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ON THE ESTIMATION OF SCALE OF FLUCTUATION IN 

GEOSTATISTICS 

Describing how soil properties vary spatially is of particular importance in 

stochastic analyses of geotechnical problems, because spatial variability has a 

significant influence on local material and global geotechnical response. In 

particular, the scale of fluctuation θ is a key parameter in the correlation model 

used to represent the spatial variability of a site through a random field. It is 

therefore of fundamental importance to accurately estimate θ in order to best 

model the actual soil heterogeneity. 

In this paper, two methodologies are investigated to assess their abilities to 

estimate the vertical and horizontal scales of fluctuation of a particular site using 

in situ Cone Penetration Test (CPT) data. The first method belongs to the family 

of more traditional approaches, which are based on best fitting a theoretical 

correlation model to available CPT data. The second method involves a new 

strategy which combines information from conditional random fields with the 

traditional approach. Both methods are applied to a case study involving the 

estimation of θ at three two-dimensional sections across a site and the results 

obtained show general agreement between the two methods, suggesting a similar 

level of accuracy between the new and traditional approaches. However, in order 

to further assess the relative accuracy of estimates provided by each method, a 

second numerical analysis is proposed. The results confirm the general 

consistency observed in the case study calculations, particularly in the vertical 

direction where a large amount of data are available. Interestingly, for the 

horizontal direction, where data are typically scarce, some additional 

improvement in terms of relative error is obtained with the new approach. 

Keywords: spatial variability; random fields; soil heterogeneity; characterization 

of soil/rock variability; geostatistics 

1. Introduction 

This paper compares the performance of two different methods to estimate the vertical 

and horizontal scales of fluctuation using in situ Cone Penetration Test (CPT) data from 

a particular test site. The first method will be referred to as Approach A and is based on 



more conventional (or classical) approaches. The second method will be referred to as 

Approach B and involves a new strategy which combines information from conditional 

random fields with the traditional approach. To illustrate and assess their relative 

performance, both strategies are applied to a case study and the results are evaluated. 

The goal of the paper is to answer the question: Are conventional techniques for 

estimating the correlation length as good as they can be, or is there the possibility for 

improvement? 

The scale of fluctuation θ is a convenient measure for describing the spatial 

variability of a soil property in a random field. It is a measure of the distance within 

which points are significantly correlated (Vanmarcke, 1984). Points separated by a 

larger distance than θ will show little correlation, and practically no correlation will be 

observed when points are separated by a significantly larger distance than θ. This 

relationship between soil property values and relative distances is contained within the 

correlation model, which is a function of the lag τ (i.e. distance between points) and the 

scale of fluctuation θ. Some common correlation models are summarized in Table 1, 

including the Gaussian model, the triangular model, the spherical model and the 

Markov correlation model used here. In each of these models, small values of θ imply 

that the correlation function falls off rapidly to zero with increasing τ (i.e. the 

correlation between two points becomes rapidly smaller), which leads to rougher 

random fields. In the limit, as θ0, all points in the domain become uncorrelated and 

the field becomes infinitely rough. At the other extreme, for increasing values of θ the 

soil property field becomes smoother, or, in other words, the field shows less variability 

converging to a uniform field when θ∞.  

The correlation model is a fundamental ingredient in the stochastic analyses of 

geotechnical problems, not only because it describes how the soil property values vary 



spatially throughout the geometrical domain, but, more importantly, because the spatial 

variation itself has a significant influence on the response of the geotechnical structure. 

This is of special interest, given that random fields are typically used to model soil 

heterogeneity (i.e. inherent variability), in advanced stochastic analyses (Fenton, 1999; 

Fenton and Griffiths, 2003; Hicks and Onisiphorou, 2005; Fenton and Griffiths, 2005; 

Griffiths et al., 2009; Hicks and Spencer, 2010; Cassidy et al., 2013). 

