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Abstract
We present a detailed spectroscopic investigation of a thermal 87Rb atomic vapour in magnetic
fields up to 0.4T in the Voigt geometry. We fit experimental spectra with our theoretical model
ElecSus and find excellent quantitative agreement, with RMS errors of ∼0.3%. We extract the
magnetic field strength and the angle between the polarisation of the light and the magnetic field
from the atomic signal and find excellent agreement to within ∼1% with a commercial Hall probe.
Finally, we present an investigation of the relative sensitivity of this technique to variations in the
field strength and angle with a view to enabling atom-based high-field vector magnetometry.

Keywords: Voigt geometry, magneto-optical effects, magnetic field, spectroscopy, hyperfine
Paschen–Back

(Some figures may appear in colour only in the online journal)

1. Introduction

Since the redefinition of the second based on the Cs hyperfine
ground state energy splitting in 1967 [1], atomic spectroscopy
has been established as the fundamental building-block of
high precision measurement systems. In recent years, spec-
troscopic techniques have been extended to a more general
family of atom-based applications. These applications include
atomic clocks [2, 3], determination of fundamental constants
[4], electrometry in DC [5, 6], microwave [7–9] and THz
fields [10, 11], and near-field imaging of microwave electric
circuits [12, 13]. There is also the development of new

sensors, including magnetometers [14] with optically-pumped
atomic vapours which have impact across a wide variety of
disciplines. Recent examples include explosives detection
[15], gyroscopes [16], medical imaging of the heart [17, 18]
and brain [19, 20], microfluidics [21] and measurements on
spin-active solid-state systems [22]. Applications also include
optical devices including an atom-based optical isolator [23],
a dichroic beamsplitter based on the Faraday effect [24], and
extremely narrow-band optical band-pass filters [25–29]
which have also recently been used as an intracavity fre-
quency-selective element in a laser system [30]. Together,
these tools demonstrate an in-depth understanding and use of
the atomic physics involved in externally applied magnetic
fields up to ∼1T.

Atom-based measurement systems for large fields above
1T have received significantly less attention. In large pulsed
magnetic fields, the Zeeman splitting in alkali-metal atoms
has been used to measure fields up to 58T [31, 32] with non-
destructive field production, and with destructive techniques
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up to 200T [33] and 500T [34] using the sodium D-line
splitting. This research has important applications in high
energy-density science for magnetically imploded inertial
fusion [33] and a variety of other fundamental physics
investigations [35]. In DC fields above 1T, nuclear magnetic
resonance (NMR) is currently the gold-standard for high
accuracy measurements and commercial devices claim mea-
surement precision at the 10 parts-per-billion level [36]. There
is some work [37, 38] which would serve as a precedent for
further experiments directed at making measurements in high
DC fields with a view to realising atom-based sensors in this
field range.

Atomic spectroscopy of thermal vapours in magnetic
fields is extremely well-understood, and the absolute
absorption in both low and high-density vapours [39, 40], and
magneto-optic effects [41–44] of thermal vapours of alkali-
metal atoms have already been extensively studied. In fields
below 10mT, the Larmor precession frequency is sufficiently
low to be measured directly [14]. In fields of order 1T, the
nuclear and electronic spins decouple (the hyperfine Paschen–
Back (HPB) regime), and the field can be measured from the
characteristically symmetric absorption spectra [45, 46] and
dispersion properties that makes extracting the medium’s
absorption coefficient the preferred approach. To date, most
work has been done in the Faraday configuration, where the


k

vector of the light is parallel to the external field

Bext and only

the magnitude of the field can be measured [47]. Here we
explore the much less well studied absorption spectrum in the
Voigt geometry in a DC field, where the external magnetic
field is perpendicular to the direction of light propagation and
not only the magnitude of the field but its direction can also
be measured. This work may enable the development of new
vector magnetometers for use in magnet technology for
mapping high magnetic fields. High field applications include
accelerator magnet technology for advanced high-energy
physics [48], magnets for particle beam therapy [49, 50],
superconducting undulators to improve the performance of
light sources [51], very high field magnets for future fusion
reactors [52, 53] and research magnets. Very high accuracy
atom-based vector magnetometry may also enable the
development of extremely small sensors (that do not require
leads), non-invasive magnetometry, for applications where
measurements of magnetic fields without significantly per-
turbing them is required, and a new type of generic magnetic
characterisation tool for measuring the properties of aniso-
tropic magnetic and superconducting materials in high
fields [54].

