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Abstract: Methane can be released from the vast marine hydrate reservoirs that surround 

continents into oceans and perhaps the atmosphere. But how these pathways work within the 

global carbon cycle now and during a warmer world is only partially understood. Here we use 

3-D seismic data to identify what we interpret to be a gas venting system that bypasses the 

hydrate stability zone (HSZ) offshore of Mauritania. This venting is manifested by the 

presence of the acoustic wipe-out (AWO) across a densely faulted succession above a salt 

diapir and a set of morphological features including a substantial, ~260 m wide and ~32 m 

deep, pockmark at the seabed. The base of the HSZ is marked by a bottom simulating 

reflector (BSR) which deflects upwards above the diapir, rather than mimicking the seabed. 

We use a numerical modelling to show that this deflection is caused by the underlying salt 

diapir. It creates a trapping geometry for gas sealed by hydrate-clogged sediment. After 

entering the HSZ, some methane accumulated as hydrate in the levees of a buried canyon. 

Venting in this locality probably reduces the flux of gas to the landward limit of feather edge 

of hydrate, reducing the volume of gas that would be susceptible for release during a warmer 

world. 
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1 Introduction 

Methane is a potent greenhouse gas and vast quantities of it are stored in marine hydrate, 

a crystalline lattice of water and methane-dominated gas (Sloan and Koh, 2008). Its 

susceptibility to ambient conditions (pressure, temperature and salinity) makes it an unstable 

large carbon capacitor (Dickens, 2003; Ruppel, 2011). Long-term atmospheric temperatures 

could change if a small proportion of released gas entered the atmosphere (Archer et al., 

2009). Therefore, understanding under what circumstances methane can bypass hydrated 

sediment and enter the atmosphere is important for assessing the impact of deep-buried 

methane on climatic change. Vigorous gas plumes in which gas bubbles rise within clusters 

and reach sea surface before not all of these gases are dissolved and oxidised in water body 

(McGinnis et al., 2006). This mechanism could take place where effective venting systems 

operate. 

 

The feeder system for the gas vents can be detected by seismic imaging and can take 

the form of gas chimneys, which are vertically aligned reflections that probably represent 

clusters of hydraulic fractures (Hovland and Judd, 1988; Cartwright et al., 2007). Gas-rich 

pore fluid can be vented at different flux rates (Roberts, 2001). As a result, the morphological 

feature at the seabed can be pockmarks (Moss and Cartwright, 2010), pingoes that host 

hydrate in the near-seabed sediment (Serié et al., 2012), and mud volcanoes produced by the 

outflowing mud and water (Milkov, 2000). Gas venting from these point sources constitutes 

an important part of the known output of gas escaping from marine sediments (Judd, 2003). 
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Here we use 3-D seismic dataset to image what we interpret to be a gas venting 

system in which gas bypasses the feather edge of marine hydrates. What is unique here is the 

spatial relationship between the feather edge and the gas vent. It increases gas emission and 

hence prevents free gas from migrating landward, thus reducing the volume of gas located in 

the feather edge of hydrate, that is susceptible to melting during short-term ocean warming. 

 

2 Gas hydrate and feather edge 

In deep-water settings gas hydrates can be revealed by a bottom simulating reflector 

(BSR) in seismic reflection data. It marks the base of the hydrate stability zone (HSZ) and is 

produced by an acoustic impedance contrast between sediments containing gas and hydrate 

(Shipley et al., 1979; MacKay et al., 1994). This base shallows landwards until it intersects 

the seabed and this zone is termed the feather edge, a critical site for understanding the 

dynamics of marine hydrate (Ruppel, 2011; Berndt et al., 2014). Here ~3.5% of the global gas 

hydrate inventory is trapped (Ruppel, 2011) and warming of bottom water can destabilise the 

near-seafloor gas hydrate, which is evidenced by the presence of gas plumes (Westbrook et 

al., 2009; Skarke et al., 2014) and predicted by numerical modelling (Phrampus and 

Hornbach, 2012; Marín-Moreno et al., 2013). The released methane can lead to ocean 

acidification and deoxygenation and perhaps climatic warming (Kvenvolden, 1993; Archer et 

al., 2009; Biastoch et al., 2011). 

 

3 Geological setting 

The sedimentary features along the Mauritanian continental slope include canyon 

channel systems, submarine slides and contourite moats (Krastel et al., 2006). The 

sedimentation rates in different locations vary considerably (Krastel et al., 2006). Core 

samples of up to 10 m long were recovered from GeoB 8509-2, GeoB 8520, GeoB 9624-1, 
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GeoB 9623-2 and GeoB 9626-1 and show that the near-seabed deposit is predominately 

turbidite and hemi-palegic sediments (Zühlsdorff et al., 2007; Henrich et al., 2008; Henrich et 

al., 2010). Halokinesis is evidenced by the diapiric structures in a narrow elongate zone 

between 16 °N and 19 °N offshore the West Africa Continent and the age of the salt is 

probably Early Jurassic (Rad et al., 1982). A salt diapir (located in 18°30’N, 16°50’W) has 

been revealed by the negative Bouguer Anomaly. The study area is to the south of the Tioulit 

Canyon (Fig. 1). To the north seismic features of complete feather edge have been recorded 

before (marked by blue box of solid line in Fig. 1a, Davies et al., 2015). 

