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Abstract. The two-dimensional Green’s functions are derived for the half-plane in the context of the 

complete Toupin-Mindlin theory of isotropic strain-gradient elasticity. Two types of Green’s functions 

exist for a concentrated force and a concentrated force dipole acting upon the surface of a traction-free 

half-plane. Our purpose is to examine the possible deviations from the predictions of classical theory 

of elasticity as well as from the simplified strain-gradient theory, which is frequently utilized in the last 

decade for the solution of boundary value problems. Of special importance is the behavior of the new 

solutions near to the point of application of the loads where pathological singularities and 

discontinuities exist in the classical solutions. The boundary value problems are attacked with the aid 

of the Fourier transform and exact full-field solutions are provided. Our results indicate that in all cases 

the displacement field is bounded and continuous at the point of application of the concentrated loads. 

The new solutions show therefore a more natural material response. For the concentrated force problem, 

both displacements and strains are found to be bounded, whereas the strain-gradients exhibit a 

logarithmic singularity. Thus, in marked contrast with the classical elasticity solution, a finite strain 

energy is contained within any finite portion of the body. On the other hand, in the case of the 

concentrated dipole force, the strains are logarithmically singular and the strain gradients exhibit a 

Cauchy type singularity. The nature of the boundary conditions in strain-gradient elasticity is 

highlighted through the solution of the pertinent boundary value problems. Finally, based on our 

analytical solution, the role of edge forces in strain-gradient elasticity is elucidated employing simple 

equilibrium considerations. 
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1.  Introduction 

In the present work, the two-dimensional Green’s functions for a body in the form of a half-plane are 

derived in the context of the complete Toupin-Mindlin theory of isotropic strain-gradient elasticity 

(Toupin, 1962; Mindlin, 1964). Two types of Green’s functions exist for a concentrated force and a 

concentrated force dipole acting upon the surface of a traction-free half-plane. The first case 

corresponds to the well-known Flamant problem which is one of the most celebrated problems in the 

classical linear elastostatic theory finding applications in contact mechanics, geomechanics, and 

tribology (Johnson, 1987; Goryacheva 2013; Podio-Guidugli and Favata, 2014). The second case 

regarding the concentrated force dipole has no direct counterpart in the frame of the classical elasticity 

theory. 

The Toupin-Mindlin’s theory assumes that each material particle has three degrees of freedom 

(that is the displacement components as in the classical theory), the micro-density coincides with the 

macro-density, and the strain energy density depends not only upon the strain but also upon the strain 

gradient (a third order tensor). In the isotropic case, the full constitutive relations involve five 

microstructural parameters (these constants are additional to the standard Lame constants to 

characterize the material response), providing thus a more detailed description of microstructured 

materials as compared to the simplified strain-gradient elasticity (including only the additional material 

parameter - the so-called gradient coefficient) or other generalized continuum theories – like the couple 

stress (constrained Cosserat) theory or the micropolar (unconstrained Cosserat) theory. A recent study 

by Bacca et al. (2013) provides an account of the determination of the five gradient moduli via 

homogenization of heterogeneous materials. Moreover, Shodja et al. (2013) utilizing ab initio DFT 

calculations evaluated the characteristic material lengths of the complete Toupin-Mindlin strain-

gradient elasticity theory for several FCC and BCC metal crystals. More recently, Po et al. (2017) based 

on atomistic calculations provided estimates of the length scale parameters in gradient elasticity for 

many anisotropic structures. Finally, strain gradient effects, even though difficult to be measured, have 

been experimentally observed in rigid polyurethane and polymethacrylimide foams (Anderson and 

Lakes, 1994).  

Although the simplified strain-gradient elasticity has been extensively used in the last two 

decades for the solution of various boundary value problems (see e.g. Vardoulakis and Georgiadis, 

1997; Georgiadis et al., 2000; Papargyri-Beskou et al., 2003; Vardoulakis and Giannakopoulos, 2006; 

Gao and Ma, 2009; Gourgiotis and Georgiadis, 2009; Aravas and Giannakopoulos, 2009; Filopoulos 

et al., 2010; Gao and Zhou, 2013; Rosi et al. 2014; Li and Wei, 2015; Papathanasiou et al. 2016 and 

references therein), the complete Toupin-Mindlin theory of strain-gradient elasticity, due to its 

complexity, has not been adequately explored. Indeed, there exist only a few works in the literature that 
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employ the complete Toupin-Mindlin theory, most of them treating stress concentration problems 

(Cook and Weitsman, 1966; Day and Weitsman, 1966; Weitsman, 1966; Hazen and Weitsman, 1968; 

Adler, 1969; Eshel and Rosenfeld 1970; Lardner, 1970; Eshel and Rosenfeld, 1973; Lardner, 1971; 

Eshel and Rosenfeld 1975) and recently crack and wave propagation problems (Sciarra and Vidoli, 

2013; Gourgiotis and Georgiadis, 2015; Rosi and Auffray, 2016; Lazar, 2016; Reda et al., 2017). 

