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Abstract

Detailed modeling of stellar evolution requires a better understanding of the (magneto)hydrodynamic processes
that mix chemical elements and transport angular momentum. Understanding these processes is crucial if we are to
accurately interpret observations of chemical abundance anomalies, surface rotation measurements, and
asteroseismic data. Here, we use two-dimensional hydrodynamic simulations of the generation and propagation
of internal gravity waves in an intermediate-mass star to measure the chemical mixing induced by these waves. We
show that such mixing can generally be treated as a diffusive process. We then show that the local diffusion
coefficient does not depend on the local fluid velocity, but rather on the wave amplitude. We then use these
findings to provide a simple parameterization for this diffusion, which can be incorporated into stellar evolution
codes and tested against observations.
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1. Introduction

Accounting for hydrodynamic processes in stellar interiors
over stellar evolution times has been the biggest source of
uncertainty when comparing theoretical results with observa-
tions. While Mixing Length Theory (MLT) has proven
extremely useful for characterizing mixing within convection
zones (Bohm-Vitense 1958; Kippenhahn et al. 2012), there
remain many uncertainties dealing with this mixing at
convective–radiative interfaces (Renzini 1987; Zahn 1991) and
within radiative regions (Pinsonneault 1997; Heger et al. 2000).
Nearly all stars host radiative regions, so it is critical we develop
methods for accurately parameterizing chemical mixing (and
angular momentum transport) in these regions.

Numerous theoretical models have been proposed for
incorporating mixing by (magneto)hydrodynamical processes
in stellar radiative zones into stellar evolution models. Myriad
hydrodynamic instabilities (Heger et al. 2000), rotationally
induced mixing (Eddington-Sweet circulation; Eddington 1925;
Vogt 1925; Sweet 1950), and magnetically induced mixing
(Taylor-Spruit dynamo; Spruit 2002) have been included in
modern stellar evolution codes. Still, many questions remain
about mixing within stellar radiative interiors. For example, it
is typically assumed that rotationally induced mixing is
dominant in massive stars, yet the observed lack of correlation
between nitrogen abundance and rotation rate for some stars
indicates additional mixing is needed (Brott et al. 2011), and
observations in multivariate parameter space suggest pulsa-
tional mixing is dominant for slow to moderately rotating OB
stars (Aerts et al. 2014). Similarly, differential rotation at late
stages of stellar evolution is lower than expected even when all
of these mechanisms are considered (Eggenberger et al. 2017).

In general, these multi-dimensional hydrodynamic effects
are parameterized as a diffusion coefficient within stellar
evolution codes. Each physical process has an instability

criterion based on local properties (e.g., shear). Once instability
is confirmed, a diffusion coefficient is constructed from the
length scale and growth rate of the instability. This diffusion
coefficient is then included locally (in space and time) in the
stellar evolution calculation. While this procedure is rather
rudimentary, it is clear from observations that additional
mixing within stellar radiative regions is required. It is only
recently, and in limited circumstances, that such prescriptions
are being tested against hydrodynamic calculations that self-
consistently calculate the development of the instability and the
subsequent mixing induced (Edelmann et al. 2017).
Internal gravity waves (IGWs) are known to propagate and

dissipate in radiative regions, which could lead to chemical
mixing and angular momentum transport. However, the
parameterization of IGWs in one-dimensional (1D) stellar
evolution codes is complex. The transport of angular
momentum by these waves cannot be treated as a diffusive
process; indeed, IGWs have an anti-diffusive nature. That is,
they drive, rather than dissipate, shear flows (Buhler 2009). For
this reason, IGW transport has generally not been treated in 1D
stellar evolution codes (except in the Geneva code; Charbonnel
& Talon 2005; Talon & Charbonnel 2005; in which their
treatment is complex). Yet, while it is clear that angular
momentum transport by IGWs cannot be parameterized with a
diffusion coefficient (Rogers 2015), it is unclear whether the
chemical mixing induced by waves could be treated diffusively
as previously suggested (Press & Rybicki 1981; Garcia-Lopez
& Spruit 1991). The purpose of this Letter is to first determine
whether wave mixing can be treated diffusively and, if so, to
determine how efficient that mixing is and whether it could be
reasonably parameterized in 1D stellar evolution models.

