of the total
volume, ξ (r). The variance is then calculated as

σ 2(r) = 1

Nsub − 1

Nsub∑
i=0

(ξi(r) − ξ (r))2. (9)

We use the number density of haloes of each non-overlapping tile
to compute ξ i(r).

3.3 Effective bias

The bias, b, of a tracer population is the ratio of the correlation func-
tion of that tracer over that of the mass (e.g. Davis et al. 1985), with
the effective bias beff(X), given by (e.g. Porciani, Magliocchetti &
Norberg 2004)

beff (X) =
∫

b(Mh) Ngal(Mh, X) n(Mh) dMh∫
Ngal(Mh, X) n(Mh) dMh

, (10)

where n(Mh) is the halo mass function (the number density of haloes
of mass Mh), b(Mh) is the linear bias factor of haloes of mass Mh

and Ngal(Mh, X) is the mean number of galaxies of property X in
haloes of mass Mh (the mean halo occupation). The property X
could select galaxies in a given stellar mass, colour or luminosity
range, for example. We approximate the integral as a sum over all
haloes in the simulation, obtaining

beff (X) =
∑Nhaloes

i=0 b(Mi
h)Ngal(Mi

h, X)∑Nhaloes
i=0 Ngal(Mi

h, X)
, (11)

where Ngal(Mi
h, X) is the number of galaxies with property X in

a halo of mass Mi
h. In practice, we estimate the effective bias of

samples split by stellar mass and hence evaluate this sum for all
galaxies in narrow stellar mass bins.

To estimate the linear halo bias b(Mh), we follow Mo & White
(1996):

b(Mh) = 1 + (ν(Mh)2 − 1)/δc, (12)

where δc = 1.686 is the spherical collapse density threshold and
ν(Mh) = δc/σ (Mh) is the dimensionless amplitude of fluctuations
that produce haloes of mass Mh (at a given redshift z). The (linear)
matter variance, σ (Mh) at a given z, can be computed numerically for
a given linear power spectrum (see equation 9 in Murray, Power &
Robotham 2013) using the web-portal HMFcalc1 (and adopting the
spectral index ns = 0.9611 used in EAGLE). Finally, we adopt the fit

1 http://hmf.icrar.org
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Figure 2. The z = 0 real space two-point correlation function of haloes
with mass Mh > 1012 M� h−1 from P-MILLENNIUM (black dashed line), the
mean correlation function, ξ (r), of the 512 non-overlapping tiles of that
simulation (grey line) and the 1σ scatter around this mean (computed with
equation 9, grey error bars). The green curve is the correlation function for
simulation EAGLE-DMO with jackknife error bars. Finite-volume effects cause
the green curve to fall increasingly below the grey line, with jackknife errors
yielding nevertheless a realistic error estimate.

provided by Jenkins et al. (2001) for the halo mass function, n(Mh),
which provides a good description of the halo mass function of all
simulations used here.

4 R ESULTS

We begin by considering the clustering of dark matter haloes in EA-
GLE, followed by a quick look at the real- and redshift-space cluster-
ing of EAGLE galaxies with well-resolved stellar mass. In Section 4.3,
we present the main results of this study, namely the clustering of
galaxies in EAGLE compared to that of GAMA, when split by stellar
mass, luminosity, colour or SFR.

4.1 Halo clustering in EAGLE

The real-space clustering of haloes with Mh > 1012 h−1 M� in the
P-MILLENNIUM dark matter simulation is plotted in Fig. 2. We subdi-
vide the volume of this simulation into 512 non-overlapping tiles,
each with the same volume as EAGLE-DMO, and compute the corre-
lation function ξ i(r) for each of the tiles, using the mean number
density of haloes in each tile in equation (5). We plot the mean
correlation function averaged over all tiles, ξ (r), as the grey line,
with the scatter around the mean shown as 1σ error bars. The mean
correlation function ξ (r) follows the correlation function of the full
volume (black dashed line) very closely, falling well within the
scatter between volumes, as expected.

The correlation function of EAGLE-DMO (green line) falls below
ξ (r) on scales smaller than 1 h−1 Mpc, remains well within sample
variance up to scales 5–6 h−1 Mpc (log r/(h−1 Mpc) = 0.7–0.78),
then falls increasingly below ξ (r) above this scale. As both simu-
lations have identical power spectra and cosmological parameters,
the deviations are due to sample variance and due to the integral
constraint on ξ . We note that numerical resolution is not likely to
play a role in the apparent differences in clustering, as these haloes
are resolved by ≈104 particles or more.

We compute jackknife errors for EAGLE-DMO, as described above,
and plot them in green. Of course these quantify neither finite-
volume effects nor sample variance, but nevertheless, the green and

Figure 3. Top panel: the z = 0.1 two-point correlation function for EAGLE

galaxies with M� > 108.66 h−2 M� (green curve with jackknife errors bars),
decomposed in the one- and two-halo terms (dashed and dotted grey lines,
respectively). The red line is the reference power-law model for galaxies with
−21.0 < Mr,h < −20.0 from the fit by Zehavi et al. (2011). Bottom panel:
corresponding projected correlation function, wp(rp) from equation (6). The
red line is the projected correlation function from the fit by Zehavi et al.
(2011), wref

p from equation (7). The galaxy selection is different in detail
for EAGLE and the observations: The red lines are shown to guide the eye. [A
colour version of this figure is available in the online version.]

black curves are within the EAGLE-DMO jackknife errors. This moti-
vates us to use such errors when calculating errors on the correlation
function of galaxies, rather than haloes, below, since we do not have
the access to larger hydrodynamical simulations to estimate finite-
volume effects. Given the level of convergence between EAGLE-DMO

and P-MILLENNIUM, we will plot correlation functions up to scales of
10 h−1 Mpc (14 per cent of the full extent), with Fig. 2 quantifying
the limitations on halo clustering.

