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We use an atomic fountain clock to measure quantum scattering phase shifts precisely through a series of
narrow, low-field Feshbach resonances at average collision energies below 1 μK. Our low spread in
collision energy yields phase variations of order�π=2 for target atoms in several F,mF states. We compare
them to a theoretical model and establish the accuracy of the measurements and the theoretical uncertainties
from the fitted potential. We find overall excellent agreement, with small statistically significant differences
that remain unexplained.
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Coherence and the precise measurements allowed by
long coherence times are central themes in atomic physics.
The coherent nature of atom-atom scattering is important in
phenomena such as Bose-Einstein condensation [1,2],
Feshbach resonances [3–5], and ultracold molecule for-
mation [6,7]. Atom-atom scattering also shifts the fre-
quency of atomic clocks and interferometers [8–12], which
often limits their precision and accuracy. Conversely, atom
interferometry can directly probe the phase shifts at the core
of quantum scattering [13–19] and sensitively test models
of atom-atom interactions.
Accurate knowledge of low-energy scattering is espe-

cially important for cesium, as its clock collisional fre-
quency shift is predicted to pass through zero around
100 nK [11]. This is the energy scale for collisions in
PHARAO, a microgravity laser-cooled cesium clock sched-
uled to launch soon as part of the ACES mission [20].
Additionally, precise measurements of scattering phase
shifts, or equivalently scattering lengths, near narrow
Feshbach resonances may provide high sensitivity to the
time variation of fundamental constants [21,22].
Here we use an atomic clock to make precision mea-

surements of phase shifts for the scattering of ultracold
cesium atoms through several narrow Feshbach resonances,
as the magnetic field increases from 0 to 0.4 G. A narrow
spread of collision energies allows us to observe phase-shift
variations of nearly π through the resonances. We establish
the accuracy of our measurements and compare them to
coupled-channel calculations that use recent interaction
potentials from fits to Feshbach resonances and near-
threshold bound states at fields from 10 to 1000 G [23].
We find overall excellent agreement with the model for the

positions of the ultra-low-field Feshbach resonances, sig-
nificantly improved from that obtained using the previous
best interaction potential [5]. The absolute phase-shift
differences also agree well, although some scattering
channels show significant and yet-unexplained deviations.
Our interferometric technique [18,19] precisely andunam-

biguously detects differences of quantum scattering phase
shifts [13–17]. Such information is difficult to extract from
measurements of scattering cross sections, both because cold
atom densities are challenging to measure accurately and
because cross sections depend on the squares of scattering
lengths. In our atomic fountain clock, amicrowave π=2 pulse
creates a coherent superposition of the cesium clock states
jF;mFi ¼ j3; 0i≡ 3 and j4; 0i≡ 4. The clock atoms then
collide with “target” atoms in another state jji≡ jF;mFi
with s-wave phase shifts δ3;j and δ4;j, forming an outgoing
spherical shell as shown in Fig. 1(a). Consequently, the phase
of the scattered clock coherence, represented by the clock
hands in Fig. 1(a), jumps by the difference of the s-wave
phase shifts, Φj ¼ δ4;j − δ3;j. A second π=2 pulse with an
adjustable phase yields a Ramsey fringe with the phase shift
of the clock coherenceΦj. The scattered atoms are detected,
and the atoms in the forward-scattering direction excluded,
using a velocity-selective stimulated Raman transition [24].
This technique takes advantage of the phase and frequency
accuracy of atomic clocks and precisely probes arbitrarily
large phase differences. Several other techniques have also
been demonstrated that precisely probe small differences of
scattering lengths [2,25,26].
Scattering phase shifts change by π as the magnetic field

B is scanned across a Feshbach resonance. However,
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observing the full phase variation requires a narrow spread
of collision energies. Our previous observations of cesium
scattering phase shifts through Feshbach resonances stud-
ied the scattering between atoms in two distinct clouds [19]
in our juggling atomic clock [13]. At collision energies Ec
between 12 and 50 μK, cloud temperatures even as low as
400 nK give a significant spread of collision energies, of
order 10 μK, broadening the narrow resonances and sup-
pressing the excursions of the phase shifts [19]. Here, we
instead select and collide two velocity classes from a single
launched cloud in our fountain clock. The low collision
energies of 0.5 to 1 μK and correspondingly narrow energy
spread yield observed phase-shift variations of nearly π
through several narrow Feshbach resonances.
Our experimental sequence begins with launching atoms