2. Numerics

2.1. Hydrodynamic Simulations

In order to measure mixing by IGWs in stellar interiors, we
solve the Navier–Stokes equations in the anelastic approximation
(Gough 1969; Rogers & Glatzmaier 2005). The equations are
solved in two dimensions (2D) representing an equatorial slice of
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the star. Our reference state model is that of a 3Me star with a
core hydrogen content of 0.35, calculated using Modules for
Experiments in Stellar Astrophysics (MESA; Paxton et al. 2010,
2015). We solve the equations from *R0.03 to *R0.70 , the initial
rotation rate is uniform and equal to 10−6 rad s−1. The simulation
is run a total of 4×107s, or approximately 40 convective
turnover times. The details of the equations and numerical
methods used can be found in Rogers et al. (2013). Ideally, we
would solve the equations in 3D as in Alvan et al. (2015), but few
simulations such as these have been done for massive stars
(Browning et al. 2004; Augustson et al. 2016) and none that
include extended radiative zones. We discuss the role this reduced
dimensionality might play in Section 5.

Like all hydrodynamic simulations our viscous and thermal
diffusion coefficients are larger than is typical in real stars.
Therefore, our waves are damped more than they would be in
actual stellar interiors. Unlike the simulations presented in
Rogers et al. (2012, 2013), these models are not “over-forced”
so their rms velocities in the convection zone are similar to that
expected from MLT (see Figure 3).

2.2. Tracer Particles and Diffusion

To determine whether mixing by IGWs behaves like
diffusion, we introduce tracer particles within the simulation.
We use tracer particles instead of solving a compositional
advection–diffusion equation because such a method would
require an explicit diffusion that would dominate any mixing
coefficient. For simplicity we regard time as continuous and only
measure radial diffusion. At some time of interest we introduce
N particles, distributed uniformly in space, and track them for a
time T to produce N particle trajectories (particle positions in
time, Ri(t)). We then consider all the sub-trajectories of duration
τ and use a cubic spline function w to interpolate between the
start of each sub-trajectory (Ri(t)) and the grid position. The
length of a sub-trajectory (displacement of a particle) is then

t+ -( ) ( )R t R ti i . We then calculate the following profiles:
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Here, t( )n r, is the number of sub-trajectories starting at r of
duration τ. t( )P r, is the sum of the lengths of these sub-
trajectories, and t( )Q r, is the sum of the lengths squared of
these sub-trajectories. If there is a mean velocity field u(r), then
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Lower values of τ can result from many time differences, while
larger values of τ can only result for long timeline data.4

Therefore, low values of τ represent more data for a given T,
while larger values represent fewer data points. If particle
motion is purely diffusive with zero mean, then, provided that
the distance moved by particles in time τ is smaller than the
distance over which the diffusion coefficient varies, we would
have

t
t
t t

=( ) ( )
( )

( )D r
Q r

n r
,

,

2 ,
, 5

where t( )D r, is the diffusion coefficient at r. If there is a mean
velocity field in addition to diffusion, then we would have
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If the motion is purely diffusive, then D will not depend on τ,
but if there is a more complicated background velocity field,
the situation is more complicated, as shown in the next section.

2.3. Wave Motion with Diffusion

In order to under understand the motion of a particle in a
wave acted on by diffusion, we consider a particle moving in a
wave field with velocity given by w f w+( )A tcos and with
random fluctuations given by N(t) so that its equation of motion
is

w f w= + +( ) ( ) ( )dx

dt
A t N tcos . 7

This can be integrated to give

òf w= + +( ) ( ) ( ) ( )x t A t N s dssin . 8
t

0

Now we assume that N(t) is Gaussian white noise with standard
deviation σ so that ò s=( ) ( )N s ds W t

t

0
, where W(t) is a

Wiener process (Doob 1953). We consider an ensemble of
trajectories and average uniformly over the phases f and
the Wiener process using á ñ =( )W t 0 and á ñ =( ) ( )W t W s

( )s tmin , . Then, we have the expectation (denoted with á ñ ) of
the position

á ñ =( ) ( )x t 0 9

and

t wt s tá + - ñ = - +[ ( ) ( )] [ ( )] ( )x t x t A 1 cos . 102 2 2

This function of τ is the sum of a linear function ( s t+A2 2 )
and an an oscillatory function wt- ( )A cos2 ). At large times
(tw  1) there is a linear trend with gradient s2. From this
gradient we can then extract the effective diffusion coeffi-
cient s=D 22 .

