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21 Abstract

22 For millions of people worldwide, sewage-polluted surface waters threaten water security, 

23 food security and human health. Yet the extent of the problem and its causes are poorly 

24 understood. Given rapid widespread global urbanisation, the impact of urban versus rural 

25 populations is particularly important but unknown. Exploiting previously unpublished 

26 archival data for the Ganga (Ganges) catchment, we find a strong non-linear relationship 

27 between upstream population density and microbial pollution, and predict that these river 

28 systems would fail faecal coliform standards for irrigation waters available to 79% of the 

29 catchment’s 500 million inhabitants. Overall, this work shows that microbial pollution is 

30 conditioned by the continental-scale network structure of rivers, compounded by the location 

31 of cities whose growing populations contribute c. 100 times more microbial pollutants per 

32 capita than their rural counterparts. 

33
34 Highlights

35 Faecal coliform concentration is strongly related to upstream population density [80]

36 Local rivers predicted to fail WHO irrigation standards for 79% of the population [83]

37 Rivers receive c. 100 times more sewage per capita from urban than rural populations [84]

38 Microbial pollution is conditioned by river network structure and settlement pattern [84]

39 Himalayan headwaters continue to dilute microbial pollution far downstream [74]

40

41 Keywords: faecal coliform; river network; population density; catchment-scale;

42

43 Background

44 Rising demands on water resources raise concerns about the sustainable provision of clean 

45 water worldwide. Unclean water poses significant risks of diarrhoea, opportunistic infections, 

46 and consequent malnutrition accounting for ~1.7 million deaths annually; of which >90% are 
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47 in developing countries and almost half are children [Prüss-Ustün et al., 2014]. These deaths 

48 are primarily due to ingestion of faecal pathogens from humans or animals [Ashbolt et al., 

49 2004; Kotloff et al., 2013; Prüss-Ustün et al., 2014].

50 India’s growing population and economy are driving rapid urbanisation (30% of the 

51 population now live in urban areas [Census of India, 2011a]) and exerting increased pressure 

52 on surface and groundwater availability. In rural areas ~67% of the population defecate in the 

53 open [Census of India, 2011b], a practice that poses severe risk to health and safety [Clasen 

54 et al., 2010; Mara et al., 2010; Ziegelbauer et al., 2012; Kotloff et al., 2013]. While in urban 

55 areas ~80% of the population have access to a toilet [Census of India, 2011b], but only ~30% 

56 are connected to a sewage pipeline and few pipelines are connected to a treatment plant 

57 [Narain, 2012]. The impact of these sanitation problems on surface water quality has been 

58 documented for many years at individual sample locations or river reaches across India 

59 [Bhargava, 1983; Mukherjee et al., 1993; Baghel et al., 2005; Mishra et al., 2009; Central 

60 Pollution Control Board, 2010]. However, there has been no catchment-wide quantification 

61 of the problem and limited indication of what is driving it. The former is essential to fully 

62 understand the scale of intervention required, while the latter might inform decision-making 

63 on ‘what to do where’. Urban areas often dominate the microbial pollution signal in rivers 

64 [Tchobanoglous et al., 1991; Kay et al., 2008; McGrane et al., 2014] but there is little 

65 consensus on the extent to which this reflects an increased impact per capita or simply a 

66 larger population and thus source. This difference is important since a higher per capita 

67 impact indicates reduced attenuation, perhaps due to more efficient delivery to the river 

68 system or less efficient treatment. If the difference can be attributed to per capita contribution 

69 this will define the extent to which urban or rural focused interventions will improve surface 

70 water quality.
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71 We address this question using archival water quality data from across the Ganga (Ganges) 

72 catchment and show the pattern of microbial pollution in its major rivers. We compare 

73 instream concentrations of a pollution proxy with upstream densities of the two major sources 

74 of faecal pathogens (humans and livestock) at 100 sites spanning an approximate surface area 

75 of 106 km2. 

76 Faecal pathogens are difficult to measure, however thermo-tolerant coliforms, which 

77 originate in faeces (i.e. faecal coliforms, FC), are easily detectable and routinely monitored as 

78 indicator organisms [Ashbolt et al., 2001]. FCs are not a perfect predictor of human pathogen 

79 presence, rather they establish connectivity between defecation and some receiving 

80 environment which could be contributed to by a pathogen carrier. New host-specific tracing 

81 techniques allow more precise tracking of microbial pollution sources that can help to better 

82 assess risks to human health [Harwood et al., 2014, Field and Samadpour, 2007]. However, 

83 such techniques are not used within routine monitoring in India and thus do not have the 

84 spatial coverage required for our analysis. Furthermore, the use of FCs for monitoring 

85 pollution is still regarded as a viable measure of drinking and irrigation water quality [WHO, 

86 2017]. 