from a magneto-optical trap and cooling them to 400 nK
with degenerate sideband cooling in a moving-frame 3D
optical lattice [18,19,27]. After the sideband lattice cooling,
65% of the atoms are in j3; 3i, 20% are in j3; 2i, and the rest
are in other j3; mFi states. The atoms in j3; 3i are trans-
ferred to the desired target state, j3; mF ¼ �1;�2;�3i or
j4; mF ≠ 0i, by a series of microwave pulses. To prepare
mF < 0 target states, a nonadiabatic magnetic field reversal
precedes the microwave pulses to transfer the atoms from
j3; 3i to j3;−3i. For all targets except j3;�1i [28,29], the
atoms initially in j3; 2i are transferred to either j3; 0i or
j4; 0i by another series of microwave pulses, interleaved
with the target-atom microwave pulses, and a stimulated
Raman pulse. The Raman pulse is velocity sensitive and
selects a slice of the velocity distribution, 36 nK wide, in
the horizontal x direction, imparting two photon recoils to
the selected atoms, as in Fig. 1(c). Unwanted atoms in other
mF < 0 states and other velocity classes are removed with
clearing laser pulses tuned to the 6S1=2 → 6P3=2, F ¼ 3 →
50 and 3 → 20 transitions. A π=2 microwave pulse then
prepares the clock atoms in a coherent superposition of

j3; 0i and j4; 0i, after which the collisions of the clock
atoms with the target atoms above the clock cavity change
their velocities v. In Fig. 1(c), the collisions tend to scatter
atoms with large velocities towards v ¼ 0 [30] as they
begin to thermalize. For the small fraction of clock atoms
that scatter, the phase of the clock coherence is shifted by
the difference of the s-wave scattering phase shifts [18].
After the atoms fall back into the cavity, a second micro-
wave π=2 pulse produces the Ramsey fringe in Fig. 1(b). A
clearing pulse removes the target atoms, as well as the clock
atom population in the same hyperfine state F as the target
atoms. For j4; mFi target atoms, a stimulated Raman
transition (the Raman probe) transfers a narrow velocity
class of scattered atoms, 36 nK wide, to j4; 0i. A laser
resonant with the 4 → 50 transition excites these atoms and
we collect their fluorescence to obtain Fig. 1(b). In
Fig. 1(b), we also measure a reference Ramsey fringe,
where we clear the target atoms before the first Ramsey
pulse and detect atoms at the center of the clock-atom
velocity distribution. For j3; mFi target atoms, an additional
microwave pulse after the F ¼ 3 clearing pulse transfers
the clock atoms in j4; 0i to j3; 0i, and then a second
clearing pulse removes F ¼ 4 atoms before a stimulated
Raman probe as above. We evaluate and subtract back-
grounds using a pump-probe technique that clears the target
atoms immediately before the first Ramsey pulse, inhibits
the clock-atom Raman selection, or both, to yield the
Ramsey fringes as shown in Fig. 1(b) [18,19,30].
Figure 2 shows the measured phase shifts for target

atoms in each jF;mF ≠ 0i state, as we traverse a number of
low-field Feshbach resonances. Each panel shows the
measured phase shifts for mean collision energies of 656
and 798 nK [31], which is changed by selecting a different
detected velocity of the scattered clock atoms. Results for
target atoms with positive or negative mF are shown at
magnetic fields with opposite signs, producing plots that

(a) (b) (c)

(d)

FIG. 1. (a) Atoms in a coherent superposition of the cesium clock states collide with atoms in a target state. The clock atom wave
packet scatters as a spherically outgoing s-wave (pink shell) and continues unscattered (violet cloud). The clock faces indicate the
differential scattering phase shift of the clock coherence. (b) Transition probability for scattered (solid blue) and unscattered (dashed
grey) clock atoms. Each data point represents a single fountain launch with target atoms in j3;−3i, a mean collision energy of
Ec ¼ 798 nK, and B ¼ 80 mG. (c) After the first Ramsey pulse, the clock atoms prepared with dash-dot blue velocity distribution
collide with the target atoms with the dotted purple distribution. The collisions redistribute the clock atom velocities (solid green).
(d) Subtracting the initial clock velocity distribution from the distribution with scattering shows the net redistribution, which shifts the
initial velocity class towards v ¼ 0. The mean collision energy can be tuned by changing the initial selected and final detected velocity.
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are continuous through B ¼ 0. The Feshbach resonances
for 656 nK occur at lower magnetic fields than those for
798 nK, and we observe slightly larger phase variations
through the resonances, as expected from the smaller
spread of collision energies. The error bars are the quad-
rature sum of the statistical and systematic uncertainties,
typically 30 mrad for 10 min of averaging at points far from
resonances. Through the resonances, where the scattering
cross section passes through zero, they may be as large as
100 mrad after 20 min of averaging.
There are distinct similarities between the resonance

