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S-duality in N = 1 orientifold SCFTs
Iñaki García-Etxebarria1,∗ and Ben Heidenreich2

We present a general solution to the problem of deter-
mining all S-dual descriptions for a specific (but very
rich) class of N = 1 SCFTs. These SCFTs are indexed
by decorated toric diagrams, and can be engineered
in string theory by probing orientifolds of isolated toric
singularities with D3 branes. The S-dual phases are
described by quiver gauge theories coupled to specific
types of conformal matter which we describe explicitly.
We illustrate our construction with many examples, in-
cluding S-dualities in previously unknown SCFTs.

1 Introduction

S-duality—where one quantum theory has multiple effec-
tive descriptions valid in different regions of the parame-
ter space or moduli space of the theory—is a ubiquitous
and rich phenomenon in superconformal field theories
with more than four supercharges. Montonen-Olive du-
ality [1–3] of N = 4 super-Yang-Mills (SYM) theory is the
original and simplest example of this phenomenon. In
this case, the strong coupling limit of an N = 4 gauge
theory with gauge group G is equivalent to a weakly cou-
pled N = 4 theory whose gauge group is the Langlands
dual LG . The phenomenon extends to an SL(2,Z) duality
whose elegant and intricate physics is best understood
by considering the behavior of line operators in the the-
ory [4]. More recently, S-duality has played a crucial role in
the symbiotic development of four- and six-dimensional
N = 2 SCFTs, see, e.g., [5].

Understanding S-duality in theories with less super-
symmetry is a question of obvious interest, due to the
increasingly rich dynamics that are possible in such the-
ories and the wide-ranging consequences of S-duality in
theories with extended supersymmetry.

Our paper will focus on S-duality in four-dimensional
N = 1 SCFTs.1 To gain an understanding of the phe-

1 Seiberg-Witten theory could be considered as another in-
stance of S-duality in four-dimensions, where S-dual low-

nomenon, one can construct examples of S-dualities
in N = 1 gauge theories by embedding them in a UV-
complete string theory or field theory with a known S-
duality. However, the resulting N = 1 field theory is rarely
(if ever) asymptotically free, and in many cases it is not
superconformal either. In general, in the perturbative
regime some of the couplings will be relevant and oth-
ers will be irrelevant.

This is not as bad a situation as might first seem. Con-
sider, for instance, the N = 1 SU (N ) gauge theory with
two adjoint chiral multiplets and the superpotential

W = h Tr(εi jφ
iφ j )2 , (1)

see [7]. This is a low-energy effective Lagrangian because
h is irrelevant at weak coupling. However, the infrared
fixed point can be realized by flowing from a free theory,
as follows. We start with the h = 0 Lagrangian and flow to
the infrared fixed point of the asymptotically free SU (N )
gauge group, which is believed to be interacting [6, 8].
Assuming it is, we can compute the exact dimension of
the operator O = Tr(εi jφ

iφ j )2 at the infrared fixed point
using a-maximization [9]. One finds that O is a marginal
(dimension three) chiral operator. Since it is neutral under
the SU (2) flavor symmetry, O is exactly marginal [10, 11],
and adding h∗

∫
d 2θO +c.c. to the Lagrangian generates

a fixed line parameterized by h∗. Flows from the original
effective field theory (EFT) will end somewhere on this
line; however, away from the “cusp” h∗ = 0 there is no
known UV complete flow connecting the fixed point to a
free theory. Moreover, since parametric control of the ef-
fective theory requires hΛ¿ 1 forΛ the SU (N ) dynamical

energy effective descriptions are related to each other by
motion along the Coulomb branch of moduli space. This phe-
nomenon also occurs with N = 1 supersymmetry [6], but is
qualitatively different than the SCFT S-dualities which we fo-
cus on in the following discussion and in the rest of our paper.
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scale, all of the EFT flows will end near the cusp, and the
dynamics of the fixed line become increasingly difficult
to describe as we move farther away from it.

In this context, S-duality (at its most basic level) is the
statement that by deforming the SCFT far out along the
fixed line we eventually reach a dual description where
there is another cusp associated to perturbative flows.2 In
the particular example we have chosen S-duality follows
from Montonen-Olive duality [7], as the effective theory
considered above is nothing but a mass deformation of
N = 4 super-Yang Mills (SYM). Thus, there are UV com-
plete flows which end everywhere along the fixed line, but
the cusps are distinguished as the endpoint of a flow or
a series of flows from a free fixed point. Parametrically
controlled effective field theories which flow to the fixed
line will always end up near one of the cusps, which are
the N = 1 analogs of weak coupling limits in S-dualities
with extended supersymmetry.

This basic picture, where cusps along a fixed line are re-
lated by exactly marginal deformations, can be thought of
as a definition of S-duality in SCFTs, and applies equally
well with any number of supercharges. The aim of our
paper is not to explore this field theory picture directly,
the main parts of which are well-established [7, 10] (if
not widely known). Rather, we seek to map out the realm
of S-dualities in four-dimensional N = 1 SCFTs, in or-
der to establish how common a phenomenon it is, what
forms it takes, and especially which cusps lie on the same
conformal manifold and are therefore S-duals. While
a complete classification is unfortunately beyond our
present abilities, we are able to make major progress by
focusing on a particular large but specific class of the-
ories exhibiting S-duality, continuing a series of recent
works [12–15]. For similar efforts in another class of theo-
ries see, e.g., [16–18].3

Specifically, we will consider the class of SCFTs whose
gravity duals arise from D3 branes probing an isolated

2 To be precise, since the fixed line has real dimension two
(complex dimension one), not every path will take us to an-
other cusp, but some paths will. The cusp we arrive at may be
the same one we started at; in this case, the path still repre-
sents a non-trivial S-duality provided that it is non-trivial in the
fundamental group of the fixed line, such as when it encircles
another cusp or an orbifold singularity along the fixed line.

3 In addition (as in the above example), a large class of N = 1
S-dualities can be constructed by softly breaking supersym-
metry in N > 1 S-dual theories. However, some of the novel
phenomena of N = 1 theories, such as chirality, are absent in
this case.

toric Calabi-Yau orientifold singularity, i.e., an orientifold
of a toric Calabi-Yau singularity such that the quotient
space is both toric and smooth away from the singular
point. Within this limited yet large class of theories, we are
able to completely classify the S-dualities, giving a general
prescription for how to construct the SCFTs from geomet-
ric data and determining which ones are related by the
S-duality group SL(2,Z). (Note that our methods, which
are based on T-duality, brane engineering, and topological
data in the gravity dual, do not require large N .)

Our approach is based on the well-known fact that
Montonen-Olive duality is related to the SL(2,Z) self-
duality of type IIB string theory on AdS5 ×S5, as realized
by the near horizon limit N D3 branes in a flat background.
Different near-horizon geometries should generate sim-
ilar string-derived S-dualities in other dual SCFTs pro-
vided that τIIB remains a modulus, parameterizing the
conformal manifold (or part of it). N = 1 theories can be
obtained by placing the D3 branes at a Calabi-Yau singu-
larity; however, in this case the conformal manifold gener-
ically has dimension larger than one and the available
SCFT duals are all related by Seiberg dualities, which can
complicate efforts to distinguish S-duality phenomena
from universality4 and to obtain a systematic understand-
ing of the S-dualities.

As we will see, the S-dualities actually become simpler
and easier to check when we include a particular class
of orientifold planes that project out most of the moduli,
leaving only τIIB and a discrete set of parameters known
as “discrete torsion”. The prototypical examples of this
are the N = 4 SO(N ) and USp(N ) gauge theories, which
are realized by orientifolding AdS5 ×S5, corresponding to
adding an O3 plane to the D3 brane stack. The connection
between Montonen-Olive duality and the SL(2,Z) proper-
ties of discrete torsion was explained in [20]. The present
paper systematically generalizes this result to a large class
of Calabi-Yau orientifold singularities.

Our analysis proceeds as follows. In §2 we review toric
Calabi-Yau singularities and classify their orientifolds,
identifying the broad class of isolated “toric orientifolds”
that we are interested in. We then compute the cohomol-
ogy groups which classify discrete torsion, along the lines
of [20], and explain their properties and connection to

4 Note, however, that Seiberg dualities are not always realized
in string theory as universality, see, e.g., [19]. For D3 branes
at Calabi-Yau singularities they both play a role in the S-duality
group as well as appearing as universalities in different gauge
theory descriptions, and these two roles can be difficult to
disentangle.
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the toric data. Appendices A and B provide supporting
material on toric geometry and the Z2 vector spaces that
characterize discrete torsion, respectively. In §3 we review
the basics of how dual SCFTs can be engineered using
NS5/D5 brane systems known as “brane tilings”, focus-
ing on the T-duality connection to the toric singularity.
Using T-duality, we show how orientifolds appear in the
brane tiling and identify the manifestation of NSNS dis-
crete torsion as a discrete remnant of the moduli space of
the unorientifolded tiling, providing compelling evidence
that our prescription is correct. In §4 we discuss in detail
the singular points in the moduli space of the brane tiling
that the orientifold projection forces us to consider. We
discuss how the multiple intersections of branes at these
points lead to conformal matter in the quiver gauge the-
ory, and engineer the SCFTs describing this matter using
deconfinement, generalizing [15]. With a concrete under-
standing of these “T Ok ” CFTs in hand, we conjecture a
natural dictionary relating the RR discrete torsion to their
discrete parameters and show that it is self-consistent
and mirrors the expected geometric properties of discrete
torsion.

In the remainder of the paper we discuss examples—
both those which exist in the literature as well as en-
tirely new (and previously intractable) ones—to verify
our claims and check the predicted S-dualities.5 In §5
we briefly review and develop notation for the T O2 CFTs
considered in [15], which is sufficient for the examples
we consider in §6. By matching the superconformal in-
dex [23, 24] (SCI) between elements of the same SL(2,Z)
multiplet, we are able to check our S-duality predictions
in detail,6 verifying the discrete torsion dictionary that we
have developed. Examples of these indices are given in
appendix C, supplementing index computations in pre-

5 One aspect of our predictions is matching the ranks of S-dual
gauge groups by comparing their D3 charges. These can be
obtained by elementary methods, see, e.g., [21, 22] and the
examples worked out in [14, 15] using these techniques. We
later propose a formula (81) to obtain QD3 directly from the
brane tiling. The predicted rank relation is easily verified by ’t
Hooft anomaly matching.

6 Note that ’t Hooft anomaly matching is not sufficient for our
purposes. Apart from anomalies of discrete symmetries and
Witten anomalies, the ’t Hooft anomalies are insensitive to the
discrete torsion, and depend only on the orientifold geome-
try and QD3. Therefore, this class of theories includes many
examples of ’t Hooft anomaly matching without duality, a phe-
nomenon which is already well-known in the literature, see,
e.g., [25–27].

vious literature [12, 15]. We summarize our conclusions
in §7.

Note that, in the interest of saving space and limiting
the broad scope of the present paper, our field theory anal-
ysis will not dwell on the some of the subtle but important
distinctions highlighted above. Rather than constructing
the cusps by a flow or series of flows from a free fixed point,
we will work in the effective field theory description. This
can be made precise by turning on the couplings of the ef-
fective field theory in a particular order to reach the cusp
in a series of flows, as in the mass-deformed N = 4 exam-
ple above, but we will not do so, deferring such analyses
to future work [28]. The effective field theory description
is sufficient to compute the global symmetries, ’t Hooft
anomalies and the superconformal index of the infrared
SCFT (all of which are unchanged by the exactly marginal
operator) if we assume that there are no accidental sym-
metries along the flow and if chiral symmetry breaking
does not occur. In at least some cases, this can be checked
explicitly for sufficiently large N [28]. We also will not
check explicitly that the SCFT has the expected fixed line
(parameterized by τIIB) (see, e.g., [29, 30]). This can be
checked in examples [12, 28], and relates to the existence
of a holomorphic coupling which is neutral under all the
spurious flavor symmetries [10].

Using more sophisticated field-theoretic tools, there
are likely to be other, stronger checks of the proposed
S-dualities that can be performed. For example, the S-
duality group can be modified in an important way by
the global structure of the gauge group (this is subtle for
orientifolds, see [31, 32]) and the spectrum of line opera-
tors, as in [4]. Similarly, the N = 1 S-duality group may act
non-trivially on half-BPS surface defects in a calculable
way [33]. In the present paper, we focus on local proper-
ties of the SCFTs, deferring a finer-grained study along
these lines for the future.

2 The geometry of toric orientifolds

In this section, we describe in detail a broad class of orien-
tifold geometries. In subsequent sections we will describe
the theories arising from branes probing these singulari-
ties.

2.1 Toric Calabi-Yau singularities

Consider space-time filling D3 branes probing R3,1 ×Y6

at point p in Y6. In the absence of background flux, the
infrared behavior of the D3 brane world-volume gauge

Copyright line will be provided by the publisher 3
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theory depends only on the local geometry in a neigh-
borhood Yp ⊂ Y6 of p. If Y6 is smooth at p, then the local
geometry is R6, and the gauge theory flows to an N = 4
fixed point in the infrared. If Y6 is singular at p, however,
the infrared behavior of the gauge theory will depend
on the nature of the singularity. We focus on the case
where Yp is toric and Calabi-Yau. In this case, the infrared
behavior of the world-volume gauge theory is that of a
quiver gauge theory—or more generally any one of a col-
lection of Seiberg-dual quiver gauge theories—which can
be constructed explicitly using brane-tiling techniques,
as reviewed in §3.

As a Calabi-Yau toric variety,7 Yp is described by a
two-dimensional lattice polytope, the toric diagram for
Yp . A few example toric diagrams are shown in figure 1.
The toric geometry Yp can be recovered from the toric
diagram as the vacuum manifold of a gauged linear sigma
model (GLSM), where each of the n corners (u1

i ,u2
i ) ∈Z2

of the toric diagram corresponds to a GLSM field zi , and
the gauge group is the subgroup G ⊆U (1)n which leaves
the monomials∏

i
zi ,

∏
i

z
u1

i
i , and

∏
i

z
u2

i
i (2)

invariant.
The simplest possible toric diagram, a minimal area

triangle, corresponds to C3 ∼= R6, whereas other triangu-
lar toric diagrams correspond to abelian orbifolds C3/Γ,
Γ⊂ SU (3). In general, toric diagrams related by GL(2,Z)
are equivalent (see figure 1(b)), whereas toric diagrams
related by GL(2,R) transformations are orbifolds of the
minimal area representative of their GL(2,R) equivalence
class. For instance, parallelogram toric diagrams (e.g. the
complex cone over F0, pictured in figure 1(a)) correspond
to orbifolds of the conifold.

A toric diagram corresponds to an isolated singularity
if its edges do not cross any lattice points. We will pri-
marily be concerned with isolated singularities. A simple
example of a non-isolated toric singularity is the orbifold
C2/Z2 ×C, see figure 1(a).

Dividing the toric diagram into subpolytopes corre-
sponds to partially resolving the toric singularity into com-
ponent singularities represented by the subpolytopes.8

If the subpolytopes share the same corners as the toric
diagram, then this corresponds to introducing nonzero

7 See appendix A for a brief review of toric geometry and nota-
tional conventions.

8 See appendix A for a more thorough discussion of these non-
affine toric varieties.

Fayet-Iliopoulos (FI) parameters into the GLSM. If the
subpolytopes have additional corners (e.g. internal points
in the toric diagram), then these must first be introduced
as new GLSM fields, with a corresponding extension of
the gauge group and the appearance of additional FI pa-
rameters. For instance, there are two ways to divide a
four-sided polytope into two triangles sharing the same
corners. In the case of the conifold, these are the two possi-
ble resolutions, corresponding to different signs for the FI
parameter. For larger four-sided toric diagrams, there are
additional partial resolutions which introduce new GLSM
fields. Some example resolutions of the dP1 singularity
are shown in figure 2(a).

Dividing the toric diagram into minimal area triangles
corresponds to a complete resolution of the singularity,
resulting in a smooth toric variety. Each internal point of
the toric diagram is now a compact toric divisor, whose
fan (see §A.1) is built by extending the adjoining edges
into rays separated by two dimensional cones.

Toric diagrams and their resolutions can alternately
be described in terms of “web diagrams”, as follows.9 For
each edge in the toric diagram, there is a dual edge in the
web diagram orthogonal to it, with k edges in the web
diagram when the edge in the toric diagram crosses k −1
lattice points. The faces of the toric diagram are dual to
vertices in the web diagram and vice versa, where the ex-
ternal edges (vertices) of the toric diagram are dual to
edges (faces) in the web diagram which extend to infinity.
Some examples of web diagrams are shown in figure 2.
Note that web diagrams are not drawn on a lattice, and
the lengths of the internal edges are not fixed by the cor-
responding toric diagram.10 A web diagram is consistent
if the lines have rational slopes p/q and the sum of the
vectors (p, q) at each vertex is zero.11 Web diagrams will
prove useful when we discuss brane tilings below.

9 Web diagrams were introduced in [34,35], both as an abstract
description of toric Calabi-Yau threefolds and in reference to
physical configurations of (p, q) five-branes. They have the
same abstract meaning here, but will later be used to describe
a physical configuration of NS5 branes. The NS and (p, q)
five-brane configurations are related by dualities: they are
different F-theory limits of the same M5 brane web.

10In physical applications these lengths correspond to the Kähler
moduli of the resolved toric singularity.

11The overall sign of (p, q) is not fixed by the slope of the edge
p/q , but is chosen so that the vector (p, q) points in the same
direction as (rather than opposite to) the edge rooted at the
vertex in question.

4 Copyright line will be provided by the publisher
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(a) Examples of toric diagrams. (b) Equivalent toric diagrams.

Figure 1 (a) Toric diagrams for (clockwise from upper left) the complex cone over dP1, the conifold, the complex cone over F0,
and C2/Z2 ×C. (b) Toric diagrams related by rotations and shears are equivalent. These all represent C3/Z3.

(a) (Partial) resolutions of dP1 (b) Web diagram for dP1 (c) Resolved dP1 webs

Figure 2 (a) Toric diagrams for some partial and complete resolutions of the dP1 singularity. (b) The web diagram for the affine
dP1 singularity. (c) Web diagrams for the resolutions of the dP1 singularity shown in (a).

2.2 Orientifolds of toric Calabi-Yau singularities

We now consider D3 branes probing an orientifold geome-
try X6 = Y6/σ, where σ : Y6 → Y6, σ2 = 1 is an orientation-
preserving involution and Y6 (X6) is the “upstairs” (“down-
stairs”) geometry. If the D3 branes sit at a point p with
σ(p) 6= p, then the geometry is locally unaffected by the
orientifold, and the above description still applies, pro-
vided no background flux has been turned on. If σ(p) = p
but p is a smooth point in Y , then the gauge theory flows
to a N = 4, N = 2, or N = 0 fixed point, depending on
whether the fixed locus of σ is an O3 plane, O7 plane, or
O5 plane, respectively. If, however, p is a singular point in
Y , the gauge theory flows to an infrared fixed point which
depends both on Yp and on the action of σ on Yp .

As above, we focus on the case where Yp is toric and

Calabi-Yau. For the orientifold to preserve N = 1 su-
persymmetry, we further require that σ is holomophic
with σ?Ω = −Ω,12 We classify the possible involutions,
z ′

i =σi (z j ). Taylor expanding about the singular point at
the origin, we obtain:

z ′
i = S j

i z j + 1

2
S j k

i z j zk + . . . . (3)

At leading order, the requirement σ2 = 1 imposes S`i S j
`
=

diag(µ1, . . . ,µn) ∈ G , so S j
i must be full rank. Thus, near

12We only consider O3/O7 orientifolds, since O5 planes are not
mutually supersymmetric with D3 branes.

Copyright line will be provided by the publisher 5
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p the involution acts linearly on the homogenous coor-
dinates zi , and the higher-order terms will not affect the
infrared behavior of the gauge theory. We therefore drop
these terms, taking σ to act linearly on the homogenous
coordinates.

Thus, σ is a linear automorphism σ ∈ Âut(Yp ), as de-
scribed in §A.3. Since σ has finite order, it is conjugate in
Âut(Yp ) to

z ′
i = P j

i µ̃ j z j (4)

where the permutation matrix P is induced by an auto-
morphism of the toric diagram,Π, and µ̃ j is a phase factor.
A generic toric diagram has no nontrivial automorphisms,

in which case P j
i = δ j

i and σ(T p) = Tσ(p) for the natural
torus action p → T p, T ∈ (C?)3. Consequently, the quo-
tient geometry Xp ≡ Yp /σ inherits a (C?)3 group action,
and is therefore toric. We refer to this type of involution
as a toric involution, resulting in a toric orientifold Xp .
Non-toric involutions are possible for toric diagrams with
nontrival Ãut(Π) (as defined in §A.3), see for example fig-
ure 3(a), but we consider only toric involutions hencefor-
ward.

Using (124), the conditions σ?Ω=−Ω and σ2 = 1 im-
ply∏

i
µ̃i =−1,

∏
i
µ̃

n·ui
i =±1. (5)

for any n ∈ Z2. Since
∏

i µ̃i = −1, we can fix
∏

i µ̃
n·ui
i = 1

by choosing the origin of Z2 to lie on a particular even
sublattice (2Z)2 ⊂Z2.13 Having done so, the points u′

i ≡
(ui ,2) generate the rays of the fan for Xp (cf. §A.2).

Thus, the toric involutions of Yp are in one-to-one
correspondence with the even sublattices of the toric di-
agram, and there are four such involutions for any toric
diagram.14 An example is shown in figure 3(b).

For any corner of the toric diagram ui that lies on the
chosen even sublattice, the corresponding non-compact
toric divisor zi = 0 is wrapped by an O7 plane. When Yp

is partially resolved, each subpolytope corresponds to a
separate fixed point of σ, with an O7 plane on each toric
divisor which lies on the even sublattice. In particular, a

13For mathematically inclined readers: here and subsequently
we take “sublattice” to mean a coset of the lattice group, not
necessarily a subgroup. In particular, one of the four even
sublattices is a subgroup of the lattice group, which is the
starred sublattice in figures 3(b) and 3(c).

14Some of these involutions may be related by automorphisms
of the toric diagram.

minimal area triangle corresponds to an O3 plane, unless
any of its corners lies on the even sublattice, in which
case it corresponds to a point on an O7 plane. An example
resolution is shown in figure 3(c).

2.3 Discrete torsion and AdS/CFT

So far, we have considered a class of toric Calabi-Yau ge-
ometries probed by N D3 branes. The probe approxima-
tion is valid for gs N ¿ 1 for any value of N , and this is
the regime in which the world-volume gauge theory is
most-easily described. In the opposite limit, with gs N À 1
but gs ¿ 1 so that N À 1, the physics is quite different.
The backreaction of the D3 branes is strong in this limit,
and the background Calabi-Yau is replaced by a warped
Calabi-Yau metric and five-form flux emanating from a
BPS horizon covering up the D3 branes. Near this horizon,
the geometry is AdS5×Y5 for some compact five-manifold
Y5 describing the shape of the horizon.

By the AdS/CFT correspondence [36], type IIB string
theory in the near horizon region of the backreacted
solution is dual to the infrared of the D3 brane world-
volume gauge theory.15 In the supergravity approxima-
tion, gs N À 1 and gs ¿ 1, the low-energy excitations of
this background are described by type IIB supergravity.

Because the near horizon geometry is dual to the
world-volume gauge theory for gs N À 1 and gs ¿ 1,
different world-volume gauge theories must correspond
to different near-horizon geometries. For D3 branes at
Calabi-Yau singularities, the differences are rather obvi-
ous. By probing different singularities with D3 branes, we
obtain distinct gauge theories. The local geometry near
the singularity is also reflected in the near horizon region
of the backreacted solution, which is the same up to warp-
ing and the introduction of five-form flux. The number of
D3 branes (hence the rank of the gauge theory) is reflected
in the number of five-form flux quanta which are turned
on along Y5.

The correspondence between the D-brane picture and
the geometric picture is more subtle in the presence of
orientifolds. The maximally supersymmetric case of D3
branes atop an O3 plane in a flat background was con-
sidered in [20]. Placing k D3 branes atop an O3+ or O3−,
we obtain an N = 4 USp(2k) or SO(2k) gauge group, re-

15Strictly speaking, the near-horizon limit should correspond
to the infrared superconformal fixed point of the field theory,
but AdS/CFT has found many applications beyond exactly
conformal field theories, see e.g. [37].
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(a) Non-toric involutions. (b) A toric involution. (c) Complete resolution of a toric orien-
tifold.

Figure 3 (a) Examples of non-toric involutions for (clockwise from upper left) the dP2 singularity, Y 4,0, and the conifold. (b) A
toric involution. The red stars indicate the even sublattice. (c) A complete resolution of the resulting toric orientifold. Each starred
vertex represents an O7 plane, which wraps a compact (non-compact) divisor if the vertex lies in the interior (on the boundary) of
the toric diagram. Each shaded triangle represents an O3 plane arising after complete resolution of the singularity.

spectively. In the latter case, we can add an extra “half”
D3 brane to obtain an SO(2k + 1) gauge group. In the
worldsheet description, this extra brane is mapped to it-
self by the orientifold projection, and is therefore immo-
bilized atop the O3−; the combined object is commonly
labeled the Õ3

−
. The D3 charge of the O3± is ± 1

4 , hence
it is − 1

4 + k for the SO(2k) stack and − 1
4 + k + 1

2 = 1
4 + k

for the SO(2k +1) and USp(2k) stacks. The near-horizon
geometry is AdS5 ×S5/Z2 in all cases.

While the latter two cases appear to have the same
gravity dual, in fact they differ by orientifold discrete tor-
sion [20, 38], i.e. flux in the non-trivial torsion component
of the cohomology group which classifies the NSNS and
RR two-form connections (B2 and C2, respectively). In the
present example, this cohomology group is H 3(S5/Z2, Z̃),
where Z̃ denotes the use of local coefficients (see e.g. [39])
due to the orientifold action B2 →−σ?B2,C2 →−σ?C2.
We refer to (co)homology groups of this type as twisted
(co)homology groups.

A straightforward computation (see e.g. [14, 20, 38])
gives H 3(S5/Z2, Z̃) ∼= Z2, hence the classes [F ] and [H ]
— for the connections C2 and B2, respectively — each
assume two possible values, which we denote 0,1 ∈ Z2

with 1+1 ≡ 0 (mod 2), for a total of four choices of discrete
torsion. It was argued in [20] that the case ([F ], [H ]) = (0,0)
corresponds to the SO(2k) stack, whereas ([F ], [H ]) = (1,0)
and ([F ], [H ]) = (0,1) correspond to the SO(2k + 1) and
USp(2k) stacks, respectively. This explains the Montonen-
Olive duality between SO(2k +1) and USp(2k) (as well as
the self-duality of SO(2k)) as a consequence of S-duality
in string theory, which exchanges [F ] and [H ].

The fourth case, ([F ], [H ]) = (1,1), is related to ([F ], [H ]) =
(0,1) by a shift τ → τ+ 1 with τ ≡ C0 + i

gs
, which takes

[F ] → [F ]+ [H ]. Thus, it is perturbatively equivalent to
the USp(2k) theory, with the same gauge group but a dif-
ferent non-perturbative spectrum for any fixed C0. The

([F ], [H ]) = (1,1) O3 plane is commonly labeled the Õ3
+

.

The Õ3
+

is self-dual under S-duality (τ→−1/τ) but forms
a triplet with the O3+ and Õ3

−
under the full SL(2,Z) of

type IIB string theory, generated by τ→ τ+1 and τ→−1/τ.
The possible choices of discrete torsion, the correspond-
ing O3 planes, and their transformation under SL(2,Z)
are illustrated in figure 4.

Note that non-trivial discrete torsion does not affect
the three-form fluxes F3 and H3. In particular, the de
Rham cohomology class of F3 (H3) is the image of [F ]
([H ]) under the natural map H 3(X5, Z̃) → H 3(X5, R̃) which
takes Z→ R and Zn → 0 for each factor of the integral
cohomology group. H 3(X5, R̃) is trivial, so the three-form
fluxes vanish in the absence of sources (such as wrapped
five-branes).

As shown in [14], this discussion is readily generalized
to orientifolds of a large class of abelian orbifolds C3/Γ,
where Γ⊂ SU (3) and we assume that Γ̃≡ Γ∪σΓ acts freely
on S5, so that the near-horizon geometry AdS5 ×S5/Γ̃ is
smooth and free of orientifold fixed points. In these cases,
we find H 3(S5/Γ̃, Z̃) ∼=Z2, as before, where in general Γ=
Z2n+1 given our assumptions. The CFT dual is an N =
1 quiver gauge theory of the form SO × SU n or USp ×
SU n , where the spectrum of chiral superfields and relative
ranks of the gauge group factors depend on the orbifold
in question, and the choice of SO(2k) × SU n , SO(2k +

Copyright line will be provided by the publisher 7
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[F ]

[H]

fO3
�

fO3
+

O3+

O3�

⌧ ! �1/⌧

⌧ ! ⌧ + 1

Figure 4 The four types of O3 plane correspond to different choices of RR and NSNS discrete torsion ([F ] and [H ], respectively)
in the gravity dual, where the action of SL(2,Z) on the O3 planes can be inferred from the known action on the RR and NSNS
two form connections.

1)×SU n , or USp(2k)×SU n corresponds to the choice of
discrete torsion, exactly as above.

S-duality covariance then implies a nontrivial duality
between the SO(2k +1)×SU n and USp(2k̃)×SU n theo-
ries,16 analogous to Montonen-Olive duality of N = 4 the-
ories. This duality was explored in [12–14] using anomaly
matching for an infinite class of orbifolds and by matching
the superconformal index for the simple orbifold C3/Z3

in [12]. The latter check was performed by expanding the
index in a fugacity t corresponding to the superconformal
R-charge and computing the power series coefficients up
to a fixed order using a computer. Updated computations
are presented in [15],17 showing perfect agreement up
to a high order in the series expansion, a very nontrivial
check that the expected S-duality is in fact present.

In [15], Calabi-Yau cones over del Pezzo surfaces were
considered. These are a relatively simple class of singular-
ities which include the orbifold C3/Z3 which is a complex
cone over dP0 =P2, the conifold orbifold C /Z2 which is a
complex cone over F0 =P1 ×P1, and three other toric sin-
gularities, as well as five non-toric singularities. Choosing

16Unlike the N = 4 case, in general k̃ 6= k. Rather, the differ-
ence k − k̃ depends on the orbifold in question and can be
fixed e.g. by matching the D3 charge of the prospective dual
theories.