87 Two key issues that must be addressed are: 1) the extent to which the FC signal that we 

88 observe reflects human sources; and 2) the potential impact of FC die-off in our pollution 

89 tracer. Upstream livestock and human population densities are strongly correlated at the 

90 catchment scale limiting our capacity to identify the source of the pollution signal. To address 

91 this, we seek to de-correlate the predictor variables by using a mixing model to estimate 

92 contributions from each non-overlapping segment of the catchment (our sub-catchments). To 

93 address the impact of die-off in our pollution tracer we adjust the population and livestock 

94 densities using a distance decay function then seek decay parameters that will maximise 

95 performance of our statistical model.
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96 In the sections that follow we first introduce our null hypothesis that pollution should be 

97 linearly related to source density (both with and without accounting for die-off). We then 

98 detail our data sources and methods for their analysis; and introduce the mixing model that 

99 we use to calculate effective FC concentrations and source densities for each sub-catchment 

100 (the non-overlapping segments of the catchment).

101

102 Theory: Expected relationship between FC concentration and upstream source density 

103 with and without die-off

104 The FC concentration (CFC) at a given location is defined by the ratio of the FC flux (QFC) to 

105 the water flux (Qw):

106 (1)𝐶𝐹𝐶 =
𝑄𝐹𝐶  
𝑄𝑤

107 Under the assumption that there is no die-off in FCs over time, the FC flux is calculated 

108 from:

109 (2)𝑄𝐹𝐶 = (𝑃ℎ 𝑁ℎ + 𝑃𝑎 𝑁𝑎) = (𝑃ℎ 𝜌ℎ + 𝑃𝑎 𝜌𝑎)  𝐴

110 where: Ph is the production rate of FCs per human head [MPN #-1 T-1]; Pa is the production 

111 rate per head of livestock [MPN #-1 T-1]; Nh and Na are the total upstream population of 

112 humans and livestock respectively [#]; ρh and ρa are the upstream population densities of 

113 humans and livestock respectively [# L-2]; and A is the catchment area [L2]. Under the 

114 assumption of spatially uniform and time invariant runoff Rw [L T-1] the water flux Qw [L3 T-

115 1] is calculated from:

116 (3)𝑄𝑤 = 𝑅𝑤  𝐴

117 Substituting equations 2 and 3 into equation 1 gives the following equation for FC 

118 concentration at each measurement point as a function of upstream population density.

119  (4)𝐶𝐹𝐶 =
(𝑃ℎ 𝜌ℎ + 𝑃𝑎 𝜌𝑎)  

𝑅𝑤
= 𝑘ℎ 𝜌ℎ + 𝑘𝑎 𝜌𝑎
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120 where: kh=Ph/Rw and ka=Pa/Rw. It is clear from this relationship that under these assumptions 

121 CFC should be a linear function of upstream population and livestock density with the 

122 gradients defined by the ratio of production rate, P, to runoff, Rw.

123  

124 The assumption of no FC die-off is unlikely to be true but controls on die-off remain poorly 

125 understood. Given the uncertainties, die-off is most often represented using an exponential 

126 decay based on first order kinetics [Crane and Moore, 1986; Sadeghi and Arnold, 2002; Cho 

127 et al., 2012]:

128 (5)𝑄𝐹𝐶 =  𝑄0𝑒
‒ 𝑘1 𝑡

129 where: Q0 is the FC flux at time t0 (the time of exit from the gut) [MPN T-1], t is time since 

130 exit [T], k1 is a decay coefficient [T-1]. Assuming uniform time invariant FC velocity from 

131 source to measurement point the FC flux QFC can be expressed as a function of distance:

132   (6)𝑄𝐹𝐶 =  𝑄0𝑒
‒ 𝑘1(𝑥

𝑣) 

133 where: x is the travel distance from source to measurement point [L] and v is the 

134 characteristic velocity [L T-1]. Changing population (of people or livestock) with distance x 

135 upstream of the sampling point can be calculated as the derivative of N(x):

136 (7)𝑛(𝑥) =‒
𝑑𝑁
𝑑𝑥 =‒ 𝜌(𝑥)𝑑𝐴

𝑑𝑥 ‒  𝐴(𝑥) 
𝑑𝜌
𝑑𝑥

137 Assuming that FC production rates are time invariant and incorporating characteristic 

138 velocity into the decay coefficient to express decay in terms of distance, the FC flux can be 

139 calculated by combining equations 2, 6 and 7 and integrating over the range of travel 

140 distances from the measurement point to the furthest point upstream:

141 (8)𝑄𝐹𝐶 =  ∫𝑥𝑚𝑎𝑥
0

((𝑃ℎ 𝑛ℎ(𝑥) +  𝑃𝑎 𝑛𝑎(𝑥)) 𝑒 ‒ 𝑘 𝑥) 𝑑𝑥
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142 where change in population (for both humans and livestock) and area are a function of travel 

143 distance; and k=k1/v the distance decay coefficient [L-1]. Substituting equations 3 and 8 into 

144 equation 1 gives the following equation for FC concentration:

145 (9)𝐶𝐹𝐶 =  ∫𝑥𝑚𝑎𝑥
0 ((𝑃ℎ 𝑛ℎ(𝑥) +  𝑃𝑎 𝑛𝑎(𝑥)) 𝑒 ‒ 𝑘 𝑥

𝑅𝑤 𝐴 ) 𝑑𝑥

146 This can be implemented in discrete form by summing over the ncells upslope of the 

147 measurement point where for each cell the flow path lengths and routes are derived from 

148 digital elevation data, and human and livestock population data from the sources described 

149 below. 