positions and profiles for target atoms j3;�jmFji and
j4;∓ðjmFj þ 1Þi. In Figs. 2(a)–2(g), we observe two clear
resonant features. For target atoms in j3; 3i and j4;−4i,
these resonances are near 20 and 180 mG. For each of the
other target states, one resonance is near 50 mG and the
other near −80 mG. We do not expect any resonances for
target atoms in j3;−3i and j4; 4i because conservation of
angular momentum prohibits coupling to any closed
s-wave channels with halo states. While we observe only
two resonant features for each jmFj, there are additional
resonances that are not resolved, because they overlap or
are too narrow. For example, the results in Ref. [19]
indicate that there are two Feshbach resonances for

j3; 2i target atoms, while here we see only one. We show
experimentally that these resonances are in scattering
channels with clock and target atoms in different hyperfine
levels, e.g., j4; 0i and j3; 3i, by measuring velocity-chang-
ing cross sections [30].
The amplitude of the phase variation is different for each

resonant feature. We observe variations of nearly π for
some resonances, but others produce variations as small as
a few hundred mrad. The scattering phase shift wraps
through π across an elastic Feshbach resonance, but even in
the elastic limit we will observe a smaller variation if the
resonance is narrower than our spread of collision energies.
Inelastic loss may also reduce the amplitude of the phase
variations. Additional sharp phase changes may be caused
by the closing of inelastic scattering channels, but these are
usually smaller and do not wrap through π.
Figure 2 also shows the results of coupled-channel

calculations performed with the MOLSCAT quantum scatter-
ing package [32], using the interaction potentials of
Berninger et al. [23]. The experimental observable is the
Ramsey fringe in Fig. 1(b), which results from the
interference of the scattered atoms only, given by a quantity
J ¼ hjf3;j þ f4;jj2i [33]. Here the brackets denote an
energy average, and f3;j and f4;j indicate the scattering

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. (a)–(g) Magnetic field dependence of the differential phase shift Φj for target atoms in the j4; mF ≠ 0i and j3; mF ≠ 0i states;
negative B corresponds to the opposite sign of mF. The scattering phase shifts vary rapidly with magnetic field through a series of
Feshbach resonances. The blue circles (red diamonds) are experimental results for mean collision energies of 616–656 nK (746–798 nK)
and the curves are corresponding energy-averaged results from coupled-channel calculations on the best-fit potential [23].
(h) Comparison of measured (red diamonds) and theoretical values of Φ3;�3. All are shown after subtracting Φ3;�3 from the best-
fit potential [23]. The best-fit potential and experimental results differ by ≈0.1 rad throughout the range and their variations through the
Feshbach resonances agree very well. The previous best potential (solid red line) [5] gives much larger deviations from experiment
through the resonances. The six dashed curves indicate the uncertainty of the best-fit potential. Their differences from the best-fit
potential are small compared to the ≈0.1 rad offset of the experimental results.
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amplitudes for atoms in states 3 and 4, respectively,
colliding with an atom in state j. The phase of the fringe
is shifted by the effect of the collisions, and is directly
related to the interference term in J. The phase shift can
therefore be expressed as Φj ¼ arghT3;jT�

4;ji, where T3;j

and T4;j are the diagonal T-matrix elements corresponding
to the scattering amplitudes f3;j and f4;j.
The T-matrix elements may be written exactly in terms

of complex k-dependent scattering lengths a, T ¼
2ika=ð1þ ikaÞ [34]. This gives

Φj ¼ arg

��
2ika3;j

1þ ika3;j

�� −2ika�4;j
1 − ika�4;j

��
: ð1Þ

Writing a ¼ α − iβ, 1þ ika ¼ 1þ kβ þ ikα has a phase
arctan½kα=ð1þ kβÞ�. If the range of energies is narrow,
Eq. (1) reduces to