17These updated results are not included in the text of [15], but
are available in the Mathematica file attached to the arXiv
version.

an orientifold involution which fixes the del Pezzo surface,
the twisted cohomology group is H 3(X5, Z̃) ∼=Zk+1

2 for the
complex cone over dPk , and H 3(X5, Z̃) ∼=Z2

2 for the cone
over F0.

The larger discrete torsion group gives rise to new
phenomena. The case H 3(X5, Z̃) ∼= Z2

2, applicable to the
complex cones over dP1 and F0, is illustrated in figure 5.
There are now five SL(2,Z) multiplets, including a sex-
tet. The latter manifests as a triality in the CFT dual,
since the six choices of torsion are related in pairs by
the action of τ→ τ+ 1, which is a perturbative equiva-
lence. The same SL(2,Z) multiplets appear for yet larger
discrete torsion groups. For H 3(X5, Z̃) ∼= Z

p
2 , there is

one singlet ([H ], [F ]) = (0,0) as well as 2p − 1 triplets

([H ], [F ]) ∈ {(0,α), (α,0), (α,α)} and (2p−1)(2p−1−1)
3 sextets

([H ], [F ]) ∈ {(α,β), (α,α+β), (β,α), (β,α+β), (α+β,α), (α+
β,β)}, where α 6=β and α,β 6= 0.

The complex cone over dP1 and its CFT duals were
thoroughly explored in [15]. Some of these duals involve
novel strongly coupled physics, which we review in §5.
The main purpose of our present work is to generalize
these results to arbitrary toric orientifolds, assuming only
that the horizon is smooth and free of orientifold planes.
Just as the size of the discrete torsion group grows with
k for the complex cones over dPk , the complexity of the
analysis in the toric case grows with the number of sides
of the toric diagram. Our general analysis in §2–§4 applies
to toric diagrams with an arbitrary number of sides, but in
the present paper we limit our explicit examples, in §6, to
toric diagrams with at most five sides, as some additional

8 Copyright line will be provided by the publisher
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[F ]

[H] ⌧ ! �1/⌧

⌧ ! ⌧ + 1

Figure 5 The action of SL(2,Z) on [H ], [F ] in the case where H 3(X5, Z̃) ∼=Z2
2. The sixteen choices of discrete torsion fall into a

singlet, three triplets, and a sextet under SL(2,Z), colored black, red/green/blue, and purple, respectively.

technical details are required to describe the CFT duals
for certain choices of discrete torsion in toric diagrams
with six or more sides. We give a systematic prescription
for analyzing such configurations in §4, but we defer a
full description of the more technical details (which is
straightforward but technically involved) of these more
complicated cases to a future work.

In the following sections we will give a complete char-
acterization of the discrete torsion group for these toric
orientifolds. To do so, it is most convenient to work with
the Poincare dual H2(X5, Z̃) ∼= H 3(X5, Z̃). This is homol-
ogy group classifies domain walls in AdS5 arising from
wrapped five branes. An torsion two-cycle A ∈ H2(X5, Z̃)
corresponds to the discrete flux Ã ∈ H 3(X5, Z̃) induced
upon crossing a five-brane wrapping A, where to generate
[H ] torsion we wrap NS5 branes and to generate [F ] tor-
sion we wrap D5 branes. By dropping a five-brane wrap-
ping A through the horizon, we obtain the gravity dual
with torsion Ã from that with trivial torsion, as in [40].

In all the examples we consider in this paper the
de Rham cohomology group H 3(X5, R̃) is trivial. Thus,
F3 = H3 = 0 far from any sources—such as the wrapped
five-branes discussed above—and consequently the dis-
crete torsion admits an alternate description as a set of
quantized Wilson lines. Consider a D1 brane wrapped on
aZ2 torsion two-cycleΣ. The Chern-Simons action SC S ∝∮
ΣC2 admits an exact shift symmetry SC S → SC S+2πk cor-

responding to large gauge transformations of C2. Because
2Σ is homologically trivial, whereas SC S is homologically
invariant for F3 = H3 = 0 there are two distinct possibili-
ties, SC S = 0 or SC S = π. Whether e i SC S =±1 depends on
the C2 gauge bundle, hence on the torsion class [F ]. Simi-
lar considerations apply to the Chern-Simons term in the

F-string worldsheet action and the torsion class [H ].
Since there are exactly as many torsion two-cycles to

wrap F and D-strings on as there are choices of discrete
torsion, one might imagine that there is a one-to-one
correspondence between these quantized Wilson lines
and the torsion classes [F ] and [H ]. We show that this is
the case for the class of examples considered in our paper
in §2.5. As such, wrapped five branes and wrapped strings
provide complementary descriptions of discrete torsion.
In the former case, five-branes wrapping a torsion two-
cycle correspond to a certain torsion class: that generated
by crossing the resulting domain wall starting with trivial
torsion. In the latter case, strings wrapping a torsion two-
cycle define a linear map on the torsion class, and for each
linear map there is a corresponding wrapped string. These
dual notions of discrete torsion will be useful in §3 and §4
when we discuss the dictionary between the geometry
and the CFT dual.

2.4 Discrete torsion for toric orientifolds

In this subsection, we compute the twisted homology
groups for toric orientifolds—defined in §2.2—for which
the choice of involution σ corresponds to the choice of
one of four even sublattices of the Z2 lattice containing
the toric diagram, see figure 3(b). We further assume a
smooth horizon free from orientifold fixed points. Equiva-
lently, as explained in §2.1–2.2, the sides of the toric dia-
gram must not cross lattice points, and the corners must
not lie on the designated even sublattice.

Despite these restrictions, this class of orientifolds con-
tains a large (in fact, infinite) collection of interesting ex-

Copyright line will be provided by the publisher 9
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amples. For instance, it encompasses the special case of
O3 planes in a flat background (an orientifold of C3) as
well as all the orbifold examples considered in [12–14]
and all of the nonorbifold examples considered in [12].
Moreover, the infinite family of geometries Y p,q [41, 42]
admit one such involution when either p or p −q is even,
and two when both are even.

To compute the twisted homology groups, we employ
the long exact sequence (see e.g. [39]):

. . . −→ Hi (X , Z̃) −→ Hi (Y ,Z)
p i∗−→ Hi (X ,Z)

−→ Hi−1(X , Z̃) −→ . . . (6)

where X and Y denote the downstairs and upstairs ge-
ometries, respectively, and p i∗ is induced by the projec-
tion p : Y → X . In the examples we encounter below, p i∗ is
always injective,18 hence the long exact sequence breaks
into short exact sequences

0 −→ Hi (Y ,Z)
p i∗−→ Hi (X ,Z) −→ Hi−1(X , Z̃) −→ 0 (7)

and we can compute the twisted homology groups given
the homology groups of X5 and Y5 and the maps p i∗.

Consider an n-sided toric diagram with corners la-
beled 1,2, . . . ,n counterclockwise around the perime-
ter, and corresponding homogenous coordinates zi , i =
1, . . . ,n. The affine toric variety Xp (Yp ) is a real cone over
the horizon X5 (Y5). As explained in §A.4, X5 (Y5) can be
thought of as an orbifold of a T 3 fibration over an n-sided
polygon with edges labelled 1, . . . ,n, where |zi |→ 0 along
the i th edge. The T 3 fibration is parameterized by gauge-
invariant combinations of the phases of the homogenous
coordinates, whereas the magnitudes |zi | correspond to
the position along the base. Thus, the T 3 degenerates to
a T 2 along each edge, and to a T 1 at each vertex, see fig-
ure 6(a).

We consider the subspace Vi ≡ {zi = 0} ⊂ X5 cor-
responding to the i th edge of the polygon. Since this
edge only intersects the edges i ± 1, we have z j 6= 0 for
j ∉ {i , i ±1}. Moreover, the corners i −1, i , i +1 are not co-
linear in the toric diagram (otherwise i is not a corner),
so there exists a partial gauge fixing which sets arg(z j ) = 0
for j ∉ {i , i ±1}.

18This is not true in general. For instance, the non-toric invo-
lution of the conifold (z1, z2, z3, z4) → (−z1,−z2,−z3, z4)
(where

∑
i z2

i = 0) gives H•( S3×S2

Z2
,Z) ∼= {Z,Z2,Z2,Z2,0,Z}

(• = 0,1,2, . . .) whereas H•(S3 ×S2,Z) ∼= {Z,0,Z,Z,0,Z}, so
neither p2∗ nor p3∗ is injective.

To determine the residual gauge symmetry, we per-
form an SL(2,Z) n (2Z)2 transformation on the toric
diagram—fixing the even sublattice specifying the invo-
lution to contain the origin—to express it in a conve-
nient form. In general ui−1,i ≡ ui−1 −ui = (a,b), where
gcd(a,b) = 1 for an isolated singularity. Thus, we can
take ui−1,i = (0,1) using SL(2,Z), so that ui = (c,d) and
ui−1 = (c,d + 1) for odd c, since by assumption neither
corner lies on the even sublattice. We are free to assume
that d is even, since otherwise we can map d → d + c by a
shear transformation which leaves ui−1−ui invariant. Fix-
ing ui−1 = (1,1) and ui = (1,0) after a (2Z)2 translation,
we have ui+1 = (1 + pi ,−qi ) for pi > 0, gcd(pi , qi ) = 1,
where pi is twice the area of the triangle formed be-
tween the corners i , i ± 1. Note that qi must be odd to
satisfy gcd(pi , qi ) = 1 with pi + 1, qi not both even, so
gcd(2pi , qi ) = 1, where we can fix 0 < qi < 2pi by a shear
transformation. The transformed toric diagram is shown
in figure 7(a).

The residual gauge symmetry, Ĝ , satisfies the con-
straints

µ2
i−1µ

2
i µ

2
i+1 =µi−1µiµ

pi+1
i+1 =µi−1µ

−qi
i+1 = 1. (8)

Thus, Ĝ ∼=Z2pi is generated by

(µi−1,µi ,µi+1) = (ωqi
2pi

,ωpi−qi−1
2pi

,ω2pi ) , (9)

where ωk ≡ e2πi /k . Therefore, the space Vi is a Z2pi orb-
ifold of a T 2 fibration over an interval, where the fiber
is parameterized by (arg(zi−1),arg(zi+1)) in the gauge fix-
ing arg(z j ) = 0, j ∉ {i , i ±1}, and the A (B) cycle shrinks
to zero size at the left (right) end of the interval. This fi-
bration is homeomorphic to S3, see figure 6(b), so we ob-
tain the lens space Vi

∼= L(2pi , qi ). Neighboring subspaces
Vi , Vi+1 intersect along their common torsion one-cycle,
Vi ∩Vi+1 = {zi = zi+1 = 0} ∼= S1.

We now consider X5/X (i ,i+1)
3 , where X (i ,i+1)

3 ≡⋃
j 6=i ,i+1 V j .

Away from the locus X (i ,i+1)
3 , z j 6= 0 for j 6= i , i +1, so we

can gauge fix arg(z j ) = 0, j 6= i , i ±1, as before, where by
the above argument the residual Z2pi gauge symmetry
acts transitively in the zi−1 plane, so we can further fix
0 ≤ arg(zi−1) < π/pi . We view this as an S1 fibration of
arg(zi−1) over a base space, which is itself a torus fibra-
tion over a disk. The latter is homeomorphic to S4, see
figure 6(c), so the total space is (S4 ×S1)/({0}×S1).

We use the excision theorem to relate the homology of
X (i ,i+1)

3 with that of X5 and X5/X (i ,i+1)
3 . In general, there

is a long exact sequence

. . . −→ H̃n(A) −→ H̃n(X ) −→ H̃n(X /A) −→ H̃n−1(A) −→ . . .

(10)

10 Copyright line will be provided by the publisher



Fortschritte der Physik, 13 February 2017 O
riginalP

aper

n
1

2

. . .

T 3

T 2

S1

(a) Horizon as a torus fibration.

T 2S1 S1

(b) Torus fibration of S3.

T 2S1

S1

(c) Torus fibration of S4.

Figure 6 (a) The horizon X5 (Y5) is a T 3 fibration over an n-sided polygon, where |zi | → 0 along the i th edge. The fiber,
corresponding to the orbit of the U (1)3 isometry, degenerates to T 2 along each edge and to S1 at each corner. (b) A T 2 fibration
over an interval, homeomorphic to S3. (c) A T 2 fibration over a disk, equivalent to a fibration of (b) over an interval contracted to a
point at either end, hence homeomorphic to S4.

where H̃n are the reduced homology groups and A ⊂ X
is a sufficiently well-behaved closed subspace of X , see
e.g. [39]. A straightforward application with X = S4 ×S1

and A = {0} × S1 ⊂ X gives H̃•(X5/X (i ,i+1)
3 ) ∼= H̃•((S4 ×

S1)/({0} × S1)) ∼= {0,0,0,0,Z,Z} (• = 0,1,2, . . .). Thus, by
excision H̃n(X (i ,i+1)

3 ) ∼= H̃n(X5) for n = 0,1,2. Since the
higher homology groups are determined by Poincare du-
ality combined with the universal coefficient theorem,
the homology of X5 is completely determined by that of
X (i ,i+1)

3 for any i .

As shown above and illustrated in figure 7(b), the space
X (i ,i+1)

3 is a chain of lens spaces V j
∼= L(2p j , q j ), with adja-

cent spaces glued together along their torsion one-cycles.
By a similar argument, the homology of Y5 is related to
that of Y (i ,i+1)

3 ⊂ Y5, where Y (i ,i+1)
3 is a chain of lens spaces

U j
∼= L(p j , q j ).

To compute the homology of X (i ,i+1)
3 and Y (i ,i+1)

3 , we
employ the Mayer-Vietoris sequence:

. . . −→ Hn(A∩B)
Φn−→ Hn(A)⊕Hn(B) −→ Hn(X )

−→ Hn−1(A ∩B) −→ . . . (11)

where X is the union of the interiors of A,B ⊂ X and Φn

is induced by the chain map x → (x,−x). We show induc-
tively that H•(Ar ) ∼= {Z,Zgcd(p1,...,pr ),Z

r−1,Zr } for a chain
Ar of r lens spaces L(p j , q j ), j = 1, . . . ,r , glued together
in this fashion.

The case r = 1 follows from the the known homol-
ogy H•(L(p, q)) ∼= {Z,Zp ,0,Z}. Suppose that H•(Ar−1) ∼=
{Z,Zgcd(p1,...,pr−1),Z

r−2,Zr−1}. We take A = Ar−1 and B =

L(pr , qr ) in the Mayer-Vietoris sequence,19 so that A∩B ∼=
S1 is the torsion one-cycle. Since H2,3(A∩B) = 0, we find
H3(Ar ) ∼= Zr−1 ⊕Z ∼= Zr . Moreover, the map Φ1 : Z →
Zgcd(p1,...,pr−1) ⊕Zpr has kernel lcm(gcd(p1, . . . , pr−1), pr ) ·
Z∼=Z, hence there is a short exact sequence

0 −→Zr−2 ⊕0 −→ H2(Ar ) −→Z−→ 0. (12)

Since Z is free, the sequence splits and H2(Ar ) ∼= Zr−1.
The mapΦ0 :Z→Z⊕Z is injective, hence there is a short
exact sequence

0 −→Zlcm(gcd(p1,...,pr−1),pr )
Φ̂1−→ Zgcd(p1,...,pr−1) ⊕Zpr

−→ H1(Ar ) −→ 0. (13)

Using the known form of Φ̂1, we conclude that H1(Ar ) ∼=
Zgcd(gcd(p1,...,pr−1),pr )

∼= Zgcd(p1,...,pr ), whereas H0(Ar ) ∼= Z
follows trivially from the path-connectedness of Ar .

The generators of H3(Ar ) are the lens spaces them-
selves, whereas H1(Ar ) is generated by the torsion one-
cycle of any one of them (all being equivalent), and el-
ements of H2(Ar ) are linear combinations aiχi of two
chains χi swept out by contracting a loop wrapped pi

19Technically, to fufill the requirement that Ar is the union of the
interiors of A and B , we must include inside A a thin ring of
L(pr , qr ) surrounding the gluing point and likewise for B , but
these modified subspaces deformation retract to Ar−1 and
L(pr , qr ), respectively, so the result is unchanged.
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(1, 0)
. . .

. .
.

(1, 1)
i � 1

i

i + 1

(1 + pi,�qi)

(a) Toric diagram near i th corner.

n

1 2

bidi+1

(b) The space X (i ,i+1)
3 .

Figure 7 (a) The form of the toric diagram near the i th corner, after an SL(2,Z)n (2Z)2 transformation. (b) The space X (i ,i+1)
3

(Y (i ,i+1)
3 ) is a chain of lens spaces V j glued together along their torsion one-cycles with the spaces Vi , Vi+1 omitted.

times around the torsion one-cycle to a point in L(pi , qi ),
such that

∑
i ai pi = 0.20

With a complete understanding of the homology
of H•(X (i ,i+1)

3 ) ∼= {Z,Z2p ,Zn−3,Zn−2} and H•(Y (i ,i+1)
3 ) ∼=

{Z,Zp ,Zn−3,Zn−2}, we can reconstruct the homology of
X5 and Y5 using Poincare duality and the universal coeffi-
cient theorem. We find:

H•(X5) = {Z,Z2p ,Zn−3,Z2p ⊕Zn−3,0,Z} , (14)

H•(Y5) = {Z,Zp ,Zn−3,Zp ⊕Zn−3,0,Z} . (15)

By excision, the generators of H0,1,2(X5) are the same as
those for X (i ,i+1)

3 ⊂ X5, whereas H3(X5) is generated by the
lens spaces V j , j 6= i , i+1 subject to a single linear relation.
Explicitly, the V j lift to torus-invariant divisors z j = 0 in
Xp , which obey the linear relations:∑

j
2[ j ] = 0 ,

∑
j

(u j ·n)[ j ] = 0, (16)

for any n ∈Z2, where [ j ] denotes the divisor class of z j = 0.
These relations are inherited by the three cycles, V j , where
a single relation remains after eliminating [i ], [i +1] using
the other conditions.

It is now straightforward to compute the twisted ho-
mology groups of X5 using the long exact sequence (6). In
particular, p3∗ maps Ui → 2Vi , hence it takes Z→ 2Z⊂Z

20A minimal set of generators can be found by choos-
ing an element Λi

j ∈ GL(r,Z) such that
∑

j Λ
i
j p j =

(gcd(p1, . . . , pr ),0, . . .). The generators are then
∑

j Λ
i
jχ j

for i = 2, . . . ,r .

and Zp → Zp ⊂ Z2p for each factor in H3. Likewise, p5∗
takes Z→ 2Z ⊂ Z and p1∗ takes Zp → Zp ⊂ Z2p , whereas

p0,2
∗ take Z→Z for each Z factor. Thus, p i∗ is always injec-

tive, and the long exact sequence breaks into short exact
sequences (7). We readily obtain

H•(X5, Z̃) = {Z2,0,Zn−2
2 ,0,Z2,0} , (17)

where there is a Z2 factor in H2(Z̃) for each lens space in
X (i ,i+1)

3 . Notice that this agrees with the results of [14] for
the orbifold case, n = 3, and with [15] for complex cones
over dPk , k = 0,1,2,3, which correspond to n = k+3 sided
toric diagrams.

2.5 The divisor basis and intersection form

The relations (16) allow us to construct a basis for
H2(X5, Z̃) ∼= Zn−2

2 without fixing a subspace X (i ,i+1)
3 . Re-

call that the induced maps p i∗ in (6) are all injective for
toric involutions, as shown above. Hence, we have the
short exact sequence (7) relating H2(X5, Z̃) to the third
homology groups of X5 and Y5, and the relations (16) are
inherited by H2(X5, Z̃). In particular, denoting the twisted
two cycle in Vi by 〈i 〉, we have∑

i
(ui ·n)〈i 〉 = 0 (18)

where the result only depends on the parity of (ui ·n) since
2〈i 〉 = 0. This can be restated as:∑
i∈L

〈i 〉 = ∑
j∈L′

〈 j 〉 (19)

where L and L′ denote any pair of even sublattices not
containing the origin. We recover the old basis by elim-
inating 〈i 〉,〈i +1〉 using (19). This is always possible, as

12 Copyright line will be provided by the publisher
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adjacent corners must occupy distinct even sublattices
for an isolated singularity.

There is a natural intersection parity Hp (Xd , Z̃) ×
Hd−p (Xd ,Z) →Z2 for d-dimensional Xd = Yd /σ, defined
by the parity of the number of transverse intersections be-
tween generic representatives. For toric orientifolds, the
intersection parity H2(X5, Z̃)×H3(X5,Z) → Z2 has phys-
ical significance as follows. Consider the change in the
quantized Wilson line on a D1 brane wrapping 〈i 〉 as it
passes a D5 brane wrapping 〈 j 〉.21 Since 〈i 〉 lies entirely
within Vi , this Wilson line corresponds to the discrete
torsion class H 3(Vi , Z̃) ∼=Z2 which forms part of the over-
all discrete torsion group H 3(X5, Z̃) ∼=Zn−2

2 . To compute
the change in this torsion class, we consider the four-
chain Wi (r1,r2) = Vi × [r1,r2] where the D5 brane is lo-
cated at r = r0 and r1 < r0 < r2. As argued in more de-
tail in [14], each point of intersection between Wi (r1,r2)
and 〈 j 〉 induces a relative change in the torsion classes
[F ] ∈ H 3(Vi , Z̃) ∼=Z2 of the two ends. Thus, this change in
torsion along Wi (r1,r2) is equal to the intersection parity
Wi (r1,r2)∩〈 j 〉 =Vi ∩〈 j 〉.

Therefore, the bilinear form 〈i 〉·〈 j 〉 ≡Vi ∩〈 j 〉 measures
the change in torsion measured on 〈i 〉 due to a wrapped
brane on 〈 j 〉. We now compute this bilinear form. It is
clear that 〈i 〉 · 〈 j 〉 = 0 for i ∉ { j , j ±1}, because the torsion
cycle 〈 j 〉 lives entirely within V j , which does not intersect
Vi for i ∉ { j , j ±1}. Suppose that i = j ±1; in this case Vi

and V j intersect transversely on a one-cycle ωi j which
generates H1(V j ,Z) ∼= Z2p j , so 〈i 〉 · 〈 j 〉 =ωi j ∩〈 j 〉.

To compute this intersection, we construct represen-
tatives of the torsion two-cycle within each lens space. A
twisted two-cycle in X ∼= Y /σ is a closed chain in Y such
that σ∗Σ=−Σ. For p odd, consider the twisted two-cycle
in L(2p, q) ∼= L(p, q)/Z2 with the smooth immersion:

x = cosθ , y = e iφ sinθ , (20)

for θ ∈ [0,π], φ ∈ [0,2π), where
(
x, y

) ∼= (
ω2p x,ωq

2p y
)

are
the complex coordinates of L(2p, q) and σ maps {x, y} →
−{x, y} up to the orbifold identification, hence θ→π−θ,
φ→ φ+π. This is an RP2 embedded with a p-fold self-
intersection along the equator θ =π/2. By comparison, a
representative one-cycle generating Z2p is

x = e iψ cosθ0 , y = e i qψ sinθ0 , (21)

for fixed 0 ≤ θ0 ≤π/2 and 0 ≤ψ≤π/p up to the Z2p iden-
tification. Clearly (20) and (21) intersect at a single point

21Note that the Wilson line is only defined where F3 ' 0, far from
the D5 brane.

θ = θ0, φ=ψ= 0, up to the Z2p identification. Since the
intersection parity is homologically invariant, this proves
that (20) is a non-trivial element of (and hence generates)
H2(Vi , Z̃) ∼=Z2, so the intersection parity between the gen-
erators of H2(Vi , Z̃) ∼=Z2 and H1(Vi ,Z) ∼=Z2pi is odd.

A similar argument applies for p even, for which we
consider the twisted two-cycle with the smooth embed-
ding

x = e iφ cosθ , y = e i (q−p)φ sinθ , (22)

for θ ∈ [−π/2,π/2), φ ∈ [0,2π/p) up to theZp ⊂Z2p identi-
fication, where σ now maps φ→φ+π/p, θ→−θ. This is
a Klein bottle without self-intersections. It intersects the
torsion one-cycle (21) at the point θ = θ0, φ = ψ = 0, as
before. Based on this, we conclude that 〈i 〉 · 〈i ±1〉 = 1.

It remains to compute 〈i 〉2 =Vi ∩〈i 〉. To do so, we first
compute the transverse intersection between two differ-
ent representatives of the Vi homology class in H3(X ,Z).
This gives a one-cycle ωi i ∈ H1(Vi ,Z) such that Vi ∩〈i 〉 =
ωi i ∩〈i 〉. We use the description of the horizon as a T 3 fi-
bration over an n-gon, as shown in figure 6(a). Near Vi , the
T 3 fiber can be parameterized by (arg zi−1,arg zi ,arg zi+1),
subject to the orbifold identification

(arg zi−1,arg zi ,arg zi+1) ∼= (arg zi−1,arg zi ,arg zi+1)

+ π

pi
(qi , pi −qi −1,1) ,

(23)

with the fiber coordinate arg z j degenerating on the j th
edge of the n-gon. To lift Vi off the i th edge of the n-gon,
we need to specify arg zi . Two simple ways to do this, con-
sistent with the identification (23), are

arg zi = (pi −qi −1)arg zi+1 , (24)

or

arg zi = (pi −qi −1)q̃i arg zi−1 , (25)

where q̃i is chosen to satisfy qi q̃i
∼= 1 (mod 2pi ). Either

choice allows Vi to be deformed to a T 2 fibration over
a line segment connecting the edge i −1 with the edge
i +1 through the bulk, except that in the former case one
end must remain at the corner between edges i and i +1,
whereas in the latter the other end must remain at the
corner between edges i −1 and i , so that the linked fibers
degenerate simultaneously. These two choices intersect
transversely in the interior of the n-gon, as shown in fig-
ure 8. For qi 6= pi −1, they intersect along the pi −qi −1
one-cycles

arg zi+1 = q̃ arg zi−1 + 2πk

pi −qi −1
, (26)

Copyright line will be provided by the publisher 13
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i
i + 1i � 1

Figure 8 Two three-cycles homologous to Vi which intersect transversely along a one-cycle. As in figure 6(a), we represent the
horizon as a T 3 fibration over an n-gon. Vi corresponds to the i th edge, along which the fiber degenerates to T 2. The red and
blue dashed curves represent different ways to deform Vi into the bulk of the n-gon, consistent with different embeddings of
T 2 ⊂ T 3, as described in the text.

indexed by 0 ≤ k < pi − qi − 1. For qi = pi − 1, arg zi is
constant, and two representatives do not intersect (or
intersect non-transversely).

Each of the pi −qi −1 one-cycles in (26) composingωi i

is a generator of H1(Vi ,Z), hence its intersection parity
with 〈i 〉 is odd. Since qi is odd, we conclude that Vi ∩
〈i 〉 = ωi i ∩〈i 〉 = pi mod 2. Using figure 7(a) to interpret
the parity of pi , we conclude that:

〈i 〉 ·〈 j
〉=


1 for i = j ±1

1 for i = j if Li+1 6= Li−1

0 otherwise

(27)

where by Lk we denote the even sublattice on which the
corner k lives.

Several comments are in order. Firstly, the inner prod-
uct is symmetric, although this is not obvious from the
definition 〈i 〉·〈 j 〉 ≡Vi ∩〈 j 〉. Secondly, it is invariant under
the equivalence relation (19), as is required for it to be
well-defined. In fact, invariance under (19) can be used
to derive the formula for 〈i 〉2 once 〈i 〉 · 〈 j 〉 is known for
i 6= j , as an alternative to computing the self-intersection
as above. Thirdly, the inner product is non-degenerate,
i.e. for any A ∈ H2(Z̃), there exists B ∈ H2(Z̃) such that
A ·B 6= 0. (To show this, one can check that A · 〈i 〉 = 0 for
all i implies A is trivial up to the equivalence (19).) Finally,
the element

η≡∑
i
〈i 〉 , (28)

plays a special role, in that A ·(A+η) = 0 for any A ∈ H2(Z̃);
this is the “norm” element discussed in appendix B.22

As a result, there are two distinct ways to specify a
torsion class. We can either specify its components “co-
variantly” in the divisor basis:

A =∑
i

Ai 〈i 〉 , (29)

or we can specify the corresponding quantized Wilson
lines “contravariantly” Ai = A · 〈i 〉. The overcompleteness
of the divisor basis implies different properties for the two
cases.23 In the covariant formulation there is an ambigu-
ity due to the equivalence relation (19):

Ai
∼= Ai +δi∈L +δi∈L′ , (30)

for any pair of even sublattices L, L′ not containing the
origin. In the contravariant formulation, the Ai are unam-
biguous but subject to the constraints∑
i∈L

Ai + ∑
i∈L′

Ai = 0. (31)

22Note that, in contrast to the discussion in appendix B, we have
not written (28) as a sum over the elements of an orthonor-
mal basis, but one can check that

∑
i 〈i 〉 is indeed the norm

element, nonetheless.
23Using the divisor basis to describe the space of discrete tor-

sions is analogous to describing the (co)tangent space of a
surface in terms of the (co)tangent space of the enveloping
space. The pullback map is surjective and leads to equiv-
alence classes of one-forms analogous to (30). The push-
forward map is injective, and leads to constraints on vectors
analogous to (31).

14 Copyright line will be provided by the publisher
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The properties are complementary in that they ensure
that the inner product 〈A〉 · 〈B〉 = Ai Bi = Ai B i is well-
defined. Both co- and contravariant formulations will be
useful in stating the AdS/CFT dictionary for discrete tor-
sion in the following sections.

3 Brane tilings, orientifolds, and NSNS
torsion

Having understood the geometry of toric orientifold sin-
gularities in detail, we now review what is known about
the N = 1 SCFTs arising from D3 branes probing these
singularities. To do so, we use the language of brane
tilings [43–45], focusing especially on their construction
as a five-brane system in the gs →∞ limit [46]. The recent
progress of [15] in constructing CFT duals for intrinsically
strongly coupled orientifold phases will be essential to
our analysis. In particular, as anticipated in [15], these
strongly coupled phases occur for every value of the dis-
crete torsion when the toric diagram has five or more
sides, a category which includes orientifolds of some sim-
ple and familiar geometries, such as the dP2 and dP3

singularities.24 We will review the results of [15] in the
next two sections, generalizing them to the large class of
toric orientifolds considered in the previous section.