4.2 Galaxy clustering in EAGLE

The real-space correlation function, ξ (r), of galaxies with stellar
mass M� > 108.83 h−2 M� from EAGLE is plotted in Fig. 3 (top
panel). Distinguishing between central galaxies (typically but not
necessarily the most massive galaxy in a given halo) and satel-
lites galaxies, we compute the one- and two-halo contributions
separately (grey dashed and grey dotted lines, respectively). The
contribution to ξ from these is equal at a separation of approx-
imately r = 1.3 h−1 Mpc. It is important to note that, while the
two-point correlation function from the dark matter haloes of
EAGLE-DMO is underestimated at distances below r ∼ 1 h−1 Mpc,
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Figure 4. The z = 0.1 2D redshift-space correlation function ξ (rp, π ), as a
function of projected separation rp and line-of-sight separation π , for EAGLE

galaxies with stellar masses greater than 108.66 h−2 M�. Contours levels
correspond to ξ (rp, π ) = 5, 2, 1, 0.5, 0.2, 0.1 and 0.01. The vertical dashed
line corresponds to projected separations of rp = 10 h−1 Mpc beyond which
the clustering of haloes is increasingly suppressed due the limited extent of
the EAGLE simulation (see Fig. 2).

this does not imply that the same is true for the galaxy correla-
tion function, since there are, of course, generally many galaxies
per halo.

The real-space correlation function quantifies the physical clus-
tering of galaxies, independent of any peculiar velocities. However,
observations can only measure clustering only in redshift space,
and peculiar velocities then distort the signal. To ameliorate the
effects of such redshift-space distortion, it is convenient to inte-
grate ξ (rp, π ) over a narrow range in π , and compute the projected
correlation function wp(rp); see equation (6). This is plotted for
the same EAGLE galaxies (those with M� > 108.83 h−2 M�) in the
bottom panel of Fig. 3, again plotting one- and two-halo terms
as well.

The reference model wref
p (rp) of equation (7) provides a relatively

good fit to EAGLE’s projected correlation function. We note, however,
that the galaxy selections differ between EAGLE and the SDSS galax-
ies fitted by Zehavi et al. (2011), which gives rise to wref

p – the two
therefore did not have to agree: We show the comparison to guide
the eye and because we use wref

p as a normalization below.
The contributions of one- and two-halo terms to wp are equal

at a projected separation of rp ∼ 0.4 h−1 Mpc. Comparing the top
and bottom panels from Fig. 3, it is clear that the two-halo term
contributes more to the projected correlation function on scales
comparable to the virial radius of haloes than it does to the two-
point correlation function: At a scale of ≈0.1 h−1 Mpc, the two-halo
term contributes nearly 10 per cent to wp.

The 2D redshift-space correlation function of this stellar-mass-
limited sample of EAGLE galaxies is plotted in Fig. 4 in terms of the
projected separation, rp, and line-of-sight separation, π . It exhibits
the familiar elongation in the π direction at small rp resulting from
virial motion of galaxies in haloes (the ‘fingers-of-god’ effect), and
the flattening in the π direction at large rp, due to coherent streaming
motions of galaxies into haloes and out of voids (the ‘Kaiser’ effect;
Kaiser 1987). We do not compare this correlation function directly
to GAMA, mainly because of the complexity of making sure that
the selection of galaxies in the π direction is the same in simulation
and data.

4.3 Galaxy clustering in EAGLE compared to GAMA

We use the volume-limited samples of GAMA galaxies presented by
Farrow et al. (2015), which we can split by stellar mass, luminosity
or colour. For samples split in bins of stellar mass or luminosity only,
we refer the reader to table 2 of Farrow et al. (2015), while we present
in Table 2 the properties of the additional GAMA samples used in
here, for which we have computed clustering statistics following
the methods outlined by Farrow et al. (2015).2

Throughout this section, EAGLE galaxies are selected from the
z = 0.1 snapshot (a redshift close to the median redshift of the
GAMA samples). Some statistics of the EAGLE samples used are
provided in Table 3. By construction and as explained in Section
2.1, the galaxy formation model in EAGLE yields a stellar mass func-
tion that is in relatively good agreement with that inferred from
GAMA in the mass range we analyse here. The agreement is not as
good as in statistical methods that populate dark matter haloes with
galaxies, such as SHAM or HOD, for example, and which yield
the correct number densities by construction. Interestingly, how-
ever, EAGLE predicts a scatter in stellar mass at a given halo mass
that depends on halo concentration, although the dependence is not
strong enough to explain the full variance (Matthee et al. 2017).
Such non-linear dependences are not taken into account in these
statistical methods.

Hence, because the mean number density of galaxies in each bin
of stellar mass, agree reasonably well between data and simulation,
we do not compare clustering at given number density, as commonly
done, but directly compare samples selected by stellar mass - or
indeed luminosity.

4.3.1 Stellar-mass-dependent clustering

A comparison of the clustering of EAGLE galaxies to that in GAMA
as a function of stellar mass is shown in Fig. 5, using the same mass
as used by Farrow et al. (2015). The bottom panels of Fig. 5 high-
light the differences between the two measurements, by presenting
the ratio of the projected correlation functions with respect to the
reference power-law model adopted (following Farrow et al. 2015).
The projected correlation function of EAGLE galaxies (green lines
with jackknife errors) is in remarkably good agreement with the
GAMA data (solid black lines, with 1σ uncertainty range shown as
a grey shaded area): The deviations are typically within the mea-
sured uncertainty range.

It is well known (and clear from the figure) that the clustering
strength of galaxies increases with stellar mass. There is little or no
evidence for such a trend in the simulation; however, the errors are
relatively large and the simulation is not inconsistent with such a
trend either. Furthermore, the size of the simulation prevents us to
test the stellar-mass-dependent clustering, due to observed trends
that are visible only when having a large dynamic range of stellar
masses. Therefore, a larger volume would be needed to confirm such
trend. The good agreement in shape of the correlation functions of
GAMA and EAGLE is encouraging.

The calibration of sub-grid parameters in EAGLE was based on one-
point statistics, as described in Section 2. The clustering of galaxies
is therefore a genuine model prediction. The good agreement then
implies that EAGLE galaxies tend to inhabit haloes in a way that

2 Farrow et al. (2015) uses a flat �m = 0.25 cosmology to infer distances
for their clustering measurements. On the scales considered, this difference
in cosmology is totally negligible.
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Table 2. Statistics of GAMA galaxy samples (mostly volume-limited) that are not already described in table 2 of Farrow et al. (2015), following a similar table
structure. The stellar-mass-restricted samples are split into red and blue galaxies, presented in turn. Columns from the left to right-hand side are as follows:
stellar mass range, minimum and maximum sample redshift, total number of galaxies, the galaxy number density, median sample redshift, median r-band
absolute magnitude, median stellar mass, median (g − r)0 rest-frame colour and the fraction of truly volume-limited galaxies (see the text for further details).