Φj ≈ − arctan

�
kα3;j

1þ kβ3;j

�
þ arctan

�
kα4;j

1þ kβ4;j

�

þ argða3;jÞ − argða4;jÞ: ð2Þ

When the scattering is purely elastic, a is real, and Eq. (2)
reduces to the difference between the scattering phase shifts
Φj ¼ δ4;j − δ3;j, with δ ¼ − arctan ka. At zero collision
energy, δ4;j − δ3;j vanishes, but, in the presence of inelas-
ticity, the phases argðaÞ contribute to Φj and persist to zero
energy. Note that our coupled-channel calculations evaluate
the full expression (1) for Φj, including inelastic
contributions.
The coupled-channel calculations are in overall excellent

agreement with the experimental results. The resonance
positions and profiles are well reproduced. Away from
the Feshbach resonances, the background phase-shift
differences Φ4;mF

depend weakly on collision energy and
agree quite well with the theoretical model. However, those
for j3; mFi target atoms show significant energy depend-
ences and small but statistically significant differences with
the theoretical model.
To estimate the uncertainty in the predictions of the fitted

potential, we have repeated the fits of Ref. [23] and
determined uncorrelated directions in the six-parameter
space. We have then found a potential shifted in each of
these directions by an amount that doubles the sum of
squares of residuals χ2 for the original data set of Ref. [23].
For a locally linear fit, these correspond to approximately
5σ uncertainties. We have repeated the coupled-channel
calculations of Φj for these six potentials. The differences
from the best-fit potential are small, and are shown for
j3;�3i in Fig. 2(h), together with corresponding
differences for the experimental results. For other targets,
the differences between the shifted potentials and the best-
fit potential are even smaller. We conclude that the
remaining differences between experiment and theory are

well outside the range of the uncertainties from the
interaction potential derived from the experiments
of Ref. [23].
Figure 2(h) also shows the results obtained from

coupled-channel calculations using the previous best poten-
tial [5], also plotted as differences from the best-fit
potential. For j3;�3i and the other target states, the
potential from [23] gives substantially better agreement
through the resonances. The details of the bound states that
cause the low-field resonances are beyond the scope of this
Letter. In essence, however, there is a group of pure triplet
states bound by only 3.7 kHz at zero field that, as a function
of magnetic field, are far from parallel to the atomic
thresholds below 0.1 G. Their crossings with the thresholds
cause the resonances we observe. At higher fields they mix
with more deeply bound states that possess some singlet
character, and eventually become almost parallel to the
atomic thresholds at fields above 0.3 G.
To achieve the accuracy of these measurements, the

experimental sequence above avoids and accounts for
several systematic errors. The largest remaining systematic
correction applied to the results in Fig. 2 comes from the
interference between the scattered and unscattered waves.
This gives the usual loss of atom current in the forward-
scattering direction, producing the dip in the distribution in
Fig. 1(d) and contributing a different phase to the scattered
Ramsey fringe in Fig. 1(b). We determine this contribution
as a function of the probed velocity: the phase shift of the
interference current is approximately zero and, therefore,
when Φj is far from 0, the correction can be significant
[28]. For the background Φ3;mF¼ð1;2;3Þ, this correction is
about (80,80,120) mrad for our low energy and
(40,70,100) mrad for our high energy, increasing Φ3;mF

(closer to the theory) with a typical uncertainty of 25 mrad.
The differences in Fig. 2(h) for j3;�3i are significantly
larger than this systematic uncertainty. Another significant
systematic arises because the scattered atoms experience a
cold-collision frequency shift from the target atoms [8,12],
in addition to the differential scattering phase shift. Our
sequence evaluates and corrects for this collision shift by
measuring the collision shift of the unscattered atoms
(forward direction) due to the target atoms [28,29]. The
correction is typically −40ð0Þ � 3 mrad for Φ3ð4Þ;mF

. We
also apply a small correction due to inelastic spin-changing
collisions populating other jF;mFi target states [28,29].
In summary, we precisely measure quantum scattering

phase shifts spanning a series of Feshbach resonances and
compare them to a state-of-the-art theoretical model. These
results provide a stringent confirmation of the cesium
interaction potentials of Ref. [23], but small, statistically
significant, differences remain unexplained. We have con-
sidered the uncertainties in the theoretical predictions due
to statistical uncertainties in the fitted interaction potentials
and shown them to be very small. The theory shows that
inelastic processes make important contributions to the
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observable quantities that persist even in the limit of zero
collision energy. With this experimental technique, we can
currently determine differential scattering phase shifts with
mrad precision in less than a day of averaging. Further
work using these and further improved interaction poten-
tials may probe how this technique can best set stringent
limits on the time variation of fundamental constants, such
as the electron-proton mass ratio, by observing the con-
stancy of the scattering phase shifts near narrow Feshbach
resonances [21,22].
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