3.1 Review of brane tilings

The N = 1 gauge theory arising from N D3 branes prob-
ing a toric Calabi-Yau singularity can be engineered by N
D5 branes wrapping a torus and intersecting a collection
of NS5 branes in a manner which we will describe.25 This
“brane tiling”, similar to brane box models [49, 50], is the
result of T-dualizing along a T 2 within the T 3 toric fiber
of the Calabi-Yau singularity. We begin by reviewing this
T-duality for the case without orientifolds before return-
ing to their effects and the correct description of discrete
torsion in the brane tiling.

24This explains the surprising absence of anomaly-free orien-
tifolds for these geometries in earlier analyses such as [47].

25Many of the results in this section are already well known,
see [46, 48] for reviews. We will nevertheless provide explicit
derivations here, since the details are sometimes important for
our later arguments.

T-duality

Consider a general toric singularity. There is a natural
coordinate on the T 3 fiber defined by:

ψ≡∑
j
ϕ j , (32)

where ϕ j ≡ arg z j . Surfaces of constant ψ define a sub-
fiber T 2 ⊂ T 3 which covers the entire fiber along the toric
divisors zi = 0 (where ψ degenerates to a point).

In order to T-dualize along this torus, we choose coor-
dinates along it. Suppose we are interested in the vicinity
of the divisor zi = 0. The gauge-invariant coordinates

φa
(i ) ≡

∑
j

ua
j iϕ j , (ua

j i ≡ ua
j −ua

i ) , (33)

are well-defined in this region because they do not de-
pend on the degenerating coordinate ϕi . Different charts
are appropriate near each toric divisor zi = 0, reflecting
the non-trivial T 3 fibration. These charts are related by

φa
( j ) =φa

(i ) +ua
i jψ, (34)

which becomes a gauge transformation in the T-dual de-
scription, making H = dB non-trivial in de Rham coho-
mology and signaling the presence of NS5 branes.

To describe the locations of these NS5 branes, we in-
troduce coordinates along the base of the fibration, de-
scribed by the dual cone as reviewed in §A.4. A general
solution to the D-term conditions takes the form

|z j |2 = ρ−ua
j ra , (35)

where ρ and ra can be thought of as FI terms for the
U (1)3 global symmetry. In these coordinates, the dual
cone |z j |2 Ê 0 is described by

ρ Ê max(ua
1 ra , . . . ,ua

nra) . (36)

Since ψ degenerates on the faces ρ = ρmin, it is natural to
think of ρ, or more precisely

R(ρ,ra) ≡∏
j
|z j | =

∏
j

√
ρ−ua

j ra , (37)

as the radial coordinate paired with ψ, forming the com-
plex combination Z ≡ Re iψ =∏

i zi .
The NS5 branes appear where the T 2 subfiber degen-

erates, namely along the curves zi = zi+1 = 0 which corre-
spond to the rays bounding the dual cone. To locate these
rays in the dual cone coordinates ra , we consider

|zk |2 −|zi |2 = ua
i k ra Ê 0, (zi = zi+1 = 0), (38)

Copyright line will be provided by the publisher 15
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with equality if and only if k ∈ {i , i +1}. This fixes ra to be
proportional the outward normal of the side of the toric
diagram connecting corners i and i + 1. Thus, the NS5
branes are rays in the ra plane forming the web diagram
of the toric singularity in question, and sit at the origin of
the Z plane. Counting their worldvolume dimension, we
conclude that they wrap one cycles (determined below)
on the T-dual torus.

The Calabi-Yau metric takes the general form:

ds2 = ds2
base+τabdφa

(i )dφ
b
(i )+2τ(i )

a dφa
(i )dψ+τ(i )dψ2 , (39)

where τab ,τ(i )
a and τ(i ) are functions of the base coordi-

nates ra and ρ. The absence of cross terms which mix the
base and the fiber follows from the fact that the metric
is Kähler and U (1)3 invariant [51].26 The metric compo-
nents in different charts are related by

τ
( j )
b = τ(i )

b −ua
i jτab , τ( j ) = τ(i ) −2τ(i )

a ua
i j +ua

i jτabub
i j ,

(40)

where τab is invariant.
We apply Buscher’s rules [52, 53], which can be written

as

e2Φ′ = e2Φ

G99
, G ′

99 =
1

G99
, G ′

9i =
G9i

G99
,

G ′
i 9 =−Gi 9

G99
, G ′

i j =Gi j −
Gi 9G9 j

G99
,

(41)

where Gmn = gmn +Bmn combines the metric and B-field,
and is in general neither symmetric nor antisymmetric. In
this notation, it is simple to write the multidimensional
version of Buscher’s rules:

e2Φ′ = |G |e2Φ , G ′
αβ =Gαβ , G ′

αi =GαβGβi ,

G ′
iβ =−GiαGαβ , G ′

i j =Gi j −GiαGαβGβ j ,
(42)

where by α,β (i , j ) we denote indices which are dualized
(not dualized), Gαβ ≡ (Gαβ)−1 and |G | = detG .

We find the T-dual background

ds2 = ds2
base +τabdϕ̃adϕ̃b + [τ(i ) −τ(i )

a τabτ(i )
b ]dψ2 ,

B(i ) = τabτ(i )
a dϕ̃b ∧dψ ,

e2Φ = g 2
s det(τab) ,

(43)

26In particular, this follows from the U (1)3 invariance of the
Kähler potential. In general, one could imagine that K →
K + f + f̄ under a U (1) transformation, with f holomorphic,
but imposing that the metric is regular near z = 0 for the
associated GLSM field implies that K can be made U (1)
invariant by a Kähler transformation.

where τab = (τab)−1 and the periodic coordinate ϕ̃a ≡
α′φ̃a has radius R̃ = α′/R = α′ (i.e. period 2πα′). Notice
that the combination τ(i ) −τ(i )

a τabτ(i )
b is independent of

the choice of chart, so the metric element in (43) is glob-
ally defined, which implies that the T-dual coordinates φ̃a

can be chosen globally and hence the fibration is trivial.
Topologically, the space is now T 2 ×R4 with coordinates
(φ̃a ,ra , Z ). The original non-trivial topology is instead re-
flected in the gauge transformations

B(i ) = B( j ) +α′ua
i j dφ̃a ∧dψ , (44)

relating different charts. Near the toric divisor zi = 0, we
must have τ(i )

a ,τ(i ) → 0 with τab finite, in accordance with
the fact that ψ degenerates here with φa

(i ) well-defined.
Thus B( j ) ( j 6= i ) has a Dirac string along the divisor be-

cause ψ degenerates whereas the prefactor τabτ
( j )
a →

−ua
i j remains finite. These Dirac strings end along the

curves zi = zi+1 = 0, signaling the presence of NS5 branes.
We can measure the charge of an NS5 brane by in-

tegrating H over the link of its worldvolume. Consider
the two-sphere formed by taking a path through the bulk
of the dual cone connecting points on the faces i and
i +1 and fibering ψ over this interval. The size of this two-
sphere can be varied by adjusting the size of the arc and
the locations of its endpoints. To construct the S3 link of
an NS5 brane, we consider an interval crossing its world-
volume on the T 2 and fiber the above S2 over this interval,
shrinking the S2 to zero size on either end.

However, the T-dual background (43) produced by
Buscher’s rules is translationally invariant along the torus,
and describes smeared NS5 branes. To capture the entire
smeared charge, we deform the link, stretching the inter-
val crossing the NS5 brane worldvolume until it wraps
around the torus and meets itself. At this point we can
deform the S3 into S2 ×S1, where the S2 is of fixed size
and the S1 is the dual cycle on T 2 to that wrapped by
the NS5 brane. More generally, when S1 is an arbitrary
cycle on the torus the integral of H over S2 ×S1 measures
the intersection number between it and the NS5 brane
worldvolume.

Using Stokes’ theorem, the integral of H over the cycle
described above reduces to

1

(2π)2α′

∮
S1×S2

H = 1

(2π)2α′

∮
S1×S1

ψ

(B(i )−B(i+1)) = ua
i ,i+1na ,

(45)

for winding na = 1
2π

∫
S1 dφ̃a . Thus, the NS5 brane has

winding numbers

w i ,i+1
a =±εabub

i ,i+1 , (46)
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up to a convention-dependent overall sign. Since ra ∝
w i ,i+1

a , the winding is fixed by the angle in the ra plane, as
required for unbroken supersymmetry.

To recap, T-dualizing along a particular torus in the
T 3 fiber of a toric Calabi-Yau singularity turns the geom-
etry into NS5 branes on the flat background T 2 ×R4.27

The NS5 branes form the web diagram associated to the
singularity in one plane of R4 and sit at the origin in the
other plane. For each segment of slope p/q in the web,
the corresponding NS5 brane has winding numbers (p, q)
on the torus.28

Weak and strong coupling limits

So far, we have not addressed what happens at junctions
in the web diagram, where several NS5 branes meet. It is
easy to see that consistency of the web diagram implies
that the NS5 brane tadpole vanishes at each junction, as
required for consistency of the supergravity background
(43). However, if each NS5 brane wraps a fixed (localized
rather than smeared) minimum length S1 on the torus
then their boundaries will not actually meet at the junc-
tions, despite adding to zero in homology, see figure 9(a).
As a crutch, we can add NS5 brane segments along the
torus connecting these edges, pictured in figure 9(b). This
joins the NS5 branes into a single brane on a piecewise-
linear curve.

This description is heuristically correct, but in reality
the NS5 brane will relax into a smooth shape, described
by the holomorphic curve [44]

P (x, y) = 0, (47)

where P (x, y) is a Laurent polynomial with Newton poly-
gon (the convex hull of (m,n) for all non-zero mono-
mials xm yn in P (x, y)) equal to the toric diagram. Here
x = er1/r0+i φ̃1/α′

, y = er2/r0+i φ̃2/α′
for some scale factor r0.

We now consider the effect of adding N D3 branes at
the toric singularity, focusing on the affine case for sim-
plicity. After T-dualizing, we find N D5 branes wrapping
the torus at the intersection of the NS5 brane rays in the ra

plane. To determine the shape of the NS5 branes, we begin
with the naive picture, figure 9(b). Unlike before, the NS5
branes parallel to the T 2 will form bound states with the N

27While (43) is not flat, this is due to the backreaction of the
smeared NS5 branes.

28These statements were derived above in the affine case, but
apply to partial and total resolutions as well.

D5 branes, e.g. an (N ,±1) five-brane in a region with a sin-
gle NS5 brane of either orientation. For gs ¿ 1, the NS5
brane and (N ,±1) five-brane tensions are much larger
than the D5 brane tension, and the NS5 brane—part of
whose worldvolume consists of (±N ,1) bound states29—
again relaxes into the holomorphic curve (47), with D5
brane disks ending along one cycles on the curve.

While the exact shape of the D5 branes is hard to deter-
mine, to read off the resulting gauge theory it is sufficient
to understand the topology of the D5 brane boundaries
along the NS5 brane. In particular, each D5 brane disk
gives rise to a U (N ) vector multiplet, whereas each inter-
section point between the boundaries of two disks along
the NS5 brane gives a bifundamental chiral multiplet (or
an adjoint chiral multiplet where a single boundary self-
intersects), with the chirality fixed by the orientation of
the intervening NS5 brane. In addition, for each (±N ,1)
brane there is a corresponding superpotential term link-
ing the chiral multiplets which lie along its boundary.

Thus, the gauge theory can be determined by specify-
ing the topology of the (±N ,1) brane configuration along
the worldvolume of the NS5 brane, from which the lo-
cations of the D5 brane boundaries can be inferred by
charge conservation. However, there is a simpler way to
specify this topology. In the opposite limit gs À 1, the NS5
brane tension is much less than the D5 brane and (N ,±1)
five-brane tensions, and the D5 branes shrink onto the
original torus. In this limit, the brane configuration is iden-
tical to the naive picture, figure 9(b)! The topology of the
brane configuration, unchanged from the gs ¿ 1 limit,
can now be specified by specifying the locations of the
(N ,±1) branes along the D5 brane worldvolume. Since
the D5 brane worldvolume is a torus, whereas the NS5
brane worldvolume is a punctured Riemann surface of
arbitrarily high genus, the former is easier to draw and
work with.

This five-brane system—as represented by the topol-
ogy of the (N ,±1) branes along the D5 brane worldvolume—
is commonly referred to as a “brane tiling”, see, e.g., fig-
ure 10. We can recover the gs ¿ 1 picture by applying the
“untwisting” procedure of [44] to the brane tiling, which
is merely a formalization of the invariant topology of the
five-brane configuration. In particular, we can read off the

29Note that a (−N ,1) brane is the same as a (N ,−1) of the
opposite orientation. When discussing the wordvolume of the
NS5 brane, the former description is more natural, whereas
when discussing the worldvolume of the D5 branes, the latter
is more natural. This change in viewpoint is the “untwisting” of
[44].
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(a) NS5 brane boundaries fail to meet (b) Connecting the boundaries along T 2

Figure 9 (a) At junctions in the web diagram, the NS5 brane boundaries fail to meet along the T 2, despite adding to zero in
homology. (b) This can fixed by adding NS5 brane segments along T 2. The resulting brane configuration is not BPS, and will
relax into a holomorphic curve. However, the configuration pictured here correctly describes the topology of the NS5 branes, and
is physically realized with D5 branes wrapping T 2 in the gs →∞ limit.

(a) Example tiling.

(N, 0) (N, 1)

(b) 5-brane charge convention.

U(N) U(M)

(c) Bifundamental convention.

Figure 10 (a) An example of a brane tiling, in this case T-dual to D3 branes in a flat background. The colored one-cycles are
associated with NS5 branes ending on the tiling, whose slopes equal those of the external legs of the web diagram for the
singularity. The white regions correspond to stacks of N D5 branes, while the orange and gray shaded regions correspond to
(N ,1) and (N ,−1) (p, q)-five brane bound states respectively. In our conventions, (b) the NS5 brane charge of the tiling increases
as we cross an NS5 brane boundary oriented upwards from left to right, and (c) the arrows in the quiver diagram, corresponding
to bifundamental chiral multiplets arising at the NS5 brane intersections in the tiling, follow the local orientation of the NS5 brane
boundaries.

gauge theory without needing to untwist, following the
rules summarized in figure 10.

We will also often use quiver diagrams to encode the
gauge group and matter content of the resulting field the-
ories. We adopt the same quiver notation as in [15], sum-
marized in figure 11. (We will also introduce below an
extended quiver notation for representing the strongly
coupled sectors T Ok with k ≥ 2.) As usual, nodes in the
quiver diagram denote factors in a semi-simple gauge

group and arrows between nodes denote bifundamental
matter. Due to the presence of orientifold planes we also
have (anti)symmetric tensor matter, orthogonal and sym-
plectic groups, and quivers without a global orientation.

18 Copyright line will be provided by the publisher
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SU(N) SO(N) A B ( A, B)

A B ( A, B)USp(N)SU(F ) flavor

Symmetric

Antisymmetric

Figure 11 Summary of the quiver notation for weakly coupled fields (strongly coupled sectors are described by a notation to be
introduced in figure 25 below). Multiple arrowheads in the same direction along a given edge indicate a multiplicity of fields in the
same representation, and reversing the direction of the arrowhead indicates taking the complex conjugate representation.

Moduli space

The gs À 1 limit also provides a simple picture of the
supersymmetric moduli space [29, 46], which is n −1 di-
mensional for an n-sided toric diagram. The positions
of the n NS5 branes along T 2 represent n −2 degrees of
freedom (accounting for translation invariance along the
T 2). n −3 of these are T-dual to the holonomies

∮
B2 on

the n −3 two cycles of the horizon Y5. Their superpart-
ners are Wilson lines on the NS5 branes, which T-dualize
to the holonomies

∮
C2 on these same cycles. The final

position modulus for the NS5 branes is tied to the axion
C0 by supersymmetry and is T-dual—together with the
holonomy

∮
T 2 B2—to the beta deformation [54]. Together

with the T-dual of the axio-dilaton (which is a combina-
tion of the metric and dilaton fields partnered with

∮
T 2 C2

in the five-brane description), these moduli match the
(n −1)-dimensional conformal manifold of the dual SCFT.

Moving in this moduli space changes area of the faces
in the brane tiling and hence the corresponding gauge
and superpotential couplings. At special points in moduli
space Seiberg duality occurs naturally in the form of a D5
brane shrinking to zero size and regrowing in a different
topology, see figure 12. At other points, more singular be-
havior is possible, such as multiple simultaneous Seiberg
dualities. In addition, in general there are regions of mod-
uli space where (N ,k) branes appear for k 6= 0,±1, and
there is no (known) Lagrangian description of the five-
brane system.

One can also consider brane tilings where the NS5
branes do not (and can not, if we want a weak coupling
description) form straight lines along the T 2, such as that
in figure 43(a) below. These configurations do not corre-
spond to a BPS five-brane system, yet naively applying
the dictionary of figure 10 leads to a gauge theory in the
same universality class as those constructed with BPS
NS5 branes in the same T 2 holomology classes (as deter-
mined by the toric diagram) [55]. Heuristically, one could
think of this as a deformation of the corresponding field
theory which preserves the same symmetries as the BPS

theory.30 In particular, conservation of the R-symmetry
implies that these deformations are marginal in the IR
SCFT. As a flavor-singlet marginal operator must be ex-
actly marginal [11], this suggests that the deformed theory
flows to somewhere on the same conformal manifold. In-
deed, these theories turn out to be Seiberg dual to the
BPS theories, and the early development of toric gauge
theories (before, e.g., [56]) made no distinction between
the two.

3.2 Orientifolds and NSNS torsion

We now describe the gauge theories arising from D3
branes at toric orientifolds in the language of brane tilings.
Acting on the local fiber coordinates (33) and Z = ∏

i zi ,
the involution described in §2.2 takes the form

φa
(i ) →φa

(i ) +πua
i , Z →−Z . (48)

Thus, in these local coordinates the involution combines
inversion in the transverse Z plane with a translation
along T 2 determined by the even sublattice containing the
corresponding corner of the toric diagram. After T-duality,
the involution becomes φ̃a →−φ̃a , Z →−Z . There a four
fixed planes located at Z = 0 at four points on the T 2 and
extending in the ra plane. Thus, toric orientifolds are T-
dual to five-brane systems with four O5 planes.

To see the effect of the shift (48), recall that the T-dual
of an orientifold without fixed points φ → φ+π is the
orientifold φ̃→−φ̃ with two orientifold planes φ̃= 0,π of
opposite RR charge [57, 58]. Since a basis of one-cycles
for the T 2 can always be chosen such that the shift acts
on a single generator of the basis, dualizing (48) results in
two O5+ planes and two O5− planes, where their relative

30Note that supersymmetry is imposed by hand on the gauge
theories obtained from these non-BPS brane configurations.
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(a) A brane tiling. (b) Its Seiberg dual.

Figure 12 Seiberg duality on a face of the tiling. As we move the NS5 brane boundaries the central compact D5 shrinks to zero
size, and then grows in a different topology.

positions on the T 2 are determined by the even sublattice
in question.

Since the T 2 is non-trivially fibered, this implies that
the O5 plane charges change as we move between faces of
the (p, q) web in the ra plane. This also follows from the
well known fact that the RR-charge of an orientifold plane
flips upon crossing an NS5 brane [59]. To see how this
works in detail, note that the RR charge of the O5 plane at
φ̃a ∈ {0,π}2 can be written as

Qi (φ̃) = 1−2
[(

hi +
φ̃aua

i

π

)
mod 2

]
, (49)

in the i th wedge of the web diagram, for some choice of
hi ∈ {0,1}n . Based on the RR charges of the O5 planes, the
NS5 brane between the wedges i and i +1 must intersect
the O5 planes which satisfy

hi+1 −hi ≡
φ̃aua

i+1,i

π
+1 (mod 2). (50)

Since gcd(u1
i+1,i ,u2

i+1,i ) = 1 for an isolated singularity,
there is always at least one solution. In fact, there are ex-
actly two solutions: by (46) the right hand side is invariant
under φ̃a → φ̃a +πw (i ,i+1)

a , hence each NS5 brane inter-
sects exactly two O5 planes, determined by the winding
numbers of the NS5.

The moduli space of NS5 brane positions has been
reduced to a discrete set of choices hi ∈ {0,1}n . Redefining
φ̃a → φ̃a +πna , we see that

hi
∼= hi +naua

i , (51)

up to translations on the torus, so the discrete moduli
space of NS5 brane positions is Zn−2

2 . Notice that (51)
is identical to (30). Thus,

∑
i hi 〈i 〉 defines a class in

H 3(Xp , Z̃) ∼=Zn−2
2 . Given the connection between the NS5

brane positions and the B2 Wilson lines before orientifold-

ing, it is very natural to conjecture

[H ] =∑
i

hi 〈i 〉 . (52)

In other words, the local charges of the O5 planes in each
wedge of the web diagram determine both the involution
and the NSNS discrete torsion [H ] via (49). This prescrip-
tion is summarized in figure 13.

A very strong check of (52) is as follows. D3 branes
wrapped on three cycles Σ of X5 correspond to baryons in
the dual gauge theory. A D3 brane wrapped once aroundΣ
is forbidden unless the RR and NSNS torsions restricted to
this cycle vanish, [H ]Σ = [F ]Σ = 0 [20]; otherwise only an
even wrapping number is permitted. For the three cycle Vi

this is the same as 〈i 〉 · [H ] = 〈i 〉 · [F ] = 0, as shown in §2.5.
In the coordinates φa

(i ),ra , and Z , the three cycle Vi

spans the T 2 with Z = 0, and extends along a line between
the two neighboring NS5 branes in the ra plane. There-
fore, in the five-brane description the baryon becomes a
D1 brane stretched between adjacent NS5 branes in the
web diagram. Since Vi is mapped to itself by the orien-
tifold involution, the D1 brane lies on top of one of the
O5 planes. There are two obvious requirements for such a
baryon to exist: (1) the O5 plane must intersect both of the
NS5 branes in question, and (2) the RR charge of the O5
plane must be positive where it intersects the D1 brane.
The latter requirement follows because USp(1)—the pu-
tative worldvolume gauge group for a single D1 brane
coincident with an O5− plane—does not exist.

Let the O5 plane in question be located at φ̃a = (0,0)
without loss of generality. The above requirements be-
come

hi = 0, hi−1 = hi+1 = 1. (53)

For the ansatz [H ]conj (52) this implies 〈i 〉·[H ]conj = 0. Con-
versely, let 〈i 〉 · [H ]conj = 0. We can fix hi = 0 and hi+1 = 1
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〈d〉 〈c〉

〈a〉 A

B

C

D

(a) Nomenclature. (b) Condensed notation.

(c) (0,1) (d) (1,1)

(e) (0,0) (f) (1,0)

Figure 13 Local charge assignment for the IA phase of the complex cone over dP1, analyzed in §6.2 below. For notational
convenience throughout this paper we will use the condensed notation in (b), which simultaneously shows the orientifold charge of
all four fixed points in every toric wedge. One can determine which NS5 branes intersect which fixed point, and the local charges
of the O5, by taking the corresponding entry in the matrix of signs in (b). In (c)-(f) we show explicitly the local structure at each
orientifold fixed point. By choosing any of the fixed points, and adding up the torsion generators associated to the wedges with
non-zero (negative) local O5 charge, one obtains the [H ] NSNS torsion, via (52). In this particular case we have that [H ] = 0, up
to (19).

by the equivalence (51), hence by choosing an appropri-
ate O5 plane. The constraint 〈i 〉·[H ]conj = 0 then becomes
hi−1 = 1, and we recover (53). Thus, the above constraints
on the NS5 brane positions and the O5 plane charges are
equivalent to 〈i 〉 · [H ]conj = 0. Since two distinct torsion
classes [H ] and [H ′] cannot have the same contravari-
ant components H i ≡ 〈i 〉 · [H ], this strongly supports the
ansatz (52).31

3.3 Constructing the orientifold gauge theory

Because the O5+ and O5− carry opposite RR charge, there
must be D5 branes ending on the lines of intersection
between the O5 branes and NS5 branes. For instance, one
can include D5 branes parallel to the O5− planes. How-
ever, these T-dualize to D7 branes wrapping toric divi-

31 This is essentially a proof of (52) if we put in the further as-
sumption that the NS5 brane positions and O5 plane charges
are T-dual to NSNS (rather than RR) degrees of freedom.
Otherwise we have to contend with the additional constraint
〈i 〉 · [F ] = 0 which we have not discussed.

sors, which extend away from the toric singularity and
modify the near horizon geometry. To avoid introducing
additional D-branes in the T-dual, the D5 branes must
be coincident with the NS5 branes, forming (±k,1) five-
brane bound states. In particular, the difference in charge
between the O5+ and O5− together with the orientifold
projection require that the five-brane switches between a
(2,1) brane and a (−2,1) brane as it crosses the O5 plane
along the T 2.

There is a corresponding change in rank along the T 2

coming from the edges of the (±2,1) branes, as follows.
Unbroken supersymmetry requires that the D5 branes
in the φ̃a plane and the O5 planes in the ra plane are
oppositely oriented with respect to a common volume-
formΩab =−Ωba , Ω12 > 0.32 This implies that, relative to
one of the two D5-O5 intersection points through which
a given NS5 brane passes, the jump in the RR charge has
the same sign (and half the magnitude) as we cross the

32The NS5 branes satisfy wa ∝ ra and their orientation is
opposite viewed from the perspective of the two planes, hence
the D5/O5 orientations must also be opposite along the two
planes.
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NS5 brane along the D5 worldvolume as it does when
we cross the NS5 brane along the O5 worldvolume in the
same angular direction (e.g. in a clockwise sense about
the D5/O5 intersection point).

The outcome of this rule is the same regardless of
which of the two possible O5/D5 intersections we choose,
because

Qi (φ̃+πw (i ,i+1)) =−Qi (φ̃) , (54)

which follows from

εabua
i ub

i+1 ∈ 2Z+1, (55)

which is equivalent to the requirement that adjacent cor-
ners lie on distinct even sublattices not containing the
origin.

The above rule determines the relative rank of any
two faces of the brane tiling by adding up the changes in
RR charge along any path connecting them. The result is
independent of the chosen path because the net change
in RR charge upon circling one of the O5 planes is zero,
a direct consequence of the fact that the net change in
RR charge is zero upon circling the D5 brane stack along
the O5 plane worldvolume. We summarize the resulting
changes in rank in figure 14.

Once the ranks have been determined, the gauge the-
ory can be read off using the same rules as before. Besides
identifying elements that are mapped to each other by the
orientifold involution, the only new feature is the poten-
tial for new degrees of freedom localized at the orientifold
planes. We label the local configuration of branes where
an O5 plane is crossed by 2k NS5 branes “T Ok (N )”,33

where T O stands for “toric orientifold” and N denotes the
average rank of the (Ni ,0) D5 brane faces surrounding
the O5 plane. For T O0(N ) there are no local degrees of
freedom, but the enclosing face projects down to SO(N )
(USp(N )) for an enclosed O5+ (O5−). For T O1(N ), there
is a chiral multiplet in a tensor representation of SU (N )
localized at the D5/O5 intersection point. Higgsing the
multiplet recombines the NS5 branes in the web diagram
and reduces to T O0(N ), hence for consistency the multi-
plet must be a symmetric (antisymmetric) tensor when
the O5 plane enclosed by the corresponding NS5 branes
in the web diagram has negative (positive) RR charge. This
is the “angle rule” of [60].

Another way to fix which type of tensor representa-
tion appears for T O1 is via anomaly cancellation. For a

33Since the O5 plane charge changes across each NS5 brane,
there must be an even number intersecting each O5 plane.

given (N ,0) face, the change in rank across a neighboring
NS5 brane contributes to the U (N )3 chiral anomaly of
the two bifundamental chiral multiplets which cross it.
Since these multiplets are in conjugate representations of
U (N ), the contribution cancels. When one of these multi-
plets sits on an O5 plane (in the T O1 configuration), the
U (N )3 anomaly is determined by the type of tensor mul-
tiplet which appears, rather than by a change in rank. In
order to cancel with the other contributions, the multiplet
should be a symmetric (antisymmetric) tensor when the
adjacent (M ,±1) five-branes have RR charge M = N +2
(M = N −2). This is sufficient to cancel all non-Abelian
gauge anomalies, and is easily shown to be equivalent to
the angle rule given above.

For the T O0 and T O1 configurations, it is convenient
to specify the O5 charges by associating a sign known
as the “T-parity” to the fixed point [60]. For T O0, the T-
parity is simply the O5 charge, whereas for T O1 it is the
O5 charge in the wedge that covers an arc bigger than 180◦
in the ra plane, see figure 14. As we have seen, positive
(negative) T-parity corresponds to SO (USp) gauge groups
and symmetric (antisymmetric) tensor matter in the T O0

and T O1 cases, respectively.

Resolving singular cases

The above rules are sufficient to construct the orientifold
gauge theory when no more than two NS5 branes inter-
sect a given O5 plane (i.e., when T Ok for k ≥ 2 does not
appear). However, there can be subtleties when (N , p) five
branes appear in the brane tiling for p ∉ {0,±1}, or when
two NS5 brane boundaries coincide. Unlike the case with-
out orientifold planes, the NS5 brane moduli are fixed,
and we cannot avoid these occurrences by moving to an-
other part of moduli space.

We focus on the case of coincident NS5 brane bound-
aries, as occurs in some examples later in the paper. Since
the web diagram has no parallel legs, this can only happen
if there are antiparallel legs in the web diagram. In this
case overlapping NS5 boundaries inevitably occur for at
least one choice of [H ], see, e.g., figure 43(a) below. One
solution is to deform the NS5 brane boundaries slightly
so that they only cross each other where they intersect
the NS5 brane. This deformation breaks supersymmetry,
but, as in §3.1, there is reason to believe that imposing
SUSY by hand on the resulting gauge theory gives a UV
theory in the same universality class as the string theory
we are interested in; this follows from Seiberg duality in
the absence of orientifold planes.

The examples we provide later in the paper will further
support this hypothesis. The case where (N , p) five branes
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φ̃2

(a) Tiling view.

O5± O5∓

r1
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(b) O5 view.