As is well known, the solution of the Flamant problem in the context of classical elasticity 

predicts a logarithmic singularity for the displacement field at the point of application of the load (Love, 

1944), thus violating the basic premise of linearized (i.e. infinitesimal) elasticity. In fact, unbounded 

displacements occur at the point of application of the load, no matter how small the load intensity is. It 

is obvious, therefore, that the classical elasticity solution does not reflect (to some extent) the actual 

situation. To remedy the aforementioned deficiency, various generalized continuum theories have been 

employed for the solution of the problem. In particular, the Flamant problem was initially solved 

asymptotically in the context of the couple-stress theory by Muki and Sternberg (1965), and by Cowin 

(1969) and Dyszlewicz and Matysiak (1973) in the framework of micropolar theory. In the context of 

non-local elasticity, the problem was treated first by Nowinski (1986) and later by Wang (1990). In all 

of these cases, however, the singularity in the displacement field was not eliminated. More recently, in 

the context of the simplified strain-gradient elasticity, the Flamant problem was solved by Exadaktylos 

(1999), Polyzos et al. (2003), Lazar and Maugin (2006), and by Georgiadis and Anagnostou (2008). In 

the latter study, the exact boundary conditions were used showing that even the simplified gradient 

theory predicts bounded and continuous displacements at the point of application of the load and, 

therefore, ‘corrects’ (in a boundary-layer sense) the classical solution. Finally, mention should be made 

to the work of Lardner (1970) that the present authors encountered recently. In this work, the complete 

Toupin-Mindlin theory is employed to treat the Flamant problem through the use of Lamé potentials. 

However, only rudimentary asymptotic results are presented for the stresses at the point of application 

of the load while the effect of the gradient parameters is not discussed. Moreover, as Sternberg (1960) 

pointed out, in static problems the Lamé potentials do not constitute a complete representation of 

solutions of elastic equilibrium (see also Eringen and Suhubi, 1975). 

The aim of the present study is to derive the half-plane Green’s functions of the complete 

Toupin-Mindlin theory under plane-strain conditions and examine the possible deviations from the 

predictions of classical theory of elasticity but also from the frequently used simplified strain-gradient 

theory. Of special importance is the behavior of the new solutions near to the point of application of 

the loads where pathological singularities and discontinuities exist in the classical solution. The 

boundary value problems are attacked with the aid of the Fourier transform and exact full-field solutions 

are provided. It is shown that in all cases the displacement field is bounded and continuous in the 
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vicinity of the point of application of the concentrated loads. The new solutions show therefore a more 

natural material response. In particular, for the Flamant problem both displacement and strains are 

bounded, whereas the strain-gradients exhibit a logarithmic singularity. Thus, in marked contrast with 

the classical elasticity solution, a finite strain energy is contained within any finite portion of the body. 

On the other hand, in the case of the concentrated force dipoles, the strains are logarithmically singular 

and the strain gradients exhibit a Cauchy type singularity. 

The contents of our paper are as follows: In Section 2, we summarize the basic equations of the 

Form II of Toupin-Mindlin strain-gradient theory and examine the conditions for positive definiteness 

of the strain-energy density. Next, in Section 3, we recall certain pertinent elements of the plane-strain 

theory with which we are concerned. In Section 4, the Green’s functions of the Toupin-Mindlin strain-

gradient theory are analytically derived using a Fourier transform analysis. The role of edge forces in 

strain-gradient elasticity is elucidated in Section 5. Numerical results regarding the displacement and 

strain fields are presented in Section 6.  