 

Two wells, Chinguetti-6-1 and V-1, have been drilled within the 3-D seismic survey 

and ~30 km north of the study area, confirming that the coastal basin of Mauritania is a 

potential petroleum province and the Cenomanian-Turonian mudstones are able to generate 

hydrocarbons (Vear, 2005). Seismic features linked to vertical gas migration include seismic 

chimneys (Davies and Clarke, 2010) and large-scale gravity-driven faults (Yang and Davies, 

2013). The BSRs, either relict or modern ones, can be observed, which makes this site ideal 

to research methane recycling in marine hydrate system (Davies and Clarke, 2010; Davies et 

al., 2012). 

 

4 Seismic dataset and methodology 

The 3-D seismic data cover an area of ~4000 km2. They have been processed by 

multiple suppression and post-stack time migration. The final bin spacing is 25 m × 25 m. 

These data are displayed in two-way-travel time (TWTT). The velocity of succession 

investigated here is likely to be ~1800 m/s and the dominant frequency of seismic data is ~50 

Hz, which together yield a vertical resolution of ~9 m. The positive acoustic impedance is 

recorded as a seismic trough, which is a red-black loop in the seismic profile. A good 
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example of the reflection having such loop is the seabed one. The BSR is a black-red loop, 

consistent with a negative acoustic impedance contrast. The seismic attributes used here are 

root mean square (RMS) amplitude and dip magnitude. Both help identify bright spots (e.g. 

potential hydrocarbons) and structural features (e.g. pockmarks and faults), respectively 

(Brown, 2010). The time window of calculating the RMS amplitudes for each map is ±40 ms 

along the surface of the peaks or the troughs of a tracked reflection. 

 

5 Observations 

5.1 Fault systems and seabed features 

13 planar faults (named F1 to F13) with a NNW-SSE trend are identified on the basis of 

clear offsets in stratal reflections (Fig. 1c). They all have a curved, concave-up geometry in 

cross section (Fig. 1c, d). There are additional faults that are not so clearly imaged due to 

acoustic wipe-out (AWO), particularly in the area bounded by F1, F2 and F4 (Fig. 2a, b). All 

the faults are normal, though the throw of some of the faults is indiscernible at the seismic 

scale. The faults have a similar angle of dip of ~50° and together form a crestal collapse 

graben system (Fig. 1c, d). The lower tip points of the faults are located at the top of a salt 

diapir (Fig. 1d). F1, F2 and F4, which are the major faults, have a throw of <10 ms (c. <9 m) 

near the seabed and break surface whereas other faults tip out below the seabed (Fig. 1d). The 

spatial correlation between the intruding diapir and the resultant faulting pattern has been 

seen in other settings, for example offshore of North Carolina (Schmuck and Paull, 1993) and 

Angola (Serié et al., 2012). 

 

The morphological features at the seabed include fault scarps and a set of mounds and 

depressions (Fig. 1b, Fig. 2). Four of them are selected for description here. Their expression 

at the seabed varies from sub-circular to well-rounded (Fig. 2g-j). The long axis ranges from 
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170 m to 410 m and the positive and negative deflections are ~27 – 53 m and ~32 m, 

respectively (Fig. 2). Their morphologies on the seismic profile are a symmetrical mound (II, 

IV) or a depression (III), or the asymmetrical complex with a combination of both (I) (Fig. 2). 

The positive relief have a comparable morphology with the Arctic ice-cored hills in Canada 

which are driven by growth of segregated ice or intrusion and progressive freezing of a sub-

pingo water lens (Mackay, 1987). 

 

5.2 BSR and diapir 

The BSR is identified based on the characteristic features of high seismic amplitude 

and negative polarity over the area covered by the entire seismic dataset. In this case the BSR 

has a geometry of an elongate, upward deflection that is analogous to an anticline (Fig. 3a), 

rather than mimicking the seafloor in most cases (cf. offshore Oregon, Bangs et al., 2005). 

Along the intersection between the faults and the BSR we identify some examples of positive 

relief of ~20 – 30 m in height (Fig. 2d and f, Fig. 3a). A salt diapir is ~1050 ms (c. 945 m) 

below seabed and characterised by a chaotic internal seismic facies. Its top reflection is a red-

black loop representing the same polarity with seabed (Fig. 2). The diapir is elongated along 

the NNW-SSE direction that is similar to the trend of the faults. Its hinge line is spatially 

coincident as the region of maximum deflection of the BSR. 

 

The RMS amplitude map of the BSR displays some high-amplitude anomalies, most 

of which are within the convex upward part of the BSR (Fig. 3b). These anomalies, which we 

refer to as high-amplitude bands, have a crescent or linear geometry (Fig. 3b). Their strike 

does not coincide with the depth contour of the BSR. Their width ranges from 150 m to 500 

m. For each band, the amplitude variation is symmetrical, with the highest amplitude in the 

middle of the band and decreasing to both of its sides (Fig. 3b). 
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5.3 Positive high amplitude anomaly (PHAA) in levees 

There are a set of ENE-WSW oriented buried canyons which have a low sinuosity (Fig. 

3 and 4) above the BSR. These canyons have a multistory, aggradational and laterally offset 

stacking pattern (Fig. 4a), which is similar to that of the channel-levee system in offshore 

Nile delta (Catterall et al., 2010). The paleo-canyons are buried 50 – 65 ms (c. 45 – 58.5 m) 

below the seabed and have a V-shaped cross-sectional morphology. The steepness of the 

canyon walls decreases with decreasing burial depth. Sediments filling in the canyons have 

sub-horizontal reflections (Fig. 4a). Three paleo-canyons are recognised and of our interest is 

the oldest one that has a width of ~450 m in seismic cross section (marked in blue in Fig. 4a). 