Here we present careful analysis of spectroscopic mea-
surements of atomic absorption spectra of 87Rb over a range
of DC magnetic field strengths up to 0.4T in the Voigt
geometry. By fitting to our theoretical model ElecSus that
describes atomic absorption [55, 56] we extract the magnetic
field strength and compare it against experimental values. We
show that we can extract, given a known input light polar-
isation, the magnetic field and direction. Finally, we calculate
and evaluate the relative spectral sensitivity to changes in
field strength and direction.

The rest of the manuscript is organised as follows. In
section 2 we summarise the theoretical model we have used in
our analysis; section 3 discusses our experimental approach;
in section 4 we discuss the spectra of 87Rb in large magnetic
fields and compare experimental data to our model to extract a
magnetic field strength; and finally, in section 5 we explore
potential areas of the spectrum which exhibit especially high
or low magnetic field sensitivities.

2. Theoretical model

The theoretical model we use for fitting our data, ElecSus, is
described in detail in [55, 56]. Here we summarise only the
main points. The model calculates the complex electric sus-
ceptibility of the atomic medium as a function of the optical
frequency detuning, which can be written for a two-level
atom as

c cD =
-

D + G
( )

( )
( )

i

1

2
. 1j

j

j
0

Nat

Here c j
0 is a constant factor for the j-th transition that depends

on the dipole matrix element, GNat is the natural Lorentzian
linewidth for the atom, Δj is the optical frequency detuning
defined by   w wD = -( )j jlaser with w laser the angular
frequency of the laser and ωj the angular frequency of
the atomic transition. Using matrix methods we construct
the atomic states in the m m m, ,L S I basis, accounting for the
internal energy levels (fine and hyperfine structure) and the
interaction with the external magnetic field via the Zeeman
effect. From the matrices we calculate the transition energies
and absolute line strengths which will give a different factor
c j

0 for each transition. Finally, the Doppler effect is included
by considering the effect of the atomic velocities v on the
detuning, D  D - kvj j , where k is the light propagation
vector of the light. As such, the susceptibility can be
expressed as

òc cD = D -
-¥

¥
( ) ( ) ( ) ( )f v kv dv, 2v j j

where ( )f v is the Maxwell–Boltzmann velocity distribution
of the atoms, µ -( ) ( )f v mv k Texp 22

B . This results in a
Voigt profile, a convolution of a Lorentzian with a homo-
geneous linewidth increased by presence of buffer gas,
G + G( )Nat Buf , from the imaginary part of (1) and the Gaussian
from the Maxwellian velocity distribution in (2) with a
spectral width GDoppler, that describes the lineshape of the
absorption of the atomic transitions as a function of detuning.

For a given global detuning Δ, the susceptibility cT is the
sum over all the transitions, where each transition has an
effective detuning D - Dj:

åc cD = D - D( ) ( ) ( ). 3
j

v jT

The susceptibility can be calculated separately for the s and
π transitions by taking the appropriate dipole matrix elements
in the definition of c j

0. The result from equation (3) can then
be used to write the absorption coefficient a with which the
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total absorption by the atomic medium can be examined

a
a c

D = = = - D
D = D

( ) ( ) [ ( ) ]
( ) [ ( )]

( )
S I z L I L

k

exp
Im

, 40 0

T

where k is the propagation vector of the system and L is the
length of the cell containing the atomic medium.