 

2.  Fundamentals of the Toupin-Mindlin strain gradient elasticity theory 

The basic equations of the Toupin-Mindlin strain-gradient elasticity theory (Toupin, 1962; Mindlin, 

1964) of homogeneous elastic solids will be now briefly presented. An interesting and concise 

exposition of the theory was given by Mindlin and Eshel (1968), Eshel and Rosenfeld (1970), and more 

recently by Gourgiotis and Georgiadis (2015) for the dynamical case including micro-inertia effects. 

In what follows, we confine our attention to the equilibrium case and neglect the contribution of body 

forces and body dipoles. In addition, all equations are referred to a rectangular Cartesian coordinate 

system,    p px     where the Latin indices span the range (1,2,3), and indicial notation and 

summation convention is used throughout. 

The point of departure is the strain-energy density function for an isotropic and centrosymmetric 

material  

 

1 2

1

2 pp qq pq pq ppk kqq kpp kqqW a a            

                                                         3 4 5ppk qqk kpq kpq kpq qpka a a         ,  (1) 

 

where pu  is the displacement vector,   1 2pq p q q p qpu u       is the linear strain tensor, and 

rpq rqp r pq      is the strain gradient (third order) tensor. This is the so-called Form II version of 
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gradient elasticity in Mindlin’s terminology (Mindlin, 1964).  In addition,  ,   are the standard Lamé 

constants and qa  ( 1,...,5q  ) are the five additional material constants (gradient parameters) having 

dimensions of [force] . It is worth noting that the frequently used simplified gradient elasticity is 

rigorously obtained from Eq. (1) by setting: 2
2 2a   , 2

4a   , and 1 3 5 0a a a   , where   is a 

characteristic material length (see e.g. Georgiadis et al. 2004).  

The constitutive equations of the theory assume then the following form 

 

2pq kk pq pq
pq

W   



  


 , (2) 

 1 2

1
2 2

2rpq rp qkk pq kkr qr pkk pq rkk
rpq

W
m a a       




    


  

                                                3 4 52rp kkq rq kkp rpq qrp pqra a a            , (3) 

 

where pq  is the Kronecker delta, pq  is the monopolar (Cauchy) stress tensor, and rpqm  is the dipolar 

(or double) stress tensor (a third-rank tensor) expressed in dimensions of 1[force][length] . The dipolar 

stress tensor follows from the notion of dipolar forces, which are anti-parallel forces acting between 

the micro-media contained in the continuum with microstructure (Jaunzemis, 1967). According to Eqs. 

(2) and (3), the following symmetries for the monopolar and dipolar stress tensors are noticed: pq qp   

and rpq rqpm m .  

The equations of equilibrium and the traction boundary conditions along the boundary are 

derived from variational considerations using Eqs. (2) and (3). These equations read 

 

  0p pq r rpqm       in    V  , (4) 

     ( )n
q p pq r rpq p r rpq k k r p rpqP n m D n m D n n n m        on    S  , (5) 

( )n
q r p rpqR n n m     on    S  , (6) 

[[ ]]q r p rpqE n k m     on   C  , (7) 

 

where V  is the region (open set) occupied by the body, S  denotes the bounding surface, and C  

denotes every edge formed by the intersection of two portions, say 1S  and 2S  of the (closed) bounding 

surface S . The double brackets [[ ]]  indicate the difference of the enclosed quantity as a given point 
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on the edge is approached from either side. Also, pn  is the outward unit normal to the boundary, qs  is 

the unit tangent vector to the curve C , and the vector k  is defined as q qrp r pk e s n . Moreover,

     p p pD n D    is the surface gradient operator and    p pD n   is the normal gradient 

operator.  

As Bleustein (1967) points out, the auxiliary force traction ( )n
qP , dipole traction ( )n

qR , and edge 

force qE  are related with the true force traction ( )n
qt  and the true dipole-force traction ( )n

pqT  through the 

relations 

 

  ( ) ( ) ( ) ( )n n n n
q q r r p pq p pqP t D n n T D T   , (8) 

( ) ( )n n
q p pqR n T , (9) 

( )[[ ]]n
q r qrp p pqE s e n T . (10) 

 

Combining Eqs (5)-(7) with (8)-(10), we finally obtain 

 

   ( ) ( )n n
q p pq p pq k kpq p k kpqt D T n m D n m        on  S  ,  (11) 

( )n
p pq p k kpqn T n n m     on  S  ,  (12) 

( )n
p pq r p rpqk T n k m            on  C  .  (13) 

 

Note that in a given application one would have information about the quantities ( )n
q

t  and ( )n
pqT  on the 

surface. However, as in the Kirchhoff plate theory (Timoshenko, 1959), only the quantities 

( ) ( )n n
q p pqt D T  (analogous to the effective shear force) and ( )n

p pqn T  (analogous to the bending moment) 

can be prescribed independently on the surface.  