Perhaps due to the complexity associated with the modelling of soil 

heterogeneity, however, little research has been done to accurately describe its nature 

and this has typically led to inherent variability being one of the primary sources of 

uncertainty in stochastic analyses in geotechnical engineering (Fenton, 1999; Phoon and 

Kulhawy, 1999). The scale of fluctuation, in particular, plays a key role in the 

description of soil variability at a site. It is therefore crucial to estimate accurate values 

of the vertical and horizontal scales of fluctuation in order to obtain more realistic 

responses of the geotechnical structure when using advanced probabilistic approaches. 

Indeed, investigating scales of fluctuation from in situ data is a subject of general 

interest in geotechnical engineering, particularly with respect to the horizontal plane. 

This is because, although a number of investigations appear in the literature for the 

vertical scale of fluctuation (e.g. Fenton, 1999; Hicks and Onisiphorou, 2005), there is 

still rather limited information for the horizontal direction. This is in spite of the fact 

that researchers have demonstrated that the ratio of the horizontal and vertical scales of 

fluctuation is an important consideration in geotechnical computations (Hicks and 

Samy, 2002; Hicks and Onisiphorou, 2005; Hicks and Spencer, 2010). 

The aim of both strategies considered here, for the estimation of the vertical and 

horizontal scales of fluctuation, is to minimise the error between the assumed 

theoretical correlation model and the estimated (or experimental) correlation structure 



(the latter being estimated from CPT data from the site being investigated). In order to 

explore the performance of each method, an extensive set of CPT data, from an artificial 

sand island constructed offshore to provide a temporary platform for oil and gas 

exploration, is considered. In particular, CPT measurements from three vertical cross-

sections through the sand fill core of the island are investigated. In Approach A (the 

first and more conventional approach considered in this study), the CPT data are solely 

used to estimate the experimental correlation model in the horizontal and vertical 

directions for each section, whereas, in Approach B, the CPT data are also used to 

generate a conditional random field from which the experimental correlation model is 

estimated. It is believed that the use of a conditioned random field makes more 

complete use of the available site information, particularly when the data are scarce, and 

so should provide a means of checking the accuracy of conventional estimation 

techniques. Approach B starts by using the CPTs to statistically describe the tip 

resistances qc of the sand fill core of the island. The obtained statistics are then used to 

generate a 2-D random field of qc, which is later constrained (conditioned) at the CPT 

locations. This new conditional random field is used to estimate the experimental 

correlation functions for the site (in the horizontal and vertical directions), which are 

then compared to the respective horizontal and vertical theoretical correlation models to 

find the estimated values of θ in each direction. Finally, the conventional estimation 

techniques that are used in Approach A (and which operate on the data directly) are 

employed to obtain another set of correlation length estimates. The two sets of estimates 

are then compared to assess the relative accuracy of the two approaches. 

2. APPROACHES USED TO ESTIMATE θ 

Various methods are available to estimate the scale of fluctuation. The simplest 

approach is probably to estimate θ by best fitting the theoretical correlation model to the 



experimental correlation function (Vanmarcke, 1977; Campanella et al., 1987; DeGroot 

and Baecher, 1993; Fenton, 1999; Baecher and Christian, 2003; Wackernagel, 2003; 

Uzielli et al., 2005, Fenton and Griffiths, 2008). Vanmarcke (1984) and 

Wickremesinghe and Camapanella (1993) proposed an alternative method, based on the 

concept of variance function discussed in Vanmarcke (1977), which has been used in 

several studies (Jaksa et al., 1993; Hicks and Onisiphorou, 2005; Lloret et al., 2012; 

Lloret-Cabot et al., 2013). Other techniques, combining random field theory with 

conventional approaches, have also been recently proposed (Kim and Santamarina, 

2008; Zhang et al., 2008; Dasaka and Zhang, 2012). 

The two approaches used here to estimate θ are based on the concept of best 

fitting the theoretical correlation model    , 
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where ̂  and ̂  are the estimated mean and standard deviation from the in situ CPT 

data and τj = j∆τ, with j = 1, 2, …, k, and k being the number of observations. Note that, 

for the estimator given by Equation (2), it is desirable that the data be equi-spaced 

(Fenton and Griffiths, 2008) at spacing ∆τ. 

