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ABSTRACT 

Face recognition has been the focus of multiple studies, but little is still known on how 

we represent the structure of one’s own face. Most of the studies have focused on the 

topic of visual and haptic face recognition, but the metric representation of different 

features of one’s own face is relatively unknown. We investigated the metric 

representation of the face in young adults by developing a proprioceptive pointing task 

to locate face landmarks in the first-person perspective. Our data revealed a large 

overestimation of width for all face features which resembles, in part, the size in 

somatosensory cortical representation. In contrast, face length was compartmentalised 

in two different regions: upper (underestimated) and bottom (overestimated); indicating 

size differences possibly due to functionality. We also identified shifts of the location 

judgments, with all face areas perceived closer to the body than they really were, due 

to a potential influence of the self-frame of reference. More importantly, the 

representation of the face appeared asymmetrical, with an overrepresentation of right 

side of the face, due to the influence of lateralization biases for strong right-handers. 

We suggest that these effects may be due to functionality influences and experience 

that affect the construction of face structural representation, going beyond the parallel 

of the somatosensory homunculus.  

 

KEYWORDS: face representation, self-face perception, body representation, body 

model, size distortions, proprioceptive pointing. 
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1. INTRODUCTION 

The face represents one of the most social parts of our body, it is our 

presentation to the world and how others remember us. The face defines us more than 

any other body part, and is involved in important and complex functions, such as eye-

hand coordination, eating or speaking. The face is instrumental to create a sense of self, 

and to construct our identity (Tsakiris, 2008). Threats to face integrity cause severe loss 

of the sense of identity, such as after face disfigurement (Callahan, 2005).  Despite this, 

self-face representation is not static and is susceptible to representational plasticity and 

multisensory influences. This plasticity is an adaptive quality to maintain a coherent 

sense of self despite the subtle physical changes that faces experience with the passage 

of time (Felisberti & Musholt, 2014; Walton & Hills, 2012). Representational plasticity 

is also a shared characteristic with other body areas. For instance, the hands are 

susceptible to modulation of sensory information as the effects of extensive practice 

(e.g.,Cocchini, Galligan, Mora, & Kuhn, 2018; Cavina-Pratesi, Kuhn, Ietswaart, & da 

Milner, 2011), which may reflect functional-anatomical modifications of underlying 

regions of the brain (e.g., Burton, Sinclair, & McLaren, 2004; Elbert, Pantev, 

Wienbruch, Rockstroh, & Taub, 1995). Self-face representation is also linked to 

attractiveness criteria, with a preference for having larger eyes and small nose, and self-

esteem (Felisberti & Musholt, 2014). 

The representation of the body and in particular, of the hands, has been widely 

studied, highlighting the importance of the different multisensory influences to 

construct a coherent representation. In contrast, face research has been predominantly 

focused on face recognition across sensory modalities (Casey & Newell, 2005), whilst 

few attempts have been made to study the underlying body model as per other body 

parts. In previous studies, there is a predominant use of depictive tasks that rely on 
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visual information, for example,  pointing to different locations for size estimation on 

a computer screen (Fuentes, Runa, Blanco, Orvalho, & Haggard, 2013), drawing the 

head’s outline (Bianchi, Savardi, & Bertamini, 2008) or using visual estimation tasks 

(D’Amour & Harris, 2017; Felisberti & Musholt, 2014; Linkenauger et al., 2015). In 

general, the representation of the face is distorted, showing a tendency to overestimate 

width and underestimate length (D’Amour & Harris, 2017; Fuentes et al., 2013; 

Linkenauger et al., 2015). However, it is not clear that these techniques capture the 

representation of one’s own face specifically, and not another’s face. Studies using 

tactile information have also shown a pattern of distortions on the forehead similar to 

the hand when using the two-point discrimination task, as both skin areas have similar 

acuity (Miller, Longo, & Saygin, 2016). Another study, using participants’ face 

pictures, in a forced-choice paradigm, showed a tendency to perceive the nose size less 

accurately than the size of the mouth or of the eyes (Felisberti & Musholt, 2014). Whilst 

these do capture how one’s own body is represented, they do not capture a pure 

structural representation (Longo & Haggard, 2010, 2012) within personal space. Thus, 

there remains an important gap in understanding how one’s own face is represented.  

With this in mind, we designed an experiment to assess the influence of 

proprioception in the metric representation of the face by pointing in first-person 

perspective: that is, pointing towards one’s own face. We aimed to examine size 

judgements for different face features by developing a novel version of the localisation 

task, which enables us to discern the metric representation of the face within personal 

space.  