2.4. Application to Numerical Simulations

We carry out this procedure in post-processing. That is,
given saved velocity data from our hydrodynamic simulations
at time intervals t, we introduce N particles into our numerical
simulation and measure D using the above procedure. Since the
procedure is done in post-processing, we can include an
arbitrary number of particles to check numerical convergence,
and we can also vary the type of particle interpolation and the
number of time steps over which we track the particles.

4 As an example, if the time step is 1 and T=100, a time difference of
t = 10 can result from 10–0, 11–1, 12-2, and so on, while a τ of 98 can only
result from 98–0, 99–1, and 100–2.
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Figure 1 shows time snapshots of the vorticity and particle
positions (only 15,000 shown) at four different times.

We checked our procedure against a hydrodynamic simula-
tion with particles run within the simulation in order to confirm
our velocity data was taken at fine enough time resolution. We
find that in order to measure a diffusion coefficient within the
radiation zone, we need long timeline data, but not very finely
spaced. However, to smoothly resolve the convective–radiative
interface, we need finely spaced time data over a shorter
timeline. In this Letter, we are concerned with the diffusion
profile within the radiation zone, so we integrate over long
timelines with longer time steps and note that our convective
and overshoot profile is neither well resolved nor well
described as a diffusive process.

3. Particle Trajectories and Diffusion

The first question to address is whether the movement of
particles due to the action of waves can be treated as a diffusive

process. To test this, we plot the mean squared displacement as
a function of τ in Figure 2(a) with different line types of the
same color showing dependencies on the number of particles
used and different colors showing different radii (see the
caption for details). There, we see that at low τ the particles
indeed behave like diffusion (the mean squared displacement is
a linear function of τ). However, at larger τ, there is not enough
data to confirm the diffusive nature. We also see that different
radial levels have different slopes.
Using low values of τ (2.5 ´106 s, for which we have

sufficient data), we compute the diffusion coefficient as a
function of radius, which is shown in Figure 2(b), again with
different line types showing different numbers of particles. The
vertical black solid line shows the convective–radiative inter-
face, while the vertical black, blue, and red dashed lines show
the radial positions shown in (a). There, we see that the overall
radial profile of diffusion coefficient within the radiation zone
is robust to variations in particle number, thus demonstrating
convergence. We also see that there is a rapid transition from

Figure 1. Time snapshots of vorticity (color, units are rad s−1) with particle positions, indicated with white dots overplotted. Particle positions in (a) represent a subset
of the initialized particles. One can clearly see movement of the particles, in response to wave motion, in the radiation zone in (b)–(d) and particles within the
convection zone are fully mixed (difficult to discern as they cover the region).
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the behavior in the convection zone to that in the radiative
region. We note that, while there is a diffusion coefficient
(plotted and measured) within the convection zone and
overshoot region, the behavior in those regions is generally
not diffusive, particularly in the convection zone. The mean
squared displacement as a function of τ does not lie on a
straight line. Therefore, applying a diffusion coefficient in these
regions is not appropriate. However, we can see from Figure 1
that particles mix much more rapidly within the convection
zone than in the radiative region, as expected.

In general, within the radiation zone, the amplitude of the
diffusion coefficient rises with increasing distance from the
convection zone. There is decay just outside the convection
zone due to the fact that our thermal diffusivity is constant,
rather than a function of radius (we discuss this in Section 4).
The radial increase is proportional to a factor between r-1 and
r-1 2, which we show as black dashed lines and which we also
discuss in Section 4. Therefore, we conclude that (1) IGWs
mixing in the radiation zone can be treated as a diffusive
process and (2) the radial profile of diffusion is robust and is
proportional to a function between r-1 and r-1 2.

4. Parameterization of the Diffusion Profile

In order to find a useful parameterization of IGWs to be used
in one-dimensional (1D) stellar evolution models, we would
like to know both the amplitude and the radial profile of
diffusion from our simulations. We find that the amplitude of
the diffusion coefficient we obtain within the radiation zone is

correlated with the rms velocity within the convective zone. In
the model presented, the rms velocity in the convection zone is
decreasing in time. This is an artifact of the fact that we force
the convection through a superadiabaticity, which is reduced
due to efficient convection. In previous simulations, we have a
used a forcing term to drive convection in order to avoid this,
but here we allowed this to investigate the role of convective
velocities. We see how this decay affects the diffusion
coefficient in the radiation zone in Figure 3—as convective
velocities decrease, the diffusion coefficient decreases. As we
show later, this is because the rms velocity within the
convection zone sets the wave amplitudes within the radiation
zone. Within a 1D stellar evolution code, the rms velocity
could be approximated as the convective velocity given
by MLT.
Independent of the amplitude of the diffusion coefficient, we