Once the susceptibility has been calculated, the wave
equation is solved for the medium to find the two propagating
eigenmodes. Each eigenmode is associated with a complex
refractive index, which couples to the atomic transitions in a
distinct way. The exact coupling depends on the geometry of
the system. The present experiment is set up in the Voigt
geometry, in which the externally applied magnetic field
vector


Bext is perpendicular to the light wavevector


k , as

shown in figure 1. We constrain the external magnetic field
vector to lie along the Cartesian x-axis, while the laser beam
propagates along the z-axis and assume we have a linearly
polarised plane-wave so its polarisation lies in the x–y plane.
The angle, fB, that the E-field of the light makes with
the x-axis, defines the angle of polarisation and determines the
relative coupling to the atomic transitions. The two refractive
indices of the atomic medium are both associated with the
propagation of linearly polarised light; light polarised with its
electric field parallel to the external magnetic field drives π

transitions, while light polarised with the electric field
perpendicular to the external magnetic field drives both s

transitions. The relative phase between the two polarisation
components is unimportant in the Voigt geometry—i.e. cir-
cularly polarised light of either handedness couples to the
atoms in the same way as linearly polarised light with equal x
and y components (f p= -( )n2 1 4B with n an integer).
Such considerations, including the oscillatory nature of light,
mean that the direction of the applied field cannot be derived
from a single measurement, meaning that equivalent solutions
are found for changes in fB of π radians.

Each eigenmode propagates through the medium with its
associated refractive index. In general these two refractive
indices are different, and since the refractive indices are
complex, the medium is both dichroic and birefringent. To
calculate the electric field after propagating through the
medium, we transform into the eigenbasis coordinate system

(in the Voigt geometry this is simply the Cartesian basis
parallel and perpendicular to the external magnetic field
vector), propagate each index ni for a distance L by multi-
plying by e n kLi i , and transform back to the lab coordinates
which are most relevant. We then analyse the output via
Stokes polarimetry [44], which provides a convenient set of
parameters easily amenable to laboratory measurements that
only require measuring the intensity in sets of orthogonal
polarisation bases. The Stokes parameter S0 (see equation (4))
represents the total transmitted intensity, and is therefore
independent of the measurement basis. This work has used
the publicly-available version of ElecSus, without any mod-
ifications, that has been extensively validated as seen in
[55, 56]. We find it remains valid over the extended exper-
imental parameter space presented here for all fits and
simulated datasets in this work.

3. Experimental setup

The experimental setup is shown in figure 2. Using either the
D1 or D2 line was possible, but the D1 line has a weaker
transition strength despite having a simpler hyperfine struc-
ture. As such, the laser chosen for this experiment only allows
us to access the D2 line. The laser is a 780nm distributed
feedback laser with a quoted linewidth of <2MHz, which is
tunable without mode hops over many hundreds of GHz.
Some of the light is sent to reference optics to calibrate the
laser scan; we use a Fabry–Perot etalon to linearise the scan in
parallel with a 75mm natural abundance Rb reference cell
which provides an absolute frequency reference, using the
approach outlined in [57]. The remaining light is sent to the
probe through an acousto-optic modulator (AOM) which we
use in conjunction with a power servo to stabilise the laser
power following the method in [58] and then along a polar-
isation-maintaining single-mode optical fiber.

In the probe the light is re-collimated, and further split
into two; one arm is a reference channel which acts as the
feedback signal for the AOM and power servo, and the other
arm is the signal channel. The signal channel consists of a
1mm long isotopically enriched (99% 87Rb) vapour cell, as
used in [47], which is heated to provide the required atomic
density and hence optical depth. Fabrication details of the
vapour cell can be found in [59] and details of the isotopic
purity and spectral qualities can be found in [60]. Both arms
are mounted on a central bed of copper which also includes an
internal heater, and a commercially calibrated magnetic-field-
insensitive Cernox resistance thermometer (CX-1070-SD-
HT-4M) [61] that is <5 mm from the vapour cell. The copper
bed is surrounded by a copper shield that is only in weak
thermal contact with it. The copper shield has the external
heaters mounted onto it and is surrounded by a layer of
Aerogel insulation. A detailed view of the probe can be seen
in the bottom part of figure 2 showing the previously men-
tioned elements and the setup within the electromagnet.