The depth of the channel ranges from 25 to 45 ms in TWTT (c. 22.5 – 40.5 m) and increases 

with water depth. The thalweg trend is sub-parallel to the dip of the modern seabed (Fig. 3b). 

It bifurcates near F1 (Fig. 4d), but the accurate location of divergence is unclear due to the 

overprinting effect of the BSR. 

 

The reflections, which downlap upon the paleo-seabed B (marked in dashed orange lines 

of Fig. 4a), are interpreted to represent sediments deposited in levee. Some positive high 

amplitude anomalies (PHAAs) are found within these reflections. These PHAAs originate 

from the place where the BSR intersects with F1 (Fig. 4c, d). They are juxtaposed along F2 

and fade out in an up-dip direction (Fig. 4d). The amplitude map of reflection A shows that 

the PHAAs occur at both flanks of the canyon, each with a wedge-like geometry (Fig. 4d). In 

plan view they are bounded by the canyon wall and F2. The maximum value of the PHAA is 

largest near F2 and the amplitude values decrease updip and also away from the canyon (Fig. 

4d).   
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6 Interpretations 

6.1 Gas venting 

AWO is a seismic response to gas filling in pores of sediment, which causes decrease 

of P-wave velocity, severe ray bending, signal scattering and high transmission loss 

(Anderson and Hampton, 1980). The result of signal lost or scattered is presented as acoustic 

fade-out or wipe-out in the seismic cross section. The cores sampled as the shallow sediment 

in the Bering Sea confirmed that AWO is caused by gas (Abrams, 1992). Therefore, we 

interpret that the AWO zones, either ~200 m wide below the features of I–IV or km-scale 

wide ~300 m below the BSR (Fig. 2), indicate the presence of free gases and escaping of gas 

along faults towards the seabed. 

 

The sub-circular depression (III, Fig. 2), which is a pockmark, suggests the 

occurrence of venting of gas-rich pore fluid (Cartwright and Santamarina, 2015; Hovland and 

Judd, 1988). The positive relief of I, II and IV could be the mud cone, the sediment of which 

is unloaded onto the seabed after being transported vertically in a liquefied way (Dimitrov, 

2002). Their morphology is comparable to the mud volcanos found in the Gulf of Cadiz but 

of smaller dimension (Somoza et al., 2003). The rate of the migration related to formation of 

mud cones is documented to be fast (Roberts, 2001). Alternatively, the local up-bending of 

the seabed could solely result from hydrate accretion, during which pore volume will expand 

due to the less density of methane hydrate than that of seawater (Soloviev and Ginsburg; 

1994). Such features, named as pingos, were seen in offshore of Angola (Serié et al., 2012) 

and Norwegian Sea (Hovland and Svensen, 2006), which were interpreted to suggest seepage 

of hydrocarbon gas. Actually when focused fluid expulsion has a varying flux, its expression 

at the seabed has a spectrum of features, rather than an exclusive one (Roberts, 2001; Roberts 

et al., 2006). In the venting system, the flux rate may vary with time and space, thus it is 
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likely that some features mentioned above may occur in a locale simultaneously and their 

seismic features could overprint on each other. Overall, the presence of these features coupled 

with AWO is compelling evidence of gas bypassing the feather edge of marine hydrate.  

 

6.2 Gases trapped below the BSR 

In seismic reflection data high-amplitude bands (Fig. 3d) are a common seismic 

response to the interface between hydrated sediments above the BSR and gas-bearing 

sediments below it (Davies et al., 2015). Similar features have been described before by Li et 

al. (2016) in the same seismic survey. Most of the bands here are within the upwarping region 

of the BSR (Fig. 3b). The relief in the BSR creates a trapping geometry for free gas 

(Kvenvolden, 1993). Furthermore, under the eastern flank of the upwarping BSR we found a 

set of flat spots (Fig. 3a), an evidence for the phase boundary between gas and water, or gas 

and oil (Brown, 2010). Therefore, we interpret that free gases are trapped below the BSR. 

 

6.3 Hydrates hosted in levees 

Silty sand can be found in the cores sampled in levee successions near the seabed 

(Henrich et al., 2010) and it potentially traps gas and hydrate stratigraphically. Hydrate filling 

in pores of sediment can increase its acoustic impedance to the level such that it can be 

displayed as enhanced reflections in seismic data because of a higher P-wave velocity of 

methane hydrate (3750 – 3800 m/s, Helgerud et al., 2009). We interpret the PHAAs (marked 

in Fig. 4d) as an isolated methane hydrate trap. The fact that the PHAAs have lower 

amplitude than the BSR coincides with the synthetic seismic result which reveals that in 

marine sediment gas/hydrate phase boundary normally has a higher acoustic impedance 

contrast than the hydrate/brine interface (Zhang et al., 2012). 
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The amplitude variation of the PHAAs at reflection A may be the result of gas 

migration. We interpret that gas breached the sealing at the level of BSR near the intersection 

between faults and reflection A. The juxtaposition of the high-amplitude reflections along F2 

(Fig. 4c) suggests that the sediments represented by these PHAAs could be inter-connected 

and permeable before faulting. If this gas could migrate along the levees, Darcy’s law would 

allow us to predict that the concentration of hydrate converted from gas decreases with 

distance towards up dip. This result is consistent with amplitude variation at reflection A. An 

alternative explanation for the amplitude variation in the PHAAs is the distribution of pores 

of sediment, the prediction of which can be guided by sedimentology. In a channel-levee 

system the coarser-grained sediment was unloaded near the channel, while the finer-grain one 

in distance. Given that the primary pores narrowed uniformly after compaction, the sediment 

near the channel can host more hydrate than that far away from channel. However, which 

factor controls the amplitude variation is uncertain in this case. 