The kinematical boundary conditions of the theory were derived in Mindlin (1964) (see also, 

Grentzelou and Georgiadis, 2008), but are omitted here since these are not relevant to our specific 

problem.  

Employing Eqs. (2) and (3) with (4), one obtains the equations of equilibrium in terms of the 

displacement components 

 

      2 2 2 2
1 22 1 1           u u 0   ,  (14) 
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where  2  is the Laplace operator, and  1 2,   are two characteristic material lengths, defined as  

 

 1 2 3 4 52
1

2

2

a a a a a

 
   




  ,    
 3 4 52

2

2

2

a a a


 

  . (15) 

 

In the limit  1 2, 0  , the Navier-Cauchy equations of classical linear isotropic elasticity are 

recovered from (14). Note that in the simplified gradient elasticity theory: 1 2    . The fact that 

the material lengths  1 2,   multiply the higher-order term reveals the singular-perturbation character 

of the strain-gradient theory and the emergence of associated boundary-layer effects. 

Finally, the restriction of positive definiteness (PD) of the strain energy density W  requires the 

following inequalities for the material constants (Gourgiotis and Georgiadis, 2015) 

 

 3 2 0    ,    0   ,  

2
1 0 ,    2

2 0 ,    4 0a   ,   4 5 0a a   ,    4 52 0a a   , 

1 0b   ,  2 0b   ,     2

1 2 1 2 32 5 4 2 0bb a a a     , (16) 

 

where 

 

1 1 2 3 4 54 8 2 6 3b a a a a a          and       2 1 2 3 4 55 3b a a a a a      . (17) 

 

Note that combining the above inequalities we further obtain: 3 4 510 6 0a a a   . The latter inequality 

plays an important role in antiplane problems in strain-gradient elasticity (Gourgiotis and Georgiadis, 

2015). 

 

3.  Basic equations under plane-strain conditions 

For a body that occupies a domain in the  ,x y -plane under conditions of plane strain, the displacement 

field assumes the following general form: 

 

 , 0,x xu u x y      , 0y yu u x y  ,   , 0zu x y   (18) 
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where the z -axis is perpendicular to the  ,x y -plane. Under these circumstances, the monopolar stress 

tensor pq  and the double-stress tensor pqkm  have three and six independent in-plane components, 

respectively, that read 

 

 2 yx
xx

uu

x y
   


  

 
,    2 y x

yy

u u

y x
   

 
  

 
,   yx

xy

uu

y x
 

 
    

, (19)  

 

22 2
4 4

1 1 3 1 32 2
2

2 2
yx x

xxx

uu uc c
m c c c c c

x y x y

                   
 

2 22
2 4 2 4

1 3 1 32 22 2 2 2
y yx

xxy

u uuc c c c
m c c c c

x y x y

                    
 

22 2
4 4

4 1 2 3 1 2 32 2

3

2 2
yx x

xyy

uu uc c
m c c c c c c c

x y x y

                      
 

2 22
4 4

1 2 3 1 2 3 42 2

3

2 2
y yx

yxx

u uuc c
m c c c c c c c

x y x y

                      
 

22 2
4 2 2 4

1 3 1 32 22 2 2 2
yx x

yyx

uu uc c c c
m c c c c

x y x y

                    
 

2 22
4 4

1 3 1 3 12 2
2

2 2
y yx

yyy

u uuc c
m c c c c c

x y x y

                   
 , (20) 

 

where 

 

1 1 2 3 4 5c a a a a a     ,   2 3 4 52c a a a   ,   3 4 5c a a  ,   4 1 22c a a  . (21) 

 

It is worth noting that although Eq. (3) suggests that all 5 gradient parameters qa  should enter the 

constitutive equations, in the plane-strain case only 4 of them are independent (Eshel and Rosenfeld, 

1970). Moreover, the following relations hold:   2
1 12 2c      and 2

2 22c   . 