150 (10)𝐶𝐹𝐶 = ∑𝑛𝑐𝑒𝑙𝑙𝑠
𝑖 = 1 ((𝑃ℎ 𝜌ℎ𝑖 +  𝑃𝑎 𝜌𝑎𝑖)𝐴𝑖 𝑒

‒ 𝑘 𝑥𝑖

𝑅𝑤 𝐴𝑖 ) 

151 where: ρhi and ρai are the density of human and animal populations respectively in cell i; Ai is 

152 the area of cell i; and xi is the average flowpath length from cell i to the measurement point. 

153 Rearranging and simplifying equation 10 gives:

154  (11)𝐶𝐹𝐶 = 𝑘ℎ∑𝑛𝑐𝑒𝑙𝑙𝑠
𝑖 = 1 (𝜌ℎ𝑖 𝑒

‒ 𝑘 𝑥𝑖) + 𝑘𝑎∑𝑛𝑐𝑒𝑙𝑙𝑠
𝑖 = 1 (𝜌𝑎𝑖 𝑒

‒ 𝑘 𝑥𝑖)
155 where: kh=Ph/Rw and ka=Pa/Rw. Re-arranged in this form, equation 11 shows that accounting 

156 for FC die-off, CFC remains a linear function of population and livestock density transformed 

157 to account for flowpath length. As in the no die-off case (equation 4), the linear coefficients 

158 reflect the ratio of (human or livestock) production rate to runoff. 

159

160 Methods 

161 We used water quality samples from 100 locations across the Ganga catchment (Figure 1), 

162 collected and analysed by six agencies following a uniform protocol. Total and faecal 

163 coliform concentrations were estimated using the standardised 9221B and 9221E multiple 

164 tube fermentation techniques [APHA, 1995] to establish the most probable number (MPN) of 
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165 faecal coliforms per 100ml. At each site, we collated 10 years of data (2002-2012). The 

166 frequency with which this data was sampled varies between sites, from three samples per 

167 year at the two most remote Himalayan sites, to quarterly for 24 more Himalayan sites and 

168 one or two samples per month at the remaining sites. At ~30 sites, samples were collected at 

169 two locations across the river in some years in order to improve representation. This data was 

170 quality checked for potential data entry or measurement errors. We removed a total of 63 

171 observations where FC concentrations exceeded Total Coliform (TC) concentrations (since 

172 FC is a subset of TC). We also removed two observations at a single site on the same date 

173 where FC concentration exceeded 1010 MPN / 100 ml. We consider this to be suspicious 

174 given that the concentration is ~100 times the upper end of the range of observed 

175 concentrations for sewage influent [Tchobanoglous et al., 1991]. Removing suspicious 

176 observations results in a loss of <0.5% of the full dataset and <3% at any individual site. The 

177 error-checked FC data at each site were poorly approximated by a normal distribution but 

178 were generally well approximated by a log-normal distribution, thus we used geometric 

179 means to summarise FC concentration for each site throughout our analysis.

180  To estimate upstream population density we used the GPWv3 gridded synthesis of census 

181 data from 2000 [Balk and Yetman, 2004; Balk et al., 2010]. To estimate livestock density we 

182 used the FAO global gridded livestock density data [Wint and Robinson, 2007; Robinson et 

183 al., 2014], weighted by estimates of FC production rates for each livestock type (cow and 

184 buffalo: 1011 MPN/# day; goats and sheep: 1.2 x 1010 MPN/# day; pigs: 1.1 x 1010 MPN/# 

185 day; poultry: 1.4 x 108 MPN/# day) [ASAE Standards, 1998]. Upstream area, upstream 

186 population density (UPD) and upstream livestock density (ULD) for each sample point were 

187 calculated using a D8 flow routing algorithm [O’Callaghan and Mark, 1984; Schwanghart 

188 and Scherler, 2014] and the hydrologically corrected 90 m SRTM DEM [Farr et al., 2007]. 

189 To examine the influence of coliform die-off in transit and thus relax the assumption that 
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190 coliforms behave as conservative tracers we introduced an exponential decay in coliform 

191 concentration with distance from the source. We sampled the shape parameter that defines 

192 the rate of distance decay at 500 logarithmic intervals from 10-8 to 10-1 km-1 testing model 

193 performance in each case using ordinary least squares regression. 

194

195 Mixing model

196 The observation locations form a nested set of catchments where 82% of observation sites 

197 have at least one observation site upstream. We deal with this nested sampling in two ways. 

198 First, by assessing the results for only non-nested (independent) catchments, however this 

199 considerably reduces the number of available observations. Second, by performing the 

200 analysis using sub-catchments, where these are defined as the part of the catchment that 

201 drains to the current sample site without first draining through any upstream sample site. The 

202 result of this definition is segmentation of the entire Ganga catchment into 100 non-overlapping 

203 sub-catchments. 