 

7 Discussion 

7.1 BSR deflection 

The upward deflection of the BSR has been seen before (Hornbach et al., 2005) and is 

attributed to the underlying salt diapir which has a higher thermal conductivity and hence 

changes thermal regime. Here to testify whether the salt diapir affects the BSR depth, we 

assume the thermal conductivity of the salt (6 W m-1 K-1, Hornbach et al., 2005) then use the 

2-D heat conduction modelling. Its steady state can be expressed as: 

��
���

���
+ ��

���

�	�
= 0 

where �[Θ] is the sediment temperature, �[L] and 	[L] are the sediment length and depth 

below the seafloor, respectively. ��[MLT -3
Θ

-1] and ��[MLT -3
Θ

-1] is the sediment thermal 

conductivity in the horizontal and vertical direction, respectively. The subsurface sediment 
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other than that within the salt diapir is assumed to be isotropic and homogeneous. An 

enhanced red reflection is interpreted as the top of the salt diapir (Fig. 5) and the nodes below 

it are assumed to have a higher thermal conductivity than the surrounding sediments (1 W m-1 

K-1). Any middle point of two known neighbouring nodes A and B has a thermal 

conductivity	��: 

�� = 2�1 �⁄ + 1 ��⁄ ��� 

where �[MLT -3
Θ

-1] and ��[MLT -3
Θ

-1] is the thermal conductivity at node A and B, 

respectively. We obtain the pressure profile by assuming the hydrostatic pressure gradient of 

10.09 MPa/km. The BSR depth is determined by the intersecting point of geotherm and 

methane hydrate stability curve (we assume gases are 100% methane). The latter has been 

digitalised by Lu and Sultan (2008) and a correction of seawater salinity of 35 ppt on this 

stability curve is made. The 2-D steady state equation is then discretised in space using finite 

differences and solved using MATLAB’s MLDIVIDE function. The model has a 350 × 800 

cell temperature grid and is subjected to the boundary conditions: 

T	=	��� + ��	 − 	���,	 �	=	0	km,	 	��	�			�	5	km	

T	=	��� + ��	 − 	���,	 �	=	8	km,	 	��	�			�	5	km	

∂T⁄∂z		=	J,	 0	km	�	�	�	8	km,	 		 =	5	km	

T	=	����	�,	 0	km	�	�	�	8	km,	 	 = 	�����	

where ���[Θ] is the temperature of the seabed and at each water depth, 	�����[L], the 

seabed temperature, ����	�[Θ], is obtained from World Ocean Data (WOD). J [ΘL-1] is the 

geothermal gradient. This model is first used in the places where the BSR mimics the seabed 

to get the geothermal gradient fitting best with the seismic observation (32oC km-1), then in 

the study area. 

 

The result shows that the modelled BSR has a good match with the observed one, 

particularly across the crest of the diapir (Fig. 5). This implies that the salt diapir changed the 
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thermal regime and hence controls the geometry of the BSR. This increases the vertical relief 

of the BSR and therefore the relief of the trap. It is likely that some of the local mismatches, 

in particular the ones characterised by the local positive relief that is ~100 – 300 m wide 

adjacent to some of the faults (marked by the right two black arrows in Fig. 5), may be 

caused by warm focused flow that leads to local hydrate re-equilibrium (Crutchley et al., 

2014). Therefore, the BSR relocation is the result of heat transfer in the form of diffusion 

coupled with local advection. However, there are some uncertainties that lead to the 

inaccuracy of the modelling result. Ionised salt can hinder hydration, leading to the thinning 

of the HSZ (Sloan and Koh, 2008). But it is hard to quantitatively evaluate the inhibiting 

effect of salt on the BSR depth due to the difficulty associated with predicting the salinity 

increased by upward movement of dissolved salt via diffusion and advection. Uncertainties in 

the modelled BSR depths may also stem from error estimates of geothermal gradient, thermal 

conductivity of sediments, velocity model in the subsurface and temperatures at the seabed. It 

cannot be entirely ruled out that the match between the modelled and observed BSR is a 

coincidence resulting from these uncertainties. 

 

7.2 Implications 

In general, hydrated sediment is an effective barrier for free gas during its ascent in 

the subsurface (Nimblett and Ruppel, 2003). Occasionally this gas can reach the seabed by 

itself, such as when the pore pressure of its reservoir in a hydrate province reaches a level that 

the fault slip can occur (Hornbach et al., 2004). But the height of gas column in this case is 

significantly lower than the critical height recorded in the Blake Ridge (~150 – 290 m, 

Hornbach et al., 2004). Given that the trap created by the BSR relocation is fully charged, the 

height of the gas column of the formed gas accumulation is estimated to be no more than 50 

ms (c. 45 m). This suggests that the capillary entry pressure of overburden sediment along 
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fault is lower than that of the unfaulted sediment and this offers permeable route for gas to 

reach the seabed. 