Considering now the following error measure, 
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one may compute the value of θ that minimizes E by finding a root to the following 

expression: 
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which can be expressed as: 

  
1

2 2
ˆ exp exp 0

k
j j

j j

j

 
  

 

            
       

  (5) 

For simplicity, the correlation model     is assumed to have the exponential form 

shown in Equation (1), but alternatives such as those summarized in Table 1 are also 

possible (Fenton and Griffiths, 2008). 

In essence, both approaches presented in this paper use the same idea of 

minimising the error between the assumed theoretical and experimental correlation 

models. The main difference between Approach A (the conventional approach) and 

Approach B (the new method proposed) is how the experimental correlation model is 

estimated. In Approach A, the experimental correlation model  ̂   is simply estimated 

using Equation (2) with the CPT data directly, whereas, in Approach B,  ̂   is 

estimated from the generated conditional random field. A detailed description of how 

the experimental correlation model is estimated when using Approach B is summarised 

next. 

The algorithm is equivalent in the vertical and horizontal directions and 

comprises the following steps. Further details are given in the next section where the 

algorithm is applied to a case study. 



i. Find the linear depth trend of qc in each CPT considered and remove it from 

the data. Calculate the standard deviation σres of the de-trended tip resistances 

for each CPT. Normalize each individual set of de-trended tip resistances by 

dividing by the corresponding standard deviation σres. Each individual CPT is 

de-trended and normalized in order to produce a standard normal field ( ̂  = 0, 

̂  = 1). 

ii. The correlation function is estimated separately in the vertical and horizontal 

directions. For the vertical direction, estimate the correlation function for each 

CPT, using Equation (2) with the normalized de-trended tip resistances. Then 

estimate the average vertical correlation function from the individual vertical 

correlation functions. For the horizontal direction, estimate the horizontal 

correlation function for different depths, by using Equation (2) with the 

corresponding normalized de-trended CPT tip resistances for different 

horizontal lags. Then average the correlation functions with respect to depth to 

get the estimated average horizontal correlation function for different lags.  

Find the initial estimates of the vertical and horizontal scales of fluctuation 


0

ˆ ˆ,v h  , by using Equation (5) with the averaged correlation functions (this is 

Approach A). Set i = 1.  

iii. Generate the ith standard normal random field of normalized de-trended qc 

based on the statistics found in (i) and (ii), assuming that the normalized de-

trended tip resistances can be represented by a standard normal distribution 

function. 

iv. Constrain the ith random field computed in (iii) at the locations of the CPT 

measurements, i.e. resulting in the ith conditional random field. A brief 



description of the implemented conditional approach is given in the following 

section.  

v. Using Equation (2), with ̂  = 0 and ̂  = 1, compute  ˆ
i   from the ith 

conditional random field calculated in (iv).  

vi. Use  ˆ
i  , computed in (v), to find the root of Equation (5) in the vertical and 

horizontal directions, giving  ˆ ˆ,v h
i

  . 

vii. Update i = i+1 and go to (iii), repeating the process until the number of 

simulations performed is n.  

viii. The final estimates of the vertical and horizontal scales of fluctuation are the 

average values computed in (vi) of  ˆ ˆ,v h
i

  , from i = 1 to n, where n is the 

number of simulations performed. 

The fact that each conditional random field is constrained at the known CPT 

measurements implies that the field contains true information of the actual soil 

variability at the site and, therefore, is likely to provide a more realistic estimation of the 

correlation function and thereby a better estimate of the scales of fluctuation than the 

initial estimates given in (ii) when using the conventional approach (i.e. Approach A). 

2.1 Conditional random fields 

The (unconditioned) random fields involved in the conditional Approach B are 

generated using the Local Average Subdivision (LAS) method proposed by Fenton and 

Vanmarcke (1990). The LAS method requires a probability density function (pdf) with 

its statistics (mean μ and standard deviation σ) and a scale of fluctuation θ. As 

mentioned earlier, the statistical information for qc in this paper is estimated from the 

available field data at each 2-D section investigated. 