Figure 14 Two NS5 branes intersecting on top of an O5 plane (the T O1(N ) configuration). (a) The view from the brane tiling,
where the point of intersection with the O5 plane is indicated by a star. At the intersection of the the two NS5 brane boundaries—
coincident with the O5 plane—we obtain a two-index tensor of the U (N ) worldvolume gauge theory on the adjacent D5 brane
stack. The “T-parity” of the fixed point [60] is indicated by a sign in the tiling, which is positive (negative) when the multiplet is a
symmetric (antisymmetric) tensor. (b) The view from the O5 plane. The RR charge of the orientifold plane changes as we cross
the NS5 branes. The T-parity is equal to the sign of the RR charge in the O5 segment which spans the largest angle in the ra

plane.

appear for p ∉ {0,±1} could be resolved analogously, ex-
cept that a larger deformation of the branes is required to
obtain a gauge theory description. We will not consider
any examples of this latter type.

Note that the angle rule of [60] appears ambiguous
when there are anti-parallel legs in the web diagram. The
type of tensor matter which actually appears depends
on which way the branes are deformed in the φ̃a plane.
To address this ambiguity, the angle rule can be restated
in terms of the “local web diagram”, defined as the web
diagram formed by the outgoing NS5 brane rays at the O5
fixed point in the φ̃a plane. For BPS NS5 branes, the local
web diagram is identical to the subset of the web diagram
composed of the NS5 branes intersecting the O5 plane in
question, see, e.g., figures 13(c)–13(f). For non-BPS NS5
branes, it depends on the way the branes are deformed
in the φ̃a plane. Applying the angle rule to the local web
diagram produces an anomaly-free spectrum that agrees
with [60] in the BPS case and is consistent with Seiberg-
duality and integrating in and out massive matter in the
more general, non-BPS setting. Local web diagram will
also prove useful in our discussion of the local degrees of
freedom in T Ok≥2 configurations below.

4 T Ok CFTs and RR torsion

So far we have not addressed the case where more than
two NS5 branes cross a single O5 plane. As argued in [15]
such configurations are intrinsically strongly coupled.

They correspond to infinite coupling points in the mod-
uli space of the unorientifolded parent theory that are
halfway between Seiberg dual gauge theories. Since the
strongly coupled degrees of freedom are localized at the
multiple intersection, we expect that they are described by
a conformal field theory (CFT). Overloading notation, we
label the class of CFTs that occur in this way the T Ok (N )
CFTs, k ≥ 2, where T Ok (N ) also labels the generating
brane configuration (2k NS5 branes crossing crossing
atop an O5 plane), as above. We will see that, depend-
ing on additional discrete data, there are multiple T Ok (N )
CFTs for each k ≥ 2 and N sufficiently large.

4.1 Constructing T Ok CFTs using deconfinement

As in [15], we use deconfinement [61, 62] to construct
these CFTs. This is based on brane engineering the gauge
theory shown in figure 15, whose low energy limit (after
confinement of the USp(N+F−4) node) describes a single
antisymmetric tensor of SU (N ) with no superpotential,
the T O1(N ) theory. We engineer this using the non-BPS
brane configuration shown in figure 16. The net effect of
this brane engineering is to transfer the O5 intersection
point of the two NS5 branes from the brane tiling to a
separate stack of F flavor branes which is displaced from
the tiling in the ra plane. This is done by blowing up a
“bubble” in brane tiling, where the top of the bubble is a
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T

Q R

P

USp(N + F − 4)

SU(F ) SU(N)

Figure 15 Deconfined description for an antisymmetric tensor, with the superpotential W = PQR +TQ2.

(−2, 1) (−2, 1)

(2, 1) (2, 1)(F − 2, 1)

C

(2− F, 1)

C ′

(N, 0)(N, 0)

(N − 2,−1)

(N − 2, 1)

(N + F − 4, 0)

A

B

(a) The D5 worldvolume

(−F, 0) (−F, 0)

(2− F,−1)

(2− F, 1)

(b) The flavor dome

(N + F − 4, 0)

(−F, 0)

O5−
O5+

(c) The O5 worldvolume

Figure 16 The brane configuration engineering the deconfined gauge theory in figure 15. Here the brane configuration (b) is
attached to the brane tiling (a) along the purple and green lines (the “deconfinement ring”), with the interior displaced in the ra

plane to form a dome over the USp(N +F −4) face in the tiling. The spurious SU (F ) flavor symmetry of figure 15 is generated
by the (−F,0) faces (the same as (F,0) oppositely oriented) in the “flavor dome” (b), which are punctured (green crossed circles)
to generate a global symmetry. The configuration of five branes which intersect the O5 plane is shown in (c). This differs from
figure 14(b) in that the two NS5 branes intersect on top of the flavor dome, avoiding the brane tiling.

dome formed by punctured34 flavor branes and recombi-
nations of the NS5 branes and the bottom is a D5 brane
face in the brane tiling. The recombined NS5 branes in
this “flavor dome” generate the superpotential in figure 15
(see [15] for a more detailed explanation).

Thus, deconfinement allows us to move the intersec-
tion point of pairs of NS5 branes from the brane tiling

34Here by “puncture” we mean that a small disk is cut out of the
D5 brane world-volume and a semi-infinite cylinder is attached.
This makes the volume of the cycle wrapped by the brane
infinite, hence the gauge coupling is zero.

to a separate stack of flavor branes (one for each decon-
fined pair), and avoid higher multiplicity intersections. In
this way, we can resolve the T Ok≥2 configuration into a
deconfined configuration with a Lagrangian description.
The resulting brane configurations quickly become very
complicated, and it is convenient to unroll the neighbor-
hood of the tiling near the O5 plane into a cylinder with
the O5 plane at infinity (as in the well-known conformal
mapping w =−i log z). Quotienting by the O5 involution,
we obtain a cylinder of one-half the circumference which
faithfully encodes the brane tiling near the O5 plane. For
example, figure 14(a) becomes figure 17(a) and figure 16(a)
becomes figure 17(b).
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(a) T O1 cylinder view

(b) T O1 deconfined

(c) T O2 deconfined (d) Seiberg dual

Figure 17 (a) The T O1 configuration conformally mapped to a cylinder. The dashed lines—at angles 0 and π on the cylinder—are
identified by the O5 involution. (b) Conformal mapping of the deconfined brane tiling corresponding to T O1, c.f. figure 16(a).
(c) Engineering a T O2 CFT using deconfinement. (d) A Seiberg-dual decription of (c).

An example of deconfining a T O2(N ) CFT is shown
in figure 17(c). The edges of the deconfined bubbles now
form two concentric “deconfinement rings” in the brane
tiling, each with an associated flavor parity Fi (with the in-
dex counting outward from the center), where (−1)F1+F2 =
(−1)N because the central USp(N +F1 +F2 −6) face must
have even rank.35 The inner ring can be reconfined, re-
placing USp(N +F1 +F2 −6) with an antisymmetric ten-
sor of the outer SU (N +F2 −2) gauge group. This shows
that the spurious SU (F1) flavor symmetry acts trivially in
the infrared, as required. To show that SU (F2) is likewise
trivial in the infrared, we consider the Seiberg dual of the
outer SU (N+F2−2) gauge group, which exchanges the po-
sitions of the two concentric rings, see figure 17(d). Upon
confining the central face, SU (F2) becomes manifestly
trivial.36

35We will not consider the case of symmetric tensor deconfine-
ment. As argued in [15], it should lead to a description where
the RR torsion is encoded in a choice of branch on the moduli
space rather than in the flavor parities. Due to the difficult of
isolating the desired branch, we found this description to be of
little practical use.

36In the brane engineered picture, the infrared triviality of
SU (Fi ) corresponds to the fact that the SU (Fi ) punctures

The same argument shows that the infrared physics is
independent of the choice of Fi up to the parities (−1)Fi ,
because the value of F in figure 15 is arbitrary, but (−1)F

is fixed by the requirement that the USp(N +F −4) node
has even rank. Since (−1)F1+F2 = (−1)N , there are two a
priori different flavor parities for any fixed N . As analyzed
in detail in [15] and reviewed in §5, the two choices of
flavor parity indeed give rise to different T O2 CFTs.

We can deconfine T Ok (N ) for any k in a similar fash-
ion, see figure 18. Now there are k concentric rings as-
sociated to k deconfinement bubbles. As before, the in-
nermost ring can be replaced with an antisymmetric ten-
sor, and one can show that two adjacent rings can be
exchanged by taking the Seiberg dual of each of the D5
brane faces between them.37 Note that each deconfine-

detach when the deconfinement bubble is allowed to shrink
to zero size (reconfine), rendering SU (Fi ) charged states
massive.

37It turns out that, so long as we apply Seiberg duality to four-
sided faces between the two rings one at a time, the order in
which we do so does not matter, and any face with more than
four sides will reduce to a four-sided face by the time all other
four-sided faces have been dualized. (Seiberg duality for a
face with more than four sides does not have a simple brane
interpretation.)
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(a) T O2p deconfined

(b) T O2p+1 deconfined

Figure 18 Constructing a T Ok CFT via deconfinement for general (a) even and (b) odd k ≥ 2. In (b) we also illustrate the path
generating the contraction M4 which appears in the superpotential term M4Q2

4T4 generated by the fourth deconfinement ring
(counting outwards).

ment ring is attached to flavor branes in the configuration
shown in figure 16(b), which generate the same collection
of flavored fields as in figure 15. The only difference is the
superpotential, now of the form PQR +TQ2M where M

is the contraction of the fields along the path that skirts
the inside of the bubble through (Na ,0) faces, see, e.g.,
figure 18(b).

Close cousins of the CFTs engineered by the brane
configurations in figure 18 can be obtained by “flipping”
certain mesonsΦ [16], i.e., adding a fundamental field φ
in the conjugate representation to Φ along with a mass
deformation δW = m2−∆ΦΦφ. For the simplest class of
mesons in figure 18, the net effect is to cross or uncross
adjacent NS5 branes bordering shaded faces in the bot-
tom row of the figure.

Notice that the theories constructed in this way all
have the property that only adjacent legs in the local
web diagram are deconfined. Since we restrict to anti-
symmetric (versus symmetric) tensor deconfinement, this
implies that each deconfined pair encloses an O5+ wedge,
hence the pairs are uniquely determined by the local web
diagram and O5 charges. Given these data, we can always
construct a deconfined description from figure 18 or a

flipped variant of it. In fact, there are multiple ways to do
this, but they only differ by permuting the deconfinement
rings, hence they describe the same infrared fixed point.

It is interesting to consider whether there are addi-
tional deconfined brane configurations which are not
Seiberg dual to those in figure 18 or flipped versions
thereof. We comment on this question briefly, though
we have been unable to definitively answer it.

We first remark that not all deconfined brane configu-
rations are consistent. For instance, in the configuration
shown in figure 19(a) it is not possible to move the outer
bubble inside the other two using Seiberg duality. This
can be traced to the configuration of NS5 branes pictured
in figure 19(b), where a deconfined pair of NS5 branes
encloses another deconfined pair with the same orienta-
tion. The parallel NS5 branes prevent two bubbles from
crossing, as Seiberg duality never crosses parallel NS5
branes, see figures 12 and 19(c). As a consequence, SU (F3)
is not trivial in the infrared. (In particular, the anomaly
SU (F3)2U (1)R is non-vanishing.) Since the SU (Fi ) were
introduced as spurious symmetries needed to construct
the deconfined description, this is inconsistent.

A sufficient—and almost certainly necessary—condition
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(a) Inconsistent deconfinement (b) Locked rings (c) Antiparallel NS5 branes can cross

Figure 19 (a) An inconsistent attempt at constructing a T O3 CFT. The outer deconfinement ring cannot be reconfined, and the
associated flavor symmetry SU (F3) fails to be trivial in the infrared. (b) The inconsistency of (a) can be traced to the NS5 brane
configuration shown here, which prevents the two deconfinement rings from crossing, because Seiberg duality (figure 12) and
integrating out massive matter (c) never cross parallel (unlike antiparallel) NS5 branes.

for the SU (Fi ) flavor symmetries to be trivial in the in-
frared is that we can move any given deconfinement ring
so that it lies innermost around the O5 plane, and thus
can be reconfined into an antisymmetric tensor. As we
have seen, the configuration in figure 19(b) prevents this.
Through experimentation, we further hypothesize that
no pair of NS5 branes that are both inwards (or both out-
wards) directed can cross in the brane tiling; this is similar
to the consistency conditions on brane tilings without
orientifold planes [56, 63, 64]. Although not obvious suf-
ficient to ensure consistency, the two conditions men-
tioned above imply that only adjacent legs of the local
web diagram can be deconfined, as was true in our con-
struction in figure 18.

On the other hand, if we assume that the deconfine-
ment rings are arranged concentrically without intersect-
ing each other, then the above hypothesized constraints
do restrict us to the construction in figure 18, and its
Seiberg dual and flipped versions. This assumption is not
fully general; for instance, other Seiberg dualities can be
used to intertwine the rings in figure 18. However, the
concentric arrangement is always possible if for any al-
lowed T Ok deconfinement we can arrange for one ring
to enclose the others, such that the enclosed tiling is an
allowed T Ok−1 deconfinement. This is physically moti-
vated, in the sense that it should describe how a T Ok CFT
can be partially resolved to a T Ok−1 CFT. However, the
details are somewhat subtle, and we will not pursue this
reasoning any further in the present work.

For the purposes of our paper, it is sufficient to note
that the consistent T Ok configurations constructed above
are specified uniquely by the local web diagram, the O5
charges, and flavor parities associated to each O5+ wedge.

As we argue in the next section, this gives exactly the right
set of CFTs to reproduce the RR torsion. This strongly sug-
gests that other consistent deconfined brane configura-
tions (if any exist) do not describe the T Ok configuration,
but rather have a different physical significance.

Before proceeding, we comment briefly on the taxon-
omy of the T Ok (N ) CFTs constructed above. Due to flavor
parities and the choice of the local web diagram (with
different choices related by flipping mesons), there are
multiple T Ok (N ) CFTs for any fixed k and N .38 Given a
choice of O5 charges, the topology of the local web dia-
gram can be fixed by associating a bit 0 (1) to each NS5
brane ray in the web diagram whose antiparallel ray lies
within an O5+ (O5−) plane, see figure 20.39 The resulting
binary sequence can be shown to be antiperiodic (pe-
riodic) under a shift by k places when k is even (odd),
hence the local web diagram encodes k bits of informa-
tion. Attaching the flavor parities to this sequence in the
locations of the associated O5+ wedges, we obtain a chain
of k tuples (e.g., 0+10−1. . .1+0, abbreviated as +

01
−
01

. . .+
10 )

on which there is a natural Dk action generated by cyclic
permutation of the tuples and by reversing the sequence

38To be precise, we fix bN /2c, since the flavor parities encode
(−1)N and qualitative properties of the CFT depend on it.

39To allow deconfinement, the antiparallel ray to each ray in
the local web diagram must lie in the interior of one of the
two O5± wedges adjacent to the ray k spaces away in the
diagram. Obtaining a suitable local web diagram sometimes
requires a deformation away from the BPS configuration, as
discussed in §3.3.
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1

0

0

1

φBC

φAD

φBC
00

φAD
11

(a) Binary sequence for a T O2 CFT

0

1

1

0

φAB

φCD

φAB
01

φCD
10

(b) Effect of reversing the O5 charges

Figure 20 The web diagram and O5 charges determine a binary sequence which can be decorated with the flavor parities
φα = (−1)Fα to label a specific T Ok CFT.

(e.g., +01
−
01

. . .+
10 −→ +

01
. . .−

10
+
10). The set of distinct T Ok (N ) CFTs

is therefore 2k×2k

Dk
.

Specific T Ok CFTs can be specified using a notation
T O+

01
−
01

. . .+
10(N ) which incorporates the sequence of tu-

ples. As an example, a symmetric (antisymmetric) ten-
sor of SU (N ) corresponds to T O n

00(N ) (T O n
11(N )), where

n = (−1)N .

4.2 RR torsion

In the previous section, we found that for each O5+ wedge,
the associated T Ok CFT has a flavor parity Fα, subject to
the constraint∑
α∈P

Fα ≡ N (mod 2), (56)

where the sum is taken over the flavor parities of the T Ok

CFT associated to the fixed point P .
Heuristically, we can think of the flavor parities as tor-

sions associated to a single D5 brane transversely inter-
secting an O5+ plane. Such a D5 brane is its own orien-
tifold image, and consequently cannot be moved away
in the Z plane. There is no analogous pinned brane for
an O5− because the putative worldvolume gauge group,
USp(1), does not exist. Consequently, for an O5 plane di-
vided into O5± regions by NS5 branes the pinned branes
cannot cross the O5− regions, and there is a separate “fla-
vor parity” associated to each O5+ region.

As in the well known case of Op− and Õp
−

planes (see
e.g. [20, 38, 40]), these flavor parities are likely associated
to discrete fluxes of RR form fields. Although the com-
plicated arrangement of NS5 branes makes an explicit

analysis difficult, this suggests that that the flavor parities
correspond to RR torsion in the T-dual, as in [15].

As a preliminary check of this conjecture, we count
the number of flavor parity bits and compare with the RR
torsion. The details depend on the number of “complete”
O5 planes (those which intersect no NS5 branes). There
cannot be more than two of these, and when there are
two their RR charges must be opposite, since none of the
corners lie on the even sublattice containing the origin. In
this case, for an n-sided toric diagram there are n flavor
parities subject to two constraints of the form (56), with
the color parity fixed to be even by the USp(N ) face, for a
total of n −2 bits. If there is one complete O5 plane with
positive RR charge then there are n flavor parities subject
to three constraints as well as the color parity, for a total
of n − 2 bits. If the complete O5 plane has negative RR
charge then the color parity is fixed to be even, and there
are n −3 bits. Finally, if there are no complete O5 planes
then there are n flavor parities subject to four constraints
as well as the color parity, for a total of n −3 bits.

Thus, there are n −2 flavor parity bits when there is a
complete O5 plane of positive charge and n −3 otherwise.
The RR torsion [F ] contains n −2 bits, but when [H ] 6= 0
the choices [F ] and [F ]+ [H ] are related by τ→ τ+1, and
one bit is absorbed by doubling the period of the theta
angle. By (52) [H ] is trivial if and only if there is a complete
O5 plane of positive charge, so the two counts match.

This counting and the interpretation of odd flavor par-
ity as non-trivial torsion suggests that Fα are the compo-
nents of [F ] in some basis, i.e.,

Fα ≡ [F ] ·Yα (mod 2), (57)
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for Yα independent of [F ]. Because [F ] and [F ]+ [H ] give
equivalent flavor parities, we require Yα · [H ] = 0, whereas
the Yα should span the orthogonal complement of [H ] to
encode the remaining bits of [F ] in Fα. To reproduce (56),
we require that

Y ≡ ∑
α∈P

Yα , (58)

is independent of the choice of fixed point, P . Moreover,
Y should vanish if and only if there is a complete O5 plane
with negative charge, i.e., when [H ] = η where η=∑

i 〈i 〉
is the norm element satisfying A ·η = A2. (This reflects
the color parity constraint from a USp(N ) gauge group
factor.)

We now construct a basis with these properties. An
elementary solution to the color parity constraint is Y =
[H ]+η, which satisfies Y · [H ] = 0 and implies a simple
formula for the color parity

N ≡ [F ] · ([F ]+ [H ]) (mod 2), (59)

using the properties of η. Thus,∑
α∈P

Yα = ∑
i∈V(P )

〈i 〉 , (60)

where V(P ) denotes the set of corners of the toric diagram
which lie within O5+ wedges in the local web diagram as-
sociated to the fixed point P . Since V(P ) =⋃

α∈P Vα where
Vα is the set of corners within a given O5+ wedge, we make
the natural guess

Yα = ∑
i∈Vα

〈i 〉 , (61)

which determines [F ] using (57). This is consistent with
the intuition that the flavor parities encode torsions asso-
ciated to the O5+ wedges.

It is straightforward to check that the ansatz (61) sat-
isfies Yα · [H ] = 0, whereas most other consistency condi-
tions are true by construction. It remains to be checked
that the Yα span the orthogonal complement of [H ]. To do
so, it is helpful to work in the n-dimensional vector space
Zn

2 before imposing the relations (19). Now Y defined
by (58) depends on P , with Y(P )−Y(P ′) =

∑
i∈L〈i 〉+

∑
i∈L′〈i 〉

for a pair of even sublattices L,L′. A single linear relation
remains∑
α

Yα = 0, (62)

where the sum is taken over all fixed points. When [H ] 6= 0,
there are n O5+ planes, each bounded by a pair of NS5
branes. For [H ] = 0, there is a further complete O5+ plane.
Thus, the Yα span the orthogonal complement of [H ]

iff (62) is the only linear dependence within Zn
2 . This fol-

lows from the assumption that adjacent corners occupy
distinct even sublattices not containing the origin.40

To summarize, we have argued that

Fα ≡ [F ] · ∑
i∈Vα

〈i 〉 (mod 2) , (63)

fixes the relation between the flavor parities and the RR
torsion, where Vα denotes the set of corners of the toric
diagram falling within the O5+ plane α in the local web
diagram. Along with (52), this is one of our principal re-
sults, and completes the AdS/CFT dictionary for the class
of toric orientifolds considered in our paper.

The relation (63) can be inverted by choosing a dual
basis Y α

(I ), such that

Yα ·Y β

(I ) = δ
β
α , α ∈ I . (64)

Here the indexing set I of O5+ planes is any maximal
choice such that the Yα, α ∈ I are linearly independent.
For [H ] = 0, this is a standard linear algebra problem with
a unique solution for any given maximal I ;41 for [H ] 6= 0,
the solution is ambiguous up to Y α

(I ) → Y α
(I ) +nα[H ]. In

either case, we have

[F ] = ∑
α∈I

FαY α
(I ) , (65)

which fixes [F ] up to [F ] → [F ]+ [H ].

Let us illustrate this discussion in the same example
discussed in §3.2, see in particular figure 13. Let us fo-
cus for instance on the fixed point at (1,1), shown in fig-
ure 13(d). The wedges with positive charge are those in
figure 21(a). The wedges AD and BC enclose the toric
torsion generators 〈a〉 and 〈c〉 respectively (in the conven-
tions of figure 13(a)), so according to (63) we have for the
two flavor parities of the quad-CFT at (1,1)

F (1,1)
AD ≡ [F ] · 〈a〉 (mod 2) (66)

and

F (1,1)
BC ≡ [F ] · 〈c〉 (mod 2). (67)

40In particular, each corner 〈i 〉 appears in exactly two O5+

planes and adjacent corners 〈i 〉, 〈i +1〉 share at least one O5+

plane between them. This establishes (62) and shows that
there are no further linear relations.

41For a more thorough treatment of bases and dual bases in Z2

vector spaces, see Appendix B.
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A

B

C

D

〈a〉

〈c〉

(a) (1,1)

A

B

〈b〉

(b) (0,0)

Figure 21 Wedges with positive charge for the IA phase of the complex cone over dP1, analyzed in §6.2 below, at the fixed
points (0,0) and (1,1) in the conventions of figure 13. We have indicated the torsion generators associated with the shaded
cones.

It is an easy exercise to verify that choosing any other fixed
point in figure 13 leads to results consistent with these.
For instance, if we choose the point at (0,0) we obtain
the positive wedge show in figure 21(b). The AB wedge
encloses the 〈b〉 generator, so for the global parity of the
tiling we have

N ≡ [F ] · 〈b〉 (mod 2) (68)

which indeed satisfies (56) once we take into account (19).

As above, we can invert the relationship between [F ]
and the color and flavor parities using a dual basis Y α.
We choose the generators Y1 = YAD = 〈a〉 and Y2 = YAB =
〈b〉. An elementary computation then shows that the dual
basis is given by

Y 1 = 〈b〉 ; Y 2 = 〈c〉 . (69)

Therefore

[F ] = F (1,1)
AD 〈b〉+N 〈c〉 . (70)

5 Details of T O2 CFTs

Having established the AdS/CFT dictionary for toric orien-
tifolds, the remainder of our paper is devoted to construct-
ing examples and checking that their S-duality properties
are as expected. For simplicity, we restrict our attention to
toric diagrams with at most five sides, so it is sufficient to
understand the T O2 CFTs—coming from the T O2 brane
configuration, figure 22—whose field theoretic details we
now review (see also [15]).

5.1 Mesons, baryons, global symmetries, and
anomalies

There are two classes of T O2 CFTs, depending on the local
web diagram and O5 charges. We label them as42

q
φ

USp (M) = T Oφ
00

mφ
11 (M +2) ,

q
φ

SO(M) = T Oφ
01

mφ
10 (M +2) ,

m = (−1)M , (71)

in relation to the notation defined in §4.1. In either case,
the global symmetry manifest in the brane tiling descrip-
tion is SU (M) × SU (M + 4) ×U (1)3 ×U (1)R , where the
anomaly-free U (1) symmetries correspond to the U (1)
gauge fields on the four NS5 branes (with an overall
decoupled U (1)). It turns out that this is enhanced to
USp(2M)×SU (M+4)×U (1)2×U (1)R (SU (M)×SO(2(M+
4)) ×U (1)2 ×U (1)R ) in the qUSp (qSO) CFTs [15], justi-

fying their names.43 Similar rank-preserving enhance-
ments play a role in some of the toric orientifold CFTs
constructed later in the paper.

The qUSp theories

The brane tiling for a deconfined description of qφUSp (M)
is shown in figure 17(c). Reconfining the center face to

42By a D2 reflection q+
SO(2p +1) ∼=q−

SO(2p +1). It can be shown
that q+

SO(2p) ∼= q−
SO(2p) as well [15], hence the flavor parity

label can be dropped in this case.
43The letter q is in reference to the label “quad CFT” used

in [15].
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A

B

C

D G

H

Figure 22 The T O2 configuration. We have named A, . . . ,D the NS5 branes intersecting at the fixed point, and G × H the
manifest non-Abelian global symmetry group.

produce an antisymmetric tensor and reading off the
gauge group and superpotential using the methods de-
scribed in sections 3 and 4, we obtain the quiver gauge
theory in figure 23(a). An alternate description can be
obtained by reconfining the center face of the Seiberg
dual brane tiling in figure 17(d), which gives the quiver
gauge theory in figure 23(b). For fixed M and flavor parity
φ= (−1)F = (−1)G+M , these two gauge theories, which we
label QA

USp and QB
USp , lie in the same universality class as

the T O2 theory qφUSp (M) that we are interested in. Notice
that the enhanced symmetry USp(2M) ⊃ U (M) is man-
ifest in the quiver diagrams, though it is hidden in the
brane tiling description.

We focus on the description QA
USp for definiteness. The

charge table for this quiver gauge theory is given in table 1.
After imposing the F -term conditions, two chiral me-

son operators remain,44 Φ1 in the ( , ) representation
of SU (M) × SU (M + 4) and Φ2 in the ( , ) representa-
tion. In the QA

USp description both mesons are composite
(Φi = Ai R in the notation of figure 23), whereas in the
QB

USp description both are elementary. In addition there
are chiral baryon operators, of the form

Ak = Ak
1 AM−k

2 QF , 0 ≤ k ≤ M ,

Sk = Z
F+k−4

2 RM+4−k , 0 ≤ k ≤ M +4, (−1)k = (−1)F ,

(72)

44We ignore operators that are not SU (F ) or SU (G) invariant.
These are lifted in the infrared by quantum corrections, and
are artifacts of the deconfined description.

in the QA
USp description.45 Note that the baryons Ak com-

bine to form the M-index antisymmetric tensor represen-
tation of USp(2M), whereas the mesons Φi combine to
form the ( , ) representation of USp(2M)× SU (M + 4).
The baryons Sk are USp(2M) singlets; their SU (M + 4)
representations, which depend on the flavor parity, are
discussed in the next section.

The anomalies of the qUSp theory can be divided into
two classes A and B , shown in table 2.

The qSO theory

To obtain the brane tiling for qφSO(M), we flip one of the
two mesonsΦ1,2 in figure 17(c) (flipping both gives back
figure 17(d)). The resulting quiver gauge theory is either
figure 24(a) or figure 24(b), depending on whether we
start with the description in figure 23(a) or figure 23(b).
As a result, the meson Φ1 is lifted and replaced with Φ̃1

in the ( , ) representation of SU (M)×SU (M +4). In the
QA

SO description (figure 24(a)) Φ̃1 is composite andΦ2 is
elementary whereas in the QB

SO description (figure 24(b))
the opposite is true. As above the two descriptions are
equivalent for fixed M and φ= (−1)F = (−1)G+M .

Flipping Φ1 breaks the enhanced symmetry USp(2M)
back to SU (M)×U (1)X . However, there is now an hidden
SO(2(M + 4)) ⊃ SU (M + 4)×U (1)Y symmetry in the in-
frared. To see how this works, note that Φ̃1 and Φ2 fill out
the ( , ) representation of SU (M)×SO(2(M +4)). More-

45To be precise, the formula for Õ0,1 applies for F > 2. When
F = 1 (F = 2) we have Õ1 = P (Õ0 = T ).
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SU(M + F )

SU(M + 4)

SU(M)

SU(F )T

Z

R

P

Q

A1

A2

W = A1A2Z + PQR+ TQ2Z

(a) Quiver and superpotential for QA
USp .

SU(M + G)

T̃

Z̃

R̃

P̃
Q̃

Ã1

Ã2

Φ1

Φ2

SU(M + 4)

SU(M)

SU(G)

W = Ã1Ã2Z̃ + Φ1Ã1R̃ + Φ2Ã2R̃ + P̃ Q̃R̃ + T̃ Q̃2Z̃

(b) Quiver and superpotential for QB
USp .

Figure 23 The two choices for the deconfined Lagrangian description of qUSp . Both gauge theories flow to the same fixed point
when F +G ≡ M (mod 2).