Stellar mass range zmin zmax Ngals n̄ zmed Mmed
r,h log10 Mmed∗ (g − r)med

0 fvlim

(Mpc h−1)−3 (h−2 M�)

Red
9.5 < log10M�/h−2 M� < 10.0 0.02 0.14 5407 4.45 10−3 0.11 −19.16 (0.38) 9.77 (0.14) 0.72 (0.07) 0.96
10.0 < log10M�/h−2 M� < 10.5 0.02 0.14 5527 4.55 10−3 0.11 −20.16 (0.40) 10.23 (0.14) 0.75 (0.10) 1.00
10.5 < log10M�/h−2 M� < 11.0 0.02 0.14 1945 1.60 10−3 0.12 −21.11 (0.37) 10.65 (0.12) 0.77 (0.09) 1.00

Blue
9.5 < log10M�/h−2 M� < 10.0 0.02 0.14 4663 3.84 10−3 0.11 −19.71 (0.39) 9.71 (0.14) 0.54 (0.08) 1.00
10.0 < log10M�/h−2 M� < 10.5 0.02 0.14 1870 1.54 10−3 0.12 −20.61 (0.34) 10.18 (0.13) 0.61 (0.06) 1.00
10.5 < log10M�/h−2 M� < 11.0 0.02 0.14 248 0.20 10−3 0.12 −21.44 (0.34) 10.61 (0.11) 0.67 (0.06) 1.00

Table 3. Statistics of EAGLE stellar-mass-selected samples from the z = 0.1 snapshot. Columns from the left- to right-hand side are as follows: stellar mass
range, number of galaxies, galaxy number density (including JN errors), fraction of satellites, fraction of blue galaxies (following equation 2), the SFR limits
used to define ‘low’ and ‘high’ SFR galaxy samples, respectively, and number density of red and blue galaxies, respectively.

Sample Ngals n̄ fsat fblue SFRlow SFRhigh n̄red n̄blue

stellar mass range (Mpc h−1)−3 (M� yr−1) (M� yr−1) (Mpc h−1)−3 (Mpc h−1)−3

9.5 < log10M�/h−2 M� < 10.0 2676 (8.6 ± 0.9) 10−3 0.43 0.82 <0.28 1.02< 1.5 10−3 7.1 10−3

10.0 < log10M�/h−2 M� < 10.5 1460 (4.7 ± 0.5) 10−3 0.39 0.77 <0.26 1.99< 1.2 10−3 3.6 10−3

10.5 < log10M�/h−2 M� < 11.0 437 (1.4 ± 0.1) 10−3 0.22 0.81 <0.65 3.43< 2.7 10−4 1.1 10−3

Figure 5. Clustering as a function of stellar mass; the mass bin is indicated in each column. Top panels: Projected correlation function wp(rp) from equation (6).
Green curve is the EAGLE result at z = 0.1, with jackknife error bars; Ngal is the number of EAGLE galaxies in each mass bin. Black curve is the GAMA result,
with the grey shading including the 1σ error range. Bottom panels: same as top panels, but the correlation functions are divided by the reference function
wref

p (rp) from equation (7). The dashed line indicates where the ratio is unity. [A colour version of this figure is available in the online version.]

mimics accurately the way GAMA galaxies do. Finally, we note
that the decrease of the clustering signal on scales greater than
5 h−1 Mpc scales in EAGLE is related to the limited simulation box
size – and mimics the corresponding fall in clustering of EAGLE

haloes.

4.3.2 Luminosity-dependent clustering

A comparison of the clustering of EAGLE galaxies to that in GAMA as
a function of r-band luminosity is shown in Fig. 6. The agreement

is very good, and well within the relatively large jackknife error
estimates. Similar to the case of clustering as a function of mass,
the amplitude of observed clustering increases with luminosity (see
e.g. Norberg et al. 2001; Zehavi et al. 2005), but again there is little
or no evidence for such a trend in EAGLE. As in the previous section,
we suggest this is mostly due to the finite volume of the simulation:
More luminous galaxies are biased to more massive haloes, of which
there are relatively few in the EAGLE volume, and their clustering is
underestimated because of lack of large-scale power. The reference
power law wref

p from equation (7) describes the clustering of EAGLE
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Figure 6. Same as the bottom panels of Fig. 5, but for clustering as a
function of r-band luminosity. Ranges of r-band absolute magnitudes are
shown from faint to bright (top to bottom panels), with the number of EAGLE

galaxies in this luminosity range labelled in each panel. The jackknife error
bars for EAGLE galaxies are included.

galaxies in the middle panel of Fig. 6 very well. In this panel, EAGLE

galaxies are selected in the same way, −21.0 < Mr, h < −20.0, as
in the sample of Zehavi et al. (2011) to which wref

p was fitted, so
they can be compared directly. The good agreement in clustering,
combined with the fact that EAGLE also fits the galaxy luminosity
function well (Trayford et al. 2015), implies that EAGLE galaxies
form in similar haloes, and have similar stellar populations and star
formation histories as those in GAMA. This encourages us to look
at clustering as a function of galaxy colour in more detail next.

4.3.3 Colour-dependent clustering

Farrow et al. (2015) present r-band magnitude-limited samples of
GAMA galaxies split by rest-frame (g − r)0 colour and in bins
of stellar mass. Galaxies are classified as ‘red’ or ‘blue’ using the
r-band magnitude colour cut of equation (1). We use these data
to compute wp for these galaxies using the method described by
Farrow et al. (2015). Some statistics of these samples are summa-
rized in Table 2. We note that the lowest mass bin in red galaxies,
9.5 < log10M�/h−2 M� < 10.0, is only partially volume-limited,
as ∼4 per cent of the galaxies in that sample are volume-limited
only over a smaller redshift range than the one nominally con-
sidered. Given the small galaxy fraction affected by this, we can
consider this sample still to be volume-limited when computing

clustering statistics. The advantage of keeping the exact same vol-
umes for all stellar mass samples split by colour (hence, they all
sample the same underlying large-scale structure) overcomes this
minor subtlety, which is primarily driven by uncertainties in the
measured colours and adopted k-corrections for a small subset of
galaxies.