The generated 2-D random fields are then constrained (i.e. conditioned) at the 

locations of the actual CPT measurements. The conditioning approach follows the work 

of van den Eijnden and Hicks (2011), which applied the Kriging interpolation technique 

(Krige, 1951; Cressie, 1990; Wackernagel, 2003; Fenton and Griffiths, 2008) to give the 

best linear unbiased estimate of a random field between known data. In essence, the 

Kriging method estimates a random field Z at desired locations x, from a linear 

combination of known values of Z at m observations points xα. The Kriged interpolation 

of Z at x (i.e. Z*(x)) can be expressed as: 
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where λα are the m unknown weights that are determined by minimising the variance of 

the difference between the Kriged field Z* and the original field Z (Wackernagel, 2003). 

Kriging can be used to condition the random field at the known (conditioning) points, as 

summarised in the following four steps (Journel and Huijbregts, 1978; van den Eijnden 

and Hicks, 2011). 

i. Generate an unconditional random field Zs(x) with known point statistics and 

correlation structure, and extract the values of Zs(x) at the locations xα (i.e. 

Zs(xα) for α = 1 to m).  

ii. Generate an initial interpolated field Z0
*(x) by Kriging, using the known 

(conditioning) measurements Z(xα) at the locations xα and according to the 

assumed correlation model.  

iii. Generate Zs
*(x) by Kriging using the values Zs(xα) calculated in step (i).  

iv. Calculate the conditional random field Zcs(x) as:  

         * *

0cs s sZ Z Z Z  x x x x  (7) 



3. Application to a real case study 

Numerous artificial islands were constructed during the 1970s and 80s in the Canadian 

Beaufort Sea, to provide temporary structures for hydrocarbon exploration. One type of 

island used caisson technology to reduce the required fill volumes (Hicks and Smith, 

1988). Figure 1a shows that this type of island incorporated two main sand fills: (a) an 

underwater berm on which the caisson was founded; and (b) the body of the island 

structure (referred to as the core). This paper investigates data from one such island, 

Tarsuit P-45. In particular, eighteen CPTs from the site are used here to statistically 

describe the tip resistances qc of the sand fill core, these CPTs lying along three straight 

lines in a plan view of the core, as shown in Figure 1b. The number of CPTs aligned 

along the first, second and third sections are seven, six and five, respectively, and each 

line of CPTs indicates the soil variability for that 2-D section (denoted as AA’, BB’ and 

CC’ in Figure 1b). For simplicity, the same geometry of 50 m length by 5.5 m depth is 

considered for all three sections (see Figure 6). Note that, in order to be consistent in the 

geometry of all three sections analysed, all CPT measurements investigated are located 

in a depth range of 1 m to 6.5 m (see Figure 2). 

The statistics obtained for each section are used to generate a 2-D random field 

of normalized de-trended qc, which is later constrained (conditioned) at the 

corresponding CPT locations. The statistical characterization of the sand fill core of 

Tarsuit P-45 follows previous research by Wong (2004) and is only briefly summarised 

below. 

Figure 2 shows the CPT tip resistance data for each section investigated. In the 

plots, the thin broken lines indicate qc values for individual CPTs profiles, whereas the 

thicker straight dashed lines indicate the average linear mean trend between 1 m to 6.5 

m. The mean and standard deviation of qc are calculated separately for each section to 



give the average values summarized in Table 2. Inspection of Figure 2 shows that the 

average linear depth trend is very similar for the three sections, indicating a similar 

underlying depth-dependency of the qc values. This is also illustrated in Table 2, where 

the average slope and intercept of the linear trend identified in each section are similar. 

A standard normal distribution is used to represent the normalized de-trended 

cone tip resistances of the Tarsuit P-45 core. Figure 3 shows the histograms based on all 

data from the CPTs involved in the section analysed, as well as the fitted distribution. 

Inspection of this figure shows that, for the three sections investigated, the variation of 

normalized de-trended tip resistance is reasonably well represented by a standard 

normal distribution. On the right-hand-side of this figure, the normalized de-trended 

CPT data used for each histogram are plotted. 