Previous studies on structural representation have suggested an influence of 

somatosensory representation on size perception (e.g. Longo, Azañón, & Haggard, 

2010), and it has been proposed that the somatosensory homunculus may provide the 



 5 

base system from which an implicit body model is based.  Facial features occupy 

differently-sized areas in the somatosensory homunculus, with the mouth and tongue 

area overrepresented (McCormack, 2014). If it is true that homuncular size 

representation influences perceived size of the body part, highly represented features 

will be perceived as bigger. Thus, we hypothesized a distorted representation of face 

features, with an overestimation of areas such as the mouth, compared to the nose. 

Additionally, different face portions have different mobility, which may affect body 

size perception. Previous studies have shown overestimation of highly movable body 

parts, such as the ankle (Stone, Keizer, & Dijkerman, 2018) and wrists (Longo, 2017), 

and a compartmentalised representation of upper and lower face regions (Fuentes et al., 

2013). Thus, we sought to study size differences between the representation of top 

(eyes) and bottom (mouth) face areas anticipating overestimation for areas whose 

movement tends to change shape and size to a much greater extent (bottom). Lastly, we 

analysed the possible spatial shift that underlies the aforementioned distortions of face 

representation. Studies have shown a tendency to overestimate the right side of the body 

for right handers (Hach & Schütz-Bosbach, 2010), and this may be a characteristic also 

shared by the face. For this, we calculated the horizontal and vertical shifts in pointing 

judgements, to consider the symmetry of these judgements.  

 

2. METHODS AND PROCEDURE 

2.1 Participants 

An a priori power analysis for one sample t-test with an effect size of 0.8, α of 

0.05, and power of 0.8 was carried out to set the sample size in G* Power (Faul, 

Erdfelder, Buchner, & Lang, 2009). Previous studies on body representation have used 

one sample t-test for the localisation task, reporting average effect sizes of 0.8 for finger 
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lengths (i.e., Ganea & Longo, 2017). The power analysis indicated the adequate sample 

size would be of 15. 

Seventeen participants (10 females and 7 males) between 19 and 39 years of 

age (M = 24.67; SD = 5.39) were recruited. On average, participants had 16.5 years of 

formal education (SD = 1.2).  

Handedness was assessed with the Oldfield Questionnaire (Oldfield, 1971), on 

which scores range is from -1 to 1. Scores below -0.5 indicate left-handedness; scores 

over +0.5 indicate right-handedness and scores between -0.5 and +0.5 indicate 

ambidextrosity. All participants but one (score = 0.36) were considered right-handed 

(M = 0.90; SD = 0.11; range -1 to +1).  

The study was approved by the Goldsmiths Research Committee and it was 

carried out in accordance with the Declaration of Helsinki (BMJ 1991; 302: 1194). All 

participants gave written consent. 

 

2.2 Face apparatus and procedure 

Participants were comfortably sat in front of a table. A vertical acrylic sheet (30 

x 30 cm) resting on two metal posts (20 cm of height) was placed in front of them.  A 

chin rest was positioned on the edge of the table, between the participant and the acrylic 

sheet. To take into consideration the curved shape of the face introducing some lateral 

distortion, the face was positioned very close to the acrylic setting (1 cm from the tip 

of the nose).  

A Nikon D3200 camera (single-lens reflex digital camera, 24.2 megapixels, 18 

– 55 mm VR lens, 1.5x FOV crop, 23.2 x 15.4 mm DX-format CMOS APS sensor) was 

positioned on a tripod in front of the sheet at 90 cm from it. The camera focus was 

exactly on the centre of it, and camera lens was set at 18mm. Attached to the sheet there 
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were two measuring tapes, one along the left edge and another along the top edge, to 

facilitate conversion of pixels into centimetres for later analyses (See Fig. 1A).  

A small black dot (1-2 mm of diameter) was drawn on participants’ right index 

fingernail as reference for later analysis of pointing responses. Participants were asked 

to position their head on the chin rest so that the tip of the nose was aligned with the 

camera focus. They had to remain silent and avoid any movement of the face for the 

entire experiment. Following a pilot study and previous literature (Fuentes et al., 2013; 

Linkenauger et al., 2015) we identified 11 unambiguous face landmarks (i.e., hairline, 

corners of each eye, tip of nose, lateral side of both nostrils, corners of the mouth and 

chin) to be located (See Fig. 1B). Then, they were asked to close their eyes and imagine 

the landmarks on the acrylic sheet as if they were projected in a straight line. Then they 

were asked to point on the acrylic sheet with their right index finger to the different 

landmarks read aloud, one at a time, in random order and counterbalanced across 

participants. The task was repeated six times for a total of 66 trials per participant. 