We computed colours of EAGLE galaxies as explained in Sec-
tion 2.1. The colour–magnitude diagram exhibits a blue cloud of
star-forming galaxies, well separated from a ‘red sequence’ of pas-
sive galaxies, as shown by Trayford et al. (2015) (see also Trayford
et al. 2017). The colour of EAGLE’s red sequence is slightly bluer
than in GAMA, which may due to differences in metallicity and/or
limitations in the adopted population synthesis models, as discussed
by Trayford et al. (2015). When comparing to GAMA, we want to
study whether the clustering of star-forming (blue) galaxies differs
from that of passive (red) galaxies, at a given mass. We therefore
divide EAGLE galaxies in bins of stellar mass and colour using the
same mass bins as used in the analysis of GAMA, but applying the
slightly different colour cut to distinguish red from blue using equa-
tion (2), as compared to the cut of equation (1) applied to GAMA.
Some statistics of the EAGLE galaxies are summarized in Table 3,
including the fraction of EAGLE galaxies that are satellites.

The projected correlation functions for red and blue galaxies, split
in bins of stellar mass, are plotted in Fig. 7. To ease the interpretation
of the EAGLE clustering results, we show the correlation function for
all central and satellite galaxies (i.e. irrespective of colour) within
each stellar mass bin as green dotted and dashed lines, respectively.
Therefore, the central/satellite clustering results are the same in the
left- and right-hand panels, but vary with stellar mass (from the top
to bottom).

In EAGLE, red galaxies (left-hand column) cluster more strongly
than blue galaxies (right-hand panel) of a given mass, and similarly
satellite galaxies (dashed lines) cluster more strongly than centrals
(dotted lines), in all stellar mass ranges studied. It is also apparent
that the red population follows closely the clustering of satellites, in
particular for galaxies with stellar masses greater than 1010 h−2 M�.
In contrast, blue galaxies follow more closely the clustering of
centrals, again particularly for the two more massive galaxy stellar
bins.

The clustering of blue EAGLE galaxies tracks that of blue GAMA
galaxies well, in particular, on scales up to rp ∼ 4 h−1 Mpc
[log10(rp) = 0.6]. However, red EAGLE galaxies cluster noticeably
more strongly than red GAMA galaxies. As a consequence, the
trend that red galaxies cluster more strongly than blue galaxies of
given mass, which is clearly present in GAMA, is too strong in
EAGLE. Trayford et al. (2015) noticed that red galaxies are over-
abundant in EAGLE at low mass, and demonstrated that this is at
least partly due to lack of numerical resolution (see the appendix of
Trayford et al. 2015). At higher stellar masses, EAGLE yields a too
large fraction of blue galaxies instead, plausibly a consequence of
the dust screen not suppressing blue light from star-forming regions
sufficiently (Trayford et al. 2017). We suspect therefore that it is the
overly strong suppression of star formation in small galaxies as they
become satellites, most likely as a consequence of lack of numerical
resolution, which causes EAGLE to overpredict small-scale clustering
of red galaxies. Consistent with this interpretation, we find that the
strong clustering of red galaxies in EAGLE is significantly influenced
by the presence of a few massive haloes. To demonstrate this, we
re-compute wp for red EAGLE galaxies after excluding all galaxies
in the three most massive haloes. We show the result by the orange
line in Fig. 7. The overall amplitude of the clustering signal of red
galaxies is dramatically reduced. A larger simulation box is likely
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Figure 7. Clustering as function of (g − r)0 colour for red and blue galaxies (left- and right-hand column, respectively), in bins of stellar mass (top to bottom
rows). Limits of each mass bin are labelled in each panel. The projected correlation function for EAGLE galaxies in each mass bin is shown by the red and blue
curves for red and blue galaxies, respectively, Ngal is the number of EAGLE galaxies that contributes to the calculation. The corresponding clustering of GAMA
galaxies is shown by the black line with grey shaded region denoting the 1σ error range. The clustering of central and satellite EAGLE galaxies split by mass
but not by colour is plotted as dotted green and dashed green lines, respectively. In the left-hand column, the orange lines are wp of red EAGLE galaxies, after
excluding the three most massive haloes. [A colour version of this figure is available in the online version.]

required to provide detailed insight on the clustering of red massive
galaxies.

The colour dependences of the clustering of EAGLE galaxies of
a given stellar mass is clearly partly due to the relative fractions
of satellite and central galaxies. In Table 3, we show the fraction
of satellites and blue galaxies for each stellar mass range. We find
that the fraction of satellite galaxies decreases at higher masses,
while the fraction of red and blue satellites is not strongly de-
pendent on stellar mass. For example, in the stellar mass range
9.5 < log M�/ M� h−2 < 10.0, we find that ∼19 per cent are red
and the remaining ∼81 per cent are blue, while 43 per cent of the
galaxies are satellites. The table also shows that the vast majority
of galaxies are blue, but also that most of galaxies of the com-
plete sample in this stellar mass bin are centrals. Furthermore, the
good agreement with GAMA in the clustering of blue galaxies is
consistent with the fact that EAGLE galaxies of given mass cluster
similarly to GAMA galaxies, as shown in Fig. 5. A relatively modest

improvement of the numerical resolution of the simulation could be
enough to reproduce the clustering of red galaxies equally well (see,
Trayford et al. 2015, for further details). However, the difference
seen could equally be due to the missing large-scale power and the
impact the few rare objects have in the 100-Mpc EAGLE volume.

4.3.4 SFR-dependent clustering

We divide EAGLE galaxies of a given stellar mass in three bins of
SFR: the 30 per cent with the lowest star formation rate (‘low SFR’),
the 30 per cent with the highest star formation rate (‘high SFR’)
and the remainder (‘int SFR’). Their galaxy clustering is plotted in
Fig. 8. The low SFR galaxies are clustered most strongly, which
is particularly evident on the smaller scales, and this is the case in
all stellar mass bins investigated. The difference in the amplitude
of clustering between the high and intermediate SFR galaxies is
not very large, with high SFR galaxies generally clustering least.
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Figure 8. Clustering as function of SFR. The projected galaxy correlation
function of EAGLE galaxies, divided by the reference power law of equa-
tion (7), is plotted for galaxies in bins of stellar mass, as labelled in each
panel. In each galaxy stellar mass bin, we show the result for all galaxies
(green line), the 30 per cent least star-forming galaxies (‘low SFR’, purple),
the 30 per cent highest star-forming galaxies (‘high SFR’, blue) and the
remainder (‘int SFR’, red). Table 3 lists the corresponding cuts in SFR. [A
colour version of this figure is available in the online version.]