 

Gas-rich pore fluids are interpreted to reach the seabed along the faults in this study, 

rather than migrating as a three-phase flow-controlled process to rise the gas-hydrate front 

(Liu and Flemings, 2006) or along the fractures triggered by overpressured gas (Flemings et 

al., 2003). The morphological features along the fault scarps at the seabed represent multiple 

gas vents at the sites, which together constitute a venting system allowing methane to bypass 

the feather edge of marine hydrate. During the ascent of methane in the HSZ, porous and 

permeable sediments could capture part of this methane, such as the case of the PHAAs, 

preventing or slowing down the transport of methane towards the seabed. This can also 

achieved by the reformation of hydrates along the faults (Ahn et al., 2012), which can clog 

the pores of the sediments within faults and hence lower the permeability. However, methane 

could still reach the seabed due to the water-free, hypersaline or warmer pore environment 

during the ascent of methane via advection (Wood et al., 2002; Tréhu et al., 2004; Liu and 

Flemings, 2006). Given that methane re-capturing and hydrate reforming could not prevent 

methane from approaching the seabed, we think that methane was intermittently released into 

the ocean due to the episodicity of gas migration along the pre-existing faults (Tryon et al., 

1999).   

 

A BSR is present over the study area but mostly absent landward of it (Fig. 6a-c). This 

is different from the area (marked in yellow box, Fig. 1a) to the north where sedimentary 

context is similar but the BSR can be commonly observed (Davies et al., 2015). An 

explanation for its absence landward is that methane venting above the diapir prevents 

landward gas migration (Fig. 6d). Absence of free gas near the landward limit of the feather 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

edge implies less methane locked-up in marine hydrates will be susceptible to being released 

in a warmer ocean in the future. Therefore, diapirism can increase methane emission into the 

ocean before it gets warmer and melts the marine hydrate hosted in the sub-seabed sediment. 

The bottom water temperature fluctuated seasonally by < 1oC offshore of Mauritania after the 

year 2000 (data from WOD) and this can destabilise the gas hydrates locating at < ~20 mbsf 

near the landward limit of the feather edge (we used the 2-D heat diffusion model of Li et al 

(2017) to see where gas hydrates was stable after the year 2000, not shown here). Due to the 

gas vent intercepting lateral gas migration, we predict that there are few gas hydrates near the 

landward limit of the feather edge in the study area and hence no significant amount of 

methane have been released from the seabed at the site since the year 2000 (acquisition time 

of the seismic dataset is between November 1999 and March 2000, Colman et al., 2005).  

 

8 Conclusions 

3-D seismic data provide compelling evidence for the occurrence of a gas venting 

system, offshore Mauritania. A salt diapir provides the conditions to create migration 

pathways for focused fluid of free gas that bypasses the feather edge of marine hydrate. The 

gas venting system inhibits gas migration landward into the shallow feather edge region. This 

reduces the volume of methane that would be susceptible to the short-term oceanic warming 

after the year 2000 and a probably warmer world in the future. 

  

Acknowledgments 

We thank Durham University and China Scholarship Council for supporting this 

research. We are grateful to Tullow Oil and Petronas for the permission to release this seismic 

survey offshore Mauritania. We also thank Dave Stevenson and Gary Wilkinson for 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

maintaining the IT facilities in Earth Imaging Laboratory (EIL) and the Landmark University 

Grant Program for providing the DecisionSpace suite.  

 

References 

Abrams, M.A., 1992, Geophysical and geochemical evidence for subsurface hydrocarbon 

leakage in the Bering Sea, Alaska. Mar. Pet. Geol. 9(2), 208-221. 

Ahn, T., Park, C., Lee, J., Kang, J.M., and Nguyen, H.T., 2012, Experimental characterization 

of production behaviour accompanying the hydrate reformation in methane-hydrate-

bearing sediments. J. Can. Pet. Technol. 51(01), 14-19. 

Anderson, A.L., and Hampton, L.D., 1980, Acoustics of gas-bearing sediments I. Background. 

J. Acoust. Soc. Am. 67(6), 1865-1889. 

Archer, D., Buffett, B., and Brovkin, V., 2009, Ocean methane hydrates as a slow tipping 

point in the global carbon cycle. Proc. Natl. Acad. Sci. 106(49), 20596-20601. 

Bangs, N.L., Musgrave, R.J., and Tréhu, A.M., 2005, Upward shifts in the southern Hydrate 

Ridge gas hydrate stability zone following postglacial warming, offshore Oregon. J. 

Geophys. Res.:Solid Earth 110(B3). 

Berndt, C., Feseker, T., Treude, T., Krastel, S., Liebetrau, V., Niemann, H., Bertics, V.J., 

Dumke, I., Dünnbier, K., Ferré, B. and Graves, C., 2014, Temporal constraints on 

hydrate-controlled methane seepage off Svalbard. Science 343(6168), 284-287. 

Biastoch, A., Treude, T., Rüpke, L.H., Riebesell, U., Roth, C., Burwicz, E.B., Park, W., Latif, 

M., Böning, C.W., Madec, G., and Wallmann, K., 2011, Rising Arctic Ocean 

temperatures cause gas hydrate destabilization and ocean acidification, Geophys. Res. 

Lett. 38(8). 