The estimates of the vertical and horizontal scales of fluctuation when using 

Approach A are summarized in Table 3. Note that these are the initial guesses used in 

Approach B when using the conditional random field. Figures 4 and 5 show the 

estimated correlation functions from Approach A as dashed lines, for the vertical and 

horizontal directions, respectively. Note that the correlation estimates become 

increasingly variable as the lag increases, due to there being fewer data pairs available 

with larger lags (Fenton and Griffiths, 2008). This is particularly evident for section 

CC', as well as for later simulations in the paper. The theoretical correlation function 

(using the estimated value of θ from Approach A) is represented by a thick solid line. 

Inspection of Figure 4 shows that very similar initial estimates of θv are obtained for the 

three sections (see also Table 3), indicating that this part of the sand fill island core 

exhibits a consistent vertical variability of qc. However, as shown in Figure 5, this is not 

apparent for the horizontal direction, where the differences between initial estimates for 



θh are much larger and range from 1.69 m to 13.69 m. Although this large range of 

values may in part be to actual soil variation, the scarcity of data will also be a factor.  

A 2-D standard normal random field is generated for each section analysed, 

using the initial values of the scales of fluctuation obtained from Approach A (see Table 

3). Each generated random field is subsequently conditioned at the observed CPT 

locations by the CPT data, yielding conditional random fields similar to those illustrated 

in Figure 6. Note that, in the plots of Figure 6, the scales in the vertical and horizontal 

directions are not the same. 

From each of the conditional random fields, it is straightforward to estimate the 

corresponding correlation structure by using Equation (2), which can then be compared 

against the theoretical correlation model in each direction in order to estimate the value 

of θ (i.e. as a root of Equation (5)). The average of the vertical and horizontal scales of 

fluctuation, over the total number of realizations n, gives the estimated values of θv and 

θh when using Approach B (see Table 3). For the analyses presented in this section, the 

total number of realizations considered is n = 100. Figures 7 and 8 illustrate the 

estimated correlation function for the vertical and horizontal directions, respectively, for 

all realizations when using Approach B. In the figures, the thicker solid line indicates 

the theoretical correlation structure     using the estimated value of θ; the thinner 

fine lines indicate each of the estimated  ˆ
i   and the thick dashed line indicates the 

average of all the estimated  ˆ
i  . 

Overall, Figure 7 shows that the theoretical correlation structure is a satisfactory 

fit to  ̂   for the three sections considered. The results for section AA’ in the vertical 

direction (Figure 7a) suggest an average of θv = 0.41 m, while for section BB’ (Figure 

7b) the average is θv = 0.42 m, and for section CC’ (Figure 7c) the average is θv = 0.40 



m. The results suggest that the variability in the vertical direction is very consistent 

across the sections considered (Table 3). 

A larger variation is observed in Figure 8 when looking at the estimated 

horizontal correlation functions for sections AA’, BB’ and CC’. Section AA’ shows an 

average of θh = 1.82 m, whereas sections BB’ and CC’ give, respectively, θh = 5.60 m 

and θh = 15.86 m (Table 3). A possible explanation for these differences is that less CPT 

measurements (i.e. true data points) are available in the horizontal direction. Also, the 

horizontal distance between CPTs is relatively large compared to the obtained θh (see 

Figures 1 and 5), resulting in only a few true data points over the initial part of the 

estimated correlation structure (τh < θh), which is, indeed, the most relevant part of the 

curve when estimating the θ of the correlation model. Conversely, in the vertical 

direction, true measurements are available every 0.02 m (i.e. the vertical distance 

between each CPT measurement) and this distance is, conveniently, significantly 

smaller than the obtained θv. This is well illustrated in Figure 4, where many true data 

points are available in the relevant part of the curve (i.e. τv < θv), providing more 

confidence in the estimated value of θv than that of θh obtained for the horizontal case. 