Jackknife errors bars are not plotted to avoid clutter, but should
be of the order of ±0.35 dex (i.e. a factor of

√
3 higher than the

typical ±0.2 dex errors seen in Fig. 5 below rp = 1 h−1 Mpc). Any
difference in clustering between the blue (‘high SFR’) and red (‘int
SFR’) curves is therefore not very significant. At the largest scales
shown, the amplitude of clustering for all populations becomes
similar, with any difference now much smaller than jackknife errors.

We do not compare these clustering measurements to those from
GAMA presented by Gunawardhana et al. (in preparation), for the
following main reason: The SFR and stellar mass range probed by
GAMA and EAGLE are, in detail, poorly matched, in the sense that the
limitations in each of the GAMA and EAGLE star-forming samples
are hard to account for all at the same time. For GAMA, the SFR
is only measurable for galaxies with sufficiently high SFR, result-
ing in volume-limited samples with SFR and stellar mass ranges
restricted to SFR � 0.3 M� yr−1 and M∗ � 109.5 h−2 M� (see
Gunawardahana et al. in preparation for details). Hence, for a de-
tailed comparison to take place, it would be necessary to work with
samples defined by absolute cuts in SFR. This, in turn, requires the
GAMA SFR measurements to be directly compatible with those in
EAGLE, as defining samples by SFR ranking is not possible. Although
the galaxy number densities of GAMA and EAGLE split by stellar

Figure 9. HOD of EAGLE galaxies with stellar mass in the range
9.5 < log (M�/ M� h−2) < 10.0. The distribution for all galaxies in that
stellar mass range is plotted as the black histogram, which is normalized to
unit integral. The red and blue histograms show the fraction of those galaxies
that are satellites and centrals, respectively. The coloured histograms inte-
grate separately to the fraction of galaxies that are satellite (red) or central
(blue) in this range of M�. [A colour version of this figure is available in the
online version.]

mass are in reasonably good agreement, splitting these sub-samples
by SFR does not necessarily result in samples with similar number
densities, due to differences in the bivariate SFR–M* distribution. In
fact, we find that the galaxy number densities in EAGLE are between
60 and 70 per cent larger than in GAMA for the same stellar mass
and SFR range. This implies that a detailed clustering comparison
becomes futile: Any difference observed in the clustering could be
attributed to the differences in the measured number densities of
the samples. This is in agreement with the results of Furlong et al.
(2015), who pointed out that the specific SFRs in EAGLE are typically
0.2–0.5 dex lower than observed. A proper understanding of those
SFR differences between data and simulations is required before
a detailed and informative clustering comparison of SFR-selected
samples can be made.

The differences in clustering of galaxies of the same mass that
are satellites versus centrals (Fig. 7), or red versus blue galaxies
(Fig. 8), should be dependent on the mass of the halo they inhabit,
with more strongly clustered galaxies residing in more massive
haloes. To verify that this is the case in EAGLE, we plot the HOD –
the fraction of galaxies of a given M� that inhabit haloes of mass Mh

– for galaxies in the stellar mass range 109.5 < M�/h−2 M� < 1010

split in centrals and satellites (Fig. 9), or in bins of SFRs for three
ranges in M� (Fig. 10).

Central galaxies in the mass range 109.5 < M�/h−2 M� < 1010

inhabit haloes with a narrow range of masses, from 1011.2 to
∼1013 h−1 M�. In contrast, satellites of the same stellar mass
inhabit haloes with a wide range of masses, from 1011 h−1 to
∼1014.5 h−1 M� (Fig. 9). The (much) stronger clustering of satel-
lites is therefore clearly due to the significant fraction that resides
in these much more massive (and hence more clustered) haloes (see
e.g. Guo et al. 2014).

At a given stellar mass, EAGLE galaxies with a higher SFR inhabit
lower mass haloes than those with a lower value of SFR (at z = 0.1),
as shown in Fig. 10 for three ranges in M�. The figure also demon-
strates that the halo occupation is similar for galaxies with a high
or intermediate SFR. This explains the results from Fig. 8 that, at
given M�, galaxies with a low SFR cluster more strongly than those
with higher SFR.
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Figure 10. Same as Fig. 9, but for EAGLE galaxies split by SFR and for three
ranges in stellar mass as indicated in each panel (with increasing stellar mass
from the top to bottom). The sample cuts are the same as in Fig. 8 (and listed
in Table 3).

The SFR (and hence also colour) dependence of clustering in
EAGLE is related to the mechanism that causes some galaxies to
have a low SFR for their mass: the reduction in SFR once a galaxy
becomes a satellite,3 which is discussed in detail for the EAGLE

simulations by Trayford et al. (2016). The reduction of the SFR
of satellites results from two related physical processes that oper-
ate in hydrodynamical simulations: ram-pressure stripping, mainly
of the outer parts of satellites as shown by Bahé & McCarthy
(2015) using the GIMIC simulations (Crain et al. 2009), and the
strong suppression – by many orders of magnitude – of the ac-
cretion rate of gas on to satellites shown by Van de Voort et al.
(2017) in EAGLE. The much reduced gas fraction of such satel-
lites then also implies that their interstellar medium rapidly in-
creases in metallicity (Bahé et al. 2017) – a testable prediction of
the scenario.

Another way to demonstrate the bias of quenched galaxies to
inhabit more massive haloes is shown in Fig. 11, which plots the
effective bias of galaxies as a function of stellar mass, split by SFR.
The effective bias of the low SFR population is nearly independent
of M�, and considerably higher than that of the intermediate or high
SFR population. For the active galaxies with intermediate or high
SFR, the bias increases with stellar mass – simply reflecting that
for those galaxies, SFR increases with M�, which, in turn, increases
with halo mass.

3 AGN feedback plays a role at higher M� as well.

Figure 11. Effective bias, estimated using equation (11), with jackknife
errors for EAGLE galaxies as a function of stellar mass, for three cuts in
specific SFR: low (purple), intermediate (red) and high (blue). The sample
cuts are the same as in Figs 8 and 10 and are listed in Table 3. [A colour
version of this figure is available in the online version.]