SU (M +F ) SU (M) SU (M +4) SU (F ) U (1)B U (1)X U (1)Y U (1)R

A1 1 1 − 1
M+F 1 − M+4

2(M+F ) 1− M+4
4(M+F )

A2 1 1 − 1
M+F −1 − M+4

2(M+F ) 1− M+4
4(M+F )

R 1 1 1
M+F 0 −1+ M+4

2(M+F )
M+4

4(M+F )

Z 1 1 1 2
M+F 0 M+4

M+F
M+4

2(M+F )

P 1 1 1
F 0 1− M+4

2F 2+ M−4
4F

Q 1 1 − 1
M+F − 1

F 0 M+4
2F − M+4

2(M+F ) −M−4
4F − M+4

4(M+F )

T 1 1 1 2
F 0 −M+4

F 2+ M−4
2F

Table 1 Charges for QA
USp , where we have chosen a slightly different set of conventions compared to that in [15]: U (1)here

Y =
U (1)there

Y − M+4
2 U (1)B and U (1)here

R =U (1)there
R + M−4

4 U (1)B .

over, the baryon Sk in (72) transforms as a k-index anti-
symmetric tensor of charge k − M+4

2 under SU (M +4)×
U (1)Y with the constraint (−1)k = (−1)F . Thus, the baryon
operators Sk fill out the spinor S (conjugate spinor S̄) rep-
resentation of SO(2(M+4)) for even (odd) F . A very strong
argument for the enhancement SU (M + 4)×U (1)Y −→
SO(2(M +4)) (which amounts to a proof at the level of the
superconformal index) is given in [15].

Since S and S̄ are related by an outer automorphism of
SO(2(M+4)), the spectrum of mesons and baryons is iden-
tical for q+

SO(M) and q−
SO(M). In fact, these are the same

CFT. For odd M , this is a simple consequence of the fact
that the quiver diagrams for QA

SO and QB
SO are isomorphic

up to charge conjugation of some of the nodes, whereas
(−1)F =−(−1)G . For even M , a proof using deconfinement

is given in [15].

Nonetheless, the isomorphism between q+
SO(M) and

q−
SO(M) changes how SU (M+4)×U (1)Y is embedded into

the enhanced symmetry group SO(2(M +4)) (as can be
seen from the different SU (M +4)×U (1)Y spectrum of
baryons Sk ). When embedded into a larger brane tiling,
the SO(2(M+4)) symmetry is broken, and the flavor parity
must be specified to identify the unbroken SU (M +4)×
U (1) subgroup. To do so unambiguously, we associate to
each SU (M)×SU (M+4) bifundamental mesonΦ a parity
equal to the flavor parity in the deconfined description
whereΦ is composite. The parities of the two mesons are
related by (−1)M , so either can be specified to fix the flavor

parity. The same convention can be applied to q
φ

USp (M),
where now the two mesons have the same parity, equal to
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A:

SU (M +4)3 −M

SU (M)2U (1)Y −(M +4)

SU (M +4)2U (1)Y −M

U (1)3
Y −M(M +4)

U (1)2
X U (1)Y −M(M +4)

U (1)Y −M(M +4)

B:

SU (M)2U (1)B −2

SU (M)2U (1)R −M+4
2

SU (M +4)2U (1)B 2

SU (M +4)2U (1)R −M
2

U (1)2
X U (1)B −2M

U (1)2
X U (1)R −M(M+4)

2
U (1)2

Y U (1)B 2(M +4)

U (1)2
Y U (1)R −M(M+4)

2

U (1)2
BU (1)R −4

U (1)BU (1)2
R −2

U (1)3
R

M(M+4)
4 −1

U (1)B 6

U (1)R −M(M+4)
2 −1

Table 2 A and B anomalies of the qUSp theory, where the first class represents the contribution of the mesons Φi if they are
counted as “half” chiral multiplets and the second class exhibits an underlying enhanced symmetry, as discussed below. In
addition to the above anomalies, there is a Witten anomaly (−1)M+F for the USp(2M) global symmetry, which is a simple
illustration of the fact that q+

USp (M) 6=q−
USp (M).

SU(M + F )

T

Z

R

P

Q

A1

A2

Φ̃1

SU(M + 4)

SU(M)

SU(F )

W = A1A2Z + Φ̃1A1R + PQR + TQ2Z

(a) Quiver and superpotential for QA
SO .

SU(M + G)

T̃

Z̃

R̃

P̃

Q̃
Ã1

Ã2

Φ2

SU(M + 4)

SU(M)

SU(G)

W = Ã1Ã2Z̃ + Φ2Ã2R̃ + P̃ Q̃R̃ + T̃ Q̃2Z̃

(b) Quiver and superpotential for QB
SO .

Figure 24 The two deconfined quivers for qSO , related by deconfinement duality when the ranks satisfy F +G ≡ M (mod 2).
They are isomorphic up to complex conjugation of the SU (M) representations and relabeling of the fields.

φ.46

The charge table for qφSO(M) is the same as in table 1
with the flipped meson Φ̃1 added. The class A anomalies

46A more intrinsic definition of the parity of Φ is (−1)F̂ where F̂
is chosen such that ΦF̂ S contains an SU (M +4) singlet for
some SU (M +4) baryon S .

become

A :

SU (M)3 −(M +4)

SU (M)2U (1)X −(M +4)

SU (M +4)2U (1)X −M

U (1)3
X −M(M +4)

U (1)2
Y U (1)X −M(M +4)

U (1)X −M(M +4)

(73)
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whereas the class B anomalies are the same as in ta-
ble 2. As before, the class A anomalies are equal to the
contribution of the mesons if they are counted as “half”
chiral multiplets. The class B anomalies, shared in com-
mon between the qSO and qUSp CFTs, exhibit a fictitious
USp(2M)×SO(2(M+4))×U (1)B ×U (1)R symmetry, which
is formally present in the baryonic sector but broken by
the mesons (and by the superconformal R-charge at the
infrared fixed point).

While the enhanced symmetries discussed above are
broken when the T O2 CFT is embedded into a larger
brane tiling, in some cases a remnant still contributes to
the non-Abelian symmetries of a toric orientifold CFT. For
instance, the subgroup USp(M+4)×SU (2) ⊂ SO(2(M+4))
contributes to the SU (2) global symmetry of certain Y p,q

orientifolds, despite not being manifest in any deconfined
description.47

5.2 Abstract quivers and charge tables

Rather than giving an explicit deconfined description for
every theory built usingqUSp and qSO , we now develop an
abstract notation for charge tables and quiver diagrams
from which it is straightforward to recover the deconfined
description given above.

To notate the T O2 CFTs in a charge table, we use the
following conventions. Consider a gauge theory coupled
to qUSp with an Abelian global symmetry U (1)A and an
R-symmetry U (1)R . We describe the embedding of the
flavor symmetries of qUSp into the gauge theory using a
charge table

SU (M) SU (M +4) U (1)A U (1)R

qUSp ∗ ∗ aB rB

Φ1 a1 r1

Φ2 a2 r2

(74)

This table indicates how the Abelian and non-Abelian
symmetries of the quiver gauge theory couple to T O2

CFT. The second and third line indicate the charges of
the mesons Φ1,2 under the symmetries of the quiver
gauge theory. This fixes the relationship between the non-
Abelian symmetries and those of the deconfined theory
(in table 1). It also partially fixes the relationship between

47For future reference we note that, as SO(2(M +4)) has no chi-
ral anomalies, the SO(2(M +4)) symmetric sector associated
to qSO contributes nothing to the Witten anomalies of either
USp(M +4) or SU (2).

U (1)A,R and the Abelian symmetries of the deconfined
theory—henceforth denoted Q(0)

B , Q(0)
X , Q(0)

Y , Q(0)
R in the

basis defined in table 1. However, the U (1) charges on
the first line are needed to fix the admixture of Q(0)

B . In
particular, these charges are the charges of a baryon with
Q(0)

B = 1 and Q(0)
X =Q(0)

Y =Q(0)
R = 0, for instance

S M+4
4

/ (
Φ1Φ2

) M+4
8

. (75)

This fixes

Q A = aBQ(0)
B + a1 −a2

2
Q(0)

X − a1 +a2

2
Q(0)

Y ,

QR = rBQ(0)
B + r1 − r2

2
Q(0)

X − r1 + r2 −2

2
Q(0)

Y +Q(0)
R .

(76)

The qSO case is very similar, except that the flipping of
one of the mesons needs to be accounted for. For instance,
the charge table

SU (M) SU (M +4) U (1)A U (1)R

qSO ∗ ∗ aB rB

Φ1 a1 r1

Φ2 a2 r2

(77)

corresponds to the charge assignment

Q A = aBQ(0)
B − a1 +a2

2
Q(0)

X + a1 −a2

2
Q(0)

Y ,

QR = rBQ(0)
B − r1 + r2 −2

2
Q(0)

X + r1 − r2

2
Q(0)

Y +Q(0)
R .

(78)

To complete the specification of the T O2 CFT, the fla-
vor parity is needed. When desired, we specify this by
attaching a parity label to one of the mesonsΦ→Φ[φ] for
φ ∈ {+,−}, which fixes the flavor parity by the conventions
discussed in the previous section.

A similar notation can be used to draw quiver diagrams
containing T O2 CFTs, see figure 25. One advantage of this
notation is that the idea of the mesons as “half” chiral
multiplets can often be taken literally. For instance, the
process of flipping a meson is heuristically that of inte-
grating out a half-chiral multiplet, see figure 26. The class
A anomalies discussed above, including all non-Abelian
gauge anomalies, can also be computed using this heuris-
tic, so anomaly cancellation is straightforward to enforce
in the abstract quiver. The same notation can also be
adapted to make various subgroups of the enhanced sym-
metries of the T O2 CFTs manifest, see figure 27.

To completely bypass the details of deconfinement
in T O2 CFTs, we describe how the abstract quiver dia-
grams described above can be read off from the brane
tiling directly. Once this has been done once using the full
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SU(M) SU(M + 4)(−1)F

(−1)F

Sp O

(a) Notation for qUSp nodes.

SU(M) SU(M − 4)(−1)F

(−1)F+M

O Sp

(b) Notation for qSO nodes.

Figure 25 Abstract quiver notation for T O2 CFTs, similar to (74), (77). The dashed lines indicate the mesons and the attached
labels are their associated parities. The shaded half of the diamond distinguishes between qUSp and qSO . (This information can
be inferred from the directions of the meson arrows here, but this is no longer true if both flavor nodes are replaced with SO or
USp groups.)

SU(M) SU(M + 4)(−1)F

(−1)F

Sp O

SU(M) SU(M + 4)(−1)F

(−1)F+M

Sp O

Figure 26 Flipping a meson in the language of the abstract quiver. This can be thought of as splitting the fundamental field (solid
line) into two half-chirals (dashed lines) and then integrating out a vector-like pair of half-chirals. In the process, the flavor parity of
the flipped meson changes by (−1)M and qSO and qUSp are exchanged.

USp(2M) SU(M + 4)

Sp O

(a) Manifest USp(2M) symmetry.

SO(M) SU(M + 4)

Sp O

(b) SO(M)×SU (2) ⊂USp(2M).

Figure 27 The quiver notation is easily adapted to emphasize different non-Abelian subgroups (besides SU (M)×SU (M +4)) of
the full flavor symmetry. (a) Showing the full USp(2M)×SU (M+4) flavor symmetry. (b) Showing the SO(M)×SU (M+4)×SU (2)
subgroup.

deconfinement machinery, doing so again is simply a mat-
ter of pattern recognition without the need for repeated
deconfinement of the T O2 configuration. We summarize
the dictionary in figure 28.

6 Examples

In the preceeding sections, we have given a proposal that
relates the geometric data defining the discrete torsion
to the structure of the field theory living on the singular-
ity. We have proven that it makes sense as a definition,

but does it give the correct physical predictions? In this
section we will answer this question in the affirmative
in all examples previously considered in the literature as
well as a few new ones, giving very strong evidence that
our proposal is correct. These examples include N = 4
Montonen-Olive duality and all previously conjectured
N = 1 Montonen-Olive duality analogs coming from
branes at orientifolded singularities. Our methods can
easily be applied to construct SCFTs and obtain S-duality
predictions in cases which were previously intractable,
such as the complex cone over dP2, discussed in §6.6.
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SU(M)

SU(M+4)

(a) qUSp from the tiling

SU(M + 4)

SU(M)

(b) qSO from the tiling (c) Relating meson and flavor parities

Figure 28 Reading off (a) qUSp and (b) qSO abstract quivers from the brane tiling. As there is only one possible topology for the
local web diagram, the distinction between qUSp and qSO rests on the O5 charges. The (Ni ,0) faces of the tiling generate the
non-Abelian flavor symmetries of the T O2 CFT, which are gauged when the local tiling is embedded in a larger whole. Likewise,
there is a meson (indicated by a dashed arrow) connecting each adjacent pair of (Ni ,0) faces, which couples to a superpotential
term in the larger brane tiling. (c) For a given meson, the two outgoing (incoming) NS5 branes adjacent to the head (tail) of the
meson specify a pairing. One of these two pairs encloses an O5+ plane in the local web diagram, and the meson parity is equal
to the flavor parity associated to that pair.

6.1 Flat space and orbifolds

Our first example is the worldvolume theory on k D3
branes on top of an O3 plane in a flat background, pro-
ducing an N = 4 gauge thery. As discussed in [20], the
Montonen-Olive duality between SO(2k+1) and USp(2k)
and the self-duality of SO(2k) follow from the SL(2,Z) self
duality of type IIB string theory. We now reproduce these
results using our formalism.

We start with the toric and web diagrams forC3, shown
in figure 29(a). As shown in the figure, there is a unique
choice of toric involution that has an isolated fixed point—
i.e., such that there is no corner of the toric diagram on
the even sublattice encoding the involution, as explained
in §2.2. Using the involution and NSNS discrete torsion
[H ], we can construct the local charges of the tiling. In
particular, if [H ] = ∑

i hi 〈i 〉 is a particular divisor basis
representation of [H ], then the local charge at the fixed
point na ∈ {(0,0), (0,1), (1,0), (1,1)} in the i th wedge of the
web diagram is given by (−1)hi+na ua

i . A useful mnemonic
for constructing these charges by hand is as follows: we
first fill in the lower left fixed point with the charges (−1)hi .
To determine the local charges for the remaining fixed

points, we examine each wedge of the web diagram and
impose one of the patterns shown in figure 30, depending
on where the associated corner of the toric diagram lies in
relation to the even sublattice specifying the involution.

In the present example, the divisor basis 〈a〉 ,〈b〉 ,〈c〉
satisfies 〈a〉 = 〈b〉 = 〈c〉 by (19), so we can write the NSNS
torsion as [H ] = h 〈c〉 in full generality. Using this represen-
tation, we obtain the local charges shown in figure 29(b)
for h = 0 and those in figure 29(c) for h = 1. Had we started
with a different but equivalent divisor-basis representa-
tion for [H ], we would obtain the same local charges up
to half-period translations on T 2.

Once the local charges are fixed, the brane tiling can
be constructed by recalling that the local charge of a fixed
point changes across a leg of the web diagram if and only
if the corresponding NS5 brane intersects that fixed point.
This allows us to locate all the NS5 branes on T 2 and de-
termine the brane tiling, with the result shown in figure 31.
In agreement with [20], we find that trivial NSNS torsion
corresponds to the N = 4 theory with gauge group SO(N ),
while non-trivial NSNS torsion corresponds to that with
gauge group USp(N ).

Note that the tilings in figures 31(a) and 31(b) are
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〈a〉 〈b〉

〈c〉

(a) Toric structure for C3. (b) Local charges for h = 0. (c) Local charges for h = 1.

Figure 29 (a) Web and toric diagram for flat space. The stars denote the even sublattice associated with the toric involution
leaving a fixed point. We have also named the generators of torsion in the divisor basis described in §2.5. (b) and (c) show the
local charges for the two choices of NSNS torsion in the parameterization [H ] = h 〈c〉.

or

or

or

Figure 30 The local charges of the four O5 planes within each wedge of the web diagram are constrained by the choice of
involution.

(a) Tiling for h = 0. (b) Tiling for h = 1.

Figure 31 (a) Brane tiling corresponding to the local orientifold charges in figure 29(b). We have indicated the parities associated
to each fixed point, in the conventions of [45,60]. The resulting theory is the N = 4 theory with SO projection. (b) Brane tiling
corresponding to figure 29(c), corresponding to the N = 4 theory with USp projection.
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isomorphic up to an overall sign flip of the T-parities.
This can be made manifest by translating figure 31(b) up-
wards by half a period, which then corresponds to the
local charges generated by the divisor basis representa-
tion [H ] = 〈a〉+ 〈b〉+ 〈c〉, equivalent to [H ] = 〈c〉 by the
relations 〈a〉 = 〈b〉 = 〈c〉. In future examples, we will make
free use of half-period translations to present the brane
tilings in whatever form is most convenient.

To fix the RR torsion, we take the ansatz [F ] = f 〈c〉 as
above. For h = 0, we consider, e.g., the upper-right fixed
point in figure 31(a). By (57) the associated flavor parity is

F = 〈a〉 · [F ] = f , (79)

since Yα = 〈a〉 for the red-green NS5 brane pair. For T O1

we have F ≡ N (mod 2), so the [F ] torsion is

[F ] = N 〈c〉 , (80)

for an SO(N ) gauge group. The same result can be ob-
tained by choosing any other fixed point, or by using the
constraint (59).

By contrast, for h = 1 we obtain Yα = 〈a〉+〈c〉 ∼= 0 for
the red-blue NS5 brane pair at the upper-right fixed point
in figure 31(b). This implies that F , hence N , must be
even, in perfect agreement with the constraint on USp(N ),
which is only defined for even N . It is straightforward to
check that all the flavor and color parities are even, im-
plying that we can set [F ] = 0. This is consistent with the
equivalence [F ] → [F ]+ [H ], τ→ τ+1, which combines
the [F ] torsion with the theta angle when [H ] 6= 0. Indeed,
in string-theory derived normalization, the USp holomor-
phic gauge coupling has period τ∼= τ+2.

As above, these torsion assignments exactly match
those of [20]. Because S-duality of type IIB string theory
takes τ→ −1/τ, [F ] → [H ] and [H ] → −[F ], we recover
the well-known result that USp(2k) is S-dual to SO(2k+1)
and SO(2k) is self dual, as already illustrated from the O3
plane perspective in figure 4. Note that the relation be-
tween the ranks of the S-dual theories is a consequence
of the invariance of the D3 charge QD3 under SL(2,Z).
In this example we have QD3 =− 1

4 +N /2 for SO(N ) and
QD3 = 1

4 + N /2 for USp(N ) in the normalization where
QD3 = 1 for a single mobile D3 brane. This can be com-
puted using the known D3 charges of the O3− and O3+
planes, and fixes k = k ′ in the duality between SO(2k +1)
and USp(2k ′).

For future examples, it will be useful to be able to read
off QD3 directly from the brane tiling. T-duality smears the
D5 charge across T 2, which suggests the simple formula48

48Note that the color-parity constraint (59) combined with the
SL(2,Z) invariance of QD3 implies that the fractional part of

2QD3 = 1

VolT 2

∫
T 2

QD5(φ̃1, φ̃2)d 2φ̃ , (81)

where the factor of two accounts for the orientifold identi-
fication. Indeed, this formula reproduces the above result.
We will use it in more complicated examples below, where
it is often the most straightforward way to compute QD3.

The C3/Z3 orbifold

We now move on to one of the simplest non-trivial exam-
ples of a toric orientifold, the isolated orientifold of the
C3/Z3 orbifold [12]. The discussion proceeds very sim-
ilarly to the C3 case just considered. The toric data are
reviewed in figure 32(a). As a minor variation, we now
take the ansatz [H ] = h(〈a〉+〈b〉+〈c〉),49 which gives the
local charges shown in figures 32(b) and 32(c). From these
we obtain the brane tilings in figure 33.

The tilings in figure 33(a) and figure 33(b) are again
isomorphic up to an overall sign change for the T-parities,
which is the origin of the “negative rank duality” observed
in [12]. Moreover, the cases h = 0 and h = 1 correspond
to gauge groups with SO and USp factors, respectively,
as predicted by [14]. We show the resulting quivers in
figure 34.

To read off [F ], we follow exactly the same steps as be-
fore, with the result that [F ] = N 〈c〉 for the case h = 0, and
[F ] = 0 for h = 1 (up to the [F ] → [F ]+ [H ], τ→ τ+1 equiv-
alence) with Ñ constrained to be even. This, too, agrees
with the predictions of [14] and explains the S-duality be-
tween the SO(2k−1)×SU (2k+3) and USp(2k+4)×SU (2k)
theories observed in [12]. As above, the relation between
the ranks can be fixed by computing the D3 charge

QD3 =
 N

2 − 3
4 , h = 0,

Ñ
2 + 3

4 , h = 1,
(82)

QD3 is fixed by the discrete torsion, 2QD3 ≡ 2Q(0)
D3 + [F ] · [F ]+

[H ] · [H ]+ [F ] · [H ] (mod 2) where Q(0)
D3 is the D3 charge

for the [F ] = [H ] = 0 SL(2,Z) singlet phase. For consistency,
this formula should follow directly from (81), without imposing
that QD3 is SL(2,Z) invariant. It would be interesting to prove
this. (We observe in passing—also without giving a proof—
that 2Q(0)

D3 ≡ −A (mod 2), where A is the area of the toric
diagram in units where the C3 toric diagram has area 1/2.)

49Since 〈a〉 = 〈b〉, this is the same as the ansatz [H ] = h 〈c〉.
However, it produces local charges which differ by a half-
period translation from the latter ansatz, which makes the
similarity between figures 33(a) and 33(b) easier to see.
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〈a〉

〈b〉

〈c〉

(a) Toric structure for C3/Z3. (b) Local charges for h = 0. (c) Local charges for h = 1.

Figure 32 (a) Web and toric diagram for C3/Z3 inside the even sublattice associated with an isolated orientifold. (b) and (c) show
the local charges for the two choices of NSNS torsion, in the conventions where the local charges of the bottom left fixed point in
the tiling are given by the toric torsion [H ] = h(〈a〉+〈b〉+〈c〉).

(a) Tiling for h = 0. (b) Tiling for h = 1.

Figure 33 Brane tilings for the two possible choices of NSNS torsion for C3/Z3.

SO(N − 4) SU(N)

BiAi

W = εijk Tr(A
iAjBk)

(a) Quiver for h = 0.

USp(Ñ + 4) SU(Ñ)

B̃iÃi

W = εijk Tr(Ã
iÃjB̃k)

(b) Quiver for h = 1.

Figure 34 Quivers for the two possible choices of NSNS torsion for C3/Z3.

which fixes N = Ñ + 3, and can be found using (81), or
using exceptional collections as in [14].

General orbifolds

The above examples are easily generalized to any iso-
lated toric orientifold of an orbifold singularity, such as
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the infinite family pictured in figure 35 and considered
in [13, 14] (of which both C3 and C3/Z3 are members) as
well as many other orbifolds, such as the C3/Z7 orbifold
(z1, z2, z3) → (ω7z1,ω2

7z2,ω4
7z3) considered in [14].

In particular, for an isolated orientifold singularity, the
divisor basis satisfies 〈a〉 = 〈b〉 = 〈c〉, as the correspond-
ing corners must lie on distinct even sublattices. Taking
the ansatz [H ] = h(〈a〉+ 〈b〉+ 〈c〉), computing the local
charges as above, and constructing the tiling, it is straight-
forward to check that the O5 plane na = (0,0) does not
intersect any NS5 branes, whereas the other O5 planes
all do. We therefore obtain a gauge theory of the form
SO(N )×∏

i SU (Ni ) or USp(N )×∏
i SU (Ni ) for h = 0 and

h = 1, respectively, where the ranks Ni = N +4ki are deter-
mined by the method discussed in §3.3. The color parity
is given by (59), repeated below

N ≡ [F ] · ([F ]+ [H ]) (mod 2). (83)

Thus, N is even and [F ] is undetermined for h = 1 and
[F ] = N (〈a〉+〈b〉+〈c〉) for h = 0. This exactly reproduces
the pattern of dualities hypothesized in [14], predicting
S-dualities between the SO(2k + 1)× SU p theories and
the USp(2k ′)×SU (p) theories (for some difference k −k ′
which can be fixed by computing QD3). In particular, it
explains all the examples discussed in [13, 14].

6.2 Complex cone over dP1

As our first non-orbifold example, we consider the orien-
tifold of the complex cone over the first del Pezzo surface
(dP1), whose S-duality properties were recently under-
stood [15]. In that paper four phases of the worldvolume
field theory were identified: two “classical” (gauge the-
ory) phases and two in which an intrinsically strongly
coupled sector appeared. A variety of methods were used
for matching these theories to discrete fluxes, thus ob-
taining predictions for N = 1 S-dualities of the associ-
ated infrared SCFTs. We now illustrate how the methods
presented in this paper significantly simplify the discus-
sion, and allow us to straightforwardly rederive the results
of [15]. For the sake of variety, we take the opposite ap-
proach to the orbifold examples above: we begin with the
brane tilings for the four phases constructed in [15], fig-
ure 36, and read off the geometry and discrete torsion.50

50In other words, we apply a “forward algorithm” [43,65] for toric
orientifolds, whereas in the previous section we applied an
“inverse algorithm”. Both are straightforward, but we illustrate
the forward algorithm here for completeness.

Phase: IA IB IIA IIB

H3 torsion (00) (11) (01) (10)

Table 3 The NSNS torsions for the four phases of the dP1

orientifold, in the form (αγ), where [H ] = α〈a〉+γ〈c〉. This
agrees with [15], accounting for the different labels I(here)

A =
II(there), I(here)

B = III(there), II(here)
A = I(there)

A and II(here)
B =

I(there)
B .

Applying the same steps as above in reverse, we obtain
the web diagram, toric diagram, and local charges shown
in figure 37. It is straightforward to check that the deco-
rated toric diagram in figure 37(a) indeed corresponds to
the dP1 orientifold geometry considered in [15]. From it,
we read off the divisor basis relations 〈a〉+〈c〉 = 〈b〉 = 〈d〉.
We find it convenient to eliminate 〈b〉 and 〈d〉 using these
relations, so that [H ] =α〈a〉+γ〈c〉. This basis is particu-
lar natural when considering the partial resolution to the
C3/Z3 orientifold plus an O3 plane shown in figure 37(a),
as was done in [15]. In this case, the generator 〈a〉 corre-
sponds to the discrete torsion of the C3/Z3 component,
whereas the generator 〈c〉 corresponds to the O3 discrete
torsion.

To read off [H ] for any given phase, we find the lo-
cal charges (−1)hi for any given fixed point and write
[H ] = ∑

i hi 〈i 〉, as in (52). We then eliminate 〈b〉 and 〈d〉
to express the result in our chosen basis. For instance, in
phase IIA , we obtain [H ] = 〈a〉+〈b〉 by selecting the upper-
left fixed point. Using the relation 〈b〉 = 〈a〉+ 〈c〉, this is
equivalent to [H ] = 〈c〉, which is the result we would have
read off directly if we had chosen the lower-left fixed point.
Proceeding analogously, we obtain the [H ] torsion assign-
ments shown in table 3, in complete agreement with [15].

Next, we read off the RR torsion [F ] and compare with
the results of [15], which were derived by consistency
under partials resolutions and the matching of discrete
symmetries between putative S-duals. We take the ansatz
[F ] =αF 〈a〉+γF 〈c〉 and start with the classical phases IIA

and IIB , corresponding to the quiver diagrams shown in
figure 38. The color parity constraint (59) fixes

IIA : N ≡ [F ] · ([F ]+〈c〉) =αF (mod 2),

IIB : Ñ ≡ [F ] · ([F ]+〈a〉) = γF (mod 2),
(84)

where in the former (latter) case γF (αF ) is unfixed be-
cause of the [F ] → [F ]+ [H ], τ→ τ+1 equivalence. The
same result, in agreement with [15], can be recovered
by considering the flavor parity associated to any of the
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〈c〉
(−k,−1)

(0, 0)

(a) Toric data.

A

B

C

(b) Web diagram.

Figure 35 (a) Toric data for the toric orientifold (z1, z2, z3) → (−z1,−z2,−z3) of the C3/Z2k+1 orbifold (z1, z2, z3) →
(ω2k+1z1,ω2k+1z2,ω−2

2k+1z3), where ωn = exp(2πi /n). We show the k = 3 case for concreteness. (b) The corresponding
web diagram.

qUSp

(a) Phase IA .

qSO

(b) Phase IB . (c) Phase IIA . (d) Phase IIB .

Figure 36 Brane tilings for the four phases of the dP1 orientifold, as deduced in [15]. For the sake of uniform conventions in the
present paper, we label the four phases differently than in [15]. In particular I(here)

A = II(there), I(here)
B = III(there), II(here)

A = I(there)
A

and II(here)
B = I(there)

B .

four T O1 configurations at the fixed points. We label these
phases as IIn

A and IIñ
B for future reference, where n = (−1)N

and ñ = (−1)Ñ .
Using the notation developed in §5.2, the quiver di-

agram for the non-classical phase IA is shown in fig-
ure 39(a), and the corresponding charge table is

SO(M −4) SU (M) SU (2) U (1)B U (1)Y U (1)R

Y 1 1
M −1+ 1

M 1+ 1
M

B i 1 − 2
M 1− 2

M − 2
M

qUSp ∗ ∗ ∗ 1 −M−2
2

M−8
4

Ai [φ] 1
M

1
M 1+ 1

M

(85)

using the same basis for the global symmetries as [15],
where gauging SO(M −4) breaks the USp(2(M −4)) flavor

symmetry of qUSp down to SO(M −4)×SU (2). Applying
(59) and (63), we read off

M ≡ [F ] · [F ] =αF +γF (mod 2),

F ≡ [F ] · 〈c〉 = γF (mod 2).
(86)

Here φ = (−1)F is the meson parity associated to either
of the mesons in the qUSp theory, hence it is the fla-
vor parity associated to the BC pair at the upper-right
fixed point (F ≡ [F ] · YBC (mod 2) where YBC = 〈c〉) by
the prescription shown in figure 28(c). We conclude that
[F ] = (M +F )〈a〉+F 〈c〉, as was found in [15] by partial

resolution. We label this phase as Im;φ
A for future reference,

where m = (−1)M and φ= (−1)F .

The non-classical phase IB is similar. The quiver di-
agram is shown in figure 39(b), and the charge table is
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〈b〉

〈d〉 〈c〉

〈a〉 A

B

C

D

(a) Toric structure.

(b) Phase IA . (c) Phase IB .

(d) Phase IIA . (e) Phase IIB .