204 Effective source density and FC concentration are then calculated for each sub-catchment using 

205 an approach similar to that of Granger et al. [1996] and Portenga et al. [2015] for effective 

206 erosion rates in nested catchments. To do this we assume that catchment area can be used as a 

207 proxy for discharge (equation 3) and use a mixing model to calculate the concentration of the 

208 FC input for the sub-catchment (CFCr) given the catchment area and FC concentration at the 

209 upstream and downstream boundaries:

210 (12)𝐶𝐹𝐶𝑟 =
𝑄𝐹𝐶𝑟

𝐴𝑟
=

𝐶𝐹𝐶𝑑 𝐴𝑑 ‒ ∑𝑛
𝑖 = 1(𝐶𝐹𝐶𝑢𝑖 𝐴𝑢𝑖)

 𝐴𝑑 ‒ ∑𝑛
𝑖 = 1( 𝐴𝑢𝑖)

211 where: CFCui is the FC concentration at upstream boundary i; and CFCd is the FC concentration 

212 at the downstream boundary of the sub-catchment; Aui is the catchment area for upstream 

213 boundary i; Ad is the catchment area for the downstream boundary of the sub-catchment; and 
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214 n is the number of upstream boundaries. We repeat the same process to calculate the human 

215 and animal populations densities (ρr) within the catchment area that drains into this sub-

216 catchment:

217 (13)𝜌𝑟 =
𝑁𝑟

𝐴𝑟
=

𝜌𝑑 𝐴𝑑 ‒ ∑𝑛
𝑖 = 1(𝜌𝑢𝑖 𝐴𝑢𝑖)

 𝐴𝑑 ‒ ∑𝑛
𝑖 = 1( 𝐴𝑢𝑖)

218 where: ρui is the upstream population density of upstream boundary i; and ρd is the upstream 

219 population density of the downstream boundary of the sub-catchment.

220
221 Results

222 Observed pattern of FC concentrations

223 Our results suggest that high FC concentrations previously reported at the reach and sub-

224 catchment scale [Mukherjee et al., 1993; Baghel et al., 2005; Mishra et al., 2009; Central 

225 Pollution Control Board, 2010] do not reflect isolated pockets of poor water quality but 

226 extensive pollution across the catchment. Decadal mean FC concentrations at sites across the 

227 Ganga catchment range from 3x100 to 2.5x106 MPN/100ml. 70% of sites fail Indian 

228 Government desirable bathing limits [Central Pollution Control Board, 2008] with those that 

229 pass located almost exclusively in the sparsely populated catchment headwaters. On the more 

230 populous plains, 70 of the 80 sites fail the desirable limits and 63 of the 80 sites fail the 

231 maximum permissible 2500 MPN/100ml limit [Central Pollution Control Board, 2008]. 

232 Locally high FC concentrations are generally associated with large population centres (Figure 

233 1), most markedly for rivers with smaller catchment areas (e.g. the Varuna at Varanasi). FC 

234 concentrations are moderately reduced downstream of the Yamuna-Ganga confluence as 

235 tributaries with lower FC concentrations dilute the main stem. Further downstream, even 

236 large cities (e.g. Patna) have limited influence and many samples on the main stem have very 

237 similar FC concentration, reflecting the central tendency of water quality with increasing 

238 catchment area for nested catchments.



ACCEPTED MANUSCRIPT

11

239

240 Catchment scale relationships between FC concentration and upstream source density

241 Since people and livestock are the primary sources of FCs, we expect FC concentration to 

242 increase with the upstream density of these sources. Figure 2 suggests that the data fit this 

243 expectation. If FC production per capita is spatially uniform, delivery to the river is 

244 independent of population density, and if water flux is a linear function of catchment area, 

245 then we expect FC concentration to be a linear function of upstream source density with the 

246 form y=x (see equations 1-4 for a full derivation). Variability in delivery to the river 

247 network or transit time through the river network that is uncorrelated with population density 

248 will introduce scatter to the relationship but should not alter its functional form. However, 

249 comparing the data with linear contours in Figure 2 shows that the data are not a good fit to a 

250 linear function (r2 <0.1). Power functions are a better fit (r2=0.69 for UPD and 0.62 for ULD) 

251 but over-predict high and low FC values and under-predict central values with both UPD and 

252 ULD. Quadratic relationships offer a further improvement (r2=0.71 for UPD and 0.68 for 

253 ULD) suggesting positive curvature in log-log space but have a physically unreasonable 

254 negative slope at low population densities. Residuals from the quadratic function, fitted by 

255 ordinary least squares regression, for both population and livestock show some 

256 heteroscedasticity, though White [1980] and BPK [Breusch and Pagan, 1979; Koenker, 1980] 

257 tests return p-values that are always below 0.1. Given this moderate heteroscedasticity and 

258 the insensitivity of ordinary least squares coefficients to heteroscedasticity we do not pursue 

259 more complex variance weighted analyses. UPD alone explains slightly more of the variance 

260 in FC concentration than ULD, but there is little difference between the explanatory power of 

261 these predictors, and their combination in a multiple quadratic regression offers little 

262 improvement (R2=0.71). This is consistent with the strong correlation between upstream 

263 population and livestock densities (Figure 2c). A cubic function constrained to monotonic 
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264 increase over the range of the data gives a similar performance to the quadratic (r2=0.71 for 

265 UPD and 0.68 for ULD). A linear spline (in log-log space) with a single interior knot (i.e. 

266 piecewise power function) is the best-fit for both individual predictors (r2=0.73 for UPD and 