5 C O M PA R I S O N W I T H OT H E R M O D E L S

In this section, we compare the EAGLE clustering results to two
sets of models: (i) two incarnations of the GALFORM semi-analytical
model, namely the version of Gonzalez-Perez et al. (2014) (here-
after GP14), and an early version of Lacey et al. (2016) (hereafter
L14), both of which were used in the GAMA clustering study of Far-
row et al. (2015); and (ii) the ILLUSTRIS hydrodynamical simulation
described by Vogelsberger et al. (2014).

The GALFORM model assumes that galaxies form in dark mat-
ter haloes, and it uses analytical prescriptions to describe galaxy
formation processes. These phenomenological prescriptions have
free parameters controlling different physical processes necessary
for the model to be realistic and which are tuned to fit a set of
observational constraints at low redshift. GP14 and L14 use halo
merger trees from the MILLENNIUM-MR7 simulation (Guo et al. 2013),
which uses cosmological parameters set by WMAP7 (Komatsu et al.
2011). The G14 model has the same physical prescriptions as the
Lagos et al. (2012) model, but set in a different cosmology from
that used by Lagos et al. (2012), resulting in the need to re-tune
the free parameters as described by G14. The main differences be-
tween GP14 and L14 are as follows: (i) the assumed stellar IMF,
with GP14 using a Kennicutt (1983) IMF, while L14 switches from
this IMF to a top-heavy IMF in star-bursting galaxies (see L14, for
further details); (ii) the treatment of merging satellite galaxies, with
GP14 using the Chandrasekhar dynamical friction time-scale in an
isothermal sphere as given in Lacey & Cole (1993), while L14 use
the Jiang et al. (2008) and Jiang, Jing & Han (2014) formula for the
time-scale, which is empirically calibrated on N-body simulations
to account for the tidal stripping of the accreting haloes; (iii) the as-
sumed stellar population synthesis (SPS) model, with GP14 using an
updated version of the Bruzual & Charlot (1993) SPS model, while
L14 adopt the Maraston (2005) SPS model. Both GP14 and L14
were tuned to reproduced the bJ-band and K-band luminosity func-
tions of Norberg et al. (2002b) and Cole et al. (2001), respectively.
As GAMA is r-band-selected and as Farrow et al. (2015) analysis
covered a larger redshift range not probed by those galaxy lumi-
nosity functions used to calibrate the GP14 and the L14 GALFORM

models, Farrow et al. (2015) adjusted the GAMA GALFORM light-
cone mocks constructed following Merson et al. (2013) to closely
reproduce the GAMA r-band selection function (which, in turn,
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is well described by the GAMA r-band luminosity functions of
Loveday et al. (2012, 2015). We note that the L14 model used here
and by Farrow et al. (2015) has marginally different parameters from
the model discussed by L14; we have not investigated whether this
impacts any of the results presented below.

The ILLUSTRIS simulation suite was performed with the AREPO

moving-mesh code of Springel (2010). The simulation volume,
(75 h−1 Mpc)3, is comparable to that of EAGLE; sub-grid modules
for star formation and feedback are as described by Vogelsberger
et al. (2014) and the assumed cosmological parameters4 are close
to those of Planck Collaboration XVI (2014) assumed in EAGLE.
Properties of ILLUSTRIS galaxies were released by the collaboration
through a data base5 with content described by Nelson et al. (2015).
The simulation reproduces several observed properties of galaxies
such as for example the colours of satellites (Sales et al. 2015)
and the distribution of galaxy morphologies (Snyder et al. 2015).
However, the galaxy stellar mass function simulation has an excess
of galaxies at both high (M� ≥ 1011.5 M�) and low (M� ≤ 1010 M�)
stellar masses at redshift z ≤ 1; see Vogelsberger et al. (2014). Here,
we use the ‘Illustris-1’ run (hereafter ILLUSTRIS) and extract galaxy
properties directly from the ILLUSTRIS data base.

The ILLUSTRIS simulation suite also includes DMO runs. This en-
ables us to compare the clustering of haloes between EAGLE-DMO and
the DMO ILLUSTRIS (Fig. 12). The correlation function of ILLUSTRIS

haloes is higher than that of EAGLE-DMO, both in real and redshift
space (except for the smallest scales plotted), with the difference
consistent with sample variance as judged from the scatter obtained
from EAGLE like simulation sub-volumes extracted from the signifi-
cantly larger P-MILLENNIUM. As discussed before, lack of large-scale
power in the smaller boxes and the absence of integral constraint
corrections on the clustering estimate cause the correlation func-
tions to drop below that of P-MILLENNIUM on larger scales.

Given that the EAGLE and ILLUSTRIS dark matter halo functions are
very similar, whereas their galaxy stellar mass function are not (see
fig. 5 of Schaye et al. 2015), we expect some differences between
the simulations in how galaxies populate the underlying dark matter
haloes. This is indeed borne out by Fig. 13: ILLUSTRIS galaxies of a
given stellar mass prefer lower mass haloes, by about 0.2 dex.

In Fig. 14, we compare the two-point correlation function, wp,
from EAGLE galaxies with the results from ILLUSTRIS, the GP14 and
L14 GALFORM models, and the GAMA survey, in four stellar mass
bins. We divided wp by the reference model wref

p of equation (7) to
decrease the dynamic range in the plot. The shape of the correlation
functions of EAGLE and ILLUSTRIS are very similar (we do not plot
jackknife errors on the ILLUSTRIS curves to avoid clutter, but they
are nearly identical to those of EAGLE), but with ILLUSTRIS offset to
smaller values except for the lowest bin in stellar mass (the top
panel). The poor sampling of large-scale modes in both hydrody-
namical simulations, combined with the integral constraint, may
lead to n net offset of wp – as we demonstrated explicitly in Fig. 2
for the dark matter haloes. The level of the offset is consistent with
sample variance – as shown by the comparing to the P-MILLENNIUM

results. However, somewhat surprisingly, whereas haloes in ILLUS-
TRIS are more strongly clustered than those in EAGLE (red line above
green line in Fig. 12), ILLUSTRIS galaxies are less strongly clustered
than those in EAGLE at given M� (Fig. 14). This is related to the
differences in stellar mass function: The galaxy number density is

4 �m = 0.2726, �� = 0.7274, �b = 0.0456, σ 8 = 0.809, ns = 0.963 and
H0 = 100 h km s−1 Mpc−1 with h = 0.704.
5 http://www.illustris-project.org

Figure 12. Correlation function of z = 0 of dark matter haloes with mass
Mh > 1012 h−1 M� in real space (top panel), and their corresponding
projected correlation function divided by a reference power law ( bottom
panel). Simulations shown are EAGLE-DMO (green line with jackknife error
bars), ILLUSTRIS DMO (red line with jackknife errors represented by red
shaded area) and P-MILLENNIUM with line styles as in Fig. 2. [A colour version
of this figure is available in the online version.]

higher in ILLUSTRIS compared to EAGLE; therefore, ILLUSTRIS galaxies
of given M� inhabit haloes of lower mass (Fig. 13), which are less
clustered. This effect is relatively small, however, and we conclude
that the clustering is consistent in both models, given the relatively
large jackknife errors.