 

Fig. 1. Face apparatus (A) and face landmarks (B). 

 

A. B. 
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To ensure participants understood the labels given to the different landmarks of 

the face, they were asked to identify these landmarks on a schematic picture placed in 

front of them.  

Pointing corrections were allowed to adjust the position of the right index 

finger, as ballistic pointing tends to be highly variable (Kammers, de Vignemont, 

Verhagen, & Dijkerman, 2009; Króliczak, Heard, Goodale, & Gregory, 2006). A 

picture was taken (6016 × 4000 pixels) of each response for later coding. Following 

this, the participant was asked to place their right index finger back on the right side of 

the table and wait for the next command. Feedback was not given at any time.  

 

3.  RESULTS 

3.1 General analyses 

A total of 66 pictures (6 for each of the 11 landmarks) were collected for each 

participant. An image analysis program was developed ad-hoc for this study using 

Borland C++ Builder (2007). This program converted pixel units into centimetres. 

Responses are expressed as x and y coordinates, with the origin at the left top corner of 

each picture. For each pointing response, the x and y coordinates of the real and the 

perceived location were collected. Data was averaged across the 6 attempts at each 

landmark. Following this, the distance between two landmarks (e.g., F2 and F3, See 

Fig. 1B) was considered to calculate length and width (in cm) of the different face 

features (i.e., nose, eyes, mouth); which were then averaged across the recruited 

participants. These data were then used to i) to analyse the shift of perceived landmarks 

compared to real position; ii) to analyse face length and width of its features; and 

finally, iii) create schematic map of real and perceived faces. 
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3.2 Perceived shift of landmarks 

To explore the possible displacements (shift) of landmarks, we calculated the 

mean perceived shift (cm) per landmark. Vertical shift was the y-axis difference 

between perceived and real y-coordinates; a positive value indicated the landmark 

was perceived higher than real location, whilst a negative value indicated the 

landmark was perceived lower than real location, towards the body. Horizontal shift 

was the x-axis difference between perceived and real coordinates; a positive value 

indicated a rightward shift. Averaged coordinates for x and y axes between the 17 

participants were used for analyses and to produce pictorial representations of real 

and perceived face sizes (Fig. 2A). 

Perceived and real conditions were compared for each feature by means of a 

one sample t-test (Bonferroni corrected p < .01). When considering vertical shift, all 

areas were perceived to be significantly lower (closer to the trunk) than their real 

location (right eye [t (16) = -6.34, p = .001, d = 1.53]; left eye [t (16) = -4.7, p = .001, 

d = 1.14]; nose [t (16) = -3.36, p = .004, d = 0.82]; mouth [t (16) = -6.44, p = .001, d = 

1.56] and other areas (hairline and chin) [t (16) = -3.93, p = .001, d = 0.95].   

For the horizontal shift, all face areas were perceived shifted further to the right 

than the real position, with the exception of the left eye (See Fig. 2C). However, only 

the right eye showed a significant rightward shift [t (16) = 5.38, p = .001, d = 1.3]. 
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Fig. 2 Face real and perceived pictorial representation (A), face vertical shift (B), and 

horizontal shift (C). 

3.3 Face length 

Distance judgments were implicitly calculated from the localisation of 

landmarks as in previous studies (e.g., Longo & Haggard, 2011). The real and perceived 

length of three distances were considered: i) Overall face length (i.e., from hairline F1 

to chin F11; See Fig. 1B), ii) Top-half (i.e., from hairline F1 to tip of the nose F7); iii) 

Bottom-half (i.e., from tip of the nose F7 to chin F11). These distances were averaged 

across all participants. 
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Comparison of the real and the perceived distances provided information about 

participants’ over and underestimation. The overall face length was slightly 

underestimated (M = -1.62%; SD = 9.55), but not significantly so [t (16) = 0.759, p = 

.46; d = 0.18]. When considering different halves of the face, we found the top half of 

the face was significantly underestimated (M = - 6.81%, SD = 12.47), [t (16) = 2.373; 

p = .03; d = 0.58]. The bottom half showed overestimation (M = 6.60%, SD = 17.74) 

but this difference did not reach significance [t (16) = -1.454; p = .16; d = 0.35] (See 

Fig. 3A). When correction for the two comparisons is applied (p value of .25), the 

difference in top face areas becomes a trend. Nevertheless, the percentage of 

over/underestimation between face halves was significant, [t (16) = -2.42, p = .03, d = 

0.59], indicating that the top half of the face is perceived to be significantly shorter than 

the bottom half.  