Brown, A., 2010, Interpretation of Three-dimensional Seismic Data, seventh ed. Tulsa. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Cartwright, J., Huuse, M., and Aplin., A., 2007, Seal bypass system. Am. Assoc. Pet. Geol. 

91( 8), 1141-1166. 

Cartwright, J., and Santamarina, C., 2015, Seismic characteristics of fluid escape pipes in 

sedimentary basins: Implications for pipe genesis. Mar. Pet. Geol. 65, 126-140. 

Catterall, V., Redfern, J., Gawthorpe, R., Hansen, D., and Thomas, M., 2010, Architectural 

style and quantification of a submarine channel–levee system located in a structurally 

complex area: offshore Nile Delta. J. Sediment. Res. 80(11), 991-1017. 

Colman, J., Gordon, D., Lane, A., Forde, M., and Fitzpatrick, J., 2005, Carbonate mounds off 

Mauritania, Northwest Africa: status of deep-water corals and implications for 

management of fishing and oil exploration activities. Cold-water corals and 

ecosystems, 417-441. 

Crutchley, G.J., Klaeschen, D., Planert, L., Bialas, J., Berndt, C., Papenberg, C., Hensen, C., 

Hornbach, M.J., Krastel, S., and Brueckmann, W., 2014, The impact of fluid 

advection on gas hydrate stability. Investigations at sites of methane seepage offshore 

Costa Rica. Earth Planet. Sci. Lett. 401, 95-109. 

Davies, R.J., and Clarke, A.L., 2010, Methane recycling between hydrate and critically 

pressured stratigraphic traps, offshore Mauritania. Geology 38(11), 963-966. 

Davies, R.J., Thatcher, K.E., Armstrong, H., Yang, J.X., and Hunter, S., 2012, Tracking the 

relict bases of marine methane hydrates using their intersections with stratigraphic 

reflections. Geology 40(11), 1011-1014. 

Davies, R.J., Thatcher, K.E., Mathias, S.A., and Yang, J., 2012, Deepwater canyons: An 

escape route for methane sealed by methane hydrate. Earth Planet. Sci. Lett. 323, 72-

78. 

Davies, R.J., Yang, J., Li, A., Mathias, S., and Hobbs, R., 2015, An irregular feather-edge and 

potential outcrop of marine gas hydrate along the Mauritanian margin. Earth Planet. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Sci. Lett. 423, 202-209. 

Dickens, G.R., 2003, Rethinking the global carbon cycle with a large, dynamic and 

microbially mediated gas hydrate capacitor, Earth Planet. Sci. Lett. 213(3), 169-183. 

Dimitrov, L.I., 2002, Mud volcanoes—the most important pathway for degassing deeply 

buried sediments. Earth-Sci. Rev. 59(1), 49-76. 

Flemings, P.B., Liu, X., and Winters, W.J., 2003, Critical pressure and multiphase flow in 

Blake Ridge gas hydrates. Geology 31(12), 1057-1060. 

Helgerud, M.B., Waite, W.F., Kirby, S.H., and Nur, A., 2009, Elastic wave speeds and moduli 

in polycrystalline ice Ih, sI methane hydrate, and sII methane-ethane hydrate J. 

Geophys. Res.:Solid Earth 114(B2). 

Henrich, R., Hanebuth, T.J.J., Krastel, S., Neubert, N., and Wynn, R.B., 2008, Architecture 

and sediment dynamics of the Mauritania Slide Complex. Mar. Pet. Geol. 25(1), 17-

33. 

Henrich, R., Cherubini, Y., and Meggers, H., 2010, Climate and sea level induced turbidite 

activity in a canyon system offshore the hyperarid Western Sahara (Mauritania): The 

Timiris Canyon. Mar. Geol. 275(1-4), 178-198. 

Hornbach, M.J., Ruppel, C., Saffer, D.M., Van Dover, C.L., and Holbrook, W. S., 2005, 

Coupled geophysical constraints on heat flow and fluid flux at a salt diapir. Geophys. 

Res. Lett. 32(24). 

Hornbach, M.J., Saffer, D.M., and Holbrook, W.S., 2004, Critically pressured free-gas 

reservoirs below gas-hydrate provinces. Nature 427(6970), 142-144. 

Hovland, M., and Judd, A.G., 1988, Seabed pockmarks and seepages: impact on geology, 

biology and the marine environment. 

Hovland, M., and Svensen, H., 2006, Submarine pingoes: Indicators of shallow gas hydrates 

in a pockmark at Nyegga, Norwegian Sea. Mar. Geol. 228(1), 15-23. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Judd, A.G., 2003. The global importance and context of methane escape from the seabed. 

Geo-Marine Letters 23(3-4), 147-154. 

Krastel, S., Wynn, R.B., Hanebuth, T.J.J., Henrich, R., Holz, C., Meggers, H., Kuhlmann, H., 

Georgiopoulou, A., and Schulz, H.D., 2006, Mapping of seabed morphology and 

shallow Sediment structure of the Mauritania continental margin, Northwest Africa: 

some implications for geohazard potential. Nor. J. Geol. 86(3), 163-176. 

Kvenvolden, K.A., 1993, Gas Hydrates - Geological Perspective and Global Change. Rev. 

Geophys. 31(2), 173-187. 

Li, A., Davies, R.J. and Yang, J., 2016. Gas trapped below hydrate as a primer for submarine 

slope failures. Mar. Geol. 380, 264-271. 