find that the radial profile of diffusion seen in Figure 2 is robust
across choices of numerical diffusion (the thermal and viscous
diffusivity are each varied by an order of magnitude) and
convective velocities. Now we would like to determine what
sets the radial profile of diffusion. In Figure 4, we plot the rms
velocity (black asterisks), the wave amplitude squared (red
crosses), and the diffusion coefficient (blue crosses) as a
function of radius. The wave amplitude is calculated with
Equation (12) using the largest-scale waves and all frequencies
we calculate (up to 500 μHz). In general, frequencies above
∼40 μHz do not contribute as their generation amplitudes are
too low. We see that the diffusion profile closely correlates
with the wave amplitude squared. This numerical finding is
consistent with the theoretical prediction that diffusion is the
autocorrelation of the Lagrangian velocity field. In this case,
the velocity field is the wave amplitude, which is correlated
over long timescales. The diffusion profile is not correlated
with the local rms velocity, which is again consistent with with
the theoretical expectation that diffusion is the autocorrelation
of the velocity field, as the local rms velocities are not
correlated over long timescales and hence have negligible
autocorrelation.

Figure 2. Particle diffusion. (a) Mean squared displacement as a function of
time difference τ, with total time tracked, T=107s. Different colors indicate
different radii (as indicated by the vertical dashed lines of the same color in
(b)). (a) Different line types represent different numbers of particles with 1
million (solid line), 100,000 (dashed line), and 50,000 particles (dotted line).
(b) The diffusion coefficient as a function of radius with different line types as
in (a). There is no perceptible difference in diffusion coefficient within the
radiative zone for varying particle number, indicating convergence. Dashed
black lines represent r-1 2 and r-1.

Figure 3. rms velocity (black asterisks) and diffusion coefficients vs. time.
Diffusion coefficients are at *R0.375 (red diamonds) and at *R0.675 (blue
asterisks) and are calculated using Equation (6) and a particle tracking time,
T=106 s.
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Due to numerical constraints (dimensionality, diffusion
coefficients) it is likely the IGW amplitudes in our simulations
are not realistic. Using our numerical result that diffusion is
proportional to the wave amplitude squared, we now turn to
theoretical models for a parameterization of wave diffusion in
stellar interiors. The amplitude of an IGW depends on the wave
driving at the convective–radiative interface, the radiative
damping of the wave, and the density stratification. The
wave driving is directly correlated with the rms velocity within
the convection zone, ‐vrms cz (Garcia-Lopez & Spruit 1991).
Within the radiation zone, the wave is damped by thermal
diffusion (Kumar et al. 1999) and amplified by the density
stratification (due to conservation of pseudomomentum;
Buhler 2009). Therefore, the wave amplitude is determined
from the simple function

r
r

= t w
-

-
⎛
⎝⎜

⎞
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( ) ( )‐
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k r
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where rtcz is the density at the top of the convection zone. From
Figure 4 we estimate the diffusion due to IGW as

 w= ( ) ( )D v k r, , , 12hmix wave
2

where  has units of s and t w( )k r, ,h is the damping “optical
depth” of a wave defined in Kumar et al. (1999) as
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where κ is the radiative diffusivity, kh is the horizontal
wavenumber of the wave, rtcz is the radius at the top of the
convection zone, N is the Brunt–Väisälä frequency, and ω is the

frequency of the wave. For simplicity, we have assumed no
Doppler shift in the frequencies of the waves. is an unknown
constant, which is ∼1 s in our models. Although the precise
value is unknown, we do not expect it to vary significantly
from this (see Section 5).
The initial decay of diffusion outside the convection zone is

due to the fact that we use a constant thermal diffusion coefficient,
κ, rather than the stellar radiative value. The numerical value used
is ´2 1012 cm2 s−1 throughout, while the value in the star varies
from 107 cm2 s−1 at the convective–radiative interface to
1015 cm2 s−1 at the surface of the star. Therefore, throughout
our computed radiative zone, we are damping the waves more
than they would be damped in the stellar interior, this is
particularly true just outside the convection zone and is the reason
for the initial decay seen in the wave amplitude squared (red line
in Figure 4). This is demonstrated by the black lines that show the
wave amplitude computed using Equation (12) with the value of
κ used in our simulation (solid line) and the values of κ from the
stellar model (dashed and dotted lines). For this simple calculation
we have assumed that the waves are linear and non-interacting
and that the wave amplitude at the convective–radiative interface
is half the rms velocity.5 Predictions for the frequency spectra of
waves generated by convection at a given wavenumber range
from w-3 (Kumar et al. 1999; Lecoanet & Quataert 2013) to w-1