Figure 37 The toric data associated to the brane tilings in figure 36(d). The legs of the web diagram are fixed by the NS5 brane
winding numbers, which in turn fix the toric diagram. The local charges (b)–(e) are fixed by the T-parity and qSO/USp assignments
of the fixed points by cross referencing with figures 14 and 28. To fix the starred even sublattice in (a) specifying the involution, we
cross reference the local charges with figure 30. The geometry specified by (a) is a toric orientifold of the complex cone over dP1

with an isolated fixed point. We indicate the partial resolution to the C3/Z3 orientifold singularity plus an O3 plane and name the
external legs for later reference.

SU(N − 4) SU(N)

Z Ai

Y

Bi, X

W = εijB
iAjY + 1

2εijXA
iZAj

(a) Phase IIA .

SU(Ñ + 4) SU(Ñ)

Z Ai

Y

Bi, X

W = εijB
iAjY + 1

2εijXA
iZAj

(b) Phase IIB .

Figure 38 Quiver and superpotential for the classical phases of the complex cone over dP1. (These phases were denoted as IA

and IB in [12,15].)

USp(M̃ +4) SU (M̃) SU (2) U (1)B U (1)Y U (1)R

Y 1 1
M̃

−1− 1
M̃

1− 1
M̃

B i 1 − 2
M̃

1+ 2
M̃

2
M̃

qSO ∗ ∗ ∗ −1 M̃+2
2 − M̃+8

4

Ai [φ] 1
M̃

− 1
M̃

1− 1
M̃

(87)

As above, the gauging of USp(M̃ +4) breaks the SO(2(M̃ +
4)) down to USp(M̃ +4)×SU (2). Unlike before, however,
descriptions of this theory using antisymmetric tensor de-
confinement futher break SU (2) down to U (1)X , with the
non-Abelian enhancement occuring accidentally in the in-
frared. One advantage of the abstract notation developed
in §5.2 is that we can keep the SU (2) global symmetry
manifest.
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SO(M − 4)SU(M)

Ai[φ]

Y

Bi

O Sp

W = εijA
iBjY

(a) Phase IA .

USp(M̃ + 4)SU(M̃)

Ai[φ]

Y

Bi

Sp O

W = εijA
iBjY

(b) Phase IB .

Figure 39 Quivers for phases IA and IB of dP1, where φ= (−1)F is the meson parity associated to either member of the SU (2)
doublet of T O2 mesons Ai .

Applying (59) and (63) as before, we now obtain

M̃ ≡ [F ] · ([F ]+〈a〉+〈c〉) = 0 (mod 2),

F ≡ [F ] · 〈b〉 = [F ] · 〈d〉 =αF +γF (mod 2).
(88)

Here φ = (−1)F is again the meson parity associated to
either of the mesons in the qSO theory (which are equal
since M̃ is even), hence it is the flavor parity associated
to either the AB pair or the CD pair at the upper-right
fixed point (where YAB = 〈b〉 and YC D = 〈d〉). As usual, [F ]
is partially unfixed, due to the equivalence [F ] → [F ]+
[H ], τ→ τ+1, and the constraint that M̃ is even directly
corresponds to the presence of a USp(M̃ +4) gauge group

factor. We label this phase as IφB for future reference, where
φ= (−1)F .

The result (88) once again matches [15], but this case
is particularly interesting because it cannot be obtained
by partial resolution to C3/Z3. Instead [15] resorted to
matching discrete global symmetries between putative S-
dual theories. This is unnecessary using the results of the
current paper; the correct torsion assignments are fixed
a priori, without the need to match up the properties of
S-dual theories.

Using the torsion assignments in table 3, (84), (86),
and (88), as well as the generators S : τ → −1/τ, [F ] →
[H ], [H ] → −[F ] and T : τ → τ+ 1,[F ] → [F ] + [H ] of
SL(2,Z), we find the following SL(2,Z) multiplets

(I+;+
A ), (I+;−

A , I+B ), (I−;+
A , II+B ), (I−;−

A , II+A), (I−B , II−A , II−B ) ,
(89)

as in [15]. Accounting for the fact that each of the phases
I±B , II±A and II±B represent two [F ] torsions related by T , we
label this multiplets as “singlets”, such as (I+;+

A ), “triplets”,
such as (I+;−

A , I+B ), and “sextets”, such as (II−A , II−B , I−B ).

All of the SL(2,Z) multiplets in our paper fall into one
of these classes, as in any case where [F ] and [H ] are val-
ued in a Z2 vector space. We have already seen singlets
(SO(2k)) and triplets (SO(2k +1),USp(2k)) in N = 4 the-
ories and their orbifold cousins, discussed in the previous
section. Sextets are a new phenomenon; we illustrate the
action of SL(2,Z) on the sextet (II−A , II−B , I−B ) in figure 40.

The D3 charges

IA : QD3 = M

2
−1, IB : QD3 = M̃

2
+1,

IIA : QD3 = N

2
− 1

2
, IIB : QD3 = Ñ

2
+ 1

2
,

(90)

can be computed using (81), or by partial resolution to
C3/Z3 plus an O3 plane, as in [15]. These fix the rank rela-
tions between the duals to be M−2 = N−1 = Ñ+1 = M̃+2.
Notice that these relations constrain the relative color
parities between S-dual theories. As demanded by self-
consistency, this is the same constraint imposed by the
torsion argument given above.

The S-dualities discussed above, (89), were checked
in [15] by matching ’t Hooft anomalies, discrete symme-
tries, and the superconformal indices between putative
dual theories. We will perform the same highly non-trivial
checks in the new examples discussed below.

Comment on “negative rank duality”

Notice that, similar to a phenomenon we have already
observed in orbifold examples, the brane tilings in fig-
ures 36(a) and 36(b) are related by changing the sign of all
the local charges, as are those in figures 36(c) and 36(d).
This is reflected in the labels (. . .)A and (. . .)B , and is related
to the formal replacement N →−N in the corresponding
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I−B
(10, 11)

I−B
(01, 11)

II−A
(11, 01)

II−A
(10, 01)

II−B
(01, 10)

II−B
(11, 10)

T

S

T

S

T

S

Figure 40 The action of SL(2,Z) on the sextet (I−B , II−A , II−B ), where (αFγF ,αγ) denotes ([F ], [H ]). The S-duality between II−A
and II−B was originally observed in [12] and I−B was discovered—filling out the multiplet—in [15].

quiver gauge theory, following the rules of “negative rank
duality” (see, e.g., [66] and references therein) reviewed
in [12]. Contrary to the connection between S-duality and
negative rank duality hypothesized in [12], we have al-
ready seen that there are many S-dualities which related
theories which are not negative rank duals, such as the
SL(2,Z) triplets (I−;+

A , II+B ) and (I−;−
A , II+A). In fact, the only

S-dualities involving negative rank duals among the dP1

orientifolds considered above are the II−A ←→ II−B part of
the sextet (the bottom arrow in figure 40, seen in [12]) and
the triplet (I+;−

A , I+B ). Furthermore, the F0 orientifold the-
ories considered in the next section are invariant under
negative rank duality, but have non-trivial S-duals.

In general, negative rank duality takes [H ] → [H ]+η
where η = ∑

i 〈i 〉. Only for specific choices of [F ] are the
two phases related by [H ] → [H ]+η actually S-dual. In-
stead of being a predictor of S-dualities, we find negative
rank duality to be a useful way of organizing a large collec-
tion of theories into ones with similar superficial proper-
ties, such as in the charge tables (85) and (87), which are
formally negative rank duals even though, e.g., I−B is not in
the same SL(2,Z) multiplet as any phase of IA .

6.3 Complex cone over F0: Isolated O7 plane

Our next example goes slightly beyond the cases that were
understood in the previous literature. We consider the
orientifold of the complex cone of F0 defined by the toric

data in figure 41(a). This is the same orientifold geome-
try considered briefly in [12, 15], and the corresponding
world-volume gauge theories include a dual pair that was
detected in [12] using ’t Hooft anomaly matching and
matching of discrete symmetries. However, a complete ac-
count of dualities in this class of theories has not yet been
given, and in particular, there was some question in [12]
as to the string-theory nature of the duality found in that
paper. We will see that it is an S-duality inherited from the
SL(2,Z) self-duality of type IIB string theory, just as in the
above examples. We further provide a full classification of
the orientifold phases and check the predicted S-dualities
using the superconformal index.

Note that for the toric orientifold considered in this
section the F0 exceptional divisor is wrapped by an O7
plane, as can be seen by resolving the singularity. In §6.4,
we consider a different toric involution which instead
resolves to four O3 planes.

The divisor basis relations are 〈a〉 = 〈c〉 and 〈b〉 = 〈d〉,
so we will write the torsions as [H ] = α〈a〉 +β〈b〉 and
[F ] = αF 〈a〉+βF 〈b〉. We label the four possible choices
of [H ] with the phase labels shown in table 4, with the
corresponding local charges shown in figures 41(b)–(e).
Note that the toric diagram has the large symmetry group
D4. This includes a Z2×Z2 subgroup of the SU (2)×SU (2)
isometry group of F0

∼= P1 ×P1, but also a Z2 which ex-
changes the two P1s and maps 〈a〉 ↔ 〈b〉. As a conse-
quence, phases II and ĨI have isomorphic properties up to
a relabeling of the global symmetries, and we will not dis-
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〈b〉〈d〉

〈c〉

〈a〉 A

BC

D

(a) Toric structure.

(b) Phase I. (c) Phase II.

(d) Phase ĨI. (e) Phase III.

Figure 41 (a) Toric data for the isolated O7 orientifold of the complex cone over F0. We have named the external legs and torsion
generators for future reference.

Phase: I II ĨI III

H3 torsion (00) (10) (01) (11)

Table 4 The four different choices of NSNS torsion in the O7
isolated orientifold of the complex cone over F0, in the form
(αβ) for [H ] =α〈a〉+β〈b〉.

cuss ĨI further until we consider the S-duality properties
of these theories.

Phase II

We begin with phase II, which is the most straightforward
to describe. Using the local charges in figure 41(c), we ob-
tain the brane tiling shown in figure 42(a), corresponding
to the quiver gauge theory in figure 42(b).51 The global

51This gauge theory was labelled as “phase I” of the F0 orien-
tifold in [12].

symmetries are

SU (N −2) SU (N +2) SU (2)1 SU (2)2 U (1)B U (1)R

Bi 1 1 − 1
N−2

1
2 + 3

N−2

Xi 1 N
N 2−4

N 2−16
2(N 2−4)

Ai 1 1 − 1
N+2

1
2 − 3

N+2

(91)

in the same basis as [12]. Reading off [F ] from the brane
tiling is a straightforward application of the rules applied
in the previous examples. We find

N ≡βF (mod 2), (92)

with αF undetermined, as expected from the τ→ τ+1,
[F ] → [F ]+ [H ] equivalence. We denote this phase as IIn

with n = (−1)N for future reference.

Phase III

Phase III is slightly more subtle, because the brane tiling
contains coincident anti-parallel NS5 brane boundaries.
To resolve it into a gauge theory, we bend these bound-
aries slightly to obtain the tiling shown in figure 43(a), cor-
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(a) Brane tiling.

SU(N + 2) SU(N − 2)

Ai BiXi

W = εijεlmTr(AiXlBjXm)

(b) Quiver and superpotential.

Figure 42 Tiling and field theory data corresponding to the local charges for phase II, in figure 41(c).

responding to the quiver gauge theory in figure 43(b),52

with the global symmetries

SU (N −4) SU (N ) SU (2)1 SU (2)2 U (1)B U (1)R

Ci 1 1
N−4

1
2 + 2

N

Bi 1 − 1
N−4

1
2 + 2

N

Ai j 1 0 1− 4
N

(93)

in the same basis as above.
In the true brane configuration, the D5 brane face cor-

responding to the SU (N −4) gauge group factor shrinks to
zero size and the corresponding gauge coupling blows up.
The resulting physics is strongly coupled, but nevertheless
it is reasonable to guess that the infrared fixed point is in
the same universality class as the quiver gauge theory in
figure 43(b), in the same spirit as our construction of the
T Ok CFTs via deconfinement. Alternately, we can apply
Seiberg duality to the strongly coupled SU (N −4) factor,
giving the brane tiling in figure 44(a), corresponding to
the quiver gauge theory in figure 44(b). This is merely a dif-
ferent way of deforming the NS5 branes to obtain a gauge
theory description, and provides no better handle on the
strongly coupled physics of the coincident brane bound-
aries. Instead, the brane picture suggests that the correct
description is “half-way” between the Seiberg-dual gauge
theories.

Despite these subtleties, it is straightforward to com-
pute [F ], and the answer is the same regardless of which
of the Seiberg-dual brane tilings we work with. In a pat-
tern that should by now be familiar from other “classical”
phases of four-sided toric diagrams, such as in (84) and

52Here we apply the angle rule to the local web diagram (p. 23).
This gauge theory and its Seiberg dual were labelled “phase II”
in [12].

(92), we find

N ≡αF +βF (mod 2), (94)

with αF and βF each individually undetermined. We de-
note this phase as IIIn with n = (−1)N for future reference.

Phase I

Phase I offers the twin subtleties of coincident antiparallel
NS5 brane boundaries along with quadruple intersections
of these boundaries atop O5 planes (T O2 configurations).
Nonetheless, the basic approach is the same as in phase
III: we deform the boundaries slightly to obtain a brane
tiling with a gauge theory interpretation (apart from the
T O2 configurations) and use this tiling to obtain a gauge
theory description of the infrared fixed point and to read
off the [F ] torsion, where we use the local web diagram
(p. 23) to resolve ambiguities as needed.

We go through this procedure step by step. A deformed
brane tiling is shown in figure 45(a). To determine which
T O2 CFTs q1 and q2 appear, we cross reference the local
configuration against figure 28, using the local charges
in figure 41(b). For instance, the A–D pair (using the web
diagram labels from figure 41(a)) enclose an O5− where
they intersect at the upper-left fixed point. Comparing
with figure 28, we conclude that q1 = qSO . Picking any
adjacent pair of NS5 branes at the lower-right fixed point,
we getq2 =qUSp by the same method. We therefore obtain
the quiver in figure 45(c), with the corresponding charge
table

SO(N −2) USp(N +2) SU (2)1 U (1)2 U (1)B U (1)R

q(1)
SO ∗ ∗ ∗ 0 1

2 − 3
2

Ai [φ1] 1 0 1

q(2)
USp ∗ ∗ ∗ 0 − 1

2 − 3
2

Bi [φ2] −1 0 1
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(a) Brane tiling.

SU(N) SU(N − 4)

Aij

Ci

Bi

W = εijεlmTr(AilCjBm)

(b) Quiver and superpotential.

Figure 43 Tiling and field theory data corresponding to the local charges for phase III, figure 41(e).

(a) Brane tiling.

SU(N) SU(N + 4)

Aij

Ci

Bi

W = εijεlmTr(AilCjBm)

(b) Quiver and superpotential.

Figure 44 Tiling and field theory data corresponding to the local charges for phase III, in figure 41(e), choosing an alternative
way of resolving the overlapping NS5 branes.

(95)

Notice that only U (1)2 ⊂ SU (2)2 is manifest in this descrip-
tion. To see SU (2)2, we integrate in a vector-like pair of
elementary mesons Ã2, B̃1, with the superpotential53

W = A1B2 − Ã2B̃1 + Ã2 A2 +B1B̃1 . (96)

This breaks the SU (2)1 symmetry in the UV without af-
fecting the infrared fixed point. We then use Ã2 and B̃1 to

53Here and elsewhere in the paper, we will not be careful about
signs or coupling constants in the superpotential, as these can
always be absorbed into the definitions of the fields in toric
orientifolds.

flip the T O2 mesons A2 and B1, which gives

SO(N −2) USp(N +2) U (1)1 SU (2)2 U (1)B U (1)R

q(1)
USp ∗ ∗ 0 ∗ 1

2 − 3
2

Ãi [φ1] 1 0 1

q(2)
SO ∗ ∗ 0 ∗ − 1

2 − 3
2

B̃i [φ2] −1 0 1

(97)

after relabeling A1 and B2, with the superpotential W =
εi j Ãi B̃ j . In this alternate description, which corresponds
to the brane tiling shown in figure 45(b), SU (2)2 be-
comes manifest while SU (2)1 is hidden. Since the two
descriptions are in the same universality class by con-
struction, we see that the infrared fixed point has the full
SU (2)1 ×SU (2)2 ×U (1)B ×U (1)R symmetry, as expected.
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q2

q1

(a) Deformed brane tiling

q′
2

q′
1

(b) Another deformation

USp(N+2)

SO(N−2)

Ai[f1]

Bi[f2]

O Sp

O Sp

W = εijAiBj

(c) Quiver and superpotential

Figure 45 Tiling and field theory data corresponding to the local charges for phase I (figure 41(b)). To draw a brane tiling with a
gauge theory interpretation, we need to deform the NS5 brane boundaries as in (a) and (b). Which deformation we choose affects
which SU (2)i ×U (1)i±1 subgroup of SU (2)1 ×SU (2)2 is manifest in the gauge theory description. Focusing on (a), we find that
q1 =qSO and q2 =qUSp . The corresponding quiver is (c). Note that, while we draw double arrowheads to indicate a doublet of
fields, in this case the direction of the arrows is meaningless, as the SO ×USp bifundamental representation is pseudoreal.

To determine [F ], we read off φi = (−1)Fi using (63):

F1 ≡ [F ] ·YC D =αF (mod 2),

F2 ≡ [F ] ·YBC =βF (mod 2),
(98)

hence [F ] = F1 〈a〉+F2 〈b〉, where N is constrained to be
even. We denote this phase as Iφ1φ2 for future reference.

Duality predictions

Using the torsion assignments derived above, we predict
the following SL(2,Z) multiplets

(I++) , (I−+, II+) , (I+−, ĨI
+

) , (I−−, III+) , (II−, ĨI
−

, III−) .
(99)

These include the duality between phases II and III for
odd N that was noticed in [12], now revealed to be a triality
once the action of SL(2,Z) on the SU (2)×SU (2) global
symmetry is taken into account. The other dualities all
involve the non-classical phase I, explaining why they
were not seen in [12]. The rank relations between the duals

are fixed by (81), which gives QD3 = N /2 for all of the
phases.

In appendix C.1, we present evidence that the super-
conformal indices match within each multiplet in (99),
which is a powerful consistency check of these proposed
dualities, and by extension of the discrete torsion dictio-
nary developed in this paper.

6.4 Complex cone over F0: O3 planes

As mentioned above, there is another toric orientifold
of F0 with an isolated fixed point, corresponding to the
toric data shown in figure 46(a). The details are closely
analogous to §6.3, so we merely summarize the results
without going into too much detail.

The F0
∼=P1×P1 exceptional divisor now contains four

O3 planes, located at the poles of the P1s. This breaks the
isometry group SU (2)2 →U (1)2, which will also be visible
in the corresponding gauge theories. The divisor basis still
satisfies 〈a〉 = 〈c〉 and 〈b〉 = 〈d〉, so we use the same tor-
sion basis and phase labels as before. The local charges are
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〈b〉〈d〉

〈c〉

〈a〉
A

B
C

D

(a) Toric structure

(b) Phase I (c) Phase II

(d) Phase ĨI (e) Phase III

Figure 46 (a) Toric data for the isolated O3 orientifold of the complex cone over F0. We have named the external legs and torsion
generators for future reference.

shown in figures 46(b)–(e) and the corresponding brane
tilings and quiver diagrams are shown in figures 47 and
48.

The charge table for phase I is now

SO(N +2) USp(N −2) U (1)B U (1)X U (1)Y U (1)R

q(1)
USp ∗ ∗ − 1

2 0 0 − 1
2

A1[φ1] 0 1 1 1

A2 0 −1 1 1

q(2)
SO ∗ ∗ 1

2 0 0 − 1
2

B1[φ2] 0 1 −1 1

B2 0 −1 −1 1

(100)

whereas for phase II we have

SU (N ) SU (N ) U (1)B U (1)X U (1)Y U (1)R

X1
1
N 1 0 1

2

X2
1
N −1 0 1

2

B1 1 − 1
N 0 −1− 2

N
1
2

B2 1 − 1
N 0 1− 2

N
1
2

A1 1 − 1
N 0 1+ 2

N
1
2

A2 1 − 1
N 0 −1+ 2

N
1
2

(101)

and for phase III

SU (N ) SU (N ) U (1)B U (1)X U (1)Y U (1)R

B1
1
N 1 0 1

2

B2
1
N −1 0 1

2

C1 − 1
N 0 −1 1

2

C2 − 1
N 0 1 1

2

A11 1 0 −1 1 1

A22 1 0 1 −1 1

A12 1 0 −1 −1 1

A21 1 0 1 1 1

(102)

It is straightforward to compute [F ] in phases II and
III; we obtain

II : N ≡βF (mod 2),

III : N ≡αF +βF (mod 2),
(103)

as above. In phase I, however, there is a slight difference
due to the change in the local charges at the upper-left and
lower-right fixed points. Denoting the associated flavor
parities as φ1 = (−1)F1 and φ2 = (−1)F2 , respectively, we
obtain

F1 ≡βF (mod 2), F2 ≡αF (mod 2), (104)

which is different from (98). As a consequence, the pre-
dicted duality multiplets are now

(I++) , (I+−, II+) , (I−+, ĨI
+

) , (I−−, III+) , (II−, ĨI
−

, III−) ,
(105)
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qSO

qUSp

(a) Phase I (b) Phase II (c) Phase III

Figure 47 Brane tilings for the various phases of the F0 orientifold with four O3 planes on the exceptional divisor.

USp(N)

SO(N + 4)

A1[φ1]

A2
B1[φ2]

B2

Sp O

Sp O

W = εijAiBj

(a) Phase I

SU(N) SU(N)A1

A2

B1

B2

Xi

W = Tr(A1X1X2B1 +A2X1X2B2)

(b) Phase II

SU(N) SU(N)Aii

Ai(i+1)

Bi

Ci

W =
∑

ij Tr(AijBiCj)

(c) Phase III

Figure 48 Quiver diagrams corresponding to the brane tilings in figure 47.

in the same notation as before. These dualities have
not been previously discussed in the literature. In ap-
pendix C.2 we present strong evidence that the super-
conformal index matches between different phases in the
same SL(2,Z) multiplet, a necessary condition for these
S-dualities to exist, and a further consistency check on
the discrete torsion dictionary presented in this paper.

6.5 Real cone over Y 4,0

There are infinitely many other toric orientifolds that
we could consider. For instance, the real cones over
Y p,q [41,42] define a simple infinite class of toric singular-
ities. Much like the infinite series of C3/Z2k+1 orientifolds
pictured in figure 35, there is an infinite series of Y 2p,2p−1

toric orientifolds which generalize the dP1 (i.e., Y 2,1) toric
orientifold considered in §6.2, with a corresponding set
of S-dualities [67]. Likewise, there is an infinite class of
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Phase: I II III IV

H3 torsion (00) (10) (01) (11)

Table 5 The four different choices of NSNS torsion in the Y 4,0

isolated toric orientifold with O7 planes, written in the form (αβ)
with [H ] =α〈a〉+β〈b〉.

Y 2p,0 toric orientifolds which generalize the F0 (i.e., Y 2,0)
orientifolds considered above.

The same methods discussed above can be applied
to these examples, but the details of the discrete torsion
calculations are largely analogous to what we have dis-
cussed already. As an illustration, we very briefly discuss
Y 4,0 toric orientifolds. Since these were considered briefly
in [12], we focus on confirming that the triality detected
there is an SL(2,Z) sextet similar to figure 40.

As in the F0 case, there are two possible toric involu-
tions with an isolated fixed point, differing by whether
O3 planes (figure 49(a)) or O7 planes (figure 49(b)) ap-
pear when the singularity is resolved. We consider the
latter case, as this will lead to the orientifold gauge the-
ories considered in [12]. The divisor basis once again
satisfies 〈a〉 = 〈c〉 and 〈b〉 = 〈d〉, so we take the ansatz
[H ] =α〈a〉+β〈b〉 and [F ] =αF 〈a〉+βF 〈b〉. There are four
choices of [H ], labelled by the phase numbers shown in
table 5. The corresponding local charges are shown in
figures 49(c)–(f).

Using these, we construct the brane tilings and quivers
for the “classical” phases II, III and IV, shown in figures 50,
51 and 52, respectively. The quivers in figures 50(b), 51(b)
and 52(b) are exactly those appearing in [12], under the
names II(here) = I.b(there), III(here) = I.a(there) and IV(here) =
II(there).

As usual in classical phases, the [F ] torsion is straight-
forward to read off

II : N ≡αF (mod 2),

III : N ≡βF (mod 2),

IV : N ≡αF +βF (mod 2).

(106)

Denoting these phases by IIn , IIIn , and IVn with n = (−1)N ,
we conclude that (II−, III−, IV−) is indeed an SL(2,Z) sex-
tet, matching the triality observed in [12].54 This is analo-
gous to the F0 sextet (II−, ĨI

−
, III−), except that in this case

54Since QD3 = N /2 for all three phases, the relation between
the ranks is trivial.

II and III do not give isomorphic brane tilings, as the D4

invariance of the F0 toric diagram is reduced to the Klein
four-group, Z2 ×Z2.

In the above discussion, we have deliberately omitted
phase I and the S-dualities involving it. This is done both
to save space and to provide a tractable exercise for any
readers wishing to try their hand at calculations.

6.6 Complex cone over dP2

Our final example, the toric orientifold of the Calabi-Yau
cone over dP2 with an O7 plane wrapping the exceptional
divisor, is one that was entirely intractable before T O2

CFTs were understood in [15]. As pointed out in that paper
(see also [68]), “classical” phases of toric orientifolds do
not exist when the toric diagram has at least five sides.55

One way to think about this is as a consequence of the
fact that [F ] ∼= [F ]+ [H ] contains at least two bits of infor-
mation in every phase, whereas classical phases have only
color parity and no additional flavor parities. In any case,
every phase of the dP2 orientifold contains at least one
T O2 configuration.

Even with the results of [15] in hand, the study of
the dP2 orientifold is daunting, due to the large number
of phases, torsion assignments, and possible S-dualities
that need to be resolved. This task becomes much more
tractable with the systematic techniques developed in this
paper, and we present a complete description of all the
phases and their conjectural S-dualities below (which we
check by matching the superconformal index between
members of the same SL(2,Z) multiplet).

The toric data for the orientifold considered here
are shown in figure 53. The divisor basis relations are
〈a〉 + 〈c〉 = 〈b〉 + 〈e〉 = 〈d〉. We choose the basis 〈ei 〉 =
{〈c〉 ,〈e〉 ,〈c〉 + 〈d〉 + 〈e〉}, i ∈ {1,2,3}, to describe the dis-
crete torsions, which has the convenient property that
〈ei 〉 ·

〈
e j

〉 = δi j . This basis is also convenient when con-
sidering the partial resolutions to the dP1 orientifold sin-
gularity plus an O3 plane, or to the C3/Z3 orientifold sin-
gularity plus two O3 planes. In particular, in the latter
case

〈
e1,2

〉
generate the torsions of the two O3 planes and

〈e3〉 generates the C3/Z3 orientifold torsion. For future

55In particular, since each NS5 brane boundary intersects two
O5 planes, the toric diagram has

∑4
i=1 ki sides for configura-

tions T Oki at the four fixed points. Thus, tilings with only the
“classical” T O0,1 configurations correspond to toric diagrams
with at most four sides.

Copyright line will be provided by the publisher 51



O
rig

in
al

P
ap

er
I. García-Etxebarria and B. Heidenreich: S-duality in N = 1 orientifold SCFTs

〈a〉

〈b〉

〈c〉

〈d〉

(a) O3 planes

〈a〉

〈b〉

〈c〉

〈d〉

(b) Isolated O7 planes

A B

CD

(c) Phase I

A B

CD

(d) Phase II

A B

CD

(e) Phase III

A B

CD

(f) Phase IV

Figure 49 Toric data for the Y 4,0 toric orientifolds with (a) O3 planes and (b) O7 planes in the resolved geometry. (c)–(f) Local
charges for the four phases in the O7 case, following the conventions of table 5.

(a) Tiling for phase II

SU(N − 2) SU(N + 2)

SU(N + 2) SU(N − 2)

W i

Y i

Z X

A1

A2S2

S1

W = εij(A1W
iW jS1 +A2Y

iY jS2 +W iXY iZ)

(b) Quiver for phase II

Figure 50 Tiling and quiver for phase II of the Y 4,0 toric orientifold in figure 49(b).

reference, we note that

〈a〉 = 〈e2〉+〈e3〉 , 〈b〉 = 〈e1〉+〈e3〉 , 〈c〉 = 〈e1〉 ,

〈d〉 = 〈e1〉+〈e2〉+〈e3〉 , 〈e〉 = 〈e2〉 ,

(107)

in this torsion basis.
Writing [H ] = h1 〈e1〉 + h2 〈e2〉 + h3 〈e3〉, we find the

eight phases listed in table 6. Note that the toric diagram
has a Z2 reflection symmetry which maps 〈e1〉 ↔ 〈e2〉.

Since the phases IIIA ←→ ĨIIA and IIIB ←→ ĨIIB are re-
lated by this reflection, the corresponding SCFTs will be
isomorphic up to a relabeling of the global symmetries,
hence we will not discuss ĨIIA and ĨIIB further until we
organize our results into SL(2,Z) multiplets.
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(a) Tiling for phase III

SU(N)

SU(N)

SU(N + 4) SU(N − 4)

Ai Si

P

R

L

Q

Xi

W = εijA
iLXjR+ εijS

iPXiQ

(b) Quiver for phase III

Figure 51 Tiling and quiver for phase III of the Y 4,0 toric orientifold in figure 49(b).

(a) Tiling for phase IV

SU(N + 4) SU(N)

SU(N) SU(N + 4)

Xi
2

Xi
4

P12P34

T i
23

T i
41

P23

P41

W = εij(X
i
2P23T

j
23 +Xi

4P41T
j
41 + P12T

i
23P34T

j
41)

(b) Quiver for phase IV

Figure 52 Tiling and quiver for phase IV of the Y 4,0 toric orientifold in figure 49(b).

Phase: IA IB IIA IIB IIIA IIIB ĨIIA ĨIIB

H3 torsion: (000) (111) (110) (001) (100) (011) (010) (101)

Table 6 Phase labels for the eight choices of [H ] = h1 〈e1〉+h2 〈e2〉+h3 〈e3〉 in the dP2 orientifold, specified in the form
(h1h2h3).

Phase IA

We start with the phase IA for which [H ] = 0. The local
charges, brane tiling, quiver diagram and superpotential
are shown in figure 54. The global symmetries for this

phase are giving in table 7.