4. Accuracy assessment 

A fundamental part of the investigation is to assess the accuracy of the two approaches 

used to estimate θ. This section aims to address this issue by proposing a numerical 

strategy and applying it to a fictitious site with the same geometry as analysed in the 

previous case study. A 2-D random field of normalized de-trended tip resistances is 

generated with known or true statistics (μ = 0; σ = 1, θv = 0.5 m and θh = 5 m). From 

this fictitious site 7 CPTs are extracted at the same locations given in Figure 1b for 

section AA’. The seven CPTs are then used to calculate the statistics of qc in the same 

manner as explained earlier for the case study. Approach B detailed in the previous 



section is then applied to find estimated values of the vertical and horizontal scales of 

fluctuation. A number of pairs  ˆ ˆ,v h
j

   are obtained by repeating this process from j = 

1 to k, i.e. over k realizations of the random field of normalized de-trended tip 

resistances. In order to assess the accuracy of the new approach for estimating θ, the 

statistics from all pairs  ˆ ˆ,v h
j

   can be compared against the true values of θ  ,v h   

used to generate the initial random tip resistance fields. Similarly, the initial estimated 

pairs of vertical and horizontal scales of fluctuation 
0,

ˆ ˆ,v h
j

  , obtained using Approach 

A, can be used to assess the accuracy of the conventional approach. The steps for 

assessing the relative accuracy of the conventional and proposed new approach are 

summarized as follows: 

i. Set j = 1. 

ii. Generate a generic (non-conditional) random field of tip resistances with 

known statistics ( 0 , 1 , v  and h ), assuming a standard normal 

distribution.  

iii. Extract l CPTs at the appropriate locations.  

iv. Using these l CPTs, estimate the statistics 
0,

ˆ ˆ,v h
j

   in the same manner as 

described in the case study (Approach A).  

v. Estimate  ˆ ˆ,v h
j

   using Approach B:  

(a) Generate the ith standard normal random field of normalized de-trended 

qc based on the statistics found in (iv). Set i = 1.  



(b) Constrain the ith random field computed in (a) at the locations of the 

CPT measurements from (iii), resulting in the ith conditional random 

field. 

(c) Using Equation (2) with ̂  = 0 and ̂  = 1, compute  ˆ
i   from the ith 

conditional random field calculated in (b). 

(d) Use  ˆ
i  , computed in (c), to find the root of Equation (5) in the 

vertical and horizontal directions, giving  ˆ ˆ,v h
i

  . 

(e) Update i = i+1 and go to (a), repeating the process until the number of 

simulations performed, n.  

(f) The final estimates of the vertical and horizontal scales of fluctuation, 

 ˆ ˆ,v h
j

  , are the average values computed in (d) of  ˆ ˆ,v h
i

   from i = 1 

to n, where n is the number of simulations performed. 

vi. Update j = j+1 and go to (ii), repeating the process until k realizations.  

vii. Compare the output pairs of values, 
0,

ˆ ˆ,v h
j

   and  ˆ ˆ,v h
j

  , against the true 

v  and h  used in (ii) to assess the accuracy of the classical and new 

approaches.  

The above steps for assessing the accuracy of the approaches used for the determination 

of the scales of fluctuation are applied to section AA’ (Figure 1b). Table 4 summarizes 

the relevant information obtained from the 30, i.e. k = 30, random fields generated in 

the proposed algorithm to assess the accuracy of Approaches A and B. In Approach B, 

i.e. steps (a) to (f), the number of simulations considered to estimate the final statistics 

is n = 35. The results presented in this table summarize the estimated values of the 

scales of fluctuation obtained using Approach A (the conventional approach) and the 



estimated values obtained using Approach B. The true values of the vertical and 

horizontal scales of fluctuation are included in the table and are used to assess the 

accuracy achieved in the estimates provided by each method. 

The average of the 30 initial estimates of v  (i.e. Approach A) is 0.51 m, giving 

a relative error of about 2% (Table 4). Similar values are obtained when using Approach 

B: an average v  = 0.53 m, giving a relative error of about 5%. In other words, in the 

vertical direction where data are plentiful, both approaches give accurate results. In the 

horizontal direction, the results obtained when using Approach B are significantly better 

than those obtained via the conventional approach. Specifically, when using Approach 

A the average is h  = 3.66 m and the relative error is about 27%, whereas, when using 

Approach B, the average is h  = 3.99 m and the relative error is now about 20% (Table 

4). The decrease in relative error from 27% (Approach A) to 20% (Approach B) is quite 

significant given the fundamental problems with estimating a scale of fluctuation using 

a relatively large sampling length and few sample points. 