(Rogers & MacGregor 2010; Rogers et al. 2013). Therefore, the
dashed and dotted lines represent a frequency generation spectra
of velocity proportional to w-3 and w-1, respectively, to cover
that range. We integrate over the same frequency range and scales
as for the numerical results (red asterisks in Figure 4). We see that
the initial decay outside the convection zone is purely an artifact
of enhanced diffusion for numerical purposes and is not physical.

5. Discussion

In this Letter, we have demonstrated that the mixing by
IGWs within radiative regions can be treated as a diffusive
process. We have further shown that the local amplitude of the
diffusion coefficient depends on the local wave amplitude. The
wave amplitude, in turn, depends on the convective forcing
( ‐vrms cz), the thermal damping of the wave, and the density
stratification in a simple way. Therefore, a prescription for the
diffusion coefficient due to mixing by IGWs can be easily
implemented using Equations (11)–(13) assuming MLT
velocities for the rms velocity and all other parameters
determined by the stellar model. The one parameter that is
left is. While this value is ∼1 s in our simulations, its precise
value may depend on the stellar viscosity/thermal diffusivity,
the rotation, and the dimensionality. Thermal diffusivity is
already accounted for in (13). Since viscosity is enhanced in
our simulations, one would expect  = 1 to be a lower limit.
However, one does not expect viscosity to play a role in the
propagation of linear waves, so the prescription in (13) where
 = 1 likely still holds. In the case of rotation, fast rotation
would likely reduce the wave amplitude, and hence  = 1
would be considered an upper limit, but that is likely a small
effect. It is unclear what effect our reduced dimensionality has
on the waves. Assuming that simple one-dimensional wave
propagation is sufficient, the dimensionality likely only affects

Figure 4. rms velocity (black asterisks; cm2 s−2), wave amplitude squared (red
crosses cm2 s−2), and diffusion coefficient (blue crosses; cm2 s−1) vs. radius.
Wave amplitude squared is calculated using the largest-scale wave (kh=1)
and all frequencies. Black lines represent the wave amplitude squared
calculated using Equation (12). The solid line assumes k = ´2 1012

cm2 s−1 as in the numerical simulation and a frequency spectrum at generation
of velocities wµ -1, while the dotted and dashed lines use κ from MESA and a
frequency spectrum at generation of velocities w wµ - -,1 3, respectively.

5 This amplitude comes from a simple calculation assuming ~F MFw c
(Lecoanet & Quataert 2013), where M is the Mach number of the convection
and Fc and Fw are the convective and wave fluxes, respectively. We assume
that ~F F v v, ,c w c w

3 3; therefore, ~v M vw c
1 3 . Assuming ~M 0.1 then ~vw

v0.47 c.
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the wave generation spectrum. Taking all this into account, the
best approach would be to assume  = 1 and vary the wave
generation spectrum incorporated through Equation (13). Then
the one parameter of the model would be the exponent of the
frequency spectrum of wave generation.

Given numerical limitations, for the foreseeable future the
most reliable constraints on  would come from comparisons
between theoretical models using this prescription and
observations of slowly rotating intermediate-mass stars.
Asteroseismic inversions could place constraints on near-core
mixing (Moravveji et al. 2015, 2016), while spectroscopic
observations may place constraints on subsurface mixing.
Simultaneous comparisons between theoretical evolution
models and spectroscopic and asteroseismic data could provide
constraints on the entire diffusion profile and indeed may help
place constraints on the wave generation spectrum.

Finally, our simulations only extend to *R0.7 . Extending our
linear calculations using Equation (11) shows that the wave
amplitude continues to increase until just beneath the stellar
surface. It is likely that these waves break (Rogers et al. 2013),
and hence the surface diffusion coefficient may be enhanced
(due to turbulent mixing) beyond what is expected from linear
wave behavior. Numerical simulations attempting to resolve
the wave dynamics near the stellar surface will be forthcoming.
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