This basis of generators for the global symmetries
(reused in all subsequent phases) is chosen to ensure
several desirable properties: (i) there is a Z2 reflection
symmetry in the toric diagram which manifests itself as
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〈a〉

〈b〉

〈c〉

〈d〉〈e〉
A

B C

D

E

Figure 53 Toric data for the isolated orientifold of the complex Calabi-Yau cone over dP2. We have named the external (p, q)
legs for later reference. For ease of depiction we have displaced slightly the D and E external legs, keeping their slopes.

A

B C

D

E

(a) Local charges.

q
(1)
USp

q
(2)
USp

(b) Brane tiling.

SU(M)SO(M − 4)
Y

Z

B1

A1[φ1]

B2

A2[φ2]

Sp O

Sp O

W = Y (B1 −B2) +A1A2Z

(c) Quiver and superpotential.

Figure 54 Brane tiling and field theory data for phase IA of the complex cone over dP2. In (b) we have slightly deformed the
overlapping parallel NS5 branes to obtain a quiver description, as in §6.3.

SO(M −4) SU (M) U (1)B+ U (1)B− U (1)X+ U (1)X− U (1)R

Y − 2
M 0 − 2

M 0 − 2
M

Z 1 − 4
M 0 2− 4

M 0 2− 4
M

q(1)
USp ∗ ∗ 1

2
1
2 −M−2

4
M−2

4 −M+4
4

A1[φ1] 2
M 0 −1+ 2

M 1 2
M

B1
2

M 0 2
M 0 2+ 2

M

q(2)
USp ∗ ∗ 1

2 − 1
2 −M−2

4 −M−2
4 −M+4

4

A2[φ2] 2
M 0 −1+ 2

M −1 2
M

B2
2

M 0 2
M 0 2+ 2

M

Table 7 Charges for phase IA of the complex cone over dP2.
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the exchange q(1) ↔ q(2). The symmetries U (1)B+,U (1)X+,
and U (1)R are invariant under this exchange, whereas
U (1)B− and U (1)X− change sign.56 (ii) Taking M →−M
will produce the quiver diagram and charge table for
phase IB by negative rank duality, see figure 55 and table 8.
This basis is chosen to ensure matching anomalies up to
U (1)B± → −U (1)B±. (iii) The charges satisfy the simple
quantization conditions QB+±QB− ∈ Z, QX+±QX− ∈ Z
and QR ∈Z.

The ’t Hooft anomalies in this basis are as follows:

U (1)3
X+ 3Q2 − 3

4 U (1)2
X−U (1)X+ −Q2 + 1

4

U (1)2
X+U (1)B+ −4Q U (1)2

X−U (1)B+ 4Q

U (1)2
B+U (1)X+ 4 U (1)B+U (1)B−U (1)X− 2

U (1)2
X+U (1)R Q2 − 17

4 U (1)2
X−U (1)R −Q2 − 15

4

U (1)2
B+U (1)R −6 U (1)2

B−U (1)R −2

U (1)3
R −83 U (1)X+U (1)2

R −16

U (1)R −11

(108)

with Q ≡ M − 5/2 = 2QD3 and all other anomalies van-
ish. The a-maximizing R-charge—which we use later to
compute the superconformal index—is given by

U (1)(sc)
R =U (1)R + Qa2

X

2aX −3
U (1)B++aX U (1)X+ , (109)

where aX is the root of the quartic equation

(Q2 −9/4)aX (4a2
X −3aX −18)

+ (aX +12)(aX −2)(3a2
X +4aX −6) = 0, (110)

that lies in the range −2 < aX <− 3
8 (
p

33−1) ≈−1.779 for

Q > 7/2 (M > 6).57

To fix [F ] = f1 〈e1〉+ f2 〈e2〉+ f3 〈e3〉, we read off m =
(−1)M and φ1,2 = (−1)F1,2 from the brane tiling using (59)
and (63). We find

M ≡ f1 + f2 + f3 (mod 2),

F1,2 ≡ f1,2 (mod 2),
(111)

56Making this reflection symmetry manifest is also the motivation
for including the elementary meson Y in the table, rather than
integrating it out by flipping B1 or B2.

57The case M = 6 confines, in some cases with chiral symmetry
breaking. A discussion of the confining dynamics is beyond
the scope of this paper, though it is potentially of interest in the
string theory dual.

where we use YC D = 〈c〉 = 〈e1〉 and YE A = 〈e〉 = 〈e2〉 to
determine F1 and F2, respectively. We label this phase as

Im;φ1φ2
A for future reference.

Phase IB

We next consider phase IB . As the negative rank dual of
phase IA , many of its superficial properties are analogous,
and can be obtained from those above by simple proce-
dures such as inverting all of the local charges in the brane
tiling (see also [12] for a discussion of negative rank duality
in the quiver and charge table). The local charges, brane
tiling, quiver diagram, and superpotential are shown in
figure 55. The global symmetries are described by the
charges in table 8. The ’t Hooft anomalies match with (108)
for Q = M̃ +5/2, which is the same relation one obtains
by computing the D3 charge QD3 = M̃/2+5/4 using (81).

Computing the flavor parities φi = (−1)Fi as above, we
obtain

Fi ≡ fi + f3 (mod 2), (112)

where we use YBC = 〈b〉 = 〈e1〉 + 〈e3〉 and YAB = 〈a〉 =
〈e2〉 + 〈e3〉 to compute F1 and F2, respectively, and M̃
is constrained to be even. Notice that (112) is invariant
under fi → fi +1, as expected from the [F ] → [F ]+ [H ],

τ→ τ+1 equivalence. We denote this phase as Iφ1φ2
B for

future reference.

Phase IIA

This phase is depicted in figure 56. The resulting charges
are shown in table 9.

The anomalies match (108) for Q = N −1/2, where one
can check that Q = 2QD3 as before.

The color and flavor parities n = (−1)N and φ= (−1)F

are straightforward to compute as before

N ≡ f3 (mod 2),

F ≡ f1 + f2 + f3 (mod 2),
(113)

where we use YDE = 〈d〉 = 〈e1〉 + 〈e2〉 + 〈e3〉 to read off
the flavor parity. We label this phase as IIn;φ

A for future
reference.

Phase IIB

As with phase IB , many of the properties of phase IIB ,
shown in figure 57, can be derived from those of IIAusing
negative rank duality.

Copyright line will be provided by the publisher 55



O
rig

in
al

P
ap

er
I. García-Etxebarria and B. Heidenreich: S-duality in N = 1 orientifold SCFTs

A

B C

D

E

(a) Local charges.

q
(1)
SO

q
(2)
SO

(b) Brane tiling.

SU(M̃ − 4)USp(M̃)
Y

Z

B1

A1[±1]

B2

A2[±2]

O Sp

O Sp

W = Y (B1 −B2) +A1A2Z

(c) Quiver and superpotential.

Figure 55 Brane tiling and field theory data for phase IB of the complex cone over dP2, where we include a half-period translation
on T 2 to make the negative rank duality with figure 54 manifest.

USp(M̃ +4) SU (M̃) U (1)B+ U (1)B− U (1)X+ U (1)X− U (1)R

Y − 2
M̃

0 2
M̃

0 2
M̃

Z 1 − 4
M̃

0 2+ 4
M̃

0 2+ 4
M̃

q(1)
SO ∗ ∗ − 1

2 − 1
2

M̃+2
4 − M̃+2

4
M̃−4

4

A1[φ1] 2
M̃

0 −1− 2
M̃

1 − 2
M̃

B1
2

M̃
0 − 2

M̃
0 2− 2

M̃

q(2)
SO ∗ ∗ − 1

2
1
2

M̃+2
4

M̃+2
4

M̃−4
4

A2[φ2] 2
M̃

0 −1− 2
M̃

−1 − 2
M̃

B2
2

M̃
0 − 2

M̃
0 2− 2

M̃

Table 8 Charge table for phase IB of the complex cone over dP2.

A

B C

D

E

(a) Local charges.

qUSp

(b) Brane tiling.

SU(N − 4) SU(N)

A1[φ]

A2

B2

B1

Zi
Sp O

W = A1B1Z1 +A2B2Z2 +B1B2Z3

(c) Quiver and superpotential.

Figure 56 Brane tiling and field theory data for phase IIA of the complex cone over dP2. We include a half-period translation on
T 2 to make the tiling easier to read.
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SU (N −4) SU (N ) U (1)B+ U (1)B− U (1)X+ U (1)X− U (1)R

B1 − 1
N − 1

N−4 0 − 2
N−4

2
N

B2 − 1
N

1
N−4 0 2

N−4
2
N

Z1 1 2
N 0 −1 −1 − 4

N
Z2 1 2

N 0 −1 1 − 4
N

Z3 1 2
N 0 0 0 2− 4

N

qUSp ∗ ∗ − 3
2 0 N

2 0 N−4
4

A1[φ] − 1
N

1
N−4 1 1+ 2

N−4 2+ 2
N

A2 − 1
N − 1

N−4 1 −1− 2
N−4 2+ 2

N

Table 9 Charges for phase IIA of the complex cone over dP2.

A

B C

D

E

(a) Local charges.

qSO

(b) Brane tiling.

SU(Ñ + 4) SU(Ñ)

A1[φ1]

A2[φ2]

B2

B1

ZiO Sp

W = A1B1Z1 +A2B2Z2 +B1B2Z3

(c) Quiver and superpotential.

Figure 57 Brane tiling and field theory data for phase IIB of the complex cone over dP2.

We obtain the charges in table 12, where the ’t Hooft
anomalies match with (108) for Q = Ñ +1/2.

However, reading off the flavor parities φi = (−1)Fi

in this case is somewhat subtle, because the meson par-
ities φ1,2 associated to A1 and A2 differ by ñ = (−1)Ñ .
To do so properly, we use the prescription shown in
figure 28(c). First, however, we need to distinguish the
mesons A1 and A2 in the tiling. To do so, we note that
A1 carries charge 1+O(1/Ñ ) under U (1)X−, whereas A2

carries charge −1+O(1/Ñ ). Note that the U (1) global sym-
metries are associated to the U (1) world-volume gauge
theories on the NS5 branes (up to contributions from the
anomalous U (1) ⊆U (N ) of each D5 brane face, which en-
ter the charges at O(1/N )), see, e.g., [48, 56]. In particular,
QX− =Q A +QB +QC +O(1/N ), where the charges Q A,B ,C

are defined by the conventions in figure 58(a), and the cor-
rect linear combination can be found by cross referenc-
ing the charge tables 7 and 9 with their respective tilings.
Based on this, we identify A1,2 in the tiling, as shown in
figure 58(c).

We read off

Ñ ≡ f1 + f2 (mod 2),

Fi ≡ fi (mod 2),
(114)

where we use YC D = 〈c〉 = 〈e1〉 and YE A = 〈e〉 = 〈e2〉 to
read off the meson parities associated to A1 and A2, re-
spectively. As expected, ñ =φ1φ2. We denote this phase

IIφ1φ2
B for future reference, where the color parity is fixed

implicitly by Ñ ≡ F1 +F2 (mod 2).

Phase IIIA

The local charges, brane tiling, quiver diagram and super-
potential for this phase are shown in figure 59. The corre-
sponding charge table is shown in table 11. The anomalies
match (108) for Q = P −3/2.

Copyright line will be provided by the publisher 57



O
rig

in
al

P
ap

er
I. García-Etxebarria and B. Heidenreich: S-duality in N = 1 orientifold SCFTs

SU (Ñ +4) SU (Ñ ) U (1)B+ U (1)B− U (1)X+ U (1)X− U (1)R

B1 − 1
Ñ

− 1
Ñ+4

0 2
Ñ+4

− 2
Ñ

B2 − 1
Ñ

1
Ñ+4

0 − 2
Ñ+4

− 2
Ñ

Z1 1 2
Ñ

0 −1 −1 4
Ñ

Z2 1 2
Ñ

0 −1 1 4
Ñ

Z3 1 2
Ñ

0 0 0 2+ 4
Ñ

qSO ∗ ∗ 3
2 0 − Ñ

2 0 − Ñ+4
4

A1[φ1] − 1
Ñ

1
Ñ+4

1 1− 2
Ñ+4

2− 2
Ñ

A2[φ2] − 1
Ñ

− 1
Ñ+4

1 −1+ 2
Ñ+4

2− 2
Ñ

Table 10 Charges for phase IIB of the complex cone over dP2.

A

BQ = QA −QB

(a) NS5 brane U (1) convention

E C

D

A
A1

A2qSO

(b) Making the mesons visible

qSO

A1

A2

(c) Mesons in the tiling

Figure 58 (a) The U (1) global symmetries of the quiver theory originate from the U (1) worldvolume gauge theories on the NS5
branes, where the bifundamental fields carry opposite charges under the two intersecting NS5 branes where they are localized.
We choose the sign convention for the NS5 brane U (1) charges shown here. (b) To read off the charges of T Ok mesons, it is
helpful to recross the NS5 branes to make the mesons fundamental fields. In the example shown here, we consider the charges
of the phase IIB qSO mesons under U (1)X− =Q A +QB +QC . The meson with charge +1 (−1) is labelled A1 (A2), following the
conventions of table 12. (c) These same mesons, illustrated in the full tiling.

A

B C

D

E

(a) Local charges.

qUSp

(b) Brane tiling.

SU(P − 4) SU(P )

A2

A1

Sp O

Y

ZiX

W = A1Y Z1 +XA2Y Z2

(c) Quiver and superpotential.

Figure 59 Brane tiling and field theory data for phase IIIA of the complex cone over dP2.
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SU (P −4) SU (P ) U (1)B+ U (1)B− U (1)X+ U (1)X− U (1)R

X 1 3
P−4

1
P−4 −1− 3

P−4 1+ 1
P−4 0

Y − 3
2(P−4) + 1

2P − 1
2(P−4) − 1

2P
3

2(P−4) + 1
2P − 1

2(P−4) + 1
2P

2
P

Z1 1 − 1
P

1
P 1− 1

P 1− 1
P 2− 4

P
Z2 1 − 1

P
1
P − 1

P − 1
P − 4

P

qUSp ∗ ∗ 5
4 − 1

4 − 2P−3
4 − 1

4 −P+4
4

A1[φ] 3
2(P−4) + 1

2P
1

2(P−4) − 1
2P −1− 3

2(P−4) + 1
2P −1+ 1

2(P−4) + 1
2P

2
P

A2 − 3
2(P−4) + 1

2P − 1
2(P−4) − 1

2P 1+ 3
2(P−4) + 1

2P −1− 1
2(P−4) + 1

2P 2+ 2
P

Table 11 Charge table for phase IIIA of the complex cone over dP2.

Reading off the color and flavor parities, p = (−1)P and
φ= (−1)F , is by now a straightforward exercise. We find

P ≡ f2 + f3 (mod 2),

F ≡ f2 (mod 2),
(115)

where we use YE A = 〈e〉 = 〈e2〉 to find the flavor parity. We

denote this phase as IIIp;φ
A for future reference.

The phase ĨII
p;φ
A is the same as the one described

above, except that we replace U (1)X− →−U (1)X−, U (1)B− →
−U (1)B−, and change the associated torsions by 〈e1〉 ↔
〈e2〉.

Phase IIIB

As before the local charges, tiling, quiver and superpo-
tential (figure 60) can be obtained by negative rank du-
ality, as can the charge table in table 12. The anomalies

match (108) for Q = P̃ +3/2.
As in phase IIB , the meson parities φi = (−1)Fi associ-

ated to the two qSO mesons A1 and A2 differ by the color

parity p̃ = (−1)P̃ . However, as A1 and A2 appear in cubic
and quartic superpotential terms, respectively, in this case
there is no ambiguity in locating A1 and A2 in the tiling.
Using the prescription shown in figure 28(c), we find the
color and flavor parities

P̃ ≡ f1 (mod 2),

F1 ≡ f2 + f3 (mod 2),

F2 ≡ f1 + f2 + f3 (mod 2),

(116)

where we use YAB = 〈a〉 = 〈e2〉 + 〈e3〉 and YDE = 〈d〉 =
〈e1〉 + 〈e2〉 + 〈e3〉 to read off the meson parities F1 and
F2 associated to A1 and A2, respectively. As expected,

φ1φ2 = p̃. We label this phase as IIIp̃;φ1
B for future con-

venience. The phase ĨII
p̃;φ1
B is again related by the replace-

ments U (1)X− → −U (1)X−, U (1)B− → −U (1)B− as well
transforming the associated torsions by 〈e1〉↔ 〈e2〉.

Duality predictions

To classify the S-dualities expected to relate the dP2 ori-
entifold SCFTs, we begin by summarizing the relation
between the phase labels and the discrete torsion, deter-
mined above:

In;φ1φ2
A : (φ1,φ2,nφ1φ2;+,+,+) , Iφ1φ2

B : (±φ1,±φ2,±;−,−,−)

IIn;φ
A : (±nφ,±,n;−,−,+) , IIφ1φ2

B : (φ1,φ2,±;+,+,−)

IIIn;φ
A : (±,φ,nφ;−,+,+) , IIIn;φ

B : (n,±φ,±;+,−,−)

ĨII
n;φ
A : (φ,±,nφ;+,−,+) , ĨII

n;φ
B : (±φ,n,±;−,+,−)

(117)

where we write the torsion as

((−1) f1 , (−1) f2 , (−1) f3 ; (−1)h1 , (−1)h2 , (−1)h3 ) ,

and the± signs for phases other than IA indicate the equiv-
alence under [F ] → [F ]+ [H ], τ→ τ+1.

To fill out the SL(2,Z) multiplets, we note that the gen-
erators S : τ → −1/τ and T : τ → τ+ 1 act by permuta-
tions on the triple ([H ], [F ], [F ]+ [H ]): S exchanges the
first two entries, and T exchanges the second two. For
instance, consider the triple (〈e2〉 ,〈e3〉 ,〈e2〉+〈e3〉). Choos-
ing all possible orderings we obtain the various phases

filling out the sextet (II+−B , ĨII
−;+
A , III+;−

B ) as shown in fig-
ure 61. We fill out all the SL(2,Z) multiplets in the same
manner, where sextets, triplets, and singlets correspond to
triples of the form (〈A〉 ,〈B〉 ,〈C〉), (〈A〉 ,〈A〉 ,0), and (0,0,0),
respectively, for non-trivial torsion classes 〈A〉 ,〈B〉 ,〈C〉
satisfying 〈A〉 + 〈B〉 + 〈C〉 = 0. Our results are shown in
table 13.
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A

B C

D

E

(a) Local charges.

qSO

(b) Brane tiling.

SU(P̃ + 4) SU(P̃ )

A2

A1

O Sp

Y

ZiX

W = A1Y Z1 +XA2Y Z2

(c) Quiver and superpotential.

Figure 60 Brane tiling and field theory data for phase IIIB of the complex cone over dP2.

SU (P̃ +4) SU (P̃ ) U (1)B+ U (1)B− U (1)X+ U (1)X− U (1)R

X 1 3

P̃+4

1

P̃+4
−1+ 3

P̃+4
1− 1

P̃+4
0

Y − 3

2(P̃+4)
+ 1

2P̃
− 1

2(P̃+4)
− 1

2P̃
− 3

2(P̃+4)
− 1

2P̃

1

2(P̃+4)
− 1

2P̃
− 2

P̃

Z1 1 − 1

P̃

1

P̃
1+ 1

P̃
1+ 1

P̃
2+ 4

P̃
Z2 1 − 1

P̃

1

P̃

1

P̃

1

P̃

4

P̃

qSO ∗ ∗ − 5
4

1
4

2P̃+3
4 − 1

4
P̃−4

4
A1[φ1] 3

2(P̃+4)
+ 1

2P̃

1

2(P̃+4)
− 1

2P̃
−1+ 3

2(P̃+4)
− 1

2P̃
−1− 1

2(P̃+4)
− 1

2P̃
− 2

P̃

A2[φ2] − 3

2(P̃+4)
+ 1

2P̃
− 1

2(P̃+4)
− 1

2P̃
1− 3

2(P̃+4)
− 1

2P̃
−1+ 1

2(P̃+4)
− 1

2P̃
2− 2

P̃

Table 12 Charges for phase IIIB of dP2.

〈e2〉

〈e3〉 〈e2〉+ 〈e3〉II+−
B

II+−
B

ĨII
−;+

AĨII
−;+

A

III+;−
B

III+;−
B

S

S

S

T

T

T

Figure 61 Mapping the triple (〈e2〉 ,〈e3〉 ,〈e2〉+〈e3〉) onto an SL(2,Z) sextet. The discrete torsion for the phase at each corner
of the diagram is ([H ], [F ]), read inwards from the corner along the diagonal line connected to it.

We check the predictions of table 13 in detail by com-
puting the superconformal index for each phase, expand-

ing to fixed order in the fugacity t =p
pq for a fixed rank
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Singlet I+;++
A

Triplets (I−;−−
A , I++B ), (I+;−−

A , II+;+
A ), (I−;++

A , II++B ),

(I+;+−
A , III+;+

B ) ↔ (I+;−+
A , ĨII

+;+
B ), (I−;+−

A , ĨII
+;+
A ) ↔ (I−;−+

A , III+;+
A )

Sextets (II+;−
A , III−;−

A , ĨII
−;−
A ), (II−;+

A , III−;−
B , ĨII

−;−
B ), (II−;−

A , I−−B , II−−B ),

(II+−B , ĨII
−;+
A , III+;−

B ) ↔ (II−+B , III−;+
A , ĨII

+;−
B ),

(I+−B , ĨII
+;−
A , ĨII

−;+
B ) ↔ (I−+B , III+;−

A , III−;+
B )

Table 13 SL(2,Z) multiplets for the N = 1 SCFTs on D3 branes probing the dP2 toric orientifold considered in the text. In
addition to the singlet, there are seven triplets and seven sextets, in agreement the counting given in [15]. When two multiplets
are exchanged by the Z2 automorphism of the toric diagram, we indicate this by (. . .) ↔ (. . .). The other multiplets are mapped to
themselves.

(specified by Q = 2QD3).58 Our results, presented in ap-
pendix C.3, show that theories in different multiplets have
distinct indices, whereas theories in the same multiplet
have the same index up to the order in t that we were able
to check. This is strong evidence that the superconformal
indices of two dP2 SCFTs match if and only if they lie in
the same S-duality multiplet, a necessary condition for
the conjectured S-dualities to exist, and a very non-trivial
check that they do.

7 Conclusions

In this paper we have presented a prescription for relating
the discrete data in an orientifolded brane tiling to the
discrete fluxes present at the T-dual orientifolded singu-
larity. For the NSNS torsion, under the assumption that
NS5 brane and O5 charges are determined by NSNS data
only, we have proven that our proposal is correct. We have
no proof that the proposal for the RR torsion is correct,
but we have verified its validity in a large number of exam-
ples. Furthermore, when formulated in the toric language
which is natural of the problem, equations (52) and (63)
are extremely simple, which gives us further confidence
in their validity. The counting arguments in §4.2 further
support the validity of our proposal for the RR torsion.

Assuming that the dictionary in (52) and (63) is indeed
correct, we have obtained a most remarkable result: we
now have a systematic way of producing an infinite num-
ber of SL(2,Z) duality multiplets of N = 1 theories, com-

58When two phases are related by the Z2 automorphism of
the toric diagram their indices will be related by x− → x−1− ,
b− → b−1− , hence it is not necessary to compute the index
separately for each.

pleting the program initiated in [12, 14]. More abstractly,
in this paper we have completely solved the problem of
describing the effective theory at cusps of the conformal
manifold for a large class of N = 1 SCFTs.

There are various directions for further research in
immediately related areas. A more physical explanation
for our conjectured RR torsion dictionary (63) would be
very useful, ideally leading to a full proof of the dictionary.
Checking at least some examples involving T Ok CFTs be-
yond the k = 2 case considered in this paper would also be
prudent, for instance to understand the dP3 orientifold
discussed in [15]. An important technical assumption in
this paper is that of having an isolated toric orientifold of
a toric singularity. It would be interesting to expand our
analysis to remove the requirement for an isolated sin-
gularity; we expect that the same basic picture will hold
after slightly resolving the singularity. More non-trivial
and physically interesting would be to drop the require-
ment that there are no O7 planes extending away from the
singularity. Doing so should naturally lead to S-dualities
with flavor symmetries as D7 branes are needed to can-
cel the tadpole generated by the non-compact O7 planes,
ensuring that τIIB remains a modulus. In both cases, re-
moving these requirements would allow us to catalog and
understand a larger class of N = 1 S-dualities.

More broadly, it would be very interesting and infor-
mative to connect this class of theories to other systematic
treatments of S-duality in the literature, such as [5, 16].

A Toric geometry

In this appendix, we briefly review the basics of toric ge-
ometry, following the homogenous coordinate approach
pioneered in [69]. Some statements are presented without
proof, and some definitions are omitted or abbreviated.
More comprehensive treatments include [70–74].
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A.1 Toric varieties, homogenous coordinates, and
fans

A toric variety is a d-dimensional abstract variety with a
(C?)d dense subset whose natural (C?)d ∼= (U (1)C)d group
action extends to the whole space.59 A d-dimensional
toric variety is completely described by its fan, Σ, which is
a collection of cones in Rd subject to certain conditions.
Specifically, the cones must be strongly convex rational
polyhedral cones, in that they take the form:

σ= Cone({ui }) ≡
{

n∑
i=1

ri ui

∣∣∣∣∣ri ≥ 0

}
(118)

for some generators ui=1,...n ∈Zd such that Cone({ui })∩
Cone({−ui }) = {0}. We assume without loss of generality
that for each ui

gcd(u1
i ,u2

i , . . . ,ud
i ) = 1, ui ∉ Cone({u j 6=i }) (119)

since otherwise ui can be rescaled or eliminated from
the list of generators without changing σ. The set of gen-
erators {ui } is then in one-to-one correspondence with
σ = Cone({ui }). The cone is said to be simplicial if {ui }
forms part of a basis of Rd , i.e. if the {ui } are linearly inde-
pendent. A simplicial cone is smooth if {ui } forms part of
a basis of Zd .

A subset {v j } ⊆ {ui } generates a face of the cone σ if
Cone({v j }) =σ∩H for some half-space H ⊂Rd . The one-
dimensional faces are rays corresponding to each gener-
ator. Each cone is its own face, and the origin is a face of
any cone. A cone is simplicial if and only if any subset of
{ui } generates a face of the cone.

By construction, each face of a cone is itself a cone.
One can show that the intersection of two faces σ is a face
of σ, as is any face of a face of σ. This motivates a more
general construct: an fan, Σ, is a set of (strongly convex
rational polyhedral) cones in Rd such that for any σ ∈Σ,
all the faces of σ are in Σ, and for any σ1,σ2 ∈ Σ, σ1 ∩σ2

is a face of both σ1 and σ2. The set of faces of a cone σ
(including σ itself) forms a fan, denoted Fan(σ). A simpli-
cial (smooth) fan is a fan whose cones are all simplicial
(smooth). A complete fan is a fan which covers Rd .

59There are additional technical restrictions in the definition
which we do not review here. In what follows, “toric variety” will
refer to what is known as a “normal toric variety” in the math
literature.

The d-dimensional toric variety corresponding to a fan
Σ can be constructed as follows:60 to each ray in Σ, gener-
ated by ui , we associate a homogenous coordinate zi ∈C,
where i = 1, . . .n ≥ d indexes the generators. We construct
a subset VΣ ⊆ Cn consisting of all points p = (z1, . . . , zn)
for which the vanishing coordinate components, if any,
correspond to rays which all lie on the same cone in Σ. We
define a group GΣ ⊆ (C?)n which acts on VΣ via zi →µi zi ,
where

GΣ ≡
{

(µ1, . . . ,µn)

∣∣∣∣∣∀q ∈Zd ,
∏

i
µ

q·ui
i = 1

}
(120)

The toric variety XΣ is then:

XΣ =VΣ //GΣ (121)

where the quotient space consists of GΣ orbits which are
closed in VΣ. If the fan is simplicial, then all GΣ orbits are
closed, and the generalized quotient VΣ //GΣ reduces to
the usual quotient VΣ/GΣ. In either case, there is a cor-
responding N = 1 gauged linear sigma model (GLSM)
with chiral fields zi and gauge group GΣ such that XΣ is
the classical moduli space. In this description, the Fayet-
Iliopoulos (FI) terms corresponding to each U (1) ⊆ GΣ

specify which higher dimensional cones are in Σ, and
thus determine VΣ, whereas the generalized quotient // is
related to GLSM gauge transformations, as in [75].

Thus, the toric variety XΣ is determined uniquely by
its fan Σ. Likewise, the fan Σ is uniquely determined by
the toric variety XΣ, up to GL(d ,Z) transformations on
the fan, which preserve the Zd lattice. XΣ is compact if
and only if Σ is complete.

One can show that the closed GΣ orbits in VΣ are pre-
cisely those for which the vanishing coordinates corre-
spond to rays which generate a cone in Σ. Thus, each k-
dimensional cone in the fan corresponds to the (d −k)-
dimensional subvariety where the homogenous coordi-
nates corresponding to the generators of the cone vanish.
The subvariety is a singular locus if the corresponding
cone is not smooth, and is an nonorbifold singularity if
the cone is not simplicial. Thus, the singularities of XΣ
are directly encoded in the fan Σ, and XΣ is smooth if and
only if Σ is smooth.

Just as the fan Σ determines the global structure of
the toric variety, the cones σ ∈Σ determine its local struc-
ture. An affine toric variety is a toric variety whose fan is

60We assume for simplicity that the rays in the fan span Rd .
Otherwise, the toric variety will be a direct product X ×C? for
some (d −1)-dimensional toric variety X .
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Fan(σ) for some cone σ. Each point in an arbitrary toric
variety p ∈ XΣ has a neighborhood Np which is itself an
affine toric variety. In particular, if σp ∈Σ of dimension k
corresponds to the vanishing homogenous coordinates
at p, then Np

∼= Cd−k × XFan(σp ) where XFan(σp ) is the k-
dimensional affine toric variety whose fan is Fan(σp ).