Li, A., Davies, R.J., and Mathias, S., 2017. Methane hydrate recycling offshore of Mauritania 

probably after the last glacial maximum. Mar. Pet. Geol. in press. 

Liu, X., and Flemings, P.B., 2006, Passing gas through the hydrate stability zone at southern 

Hydrate Ridge, offshore Oregon, Earth Planet. Sci. Lett. 241(1), 211-226. 

Lu, Z., and Sultan, N., 2008, Empirical expressions for gas hydrate stability law, its volume 

fraction and mass-density at temperatures 273.15 K to 290.15 K, Geochem. J. 42(2), 

163-175. 

Mackay, J.R., 1987, Some mechanical aspects of pingo growth and failure, western Arctic 

coast, Canada. Can. J. Earth Sci. 24(6), 1108-1119. 

MacKay, M.E., Jarrard, R.D., Westbrook, G.K., and Hyndman, R.D., 1994, Origin of bottom-

simulating reflectors: geophysical evidence from the Cascadia accretionary prism. 

Geology 22(5), 459-462. 

Marín-Moreno, H., Minshull, T.A., Westbrook, G.K., Sinha, B., and Sarkar, S., 2013, The 

response of methane hydrate beneath the seabed offshore Svalbard to ocean warming 

during the next three centuries. Geophys. Res. Lett. 40(19), 5159-5163. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

McGinnis, D.F., Greinert, J., Artemov, Y., Beaubien, S.E. and Wüest, A.N.D.A., 2006, Fate of 

rising methane bubbles in stratified waters: How much methane reaches the 

atmosphere?, J. Geophys. Res.: Oceans 111(C9). 

Milkov, A.V., 2000. Worldwide distribution of submarine mud volcanoes and associated gas 

hydrates. Mar. Geol. 167(1), 29-42. 

Moss, J.L., and Cartwright, J., 2010, 3-D seismic expression of km-scale fluid escape pipes 

from offshore Namibia. Basin Res. 22(4), 481-501. 

Nimblett, J., and C. Ruppel, 2003, Permeability evolution during the formation of gas 

hydrates in marine sediments, J. Geophys. Res. 108(B9), 2420. 

Phrampus, B.J., and Hornbach, M.J., 2012, Recent changes to the Gulf Stream causing 

widespread gas hydrate destabilization. Nature 490(7421), 527-530. 

Rad, U., Hinz, K., Sarnthein, M., and Seibold, E., 1982, Geology of the Northwest African 

continental margin. Springer-Verlag Berlin Heidelberg, 160-181. 

Roberts, H.H., 2001, Fluid and Gas Expulsion on the Northern Gulf of Mexico Continental 

Slope: Mud-Prone to Mineral-Prone Responses. Natural gas hydrates: occurrence, 

distribution, and detection, 145-161. 

Roberts, H.H., Hardage, B.A., Shedd, W.W., and Hunt Jr, J., 2006, Seafloor reflectivity—an 

important seismic property for interpreting fluid/gas expulsion geology and the 

presence of gas hydrate. The Leading Edge 25(5), 620-628. 

Ruppel, C.D., 2011. Methane hydrates and contemporary climate change. Nature Education 

Knowledge 3(10), 29. 

Schmuck, E.A., and Paull, C.K., 1993, Evidence for gas accumulation associated with 

diapirism and gas hydrates at the head of the Cape Fear Slide. Geo-Mar. Lett. 13(3), 

145-152. 

Serié, C., Huuse, M., and Schødt, N.H., 2012, Gas hydrate pingoes: Deep seafloor evidence 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

of focused fluid flow on continental margins. Geology 40(3), 207-210. 

Shipley, T.H., Houston, M.H., Buffler, R.T., Shaub, F.J., McMillen, K.J., Ladd, J.W., and 

Worzel, J.L., 1979, Seismic evidence for widespread possible gas hydrate horizons on 

continental slopes and rises. AAPG Bull. 63(12), 2204-2213. 

Skarke, A., Ruppel, C., Kodis, M., Brothers, D., and Lobecker, E., 2014, Widespread methane 

leakage from the sea floor on the northern US Atlantic margin, Nat.Geosci.7(9), 657-

661. 

Sloan, E.D., and Koh, C.A., 2008, Clathrate Hydrates of Natural Gases, third ed., Boca Raton: 

CRC Press. 

Soloviev, V., and Ginsburg, G.D., 1994, Formation of submarine gas hydrates. Bull. Geol. Soc. 

Denmark 41, 86-94. 

Somoza, L., Leon, R., Ivanov, M., Fernández-Puga, M.C., Gardner, J.M., Hernández-Molina, 

F.J., Pinheiro, L.M., Rodero, J., Lobato, A., Maestro, A., and Vázquez, J.T., 2003, 

Seabed morphology and hydrocarbon seepage in the Gulf of Cadiz mud volcano area: 

Acoustic imagery, multibeam and ultra-high resolution seismic data. Mar. Geol. 

195(1), 153-176. 

Tréhu, A.M., Flemings, P.B., Bangs, N.L., Chevallier, J., Gracia, E., Johnson, J.E., Liu, C.-S., 

Liu, X., Riedel, M., and Torres, M.E., 2004, Feeding methane vents and gas hydrate 

deposits at south Hydrate Ridge, Geophys. Res. Lett. 31(23). 

Tryon, M.D., Brown, K.M., Torres, M.E., Tréhu, A.M., McManus, J., and Collier, R.W., 

1999, Measurements of transience and downward fluid flow near episodic methane 

gas vents, Hydrate Ridge, Cascadia. Geology 27(12), 1075-1078. 