We can partially compensate for differences in the stellar mass
function of EAGLE and ILLUSTRIS by comparing galaxy clustering
at a given number density, rather than stellar mass. To do so, we
select all EAGLE galaxies with M� > 109.5 h−2 M�, yielding a galaxy
number density of ngal  1.49 × 10−2 h3 Mpc−3 and then find the
corresponding stellar mass range of M� > 109.73 h−2 M� in ILLUSTRIS

above which the number density is equal to ngal. The clustering of
these two samples is compared in Fig. 15, with ILLUSTRIS in red and
EAGLE in green, with sample variance in the clustering of dark matter
haloes with the same number density estimated by sub-sampling P-
MILLENNIUM volumes in grey. Selected in this way, the clustering in
EAGLE is higher than in ILLUSTRIS, but the differences are consistent
with sample variance.

We now turn to the semi-analytical models plotted in Fig. 14.
The GALFORM model shown are the average of 26 GAMA light cone
mocks as described in Farrow et al. (2015). Like in that paper, we as-
sume that the errors on those model clustering results are negligible
compared to the errors measured on the GAMA sample. See Farrow
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Figure 13. HOD of galaxies at z = 0.1 in four different stellar mass bins, as
indicated in each panel, comparing EAGLE (green) and ILLUSTRIS (red). With
the exception of the lowest stellar mass bin, galaxies of a given mass tend
to reside in lower mass haloes in ILLUSTRIS compared to EAGLE. [A colour
version of this figure is available in the online version.]

et al. (2015) for a quantitative description of how adequate the GP14
and L14 GALFORM models are in describing the observed GAMA
clustering. The correlation functions of GP14 and L14 are very sim-
ilar, except in the second panel from the top where the GP14 model
is above that of L14 on scales below rp ∼ 1 h−1 Mpc. Both models
show stronger clustering than observed below rp ∼ 1 h−1 Mpc. As
discussed by Farrow et al. (2015), the high values of wp in the GAL-
FORM models are caused by an excess of satellites galaxies and/or
their radial distribution in clusters. The satellite merging scheme is
the principal mechanism that impacts directly the number of satel-
lites within haloes. The two versions of GALFORM we use include the
default scheme in which satellite galaxies merge on to the central
galaxy after an analytically determined dynamical friction merger
time-scale. Campbell et al. (2015) compared the standard GALFORM

scheme with a different one (Simha & Cole 2016), in which the
merger time-scale makes use of the information from dark matter
sub-halo of each satellite galaxy. They find that the new scheme
reduces the amplitude at small scales and shows good agreement

Figure 14. Comparison of galaxy clustering between different models and
GAMA, as a function of stellar mass (M� increases from the top to bottom).
Different panels show the projected correlation function, wp(rp), divided by
the reference fit of equation (7). The models shown are EAGLE (green curve
with jackknife errors) ILLUSTRIS (red curve – jackknife errors are not shown
but are similar to those of EAGLE), GP14 (dark blue curve) and L14 (cyan
curve). The observed correlation function from GAMA is shown in black
with grey shading encompassing jackknife errors. The latter three sets of
results are from Farrow et al. (2015). Models GP14 and L14 and GAMA
curves are taken from Farrow et al. (2015). [A colour version of this figure
is available in the online version.]

with observational results. McCullagh et al. (2017) and Gonzalez-
Perez et al. (in preparation) show that implementing the Simha &
Cole (2016) merger scheme within the GP14 model and applying it
to the P-MILLENNIUM simulation results in clustering measurements
that are in significantly better agreement with the observed ones on
small scales. More detailed studies of the GALFORM clustering pre-
dictions on small scales are needed to address the known limitations
of samples split by colour (see e.g. fig. 14 of Farrow et al. 2015). At
large scales, the semi-analytic models show a good agreement with
observational data.

To summarize, we find that both EAGLE and ILLUSTRIS reproduce the
clustering of galaxies in GAMA on scales below rp ∼ 4 h−1 Mpc,
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Figure 15. Clustering of the most massive galaxies corresponding to a
mean number density of ngal ∼ 1.4910−2 h3 Mpc−3 at z = 0.1. The pro-
jected correlation function wp is divided by the reference model wref

p of
equation (7). The EAGLE and ILLUSTRIS simulations are plotted in green and
red, respectively. Sample variance in the clustering of dark matter haloes,
mass-ranked and selected to have the same mean number density, estimated
using from sub-sampling the P-MILLENNIUM volume, are shown by the grey
shaded area (computed with equation 9, and including the effective bias of
the sample).

but both jackknife errors and sample variance are still relatively
large. Above this scale, both simulations are affected by the
relatively small simulation volume. The good agreement shows that
these models reproduce the dominant effects of environment on
satellites, a crucial ingredient in getting wp right. Larger simulation
volumes, which would yield smaller errors, are needed to make the
clustering constraint more stringent. The hydrodynamical models
perform better on these smaller scales than the GALFORM models of
GP14 and L14.

6 C O N C L U S I O N S

We have studied the two-point correlation function of galaxies
at z = 0.1 in the EAGLE cosmological hydrodynamical simulation
(Schaye et al. 2015). The sub-grid parameters of EAGLE are cali-
brated as described by Crain et al. (2015) to the present-day galaxy
stellar mass function (amongst other observables, such as galaxy
sizes), but the clustering properties of galaxies is a prediction of
the simulation. We have compared the results to the clustering of
observed galaxies from the GAMA survey (Driver et al. 2011), as
well as two incarnations of the GALFORM semi-analytical model (the
GP14 model described by G14, and an early version of the L14
model, referred to as L14 model described in Farrow et al. 2015),
and the ILLUSTRIS simulation described by Vogelsberger et al. (2014).