In operation the background temperature is set by hold-
ing the power in the external heaters to be constant. Temp-
erature stability is then maintained by using the internal

Figure 1. Geometry of the externally applied field and the light used
in the Voigt geometry, where ^

 
k Bext. The linearly polarised light

has an electric field vector

E that lies in the x–y plane and makes an

angle fB with respect to

Bext. This angle determines the parallel and

perpendicular components of the

E which in turn are associated with

the different refractive indices in the atomic medium and π and s

transitions it drives.
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heaters and Cernox thermometer in feedback via a temper-
ature controller. This maintains a stability of better than
100mK over the course of an experimental data run. In these
experiments the external magnetic field is generated by an
electromagnet with the field in the horizontal direction, and
measured using a commercial Hall probe (Hirst GM04). The
field is not perfectly linear with the current, but gives a
remanent field of (10.0±0.5)mT. Nevertheless, field
strengths up to 0.4T are reproducible to better than 1mT,
with a uniformity better than 1mT over a 14mm diameter-
sphere-volume.

To avoid optical pumping, the optical power in the probe
is kept low such that the atoms are in the weak-probe regime
[62]; in practice this means around 1 μW of optical power
with a beam waist of around 0.5mm. The effective spatial

resolution of the field probe is then set by the volume of
atoms interrogated by the laser beam, which roughly com-
prises a cylinder of length 1mm and radius 0.5 mm.

4. Spectroscopic analysis for magnetic field
determination

Figure 3 is derived using our theoretical model ElecSus and
combines the atomic state evolution as a function of magnetic
field with the spectroscopic signals at an external magnetic
field of 0.4T. The top two panels show the calculated spec-
trum for an isotopically enriched (99% purity) vapour cell at
80 °C and a field of 0.4T for π (upper panel) and s (lower
panel) transitions. The 1% 85Rb impurity content in our iso-
topically-enriched cell is taken into account in the calculations
but is sufficiently small that it has no noticeable effect on the
spectra. Coloured vertical lines indicate the frequency that the
resonance lines occur at, while the colour of the line indicates
the type of transition. Zero probe detuning is the weighted D2
line centre of naturally abundant rubidium in a zero magnetic
field [39]. Below these panels, the diagram shows the states in
the 5S1/2 and 5P3/2 manifolds at 0.4T and the initial and final
states involved in each individual transition. The state
decompositions in the m m,J I basis are shown on the right side
of the figure. The arrows here are semi-transparent to high-
light where there are still partially overlapping transitions.

In an applied magnetic field of 0.4T, the 5P3/2 states
strongly decouple into the m m,J I basis, leading to four groups
of lines organised by the = - -m 3 2, 1 2, 1 2, 3 2J pro-
jection. However, the ground state has a significantly larger
hyperfine interaction which means this decoupling is still
incomplete. While all the states have roughly separated into
the two = m 1 2J groups, within each group the energy
difference between each mI component is not uniform
until the external fields are much higher and the states
have evolved completely into the HPB regime. Hence, in
addition to the groups of four ‘strong’ transitions ( ñ ∣m m,J I

¢ ñ∣m m,J I , with p s s¢ = + -+ -( ) ( ) ( )m m m m, 1 , 1J J J J ), we
also observe groups of three ‘weak’ transitions, which result
from the ground-states not being pure eigenstates in the
m m,J I basis; a small admixture of the opposite mJ state
remains which can be seen in the state decomposition on the
bottom right of figure 3 (more details can be found in [47]).
Given that at 0.4T, the Zeeman splitting is still not large
enough to completely resolve all the atomic transitions indi-
vidually there are areas of the spectrum where lines overlap.
This is most prominent around approximately ±7GHz in the
s transitions and around −1GHz for the π transitions,
where the outer lines from two groups of strong transitions are
separated by less than the Doppler width ( pG =2Doppler

555 MHz at = T 80 Catoms ), and hence the transitions appear
merged into one. While this is not ideal for identifying indi-
vidual transitions, this may be advantageous for magnetic
field detection, as these areas of the absorption spectrum
change rapidly with relatively small changes in magnetic
field. We will discuss this in more detail in section 5.