The results of Table 4 show that the conventional approach provides reasonable 

initial estimates for v  and h . Indeed, the values obtained for the vertical scale of 

fluctuation are extremely successful for both approaches, due to the large amount of 

data available for the calculation of v . However, some improvement is obtained with 

Approach B in the horizontal direction, when fewer data are available. The better match 

to the true horizontal scale of fluctuation may be due to the algorithm using the 

available site information more effectively (Lloret-Cabot et al., 2012). By constraining 

the random fields, at the locations of the actual CPT measurements, improved 

approximations of the qc values in between the CPT locations are possible, resulting in a 



more realistic estimation of the horizontal correlation function and a better estimation of 

the average h  (Table 4). 

5. Conclusions 

Two approaches for estimating the vertical and horizontal scales of fluctuation have 

been presented and subsequently applied to a real case study and then to a simulation-

based study to assess relative accuracy. 

The accuracy of the estimate of the scale of fluctuation is, of course, highly 

dependent on both the number of data and their spacing. For example, if the true 

correlation length is 0.1 m and data are spaced by 1.0 m, then an accurate estimate of 

the correlation length will not be possible. Similarly, if a small number of observations, 

at any spacing, are available, the estimate will be worse than if a large number of 

observations are available. In the case study considered in this paper, the vertical scale 

of fluctuation is expected to be estimated much more accurately than the horizontal 

scale of fluctuation, due to both the much larger number of observations and the closer 

spacing of the data in the vertical direction. However, the goal of the paper was to see if 

different methods could be used to coax a better estimate when samples are scarce. 

For the case study, the vertical and horizontal correlation lengths suggested by 

both approaches are similar. In particular, the estimated values of θv are very close for 

the three sections analysed, suggesting that the variability in the vertical direction is 

very consistent across the sections considered. This is not the case, however, for the 

horizontal scale of fluctuation, where each section converges to a significantly different 

mean value, suggesting that θh has different values at each section analysed and/or that 

the CPTs are not spaced closely enough for an accurate estimation of θh. 



The simulation-based study suggests that there is not much difference between 

the two approaches when the sampling distance is small relative to the correlation 

length, as there are then plenty of data for estimating θ (i.e. in the vertical direction). 

This confirms the finding in the case study that, for the vertical direction, the 

conventional approach already provides a reasonable estimate of v , because enough 

data are already available. However, when the sampling distance is large relative to the 

correlation length and there are few data values (e.g. in the horizontal direction), the 

conditional random field approach shows some improvement over the conventional 

approach, with the horizontal correlation length being somewhat closer to the true 

value. The difference is quite significant, with the relative error decreasing from 27% in 

the case of the conventional approach to 20% in the case of the conditional random field 

approach, which is a quite remarkable improvement given the fundamental problems 

with estimating a scale of fluctuation using a relatively large sampling length and few 

sample points. 

The results of this study indicate that, for most practical purposes, the 

conventional approach to estimating the spatial correlation length is adequate, especially 

when large amounts of data are available. However, when some improvement is 

desired, particularly when data are scarce, the use of conditional random fields is worth 

considering. 
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Figure 6. Typical realization of a conditional random field of normalized de-trended tip 
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CC’. 

Figure 7. Estimated values of the vertical scale of fluctuation when using Approach B: 
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Table 1. Some common correlation models. 

Correlation model Expression 

Gaussian  

 
2

exp


  


   
   

   

 

Triangular 

 
1     if  

0           if  


 

  

 


 

 
 

 

Spherical 

 

3

1 1.5 +0.5     if  

0                              if  

 
 

   

 


 

 
 

 

Markov 

 
2

exp


 


 
  

 

 

 

 

Table 2. Cone tip resistance statistics. 