Vear, A., 2005. Deep-water plays of the Mauritanian continental margin. Petroleum Geology 

Conference Series 6, 1217–1232. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Westbrook, G.K., Thatcher, K.E., Rohling, E.J., Piotrowski, A.M., Pälike, H., Osborne, A.H., 

Nisbet, E.G., Minshull, T.A., Lanoisellé, M., James, R.H., and Hühnerbach, V., 2009, 

Escape of methane gas from the seabed along the West Spitsbergen continental 

margin. Geophys. Res. Lett. 36(15). 

Wood, W.T., Gettrust, J.F., Chapman, N.R., Spence, G. D., and Hyndman, R. D., 2002, 

Decreased stability of methane hydrates in marine sediments owing to phase-

boundary roughness, Nature 420(6916), 656-660. 

Yang, J., and Davies, R.J., 2013, Gravity-driven faults: migration pathways for recycling gas 

after the dissociation of marine gas hydrates. Mar. Geol. 336, 1-9. 

Zhang, Z., McConnell, D.R. and Han, D.H., 2012, Rock physics-based seismic trace analysis 

of unconsolidated sediments containing gas hydrate and free gas in Green Canyon 955, 

Northern Gulf of Mexico. Mar. Pet. Geol. 34(1), 119-133. 

Zühlsdorff, C., Wien, K., Stuut, J.B., and Henrich, R., 2007, Late Quaternary sedimentation 

within a submarine channel–levee system offshore Cap Timiris, Mauritania. Mar. 

Geol. 240(1), 217-234. 

 

Figure captions 

Fig.1 (a) Extent of the area covered by the 3-D seismic survey and the location of the study 

area. The blue box of solid lines marks where the relatively complete feather edge was 

described by Davies et al. (2015). (b) Dip-magnitude map of the seabed in the study area 

showing the fault scarp and some reliefs (named as I, II, III and IV). FS – fault scarp. There 

are some linear features caused by acquisition noise and they are parallel to the inline 

direction. (c) 3-D imaging of the faults (named as F1–13) from top view. The white arrows 

mark the displacement direction of the hanging wall. Please note not all the faults terminate at 
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the seabed. (d) A representative seismic cross section showing the pattern of the faults and 

their spatial relationship between the underlying salt diapir. 

 

Fig.2 (a–b) Representative seismic cross sections displaying the spatial relationship between 

the reliefs at the seabed, the faults and the salt diapir. The acoustic wipe-out (AWO) shows up 

below I-IV and in the zone bounded by F1, F2 and F4. (c–f) Zoom-in figures showing the 

cross-sectional geometry of I-IV. (g-j) 3-D imaging of the bathymetry exhibiting the 

morphology of I-IV.  

 

Fig.3 (a) A seismic cross section showing the upwarping section of the BSR. A different 

colour scheme is used to highlight its polarity (cyan-yellow loop) that is opposite to that of 

the seabed reflection (yellow-cyan loop). A flat spot is found under the upwarping BSR. 

Please note that this figure is exaggerated vertically. HA – high amplitude, LA – low 

amplitude in this and subsequent figures. (b) RMS amplitude map of the BSR. The white 

dashed and solid lines are the contours of the vertical distance (measured in ms, TWTT) 

between the BSR and surface a. Surface a is an assumed surface and on each cross line (E-W 

oriented) it is a segment defined by the down-dip (1, marked in inset) and the up-dip point (2) 

along the BSR. The yellow dashed lines mark the outline of a buried old canyon and it is 

described in section 6.3. 

 

Fig.4 (a) Seismic cross section displaying the vertical stacking pattern of the multistory 

channel-levee systems. Reflection A, which is interpreted as the levee sediment hosting 

hydrates, downlaps upon a paleo-seabed B. (b) Map showing the depth of the paleo-seabed B. 

The place in where the old channel diverges is not clearly shown by the seismic dataset. (c) A 

seismic cross section showing the spatial relationship between the BSR and the reflection A. 
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(d) RMS amplitude map of the reflection A. Some positive high amplitude anomalies 

(PHAAs) show up at both sides of the buried canyon.  

 

Fig.5 Modelling result of 2-D heat conduction. The black dashed line marks the top of the 

diapir. The blue numbers indicate the temperature of each isothermal line. The black arrows 

mark the places where there are some minor discrepancies between the modelled BSR and 

the observation result. 

 

Fig.6 (a) The BSR depth measured in two-way travel time (TWTT). No-data places (black 

colour) indicate where the BSR cannot be observed in the seismic cross section. (b, c) Two 

representative seismic sections showing that BSR can be tracked above the studied diapir, but 

is absent elsewhere except the region to the southeast of it. (d) Schematic diagram showing 

gas migration and where the BSR is present. Black arrows mark the displacement direction of 

the hanging wall. The dimension of the diapir and the levee is not to scale. PM – pockmark, 

M – mound, GC – gas concentration, HC – hydrate concentration, GM – gas migration. 
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Highlights: 

A gas venting system is imaged using 3-D seismic data offshore Mauritania. 

Free gas bypassed the HSZ and migrated along the faults to reach the seabed. 

The local BSR shoaling is caused by more heat conduction of a salt diapir. 

Massive warming-induced methane seafloor release is unlikely since the year 2000. 

 