267 0.71 for ULD), suggesting a threshold rather than continuous change in power relationship 

268 between UPD and FC concentration. Finally, we test one further null hypothesis that there are 

269 two ranges of source density (population or livestock) with FC concentrations represented by 

270 their average value over each range. This model is important to exclude given the appearance 

271 of clustered points within Figure 2 but has difficult physical implications. It implies a step 

272 change in contribution at some source density and a constant contribution independent of 

273 source density change (i.e. a declining per-head contribution) within each range. The ‘step 

274 model’ (r2=0.69) does not outperform any of the curved functions (quadratic, cubic or linear 

275 spline) for UPD, though it is a slight improvement on quadratic and cubic spline functions for 

276 ULD (r2=0.70). These results demonstrate that there is positive curvature to the FC-UPD 

277 relationship independent of the particular functional form (quadratic, cubic or linear spline) 

278 under consideration; and that the FC-ULD relationship also contains positive curvature but 

279 can be almost as well described as two FC distributions at high and low population density. 

280

281 Sub-catchment relationships between FC concentration and upstream source density

282 As for catchment analysis, the sub-catchment analysis suggests that people and livestock are 

283 the primary sources of FCs with FC concentration increasing with the upstream density of 

284 these sources (Figure 3). The relationship between source density and FC concentration is not 

285 linear for sub-catchment based analysis or catchment based analysis. Figure 3 shows that as 

286 in the catchment analysis the data are not a good fit to any linear model (r2 <0.2). Power 

287 functions are a better fit (r2=0.54 for UPD and 0.17 for ULD) but over-predict high and low 

288 FC values and under-predict central values for UPD. For ULD the fit is very poor, suggesting 
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289 that in the sub-catchment based analysis livestock density is only a weak control on FC 

290 concentration. Quadratic relationships (in loglog space) offer further improvement for UPD 

291 (r2=0.63) but not for ULD (r2=0.16). UPD alone explains considerably more of the variance 

292 in FC concentration than ULD. Their combination in a multiple quadratic regression offers 

293 some improvement (R2=0.72). This reflects the reduced correlation between UPD and ULD 

294 for sub-catchment (r2=0.66) rather than catchment (r2=0.95) analysis (compare Figure 2c with 

295 3c). The linear spline with a single knot (i.e. piecewise power function) or cubic function (in 

296 loglog space) constrained to monotonic increase result in similar fits relative to a quadratic 

297 for both UPD (r2=0.63 in both cases) and ULD (r2=0.16 and 0.15 respectively). As in the 

298 catchment analysis this suggests that there is not clear evidence for a threshold rather than 

299 continuous change in power relationship between UPD and FC concentration when examined 

300 at the sub-catchment scale. The results from these three (quadratic, cubic and linear spline) 

301 approaches demonstrate that there is positive curvature to the FC-UPD relationship 

302 independent of the particular functional form under consideration. They also demonstrate that 

303 UPD is a far better predictor than ULD for sub-catchment scale analysis and that there is 

304 some merit in considering the two in combination. This suggests that most instream FCs are 

305 human derived.

306

307 Per capita impact on instream FC concentration

308 Positive curvature to the FC-UPD and FC-ULD relationships indicate that FC concentration 

309 increases with upstream source density at an increasing rate per unit increase in upstream 

310 source density. This can be interpreted as the change in FC per capita with increasing 

311 upstream source density. The gradient of the line in logarithmic space reflects its exponent in 

312 linear space thus: values >1 indicate positive curvature and increasing per capita impact, 

313 those <1 indicate negative curvature and decreasing per capita impact with increased source 
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314 density. At low upstream source densities (<10 people or 6 livestock per km2), FC 

315 concentrations are low and the gradient of all three best-fit curves is slightly less than one 

316 indicating a slight decline in per capita impact with increasing upstream source density. At 

317 source densities from 10-60 people or 6-30 livestock per km2 the gradient of all three best-fit 

318 curves reaches then exceeds unity, indicating that per capita impact reaches a minimum and 

319 begins increasing with increasing upstream source density. 

320 For population density, quadratic, cubic and linear spline fits all predict a very similar 

321 relationship between UPD and FC concentration for 102<UPD<103 #/km2 (Figure 2a). Over 

322 this range the predicted FC concentration increases by three orders of magnitude (from 102 to 

323 105 MPN/100ml), indicating a 100-fold increase in per capita impact. Over the same range in 

324 population density (102<UPD<103 #/km2) there is considerable variability in the per capita 

325 contribution from no change at the lower limit to a 10,000-fold increase at the upper limit.