Figure 2. Simplified schematic of the optical setup. Light from a
distributed feedback (DFB) laser is split into two parts. One part is
sent to reference optics, which is a combination of a Fabry–Perot
etalon and a 75mm natural abundance Rb reference cell and is used
to calibrate the laser scan in zero magnetic field. The remaining light
is sent to the probe via a polarisation maintaining fiber (PMF). The
probe itself contains a fiber collimator, after which the light is split
by a non-polarising beamsplitter cube. One arm contains the 1mm
87Rb isotopically enriched (99% 87Rb) vapour cell, while the other
arm is used as a power reference, which is fed back to a power servo
using an acousto-optic modulator (AOM) to keep the power constant
[58]. Transimpedance amplifiers (TIA) convert the current generated
by the photodidodes (PD) into a voltage signal. Below, a detailed
render of the experimental setup can be seen showing the position of
the probe in the electromagnet, as well as the interior of the probe
with the position of the beamsplitter cube (BS), the vapour cell and
photodiodes indicated. Measurements of the magnetic field profile
were taken by removing the probe and employing a commercial Hall
probe.
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Figure 4 shows experimental data obtained at 390mT
fitted using ElecSus along with the residuals R, which have
been multiplied by a factor of 100 for clarity. The RMS
difference between theory and experiment for this data set is
0.3%, and combined with the lack of any discernible structure
in the residuals, indicates an excellent fit [63]. The fitted
parameters are the magnetic field strength ∣ ∣Batoms , the temp-
erature Tatoms, the polarisation angle fB and the amount of
inhomogeneous broadening GBuf which is caused by collisions
with buffer gas atoms. We find = ∣ ∣ ( )B 394 4 mTatoms ,
close to the field value measured with a Hall probe of
(390± 1)mT, =  ( )T 81.23 0.02 Catoms which is close to
the measured value of  ( )82.32 0.04 C from the Cernox
thermometer, f = ( )1.412 0.004B rad and pG =2Buf

( )631 3 MHz. These were the only free physical para-
meters used in our fit, with all remaining elements included in
the model generated by ElecSus. The exact origin of the extra
buffer gas broadening is unknown. We suspect the significant
buffer gas broadening to be due to He atoms diffusing into the
cell over the extended period that it was exposed to a helium-
rich gas environment while at elevated temperatures during
previous measurements and note there is no significant shift in
any of the resonance lines.

Figure 5 shows detailed measurements and analysis over
a range of fields up to 0.4T. Each data point is based on the
weighted average of 5 fits, examples of which are shown in
the insets for an external field of ∼0.15 and ∼0.35T. We

suggest that there will be benefits for very high precision
spectroscopy in the HPB regime at even higher fields, where
preliminary results show the large Zeeman splitting allows
the isolation of individual two-, three- and four-level systems
[47, 64–67].

Error bars on the fitted magnetic field strengths are on the
order of 1mT. The gradient of the ∣ ∣BHall versus ∣ ∣Batoms data is
linear. If we fix the intercept to zero, we find a gradient of
(0.995±0.009). Allowing both gradient and intercept to
vary, we extract a gradient of (1.015±0.002) and intercept
(−5±1) mT. These results indicate a systematic 1.5% dif-
ference between the measurements and theoretical fits which
we attribute predominantly to inaccuracies in the calibration
of the Hall probe, which is quoted to be ±1%, 1mT reso-
lution. Systematic errors in the scaling of the frequency axis,
misalignment in the axis of the Hall probe with the magnetic
field axis and uncertainties in the theoretical calculations are
also considerations. No magnetic shields were used in the
experiment because the effects of the Earth’s field or other
sources of parasitic magnetic fields are negligible in our
system, typically of <10−4, when compared to the applied
fields in this work. We also found no significant changes in
temperature or polarisation while these variable-field data
were obtained. The polarisation drift across the measurements
was <10% and the temperature drift was <1 °C. The stability
of the cell temperature is consistent with the small changes in
the temperature measured by the Cernox of <100 mK.