The simulation volume of the largest EAGLE simulation we use
here is still relatively small at 100 Mpc3. We examine how lack
of (and poor sampling of) large-scale modes and sample variance
might affect clustering by comparing the real-space clustering of
dark matter haloes with Mh > 1012 h−1 M� in a DMO version
of EAGLE (called EAGLE-DMO) to that in the much larger volume
(800 Mpc)3 of the P-MILLENNIUM DMO simulation that uses the same
Planck Collaboration XVI (2014) cosmology. We find that the clus-
tering amplitude is similar in the range r ∼ 1–6 h−1 Mpc, while the
clustering amplitude in EAGLE-DMO is smaller on larger scales. We
therefore focus our attention on scales up to ∼6 h−1 Mpc. We also
show that jackknife-error estimates of the clustering amplitude cal-
culated for EAGLE-DMO are similar to the variance measured between

EAGLE-sized volumes drawn from P-MILLENNIUM. This encourages us
to quote jackknife errors for clustering of EAGLE galaxies as well.

We use the optical broad-band magnitudes and colours of EA-
GLE galaxies calculated using the fiducial model of Trayford et al.
(2015). Briefly, this calculation combines the Bruzual & Charlot
(2003) population synthesis model for stars with a two-component
screen model for dust. The dust model is based on that of Char-
lot & Fall (2000), with dust-screen optical depth depending on the
enriched star-forming gas content of galaxies, and including addi-
tional scatter to represent orientation effects.

Trayford et al. (2015) show that the r-band luminosity function of
EAGLE agrees well with observations. The luminosity-dependent
fraction of red and blue galaxies also performs reasonably well,
although an excess of blue galaxies is found at high mass. Using
these predicted fluxes allows us to compare the projected two-point
correlation function wp(rp) (defined in equation 6) in EAGLE directly
to that measured in GAMA for galaxies selected by r-band absolute
magnitude Mr, h and/or (g − r)0 rest-frame colour, in addition to the
stellar mass. We do so using the (nearly) volume-limited sample of
GAMA galaxies described by Farrow et al. (2015).

Our findings can be summarized as follows:

(i) The (projected) clustering of EAGLE galaxies in bins of stellar
mass agrees well with that from GAMA, with differences consistent
within the errors, and we find similar good agreement for galaxies
selected in bins of r-band absolute magnitude, Mr, h. Given that the
number densities of these galaxies in simulation and data agree as
well, this gives us confidence that EAGLE galaxies of given mass or
luminosity inhabit haloes of similar mass as those in GAMA. The
observed clustering amplitude increases with mass and luminosity.
This trend is not seen in EAGLE; however, the EAGLE clustering results
are still consistent with the data, given the relatively large jackknife
errors and the effect of missing large-scale power.

(ii) At a given stellar mass, red EAGLE galaxies are more strongly
clustered than blue galaxies. In EAGLE, red galaxies are either satel-
lites – with ram-pressure stripping of gas (Bahé & McCarthy 2015)
and a reduction in the cosmological accretion rate of fresh gas (Van
de Voort et al. 2017) both playing in role in reducing the SFR and
making the galaxy red, or their star formation is reduced by their
central black hole (Trayford et al. 2016). The stronger clustering
of red galaxies is then a consequence of the higher halo mass they
inhabit, compared to blue galaxies of the same M�. The difference
in clustering amplitude between red and blue galaxies is too strong
in EAGLE compared to GAMA. This overabundance of red galax-
ies in EAGLE is at least partly due to lack of numerical resolution
(Schaye et al. 2015; Trayford et al. 2016), although poor sampling
of massive groups and clusters plays a role as well.

(iii) On small scales, low SFR galaxies cluster more strongly for
all the stellar mass bins studied. This is because galaxies with low
SFR at a given mass tend to be satellites, and as before, the enhanced
clustering reflects that of their more massive dark matter hosts.

We conclude that the galaxy clustering predicted by EAGLE is
in very good agreement with GAMA on projected scales up to
rp ∼ 4 h−1 Mpc, also when galaxies are split by colour. EAGLE and
observed galaxies therefore inhabit haloes of similar mass, and the
reduction in the SFR of EAGLE galaxies when they become a satellite
mimics that of observed galaxies. However, the limited simulation
volume of the simulation yields relatively large jackknife errors as
well as large sample variance. Better tests of the realism of EAGLE

require clustering studies in somewhat large volumes.
Comparing to other models, we find that both the GP14 and

L14 semi-analytical models overestimate the galaxy clustering
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amplitude at small scales, rp � 1 h−1 Mpc, while showing good
agreement with GAMA on larger scales. We speculate that the
excess at small scales is caused by the satellite-merging schemes
implemented, which are crucial and impact directly the number
of satellites and their radial distribution (Contreras et al. 2013;
Campbell et al. 2015). The ILLUSTRIS simulation yields very similar
clustering measures to EAGLE. At a given stellar mass, the clustering
amplitude in ILLUSTRIS is lower than in EAGLE, although the differ-
ence is consistent, given the jackknife error estimates. This good
agreement is slightly fortuitous: The fact that ILLUSTRIS galaxies tend
to inhabit haloes of lower mass than EAGLE galaxies (consistent with
ILLUSTRIS over predicting the galaxy stellar mass function for most
values of M�; Vogelsberger et al. 2014) – which would yield lower
clustering – is partially compensated by ILLUSTRIS haloes clustering
more strongly than EAGLE haloes (with the difference consistent with
sample variance

Galaxy clustering measurements provide powerful constraints
on galaxy formation models. Here, we have shown that the EA-
GLE simulation reproduces the spatial distribution of galaxies mea-
sured in the GAMA survey, even when galaxies are split by stellar
mass, luminosity and colour. This increases our confidence in the
realism of the simulation. However, sample variance is still rel-
atively large, given the small volume simulated, and better con-
straints require larger simulations, even when studying clustering
on the smaller scales where the galaxy formation modelling is tested
most stringently.
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Bahé Y. M., McCarthy I. G., 2015, MNRAS, 447, 969
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