Property Range Mean value  

Section AA’ (7 CPTs) 

Mean (μ): MPa 3.00-5.55 3.85 

Standard deviation (σ): MPa 0.71-3.01 1.50 

Standard deviation (σres): MPa 

(trend removed) 0.69-2.37 1.35 

Slope of the linear depth-trend 

(atrend): MPa/m 0.11-1.18 0.36 

Intercept of the linear depth 

trend (btrend): MPa 1.09-3.72 2.48 

Section BB’ (6 CPTs) 

Mean (μ): MPa 2.70-4.55 3.58 

Standard deviation (σ): MPa 0.40-1.28 0.85 

Standard deviation (σres): MPa 

(trend removed) 0.39-1.01 
0.55 

Slope of the linear depth-trend 

(atrend): MPa/m 0.04-0.68 
0.39 

Intercept of the linear depth 

trend (btrend): MPa 1.20-2.72 
2.06 

Section CC’ (5 CPTs) 

Mean (μ): MPa 3.37-3.86 3.59 

Standard deviation (σ): MPa 0.75-1.68 1.29 

Standard deviation (σres): MPa 

(trend removed) 0.51-1.51 
0.85 

Slope of the linear depth-trend 

(atrend): MPa/m 0.33-0.84 
0.58 

Intercept of the linear depth 

trend (btrend): MPa 0.62-2.31 
1.36 

 

 

 

 

 

 



Table 3. Estimated values of the scales of fluctuation. 

Property Approach A Approach B 

Section AA’ (7 CPTs)  

Vertical scale of fluctuation 

(θv): m 0.42 0.41 

Horizontal scale of fluctuation 

(θh): m 1.69 1.82 

Section BB’ (6 CPTs)  

Vertical scale of fluctuation 

(θv): m 0.42 0.42 

Horizontal scale of fluctuation 

(θh): m 5.07 5.60 

Section CC’ (5 CPTs)  

Vertical scale of fluctuation 

(θv): m 0.44 0.40 

Horizontal scale of fluctuation 

(θh): m 13.69 15.86 

 

Table 4. Comparing estimated values of θ using the two approaches.  

 
True values Approach A Approach B 
θv 

(m) 

θh 

(m) 

θv,0 

(m) 

θh,0 

(m) 

θv,j  

(m) 

θh,j 

(m) 

Mean (μ): m 0.5 5 0.51 3.66 0.53 3.99 

Relative error - - 2% 27% 5% 20% 

 

  



 

 

a) 

 

b) 

Figure 1. Test site: (a) side view sketch of Tarsuit P-45 core and berm (not to scale); (b) 

plan view of CPT locations used. 

 

a) b) c) 

Figure 2. CPT tip resistance data, including the average linear mean trend lines: (a) 

section AA’; (b) section BB’; (c) section CC’. 
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 a) 

 b) 

 c) 

Figure 3. Histograms of normalized de-trended tip resistance: (a) section AA’; (b) 

section BB’; (c) section CC’. 

 

 

 

 

 

 

 



 

 

 

a) 

b) 

c) 

Figure 4. Estimated values of the vertical scale of fluctuation when using Approach A: 

(a) section AA’; (b) section BB’; (c) section CC’. 

 

 

 

 

 

 



 

 

 

a) 

b) 

c) 

Figure 5. Estimated values of the horizontal scale of fluctuation when using Approach 

A: (a) section AA’; (b) section BB’; (c) section CC’. 

 

 

 

 

 

 



 

 

 

a) 

b) 

c) 

Figure 6. Typical realization of a conditional random field of normalized de-trended tip 

resistance, for a 2-D section of the test site: (a) section AA’; (b) section BB’; (c) section 

CC’. 

 

 

 



 

 

 

a) 

b) 

c) 

Figure 7. Estimated values of the vertical scale of fluctuation when using Approach B: 

(a) section AA’; (b) section BB’; (c) section CC’. 

 

 

 

 

 

 



 

 

 

a) 

b) 

c) 

Figure 8. Estimated values of the horizontal scale of fluctuation when using Approach 

B: (a) section AA’; (b) section BB’; (c) section CC’. 

 

 