Figure 3. Spectroscopy of the alkali D-lines in the Voigt geometry for a magnetic field strength of 0.4T. The left side of the diagram (at the
bottom) shows the evolution of the 5S1/2 and 5P3/2 atomic energy levels of 87Rb with magnetic field, up to 0.4T. The right side shows
the states involved in the atomic transitions at 0.4T. The upper panel shows the calculated spectrum for π (olive) transitions (





E Bext), while
the lower panel shows a calculated spectrum for the s+ (blue) and s- (purple) transitions ( ^

 
E Bext). The coloured arrows indicate the initial

and final states involved.
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Our atomic technique for measuring fields is indepen-
dently sensitive to the field strength and angle without any
mechanical movement of the sensor head. The Zeeman shift,
which sets the resonance line positions, depends only on field
strength, whilst the coupling of the atomic transitions to the
light field depends on the relative direction between the
magnetic field and the electric field vector of the light. This is
in contrast to Hall probe measurements where the angle
between the Hall probe and the direction of the external field
must be known to get a precise reading of the magnitude.
Combined with the relatively high spatial resolution, these
considerations mean that atomic-based spectroscopy could
replace Hall probes for say vector magnetometry or simulta-
neous mapping of the magnitude and direction of magnetic
fields.

5. Spectral sensitivity to changes in field strength
and direction

In the moderate fields studied here, although the transition
peaks are partially overlapping, we argue it may be advan-
tageous for magnetic field sensing, as small changes in the
magnetic field can lead to relatively large changes in the
spectral lineshape. In figure 6 we present calculations using
ElecSus that show the change in transmission with respect to
magnetic field strength, S Bd d0 , over the Rb D2 line spec-
trum, as a function of field strength. There are interesting
regions of high sensitivity visible around ∼1GHz detuning at
0.1 and 0.23T.

The best sensitivity to magnetic field strength uses a
polarisation angle fB=π/2, because this is the angle which
drives the s transitions the strongest. These transitions have
a larger energy splitting as can be seen in figure 3 which
shows that in the HPB regime the ground state level shifts
down in energy by m BB ext while the excited state level shifts
up by m B2 B ext. The spectra are also dependent on the relative
angle between the magnetic field vector


Bext and the light’s

electric field vector

E . Whilst this technique gives two

equivalent polarisation angles (i.e. reflection of the polarisa-
tion angle around the x and y-axes yield the same spectrum), a
full polarimetric analysis would in principle be able to
determine the field angle uniquely. In figure 7 we plot
experimental spectra (top panels, purple) at three polarisation
angles, and the change in transmission with respect to
polarisation angle fSd d B0 over the spectrum for each of
these cases. Since the polarisation angle changes the relative
coupling to the π and s transitions according to f( )cos B

2 and
f( )sin B

2 , respectively, the spectrum is most sensitive at an
angle of π/4, where the gradient of both functions are largest.

An alternate demonstration of the polarisation sensitivity
is shown in figure 8. Here we plot positions of the local
minina of a series of experimental spectra at different polar-
isation angles, whilst maintaining the magnetic field value at a
constant value of 395mT. The colour of the points denotes
the value of transmission at the local minina—dark shades are
low transmission, light shades are high transmission. The top
panel is for reference and shows a spectrum at fB=π/4, and

Figure 4. Experimental data and fit to the ElecSus model for a
measured magnetic field strength (390±1)mT, and average
polarisation angle fB=(π/2±0.02). The residuals R (difference
between experiment and theory, multiplied by a factor of 100 for
clarity) are very small and have no clear structure, which combined
with the small RMS error of 0.3% indicate excellent agreement
between theory and experiment. From this fit, we extract a magnetic
field strength ∣ ∣Batoms =(394±4)mT, temperature
Tatoms=(81.23±0.02) °C, polarisation angle
fB=(1.412±0.004) rad and inhomogenous broadening
GBuf/2π=(631±3)MHz.