326 A similar comparison can be made for individual sites, with the linear trend lines in Figure 2a 

327 acting as contours for per capita impact. For example, moving downstream from the 

328 catchment with lowest population density, UPD increases 10-fold from Badrinath to Srinagar 

329 (7-77 #/km2) but FC concentration increases only three-fold (3-10 MPN/100ml), thus per 

330 capita impact declines by a factor of 3. Continuing downstream from Srinagar to Kanpur 

331 UPD increases by a factor of 6 (77 to 450 #/km2) while the FC concentration increases by a 

332 factor of 1600 (10 to 1.6x104 MPN/100ml), thus impact per capita increases by a factor of 

333 300. Per capita impact increases by a factor of 60,000 from its minimum for the rural Pindar 

334 catchment (B) to its maximum for the densely populated Yamuna at Delhi (A). These results 

335 indicate that urban populations contribute more sewage to the river per capita than rural 

336 populations and that this increase: 1) depends on the difference in population densities, rather 

337 than changing sharply at a particular density; 2) is large on average (a factor of 100); and 3) 

338 is highly, and asymmetrically, variable (ranging from a factor of 1 to 10,000).
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339

340 Discussion

341 The relative importance of human or livestock FC sources

342 Both UPD and ULD are good predictors of FC concentration based on catchment scale 

343 analysis. This may reflect the importance of both sources, but is also very likely due to the 

344 strong positive correlation between UPD and ULD in the catchment based analysis (Figure 

345 2c), which makes it difficult to distinguish between the sources based on these data alone. 

346 When calculated over large areas population and livestock density are highly correlated. 

347 However, at small scales population and livestock density can become de-correlated (e.g. in 

348 cities, where population density is high but livestock density low). Our sub-catchment based 

349 analysis breaks the catchment into smaller non-nested segments, disrupting the correlation 

350 between UPD and ULD (Figure 3c). This analysis shows a small reduction in the percentage 

351 of variance in FC concentration explained by UPD and a large reduction in that explained by 

352 ULD. In the sub-catchment based analysis UPD is a much better predictor of FC 

353 concentration than ULD. 

354 This is consistent with simple accounting estimates of export coefficients calculated using 

355 population and livestock densities with estimated FC production rates for the loading terms 

356 and observed FC concentration as the output. Assuming a human production rate of 2 x 109 

357 MPN/# day [Tchobanoglous, 1991] and livestock production rates detailed in the methods 

358 section, livestock-derived FC loads produced on any given day range from 2x1010 MPN/km2 

359 day (for ULD = 3 #/km2) to 1.5x1013 MPN/km2 day (for ULD = 200 #/km2) while population 

360 derived FC loads range from 1.4x1010 MPN/ km2 day (for UPD = 7 #/km2) to 2x1012 MPN/ 

361 km2 day (for UPD = 1000 #/km2). Yet over this range of source densities FC concentrations 

362 increase from 2x100 to 1x105 MPN/100 ml on average. This results in export coefficients 

363 >100 times larger at high livestock and population densities than at low densities. It is 
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364 difficult to conceive of a mechanism for such an increase in export coefficient for livestock-

365 derived FCs as a function of source density. 

366

367 The relative importance of local or non-local FC sources

368 UPD is a good predictor of instream FC concentrations across the Ganga catchment, 

369 explaining 73% of the observed variance in decadal mean FC concentrations from a 

370 catchment scale analysis and 63% from a sub-catchment scale analysis (Figure 2a and 3a). 

371 This is consistent with findings from catchments across the world [Tchobanoglous et al., 

372 1991; Kay et al., 2008; McGrane et al., 2014], and with previous reach-scale findings in the 

373 Ganga Catchment [Mukherjee et al., 1993; Baghel et al., 2005; Mishra et al., 2009; Central 

374 Pollution Control Board, 2010]. However, there remains considerable variance in FC 

375 concentration unexplained by either UPD or ULD, particularly at high population densities, 

376 >100 people/km2 (Figures 2 and 3). Previous reach-scale studies did not account for the 

377 upstream boundary condition either in terms of FC flux or upstream population [Mukherjee et 

378 al., 1993; Baghel et al., 2005; Mishra et al., 2009]. These studies implicitly assumed that 

379 point sources proximal to sample sites dominated the FC signal (perhaps due to coliform die-

380 off in transit). However, while many of our sites near larger settlements have high coliform 

381 concentrations, these concentrations are better explained by upstream population density (r2 

382 >0.7) than population of the nearest settlement (r2=0.25). Examining paired samples above 

383 and below settlements suggests that in some cases, positive residuals (where FC 

384 concentration is greater than predicted) may reflect sites immediately downstream of 

385 population centres. However, including a distance-decay function in our analysis did not 

386 improve our ability to predict FC concentrations. Figure 4 shows that model performance is 

387 initially stable as the rate at which FCs decay with distance increases, but that the 

388 performance is never better than that without distance decay, and that performance declines 
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389 markedly for decay rates greater than 0.01 %/km. This reduction in performance relates to a 

390 reduction in decay-adjusted population density primarily at sites with intermediate or dense 

391 populations (Figure 5).  These results suggest that, UPD is an important but not singular 

392 factor in defining the connectivity between sources and receiving waters that defines the 

393 timescales and thus efficiency of delivery. Our approach neglects many processes that should 

394 be important in the transport of coliforms from source to the point of measurement (e.g. 

395 weather dependent die-off rates, hydrological connectivity, hydraulics at the cross section and 

396 reach scale). However, it is encouraging that even our simple empirical model explains a 

397 large fraction of the variance in microbial pollution concentrations.