A.2 Calabi-Yau toric varieties and toric diagrams

A toric variety XΣ is Calabi-Yau if and only if [72]∏
i
µi = 1 ∀ (µ1, . . . ,µn) ∈GΣ . (122)

This is ensured if the generators take the form ui = (ui ,1)
after a GL(d ,Z) transformation. In fact, this is a neces-
sary and sufficient condition for XΣ to be Calabi-Yau. This
implies that a toric Calabi-Yau manifold is always non-
compact, since Σ cannot be complete if the generators
take this form. We now study the special properties of the
fan of a toric Calabi-Yau manifold.

If the generators {ui } of a cone σ take the form ui =
(ui ,1), then the cone admits an alternate description in
terms of the lattice polytope:

P (σ) = Conv({ui }) ≡
{

n∑
i=1

ri ui

∣∣∣∣∣ri ≥ 0,
n∑

i=1
ri = 1

}
(123)

where P , the convex hull of {ui }, is the base of the cone
σ. A face of the polytope P is the convex hull of a subset
{v j } ⊆ {ui } such that Conv({v j }) = P ∩ H for some half-
space H in Rd−1. As with cones, intersections of faces and
faces of faces are again faces, and each face is itself a lattice
polytope. The zero-dimensional faces are the vertices ui .
The cone over P , σ=σ(P ), can be recovered by mapping
the vertices to rays, ui → ui = (ui ,1). Each k dimensional
face of P corresponds to an k+1 dimensional face of σ(P )

In complete analogy with the definition of a fan, we de-
fine a toric diagram,Π, as a collection of lattice polytopes
such that for any P ∈Π, every face of P is inΠ, and for any
P1,P2 ∈Π, P1 ∩P2 is a face of both P1 and P2. The (d −1)-
dimensional toric diagramΠ of a toric Calabi-Yau d-fold
XΣ can be obtained from the fan Σ by replacing each
cone in Σ by its base. Likewise the fan Σ can be recovered
from the toric diagram by taking the cone over each poly-
tope in Π. The subgroup GL(d −1,Z)nZd−1 ⊂ GL(d ,Z)
of rotations and translations in Zd−1 preserves the form
ui = (ui ,1), and two toric diagrams represent the same
Calabi-Yau variety if and only if they are related by a
GL(d −1,Z)nZd−1 transformation.

The vertices (zero-dimensional polytopes) of the toric
diagram, ui ∈Π, correspond to a special class of divisors

known as toric divisors, of the form zi = 0. Each such
divisor is an (d − 1)-dimensional subvariety whose fan
can be read off from the toric diagram as follows. In the
neighborhood of ui , the polytopes which contain ui as
a vertex appear locally as cones in Rd−1 with origin ui .
These cones form an (d −1)-dimensional fan Σi , where
XΣi is the divisor in question.

The holomorphic d-form for XΣ is given explicitly in
terms of the homogenous coordinates as follows:61

Ω=
(∏

i
zi

) ∑
i1,...,id

u1
i1

. . .ud
id

dzi1

zi1

∧ . . .∧ dzid

zid

, (124)

where the factor in parentheses ensures that homogenous
coordinates do not appear in the denominator, hence
Ω is finite everywhere. We first prove that (124) is gauge
invariant. The factor in parentheses is gauge invariant
by (122). From (120), we have:∏

i
(zi )ua

i =∏
i

(z ′
i )ua

i , a = 1, . . . ,d , (125)

whenever zi and z ′
i are gauge equivalent. Taking the exte-

rior derivative of the log of each side of the equation, we
obtain:∑

i
ua

i
dzi

zi
=∑

i
ua

i

dz ′
i

z ′
i

, (126)

thus (124) is manifestly gauge invariant.
To show that Ω is nonvanishing at any smooth point

in XΣ, note that at any smooth point p (or at an orbifold
singularity) the vanishing homogenous coordinates gen-
erate a simplicial cone in Σ, hence the k ≤ d generators
{ui } for these coordinates are linearly independent, and
can be supplemented with d −k other generators to form
a basis, Bp . Since zi 6= 0 for the remaining coordinates, we
can gauge fix zi = 1 for these coordinates, giving:

Ω= det(û)dz 1̂ ∧ . . .∧dz d̂ , (127)

where 1̂, . . . , d̂ index Bp and û denotes the d ×d matrix
with components ua

i for ui ∈ Bp . Since Bp is a basis,
det(û) 6= 0, henceΩ is nonvanishing at p.

A.3 Linear automorphisms of affine toric varieties

An automorphism of a toric variety XΣ is a biholomorphic
map from XΣ to itself. The set of automorphisms of XΣ

61Since XΣ is noncompact, there may exist nontrivial holomor-
phic functions on XΣ with neither zeros nor poles, hence while
this choice of holomorphic d -form is canonical, it is not in
general unique.
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form a group Aut(XΣ). For an affine toric variety (e.g. Cd ),
Aut(XΣ) can be infinite dimensional, and is therefore dif-
ficult to construct. Moreover, in the case of Calabi-Yau
toric varieties, most automorphisms will not preserve the
Calabi-Yau metric, and are therefore not of direct physical
interest. We instead consider a limited class of automor-
phisms of affine toric varieties.

Except in a few special cases, the origin, zi = 0, is a spe-
cial point in the geometry, and we only consider automor-
phisms which map the origin to itself. A simple subclass
of automorphisms of this type consists of automorphisms
which are linear in the homogenous coordinates:

z ′
i = A j

i z j . (128)

Linear automorphisms form a subgroup Âut(XΣ) ⊆ Aut(XΣ).
At least in the case of toric Calabi-Yau threefolds, Âut(XΣ)
will typically correspond to the complexified isometry
group of the Calabi-Yau metric, and is therefore of direct
physical interest.

To define a map from XΣ to itself, Ai (z) = A j
i z j must

preserve GΣ orbits, hence

A−1g A ∈GΣ ∀g ∈GΣ (129)

and therefore A ∈ NGL(n,C)(GΣ) and

Âut(XΣ) ∼= NGL(n,C)(GΣ)/GΣ , (130)

where NG (H) is the normalizer of H in G . We now con-
struct NGL(n,C)(GΣ) and Âut(XΣ).

The elements of GΣ are all diagonal, hence they share
a common set of eigenvectors. For any g ∈ GΣ, the n
eigenvectors of g decompose into degenerate subspaces.
Likewise GΣ induces a decomposition into degenerate
subspaces of size nî for î = 1, . . . , n̂, where two eigenvec-
tors are “degenerate” if their eigenvalues are equal for
every element of GΣ. Elements of NGL(n,C)(GΣ) must map
eigenvectors to eigenvectors, hence an arbitrary element
of NGL(n,C)(GΣ) can be decomposed as A = PD where P
is a permutation matrix and D ∈ ∏

î GL(nî ,C) is a block-
diagonal linear transformation within each degenerate
subspace. Since D normalizes GΣ, P must also do so. The
group GΣ is uniquely encoded in the fan Σ, hence the
permutations P which normalize GΣ are precisely the au-
tomorphisms of the fan, P ∈ Aut(Σ). Multiplying by an ele-
ment of Aut(Σ)∩∏

î GL(nî ,C), we can restrict to P ∈ Ãut(Σ),
permutations of the degenerate subspaces which preserve
some canonical ordering of the elements within each sub-
space.

Thus, elements of NGL(n,C)(GΣ) can be decomposed as
A = PD with P ∈ Ãut(Σ) and D ∈∏

î GL(nî ,C). The decom-
position is unique, hence NGL(n,C)(GΣ) ∼= ∏

î GL(nî ,C)n

Ãut(Σ). Quotienting by GΣ, we find

Âut(XΣ) ∼=
{∏

î

SL(nî ,C)× (C?)d−∑
î (nî−1)

}
n Ãut(Σ) (131)

corresponding to an isometry group{∏
î

SU (nî )×U (1)d−∑
î (nî−1)

}
n Ãut(Σ) . (132)

Elements I ∈ Âut(XΣ) of finite order admit a simpler
decomposition, up to conjugation I → A−1I A for A ∈
Âut(XΣ). Decomposing I = PD as above, we write P as
a product of disjoint cycles permuting the degenerate
subspaces. Suppose that P = (12. . . n̂). We fix each block
Di = 1 for i = 2, . . . , n̂ using A = D−1

i . Thus, I n̂ is block

diagonal with D1 on each block, and thus Dp
1 must be

diagonal for some p > 0, since I has finite order. D1 is
therefore diagonalizable, and so D can be diagonalized
by conjugation. A similar argument applies when P is any
product of disjoint cycles, hence any element of finite
order in Âut(XΣ) is conjugate to an element Î with the
decomposition Î = PT with P ∈ Aut(Σ) and T ∈ (C?)n .

A.4 Affine varieties and horizons

In this subsection, we consider the geometry of an affine
toric variety defined by a fanΣ= Fan(σ) in more detail. We
work in the GLSM description, where the zi are treated as
chiral superfields with charges Q i

a , a = 1, . . . ,n −d , under
a gauge group U (1)n−d ×Ĝ ∼=GΣ∩U (n), where Q i

a forms
a basis for the orthogonal complement of span(ui ) (so
that

∑
i Q i

a ui = 0) and Ĝ is a discrete group. The affine
case corresponds to vanishing FI parameters, hence the
D-term conditions are∑

i
Q i

a |zi |2 = 0. (133)

By construction, ui forms a basis for the orthogonal com-
plement of span(Q i

a), so an arbitrary solution to the D-
term conditions takes the form

|zi |2 = ui · r (134)

for some r ∈ Rd . The positivity requirement |zi |2 ≥ 0 is
equivalent to r ∈σ∨, where the dual cone σ∨ is defined by:

σ∨ ≡ {r |∀u ∈σ, r ·u ≥ 0} (135)

If σ is a strongly convex rational polyhedral cone of
maximal dimension d , then so is σ∨. Moreover (σ∨)∨ =σ,
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and there is a bijective map between the faces of σ and
σ∨, as follows (see e.g. [74]). For any face τ⊂σ, we define
the dual face

τ∗ ≡ {r ∈σ∨ |∀u ∈ τ,r ·u = 0} . (136)

One can verify that τ∗ is a face of σ∨ and that (τ∗)∗ =
τ, hence the map τ → τ∗ is bijective. Moreover, if τ is
dimension k, then τ∗ is dimension d −k.

The dual cone provides a more intuitive picture of the
affine toric variety than the original cone, as follows. A
point in interior of the dual cone corresponds to a T d /G ′
subspace of the affine variety for some discrete group G ′,
as follows. By construction, specifying a point r ∈σ∨ fixes
the modulus of the homogenous coordinates zi . Choosing
any subset I ∈ {1, . . . ,n} of d homogenous coordinates
such that spanR({ui∈I }) ∼= Rd , we can gauge fix U (1)n−d

by setting arg(zi ) = 0 for i ∉ I . If spanZ({ui∈I }) ∼=Zd , then
this completely gauge fixes GΣ∩U (n), whereas otherwise
there is some discrete remnant, G ′, which acts on T d with
coordinates arg zi , i ∈ I .

Thus, the toric variety is a T d /G ′ fibration over the
dual cone. When r approaches a facet of σ∨, one cycle of
T d shrinks to zero size, so that each point in the interior
of the facet corresponds to an orbifold of T d−1. Further
one-cycles pinch off as r approaches faces of decreasing
dimension. In particular, taking r → 0 shrinks T d /G ′ to a
point, corresponding to the singular point at the origin of
the affine variety.

This description is very convenient for describing the
“horizon” of the affine variety, i.e. the (2d−1)-dimensional
manifold Y such that the affine variety is a real cone over
Y . To recover Y from the affine variety, we define a “radial”
coordinate as the weighted average

r ≡ 1∑
i λi

∑
i
λi |zi |2 (137)

for some choice of weights λi > 0. A surface of constant r
satisfies u0 · r = r , for

u0 ≡ 1∑
i λi

∑
i
λi ui (138)

where by construction u0 lies in the interior of σ. Con-
sequently, u0 · r > 0 for all r ∈ σ∨, and any point on the
dual cone away from the origin r = 0 can be mapped to a
point in the plane u0 · r = 1 by the rescaling r → 1

u0·r r. The

intersection of σ∨ with this plane is a (d −1)-dimensional
polytope whose faces are in one-to-one correspondence
with the faces of σ∨, much like the relationship between
a toric diagram and the corresponding fan. The horizon
manifold Y is a T d /G ′ fibration over this polytope.

Up to GL(d ,R) transformations and rescaling of the
generators, we can write ui in the form (ui ,1), where ∆=
Conv(ui ) is the “base” of the cone σ. By a further GL(d ,R)
transformation, we can set u0 = (0,1). In this case, the
(d −1)-dimensional polytope defined by r = 1 in the dual
cone is the set {(r,1) |r ∈∆◦}, where the dual polytope ∆◦
is defined as:

∆◦ ≡ {r |∀u ∈∆, r ·u ≥−1} (139)

for full-dimensional ∆ containing the origin in its inte-
rior. As above, (∆◦)◦ = ∆, where ∆◦ is a full dimensional
polytope containing the origin in its interior. Moreover,
there is a bijective map between the proper faces of ∆ and
∆◦, taking k-dimensional faces to (d −k −2)-dimensional
faces.

Thus, the horizon manifold is (an orbifold of) a torus
fibration over the base of the dual cone, ∆◦. The dimen-
sions of this polytope vary depending on the choice of
radial coordinate, i.e. the choice of origin within ∆, but
its topology is fixed by the bijective mapping between the
faces of ∆ and ∆◦. In the Calabi-Yau case, ∆ is the toric
diagram, and ∆◦ its dual. In particular, for d = 3 the dual
polytope is a polygon whose corners (edges) correspond
to the edges (corners) of the toric diagram.

B Bilinear forms on Z2 vector spaces

In this appendix, we review a few properties of bilinear
forms on a vector space V over the field Z2. A symmetric
bilinear form on this space is a map V ×V → Z2 such
that A ·B = B · A. Equivalently, A ·B =−B · A, hence there
is no distinction between symmetric and antisymmetric
bilinear forms.

The bilinear form is non-degenerate if for every A ∈V
there exists B ∈ V such that A ·B 6= 0. There is no corre-
sponding notion of positivity. Instead the norm A → A2 is
a linear map V →Z2, because

(a A+B)2 = a2 A2 +2a A ·B +B 2 = a A2 +B 2 , (140)

where we use the fact that a2 = a for a ∈ Z2. We refer to
elements with norm 0 (1) as even (odd). If A is odd then
B and B + A have opposite parity for any B . Thus, either
all elements of V are even, or one-half are odd. We refer
to non-degenerate inner products of the former type as
“symplectic”, and those of the latter as “orthogonal”.

We now show that orthogonal (symplectic) inner prod-
uct spaces admit a basis {ei } where ei · e j = δi j (ei ·
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e j =Ωi j
62), justifying their names. We apply a modified

Gramm-Schmidt procedure. Given a basis, we choose
any odd element e1 and replace ei → ei + (ei · e1)e1 for
i > 1. If no odd element exists, we select another ele-
ment of the basis e2 such that e1 ·e2 6= 0. We then replace
e j → e j + (e j ·e1)e2+ (e j ·e2)e1 for j > 2. In either case, the
remaining elements of the basis are orthogonal to the cho-
sen element(s), and we proceed recursively. The resulting
basis may contain both even and odd components. Con-
sider a subset such that e1 is odd whereas e2,3 are even
with e2 ·e3 6= 0, and replace e1 → e1 +e2 +e3, e2 → e1 +e2,
e3 → e1 +e3, so that e1,2,3 are orthonormal. Applying this
repeatedly, we obtain an orthonormal basis.

As a corollary, for any (not necessarily canonical) basis

{ei } there exists a dual basis {e j } such that ei · e j = δ
j
i .63

Thus, for any linear map f : V → Z2, there exists f̃ ∈ V
such that f (B) = B · f̃ ; explicitly, f̃ = f (ei )e i . Similarly, A ∈
V can be reconstructed from its components Ai = ei · A
via A = Ai e i .

To illustrate these results, we note that there exists a
unique “norm” element η ∈ V such that A2 = η · A. For a
symplectic inner product, η = 0, whereas for an orthog-
onal one, η = ∑

i ei in a canonical basis. It is possible to
show that for any two distinct non-zero elements A,B ∈V
there is an automorphism mapping A to B iff A,B 6= η and
A ·η= B ·η. Thus, ηmeasures the failure of the inner prod-
uct space to be isotropic. In general, η is even (odd) for an
even (odd) dimensional space.

C Superconformal index checks for
various examples

We use the same conventions for the fugacities t and Jn as
in, e.g., [15]. To save space, we display only a small number
of terms in the index for a single choice of rank, sufficient
to demonstrate that the indices match (do not match) for
SCFTs in the same (different) SL(2,Z) multiplets. Compu-
tations to higher order in t or for different ranks can be
done using the computer program of [15], and the indices
of conjectural S-duals match in every example that we
have checked.

62Here Ωi j = diag
(
iσ2, iσ2, . . .

) = −Ω j i is the standard sym-
plectic form.

63Let êi be a canonical basis, with ê i = ∑
j (êi · ê j )ê j its dual

basis. If ê i = ai j e j , then the dual basis is e j = êi ai j . To show

this, we rewrite ei = bi j ê j and note that bi j a j k = δ j
i .

C.1 Complex cone over F0 – O7 plane

We follow the notation and conventions described in §6.3.
The shorthand [. . .] stands for the previous term(s) with
the replacement X ↔ Y and b → b−1. Results are dis-
played in tables 14 and 15.

C.2 Complex cone over F0 – O3 planes

We follow the notation and conventions described in
§6.4. We also use the O(2) characters xn ≡ xn + x−n and
yn ≡ yn + y−n ; the shorthand [. . .] stands for the previous
term(s) with the replacement x ↔ y and b → b−1. Results
are displayed in tables 16 and 17.

C.3 Complex cone over dP2

We follow the notation and conventions described in §6.6.
In the following β= 2aX −3. Results are displayed in ta-
bles 18 and 19.
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II− = ĨI
− = III−:

1− t 2 (X2 +Y2)+ t 3
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II− = ĨI
− = III−:

1+ t 3/2
( y1 + y3

b
+b (x1 +x3)

)
+ t 2 (

x2 + y2 −2
)+ t 5/2

(
J1 y3

b
+b J1x3

)

+ t 3
(

2+2y2 + y4 + y6

b2 + [. . .]− J1(x2 −2)(y2 −2)+x1 y1 + (x1 +x3)(y1 + y3)

)
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b
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I++:

1+ t

(
y3

b1/2
+b1/2x3

)

+ t 2
(

1+2y2 + y6

b
− J1

(
y1 − y3

)
b1/2

+ [. . .]+ (−2+x2 +x1 y1 + y2 +x3 y3
))+ . . . (146)

I+− = II+:

1+ t y3

b1/2
+ t 2

(
1+2y2 + y6

b
− J1

(
y1 − y3

)
b1/2

+ (−2+x2 + y2
)+b (1+x2 +x4)

)

− t 3
(−2y1 − y3 −2y5 − y9

b3/2
− J1

(
y2 − y4 + y6

)
b

+ (−1+ J2) y1 − (−2+ J2 +x2) y3 − y5

b1/2

+ J1 (−2+x2)
(−2+ y2

)+b1/2 (− (1+x2) y1 − (1+x4) y3
)−b J1x4
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I+;++
A :

1+ b3/2+
x7/2+

(
1

b1/2− x9/2−
+b1/2

− x9/2
−

)
t

93
8 + 405

16β+
17β
16

(0.729) + 1

b1/2+ x1/2+

(
x1/2−
b1/2−

+ b1/2−
x1/2−

)
t
− 67

8 − 135
16β−

19β
16

(0.8392)

+ x8+
b2+

t
− 5

2 − 135
4β + β

4

(0.8637) + x1/2+
b1/2+

(
1

b1/2− x1/2−
+b1/2

− x1/2
−

)
t
− 39

8 − 135
16β−

11β
16

(0.9899) + . . . (149)

I+;−+
A = ĨII

+;+
B :

1+
b3/2+ t

93
8 + 405

16β+
17β
16

(0.729)

b1/2− x9/2− x7/2+
+

x1/2− t
− 67

8 − 135
16β−

19β
16

(0.8392)

b1/2− b1/2+ x1/2+
+

x8+t
− 5

2 − 135
4β + β

4

(0.8637)

b2+
+

x1/2+ t
− 39

8 − 135
16β−

11β
16

(0.9899)

b1/2− b1/2+ x1/2−

+
x3/2+ t

− 11
8 − 135

16β−
3β
16

(1.141)

b1/2− b1/2+ x3/2−
+

x5/2+ t
17
8 − 135

16β+
5β
16

(1.291)

b1/2− b1/2+ x5/2−
+

x7/2+ t
45
8 − 135

16β+
13β
16

(1.442)

b1/2− b1/2+ x7/2−
+

b3+t
93
4 + 405

8β + 17β
8

(1.458)

b−x9−x7+
+ . . . (150)

I+;+−
A = III+;+

B : same as above with b− → b−1− , x− → x−1− .

I+;−−
A = II+;+

A :

1+ x8+
b2+

(1+ t J1) t
− 5

2 − 135
4β + β

4

(0.8637) + b+
x4+

(
1

x4−
+ 1

x2−
+1+x2

−+x4
−
)

t
13
4 + 135

8β − β
8

(1.568) + b+
x3+

(
1

x3−
+ 1

x−
+x−+x3

−
)

t
27
4 + 135

8β + 3β
8

(1.719) + x16+
b4+

t
−5− 135

2β + β
2

(1.727) + 1

b+
t
− 53

4 − 135
8β − 15β

8

(1.829)

+ b+
x2+

(
1

x2−
+1+x2

−
)

t
41
4 + 135

8β + 7β
8

(1.87) + x+
b+

(
1

x−
+x−

)
t
− 39

4 − 135
8β − 11β

8

(1.98) −3t 2 + . . . (151)

II+;−
A = ĨII

−;−
A = III−;−

A :

1+ b+
x4+

(1+ J1t )

(
1

x4−
+ 1

x2−
+1+x2

−+x4
−
)

t
13
4 + 135

8β − β
8

(1.568) + b+
x3+

(1+ J1t )

(
1

x3−
+ 1

x−
+x−+x3

−
)

t
27
4 + 135

8β + 3β
8

(1.719) + b+
x2+

(1+ J1t )

(
1

x2−
+1+x2

−
)

t
41
4 + 135

8β + 7β
8

(1.87)

−3t 2 + b+
x+

(
1

x−
+x−

)
t

55
4 + 135

8β + 11β
8

(2.02) − x+
(

1

x−
+x−

)
t

11
2 + β

2
(2.151) +b+t

69
4 + 135

8β + 15β
8

(2.171) − J1

x+

(
1

x−
+x−

)
t
− 1

2 −
β
2

(2.849) − J1

(
1

x2−
+5+x2

−
)

t 3 + . . . (152)

II−;−
B = ĨII

−;+
A = III+;−

B :

1+ b1/2− b3/2+ x9/2−
x7/2+

[
1+ J1t +

(
J2 −3− 1

x2−

)
t 2

]
t

93
8 + 405

16β+
17β
16

(0.729) + b−b3+x9−
x7+

(1+ J1t ) t
93
4 + 405

8β + 17β
8

(1.458)

−3t 2 −x+
(

1

x−
+x−

)
t

11
2 + β

2
(2.151) +

b3/2− b9/2+ x27/2− t
279

8 + 1215
16β + 51β

16

(2.187)

x21/2+
+ b1/2+

x7/2+ b1/2−

(
1

x7/2−
+ 1

x3/2−
+x1/2

− +x5/2
−

)
t
− 13

8 + 135
16β−

13β
16

(2.558) −
b1/2− b3/2+ x7/2− t

81
8 + 405

16β+
9β
16

(2.578)

x9/2+

+ b1/2+
b1/2− x5/2+

(
1

x9/2−
+ 2

x5/2−
+ 2

x1/2−
+x3/2

−
)

t
15
8 + 135

16β−
5β
16

(2.709) − J1

x+

(
1

x−
+x−

)
t
− 1

2 −
β
2

(2.849) + . . . (153)

II−;+
B = III−;+

A = ĨII
+;−
B : same as above with b− → b−1− , x− → x−1− .

Table 18 dP2: Indices for Q = 15/2

[33] D. Gaiotto, Private communication. [34] O. Aharony and A. Hanany Nucl. Phys. B504, 239–
271 (1997).
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I−;++
A = II+;+

B :

1+ b3/2+
x4+

(1+ t J1)

(
1

b1/2− x5−
+b1/2

− x5
−
)

t
105

8 + 459
16β+

19β
16

(0.9029) + b3+
x8+

(
1

b−x10−
+1+b−x10

−
)

t
105

4 + 459
8β + 19β

8

(1.806) −3t 2 + . . . (154)

I−;+−
A = ĨII

+;+
A :

1+ b1/2− b3/2+ x5−
x4+

(1+ t J1) t
105

8 + 459
16β+

19β
16

(0.9029) +
x1/2− t

− 73
8 − 153

16β−
21β
16

(1.064)

b1/2− b1/2+ x1/2+
+

x1/2+ t
− 45

8 − 153
16β−

13β
16

(1.229)

b1/2− b1/2+ x1/2−
+

x3/2+ t
− 17

8 − 153
16β−

5β
16

(1.393)

b1/2− b1/2+ x3/2−
+

x5/2+ t
11
8 − 153

16β+
3β
16

(1.558)

b1/2− b1/2+ x5/2−
+

x7/2+ t
39
8 − 153

16β+
11β
16

(1.722)

b1/2− b1/2+ x7/2−

+
b−b3+x10− t

105
4 + 459

8β + 19β
8

(1.806)

x8+
+

x9/2+ t
67
8 − 153

16β+
19β
16

(1.887)

b1/2− b1/2+ x9/2−
+

b1/2− b3/2+ x5− J1t
113

8 + 459
16β+

19β
16

(1.903)

x4+
+ b+

x9/2+

(
1

x9/2−
+ 1

x5/2−
+ 1

x1/2−
+x3/2

− +x7/2
− +x11/2

−
)

t
4+ 153

8β − β
8

(1.967) −3t 2+ . . .

(155)

I−;−+
A = III+;+

A : same as above with b− → b−1− , x− → x−1− .

I−;−−
A = I++B :

1+ 1

b1/2+ x1/2+

(
x1/2−
b1/2−

+ b1/2−
x1/2−

)
t
− 73

8 − 153
16β−

21β
16

(1.064) + x1/2+
b1/2+

(
1

b1/2− x1/2−
+b1/2

− x1/2
−

)
t
− 45

8 − 153
16β−

13β
16

(1.229) + x3/2+
b1/2+

(
1

b1/2− x3/2−
+b1/2

− x3/2
−

)
t
− 17

8 − 153
16β−

5β
16

(1.393)

+ x5/2+
b1/2+

(
1

b1/2− x5/2−
+b1/2

− x5/2
−

)
t

11
8 − 153

16β+
3β
16

(1.558) + x7/2+
b1/2+

(
1

b1/2− x7/2−
+b1/2

− x7/2
−

)
t

39
8 − 153

16β+
11β
16

(1.722) + x9/2+
b1/2+

(
1

b1/2− x9/2−
+b1/2

− x9/2
−

)
t

67
8 − 153

16β+
19β
16

(1.887) −3t 2 + . . . (156)

I+−B = ĨII
+;−
A = ĨII

−;+
B :

1+
x1/2− t

− 73
8 − 153

16β−
21β
16

(1.064)

b1/2− b1/2+ x1/2+
+

x1/2+ t
− 45

8 − 153
16β−

13β
16

(1.229)

b1/2− b1/2+ x1/2−
+

x3/2+ t
− 17

8 − 153
16β−

5β
16

(1.393)

b1/2− b1/2+ x3/2−
+

x5/2+ t
11
8 − 153

16β+
3β
16

(1.558)

b1/2− b1/2+ x5/2−
+

x7/2+ t
39
8 − 153

16β+
11β
16

(1.722)

b1/2− b1/2+ x7/2−
+

x9/2+ t
67
8 − 153

16β+
19β
16

(1.887)

b1/2− b1/2+ x9/2−
−3t 2 + . . . (157)

I−+B = III+;−
A = III−;+

B : same as above with b− → b−1− , x− → x−1− .

I−−B = II−;−
A = II+;−

B :

1−3t 2−x+
(

1

x−
+x−

)
t

11
2 + β

2
(2.165)+

t
− 59

4 − 153
8β − 17β

8

(2.293)

b+
+ x+

b+

(
1

x−
+x−

)
t
− 45

4 − 153
8β − 13β

8

(2.457) + x2+
b+

(
1

x2−
+2+x2

−
)

t
− 31

4 − 153
8β − 9β

8

(2.622) + x3+
b+

(
1

x3−
+ 2

x−
+2x−+x3

−
)

t
− 17

4 − 153
8β − 5β

8

(2.786)

− J1

x+

(
1

x−
+x−

)
t
− 1

2 −
β
2

(2.835) +
x4+
b+

(
1

x4−
+ 2

x2−
+3+2x2

−+x4
−
)

t
− 3

4 − 153
8β − β

8

(2.951) − J1

(
1

x2−
+5+x2

−
)

t 3 + . . . (158)

II−;+
A = III−;−

B = ĨII
−;−
B :

1+
x9+t

−3− 153
4β + β

4

(1.066)

b2+
−3t 2 +

x9+ J1t
−2− 153

4β + β
4

(2.066)

b2+
+

x18+ t
−6− 153

2β + β
2

(2.132)

b4+
−

(
x+
x−

+x−x+
)

t
11
2 + β

2
(2.165) −

(
J1

x−x+
+ x− J1

x+

)
t
− 1

2 −
β
2

(2.835) −
(

x8+
x− +x−x8+

)
t
− 9

2 − 153
4β − β

4

(2.902)

b2+

− t 3
(

J1

x2−
+5J1 +x2

− J1

)
+

x9+ (−3+ J2) t
−1− 153

4β + β
4

(3.066)

b2+
+

x18+ J1t
−5− 153

2β + β
2

(3.132)

b4+
−2

(
x+ J1

x−
+x−x+ J1

)
t

13
2 + β

2
(3.165) +

x27+ t
−9− 459

4β + 3β
4

(3.198)

b6+

−
(

x10+
x− +x−x10+

)
t

5
2 − 153

4β + 3β
4

(3.231)

b2+
− x2

+ J1t 10+β
(3.329) +

(
b3+

b−x7−x9+
+ b−b3+x7−

x9+

)
t

99
4 + 459

8β + 15β
8

(3.641) + . . . (159)

Table 19 dP2: Indices for Q = 17/2
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