Figure 5. Magnetic field strength comparison between measurement
using a Hall probe and measurement from fitting spectroscopic data.
For each value of magnetic field, we take 5 spectra and plot the
average fitted magnetic field. The weighted error bar of each point is
approximately 1mT and is too small to be seen on the figure. Fitting
a linear function to the data yields the following: with the intercept
fixed to zero, we extract a gradient of m=(0.995±0.009). With
the intercept floating, we extract m=(1.015±0.002) and
c=(−5±1)mT. The black line in the figure shows the fit with
intercept fixed at zero.
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the solid vertical grey lines are the resonance positions in this
spectra, for comparison. The two bottom panels show the
shaded regions in the main plot, and highlight the relative
sensitivity and insensitivity of the local minina. The grey
dashed line shows the theoretical positions of the local
minima. The scatter of the experimental data about this curve

reflects a combination of uncertainty in the local minima
position due to the finite signal-to-noise ratio and small
fluctuations in the magnetic field value between data runs.
Because of the overlap of spectral lines, changing the relative
coupling strength of these transitions also changes the posi-
tions of the local minima, and is most prominent when fB is

Figure 6. Calculated sensitivity of the spectral response with changing magnetic field. We plot the gradient S Bd d0 as a function of detuning
and magnetic field. Hot-spots, indicated by bright purple/yellow areas on the colour map, can be seen where resonance lines overlap, which
represent particularly sensitive parts of the spectrum. The calculation uses polarisation angle fB=π/2, cell length L=1mm, T=80 °C
and ΓBuf/2π=650 MHz in order to match the experimental parameters as closely as possible.

Figure 7. Spectral changes with polarisation, and relative sensitivity. We show the three extreme cases of fB=0, π/4, π/2. The top panels
show experimental data (purple) at each value of fB, with the same magnetic field strength of 390mT, and a cell temperature T=80 °C.
Below the experimental data, we show the calculated gradient fSd d B0 in blue. The three panels have the same vertical axis, to show the
contrast between the extremely insensitive values fB=0, π/2 and the extremely sensitive fB=π/4. Dashed vertical lines mark the
detunings used to calculate the sensitivity change with angle shown on the bottom panel.
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close to π/4. When fB is close to 0 or π/2, the positions are
much less sensitive to changes in fB, as evidenced by the
near-vertical lines.

It should be noted that the relative sensitivity to either
magnetic field strength or polarisation angle changes with the
line width of the spectral features. The narrower the features,
the sharper the change and hence a more sensitive measure-
ment can be made. One recent development in spectroscopic
techniques is that of so-called ‘Derivative of Selective
Reflection’ in ultra-thin vapour cells [68, 69], which is a
modulation-free method to increase spectral resolution over
conventional transmission and selective-reflection spectrosc-
opy. Whilst modelling the spectra is more complex than in
transmission spectroscopy, the use of sub-micron thickness
vapour cells also increases the effective spatial resolution,
making these systems very promising for future research.

6. Conclusions

In conclusion, we have demonstrated a technique to measure
the absolute magnetic field strength and angle of polarisation
using a thermal vapour of alkali-metal atoms. Our results use
87Rb, but the technique is applicable to any alkali-metal atom.
We have found excellent agreement between our detailed
spectroscopic data and our theoretical model of the trans-
mission through the medium. Some preliminary results also
demonstrate that this experimental approach may be suc-
cessful up to much higher magnetic fields, which will be the
subject of future work. One can also envisage incorporating

polarimetric techniques to fully constrain the polarisation
angle, but this will bring with it several new challenges, some
foreseen, e.g. the birefringence in the vapour cell windows
[56], and others not.
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