398

399 Implications of the FC-UPD relationship

400 The increase in per capita impact as UPD increases likely reflects an increase in the 

401 efficiency of delivery rather than FC production, perhaps due to changes in individual or 

402 corporate waste management decisions as population density increases. At low population 

403 densities, much of the population defecate in the open or in pit latrines [Census of India, 

404 2011b] where faeces are less likely to be washed into the river and FCs are more likely to die 

405 in situ. As population density increases and towns and cities grow, the distance to open fields 

406 increases and there is a need for an alternative strategy to manage faeces. This problem has 

407 historically confronted communities across the world, leading to degradation of sanitary 

408 conditions and construction of sewers [Gandy, 2004; Allen, 2008; Benzerzour et al., 2011]. 

409 Sewage systems vary in sophistication but generally involve the movement of excreta by 

410 water out of the population centre; often made possible by piped domestic water. The faeces 

411 have a much shorter residence time in the environment and FCs will be removed primarily by 

412 sewage treatment rather than die-off in the environment. In many Indian cities, the flux of 

413 sewage that is, and must be, removed from the population centre through a growing network 
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414 of sewers and storm water drains is many times higher than the capacity of the sewage 

415 treatment facilities [Ansari et al., 2000]. In this case the predominant impact of the sewage 

416 network is to remove the sewage from the population centre and rapidly deliver it to the river 

417 untreated. Sewage removal is essential for the public health of the city, but without effective 

418 treatment it comes at the cost of accentuated river pollution with associated public health 

419 implications for the population downstream. Here we demonstrate as others have [Central 

420 Pollution Control Board, 2010] the severe river pollution that results. The extent to which this 

421 can be addressed by following the same trajectory towards centralised ‘end-of-pipe’ sewage 

422 treatment has been called into question for practical and economic reasons [Jha, 2003; 

423 Bracken et al., 2007; Katukiza, 2012]. However, there is a growing range of innovative, 

424 water and energy efficient, on-site alternatives [Jha, 2003; Bracken et al., 2007; Gates 

425 Foundation, 2016] as well as a growing recognition that this is a social as well as physical or 

426 technical issue [Burra, 2003; Sharma and Bhide, 2005; McFarlane, 2008].

427 It is important to emphasise that our results do not imply that open defecation is a safe 

428 approach to sewage management. Water is not the only vector for faecal-oral disease; 

429 transmission can also occur through food, insects, and direct contact [Wagner and Lanoix, 

430 1958]. Thus safely disposing of faeces involves more than simply ensuring that they do not 

431 enter the watercourse. There is good evidence to suggest that open defecation is extremely 

432 problematic for public health and safety [Clasen et al., 2010; Mara et al., 2010; Ziegelbauer et 

433 al., 2012]. 

434

435 Network structure controls the spatial pattern of microbial pollution

436 The relationship between upstream population density and FC concentration enables a simple 

437 predictive relationship, albeit with considerable scatter. This model predicts that 33–48% of 

438 rivers in the Ganga catchment fail the Indian Government’s safe bathing standards, 



ACCEPTED MANUSCRIPT

19

439 depending on the choice of standard (Figure 6). However, many of those rivers that pass are 

440 in sparsely populated headwaters. For 70-85% of the catchment’s population, their nearest 

441 river fails safe bathing standards [Central Pollution Control Board, 2008]; for 79% it should 

442 not be used for flood irrigation, irrigation of crops eaten raw or where children are involved 

443 in farming [WHO, 1989; Blumenthal et al., 2000]; and for 51% it should not be used for 

444 irrigation with sprinklers [Blumenthal et al., 2000].

445 The pattern of predicted FC concentration from this empirical model is strongly influenced 

446 by the catchment’s network structure (Figure 6). Sparsely populated Himalayan headwaters 

447 produce high discharges of clean water suppressing FC concentrations far downstream; 

448 without this discharge, plains-fed rivers (e.g. Kali) have high FC concentrations throughout. 

449 The most polluted reach of the Ganga is predicted to be between Kanpur and Allahabad. 

450 Upstream of Kanpur the diluting effect of the headwaters persists while downstream of 

451 Allahabad the Ganga is diluted first by the less polluted Yamuna (strongly influenced by the 

452 Chambal) and then by the large left bank tributaries with their headwaters in the Himalaya. 

453 This may be the result of not only the topology but also the geometry of the network, since 

454 the Ganga at Allahabad is at its furthest point from the mountain front meaning cleaner 

455 Himalayan water must travel over a larger expanse of populated plain to reach that point.

456 Interventions high up the river network have the highest potential for impacting FC 

457 concentration for a given FC flux reduction because: 1) lower discharge on these rivers 

458 means that the same FC flux reduction will lead to a larger concentration reduction; and 2) 

459 rivers are directed networks (i.e. they accumulate) thus a reduction in FC flux at a given 

460 location will impact only reaches downstream of it. Decisions of what to do where are 

461 difficult and necessarily political, with many drivers [Bulkeley and Mol, 2003], but the 

462 findings of this study can help guide strategic investment in pollution reduction.