3.4 Face widths 

Five different widths were considered: right eye (i.e. F2 to F3; See Fig. 1B), left 

eye (i.e., F4 to F5), distance between eyes (i.e., F3 to F4), nose (i.e., F6 to F8), and 

mouth (F9 to F10). Distances were calculated in centimetres and results were averaged 

across all participants (as for face lengths; reported in Fig. 3B).  

A repeated-measures ANOVA was run with two factors: condition (real versus 

perceived width in centimetres) and area (the five facial features detailed above). There 

was a significant effect of condition [F (1,16) = 91.789, p = .001;  = 0.85], 

suggesting that participants showed an overall distortion of perceived face width. There 

was also a significant effect of area [F (4,64) = 111.798, p = .001,   = 0.88] and 

a significant interaction between condition and area [F (2.66, 42.51) = 12.684, p = .001; 

2

partial

2

partial
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= 0.44] (Greenhouse – Geisser correction), indicating variability in the 

magnitude of width perception depending on the face area considered. Post-hoc 

analyses (Bonferroni correction p < .01) showed that all areas were perceived 

significantly larger than their real size: right eye [t (16) = -6.58, p = .001; d = 1.6]; 

between eyes [t (16) = -5.91, p = .001; d = 1.43]; left eye [t (16) = -4.293, p = .001; d 

= 1.04]; nose [t (16) = -7.04, p = .001; d = 1.71]; and mouth [t (16) = -10.44, p = .001; 

d = 2.53] (See Fig. 3B). However, there were differences in the degree of distortion 

depending on the face feature considered. This was most apparent for the nose 

(103.03%), followed by the mouth (70.38%), right eye (64.30%), and left eye 

(52.81%). Bonferroni corrected t-tests (p value of .008) were run to check if the 

differences in the degree of distortion where significant between face features. 

Significant differences were found between the distortion for the nose and all the other 

face features, indicating that the nose is perceived significantly more distorted than the 

right eye [t (16) = -3.46, p = .003, d = -0.84]; the left eye [t (16) = -3.51, p = .003, d = 

-0.85] and the mouth [t (16) = 3.37, p = .004, d = 0.82]. No significant differences were 

found in the distortions between the other face features. 

 

 

Fig. 3 Face real and perceived lengths (A) and face real and perceived width (B). 

 

2

partial

A. B. 
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4.  DISCUSSION 

We have assessed for the first time the metric and locational representation of 

facial features, examining the proprioceptive influences in the structural representation 

of the face. Our findings confirm our hypothesis that healthy volunteers hold a distorted 

representation of the face. In particular, structural representation is least accurate for 

face width. In contrast, length estimation is relatively accurate when considering overall 

face length. We acknowledge that the method adopted to implicitly calculate the length 

and width of face structures may have been biased by the misallocation of a single 

landmark. Therefore, each landmark was requested 6 times to minimize possible bias 

due to occasional misallocation of a single landmark.  

As initially hypothesized, length perception was not unitary and appeared to be 

compartmentalised into two separate sections: the upper (underestimated) and bottom 

(overestimated) regions. The compartmentalised representation of face length may be 

associated with the different functionality and relevance of each face portion, but also 

with the capacity of facial areas to change size and shape. With the exception of the 

eyebrows, the upper face areas are relatively stable in size and shape, whilst the bottom 

areas are subject to more positional changes. During a wide array of daily functions, 

such as speech or feeding (Cavina-Pratesi et al., 2011; Fuentes et al., 2013), movement 

of the lower jaw means that the effective size and shape of the lower face is subject to 

significant changes in position, size and shape.  This may lead to a perceived 

overestimation of its length.  

Similar to observations of size overestimation for ankles and wrists (Longo, 2017; 

Stone et al., 2018), the direction of distortion for the lower face follows the direction of 

movement. That is, the mouth and chin are perceived lower, shifted towards the body, 

increasing the perceived length of this region. These findings are consistent with face 
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image studies where this compartmentalisation has also been reported (Fuentes et al., 

2013). However, in our study, the overall perceived length is more accurate than 

previously reported, probably due to the proprioceptive pointing task used here. In fact, 

increased accuracy in the representation of the body model is also shown for the hands, 

when vision is removed and participants rely in proprioceptive information instead 

(Longo, 2014). These results support the idea that proprioceptive pointing tasks show 

the more implicit representation of the body model, underlying the position sense and 

allowing us to know the online location of the body (Longo, 2015).  

We also found that all face features were perceived to be much wider than their 

true size, confirming the tendency to perceive the face as wider (D’Amour & Harris, 

2017; Fuentes et al., 2013). Width overestimation may be associated with 

representation in the somatosensory cortex. In fact, Longo & Haggard (2011) 

postulated a shared implicit representation of the body size and shape, discerned both 

by touch and position sense, which preserves characteristics of somatosensory 

homunculus. The cortical representation of face features is also not uniform: for 

example, the lips occupy a larger region than cheeks (Nguyen, Inui, Hoshiyama, 

Nakata, & Kakigi, 2005). Our data follows this pattern, finding different magnitude of 

distortions for different features. The nose was the most overestimated area (103.84%), 

whilst the left eye was the least (54.29%). Similarly, a recent study in self-face 

perception (using two-alternative forced choice task with distorted images) has shown 

how the accuracy to recognise the real size of face features is worse for the nose, 

followed by the mouth, and lastly by the eyes ((Felisberti & Musholt, 2014). Yet, if 

somatosensory representation was causing these distortions, we would expect larger 

overestimation of the lips in comparison with the nose or eyes. A potential explanation 

for this finding is the reversed distortion hypothesis, which proposes that bodily areas 
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with lower numbers of tactile receptive fields are over-represented in a cortical body 

map in order to compensate for this lack of resolution (Linkenauger et al., 2015). This 

could explain why in the present data the nose is largely overestimated, as this area is 

less well represented in the somatosensory and motor homunculi, but it does not explain 

why the mouth is also perceived larger than its real size.  

Other studies in self-perception and size have found biases to identify the self 

with larger size stimuli (Sui & Humphreys, 2015), which may explain, in part, the 

tendency to perceive the face much larger than its real size. This self-bias effect has 

been associated with the emotional and power significance of larger stimuli (Sui & 

Humphreys, 2015), with strong influences in size perception. 

Nonetheless, it is necessary to form a mental image of a body part in order to 

judge its metric representation (Smeets, Klugkist, Rooden, Anema, & Postma, 2009) 

and to compare to others too (Walton & Hills, 2012).  A particular quality of the face 

mental image in comparison to the hands is that is constructed secondarily; that is, we 

only See our face reflected on a mirror, captured in a picture or recorded in a video. 

Furthermore, the face is normally seen in movement (Tsakiris, 2008), and the stored 

image of the face may include details of possible movement and its layout, as it occurs 

for other body parts, such as the hands (Bremner, Holmes, & Spence, 2008) and lower 

limbs (Stone et al., 2018). To explore this, we analysed the shift of locational responses, 

which may also explain the direction of the distortions. All face areas were perceived 

shifted down, closer to the body than they really were. This shift could be due to the 

stored position of the face, which includes the possibility of movements, shifting 

responses towards most typical position of the body part.  

We also investigated the horizontal shifts of locational responses to consider 

any differences in the perception of the body in the personal space. Rather than showing 
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a symmetrical representation of the face, there was a predominance to shift responses 

to right landmarks towards the right hemispace. The rightward shift might be due to the 

fact that the participants were asked to use the right hand to point. However, if this was 

the case, we would not have found the leftwards shift for the left eye. This finding 

seems more  in line with previous studies on body space representation, which showed 

that right-handers tend to overestimate the size of the right portion of the body (Hach 

& Schütz-Bosbach, 2014). In particular, pointing responses to rightwards areas of the 

hip and waist were located further from midsagittal plane than left areas, even if 

pointing was performed with the contralateral hand (Hach & Schütz-Bosbach, 2010). 

Furthermore, right-handers perceive their right hand and arm to be longer than the left 

one (Linkenauger et al., 2009). This asymmetry is usually reported in more implicit 

tasks of body representation, such as the pointing task, but not with more explicit tasks, 

such as body image (Hach & Schütz-Bosbach, 2014). However, this is a debatable issue 

and a recent meta-analysis study suggests that facial self-processing may be more 

related to activity of right hemisphere (Hu et al., 2016) rather than handedness. 

Functionality of a body part will also affect its size perception (Linkenauger et 

al., 2009). Studies have already shown how expertise changes the size of the 

representation in the homunculus, which is in turn associated with improved size 

perception (Cocchini et al., 2018).  

In summary, our study allows a better understanding on previous self-face 

perception research, providing a structural metric map of single face features. In 

particular, this is the first study to investigate self-face representation through first-

person perspective pointing, showing implicit characteristics of body representation. 

Interestingly, the distortions of self-face representation are qualitatively similar to those 

observed for other body parts when similar tasks are used, suggesting a related 
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underlying mechanism. Further, the proximal shift implies a general shift of perceived 

body location towards the perceived centre of the self. The explanations considered to 

account for the distortions of self-face representation emphasise the reliance on a 

mental image of one’s own face based on the combination and mental reconstruction 

of sensory information, and experience.  
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