463
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464 Conclusions

465 The rivers of the Ganga catchment are subject to widespread and, in places, severe microbial 

466 pollution. 52-67% of measured sites fall below the Indian Government’s upper and desirable 

467 limits for safe bathing; and for 61-70% of the population, model results suggest that their 

468 nearest river falls below these same bathing standards. The network structure of the Ganga 

469 catchment pre-conditions certain rivers to be highly polluted, and others (with large 

470 Himalayan headwaters) to be more robust against pollution, despite their location on the 

471 densely populated plains. The entire population upstream (not only those nearby) contribute 

472 to microbial river pollution but urban populations contribute more pollution per capita than 

473 rural populations. How much more depends on their respective population densities. A 

474 person living in an area with 1000 #/km2 contributes on average 100 times more pollution to 

475 the river than they would in an area with 100 #/km2. While this is an average in the presence 

476 of considerable (asymmetric) variability, the denser population in this case contribute at least 

477 as much pollution per capita at the lower limit and up to 10,000 times more at the upper limit. 

478 Densely populated areas dominate surface water pollution in the Ganga catchment not only 

479 because of they contain many people but because their faeces are more efficiently delivered 

480 to the river network. We suggest that this increasing efficiency reflects: the transmission 

481 speed of urban sewerage systems, delivering the coliforms to the river more quickly with less 

482 die-off; and the limited capacity for sewage treatment within these systems. Addressing this 

483 problem requires investment in both sewage removal and treatment whether by increasing 

484 existing sewerage capacity or implementing decentralised treatment solutions.

485
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659 Figures

660

661 Figure 1. Network graph of decadal mean FC concentrations (circle colour) and catchment area (circle size). 

662 Large red circles indicate high FC concentration and water discharge (thus high FC flux); smaller green circles 

663 indicate lower concentration and discharge (thus low FC flux). Sites with thick blue outlines pass Indian 

664 Government desirable standards of <500 MPN / 100 ml; those with thin blue outlines pass the upper limit of 

665 <2500 MPN / 100 ml [Central Pollution Control Board, 2008]. Rivers are labelled in blue; cities are labelled in 

666 black, with approximate populations, in millions, in brackets and grey boxes to show approximate extent. Inset 

667 shows a location map of the Ganga catchment. 
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668

669 Figure 2: catchment scale analysis of faecal coliform concentration against: a) upstream population density; b) 

670 upstream livestock density adjusted for variable coliform production rates; c) co-variation between upstream 

671 population and livestock density. Trend lines show quadratic (solid), cubic (dotted) and linear spline (dashed) 

672 regressions for a and b, and linear regression for c. Solid circles show non-nested (i.e. independent) 

673 observations, n=18; crosses show the full dataset, n=100. Labelled points are: A) Yamuna catchment at Delhi; 

674 and B) Pinder catchment at Karanprayag.

675
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676
677 Figure 3: sub-catchment based Faecal Coliform concentration against: a) upstream population density and b) 

678 upstream livestock density adjusted for variable coliform production rates; c) co-variation between upstream 

679 population and livestock density; d) predicted v observed coliform concentrations from multiple cubic 

680 regression with upstream population and livestock density. Trend lines show quadratic (solid), cubic (dotted) 

681 and linear spline (dashed) regressions for a and b, and linear regression for c. Solid circles show non-nested (i.e. 

682 independent) observations, n=18; crosses show the full dataset, n=100. Labelled points are: A) Yamuna 

683 catchment at Delhi; and B) Pinder catchment at Karanprayag. Contours in c show prediction surface from 

684 multiple regression.
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687 Figure 4. Model performance (Adjusted r2 for FC concentration v decay-adjusted UPD) with varying distance 

688 decay coefficient (k) for the three empirical functions fitted in Figure 2. Best performance is always for no 

689 decay (k=0); small coefficients (k < 10-4) have little effect; larger coefficients result in a breakdown in model 

690 performance.
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692 Figure 5. Scatter plots of faecal coliform (FC) concentration against upstream population density (UPD) 

693 adjusted with an exponential distance decay using a range of decay coefficients (k). Panels reflect decay rates 

694 of: a) 0 %/km, b) 0.01 %/km, c) 1 %/km and d) 10 %/km. Best model performance is for no decay (k=0); small 

695 coefficients (k < 10-4) have little effect; larger coefficients result in a breakdown in the relationship between 

696 UPD and FC concentration. 

697



ACCEPTED MANUSCRIPT

30

698

699 Figure 6. Spatial pattern of predicted coliform concentration. Dark blue areas have concentrations below 500 

700 MPN/100ml, the Indian Government’s desirable limit for safe bathing [Central Pollution Control Board, 2008]; 

701 light blue areas have concentrations below 2500 MPN/100ml, the upper limit for safe bathing [Central Pollution 

702 Control Board, 2008]. Inset shows the fraction of the river network (blue) and population (red) for which the 

703 nearest river has an FC concentration less than the x-axis value. Letters signify: (a) USA limit for safe bathing 

704 [U.S. EPA, 1976]; (b) Indian government desirable limit for safe bathing [Central Pollution Control Board, 

705 2008]; (c) WHO recommended limit for flood irrigation, or for crops eaten raw, or where children are involved 

706 in farming [WHO, 1989; Blumenthal et al., 2000]; (d) Indian government upper limit for safe bathing [Central 

707 Pollution Control Board, 2008]; (e) WHO limit for sprinkler irrigation [Blumenthal et al., 2000]. 

708
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