In view of Eq. (14), the equations of equilibrium then become 

 

    
2 22 2

2 2 2 2
1 22 2

2 1 1 0y yx x
u uu u

x x y y x y
  

     
                      

   ,  (22) 
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    
2 22 2

2 2 2 2
1 22 2

2 1 1 0y yx x
u uu u

x y y x x y
  

     
                      

  . (23)  

 

Finally, we note that in the case of a flat boundary defined by the unit normal vector  0,1n , the 

force and dipole force tractions defined in Eqs. (5) and (6) assume the following form 

 

 n xyx yyx yxx
x yx

m m m
P

x y x


  
   

  
,    n xyy yyy yxy

y yy

m m m
P

x y x


  
   

  
, (24) 

 n
x yyxR m ,    n

y yyyR m . (25) 

 

The connection of the tractions  ( ) ( ),n n
q qP R  with the true tractions  ( ) ( ),n n

q pqt T  defined in Eqs (8) and (9) 

is given as follows 

 

  ( ) ( )n n n
x x x xxP t T   ,      ( ) ( )n n n

y y x xyP t T   ,      ( )n n
x yxR T ,      ( )n n

y yyR T . (26) 

 

Note that the tractions ( )n
xxT  and ( )n

xyT  are defined implicitly on the boundary through their surface 

derivatives, as Eq. (26) suggests. Examples of these dipolar tractions are given in Section 4 (Fig. 1). 

 

4.  Half-plane Green’s functions in strain-gradient elasticity 

In this Section, we consider the plane-strain problem of a half-plane under the action of various types 

of concentrated surface tractions (line loads) within the context of the complete Toupin-Mindlin 

gradient elasticity theory. Let D  be the open half-plane ( x    , 0y  ) with the straight line 

boundary L  ( 0y  ). Depending on the type of the applied surface tractions, six fundamental cases can 

be distinguished accompanied by the following boundary conditions in terms of the true force and 

dipole-force tractions given implicitly in Eq. (26), or equivalently the auxiliary force and dipole-force 

tractions given in Eqs. (24)-(25), which at the surface of the half-plane ( x    , 0y  ) assume 

the following form (Fig. 1) 

 

Case A. Concentrated normal force 

 

   n
yt P x ,    ( ) 0n

xt  ,     ( ) ( ) ( ) ( ) 0n n n n
yx yy xy xxT T T T    , (27) 
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or equivalently 

 

   n
yP P x ,      0n

xP  ,       0n n
x yR R  . (28) 

 

Case B. Concentrated tangential force 

 

   n
xt S x ,    ( ) 0n

yt  ,     ( ) ( ) ( ) ( ) 0n n n n
yx yy xy xxT T T T    , (29) 

 

or equivalently 

 

   n
xP S x ,      0n

yP  ,       0n n
x yR R  . (30) 

 

Case C. Concentrated dipole force with moment in the x-direction 

 

   n
yxT M x ,      ( ) 0n n

x yt t  ,     ( ) ( ) ( ) 0n n n
yy xy xxT T T   , (31) 

 

or equivalently 

 

     ,0n
xR x M x ,        0n n

x yP P  ,     0n
yR  . (32) 

 

Case D. Concentrated dipole force without moment in the y-direction 

 

   n
yyT T x ,      ( ) 0n n

x yt t  ,     ( ) ( ) ( ) 0n n n
yx xy xxT T T   , (33) 

 

or equivalently 

 

     ,0n
yR x T x ,        0n n

x yP P  ,     0n
xR  . (34) 

 

Case E. Concentrated dipole force with moment in the y-direction 
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   n
xyT Q x ,      ( ) 0n n

x yt t  ,     ( ) ( ) ( ) 0n n n
yy yx xxT T T   , (35) 

 

or equivalently 

 

     ,0n
yP x Q x  ,      0n

xP  ,       0n n
x yR R  . (36) 

 

Case F. Concentrated dipole force without moment in the x-direction 

 

   n
xxT N x ,      ( ) 0n n

x yt t  ,     ( ) ( ) ( ) 0n n n
yy yx xyT T T   , (37) 

 

or equivalently 

 

     ,0n
xP x N x  ,      0n

yP  ,       0n n
x yR R  . (38) 

 

In the above equations,  x  is the Dirac delta function, the prime denotes differentiation with respect 

to the x-variable, and ( , , , , , )P S T M N Q  are the intensities of the concentrated tractions. In particular, 

 ,P S  are expressed in dimensions of 1[force][length] , while  , , ,M T Q N  are expressed in 

dimensions of [force] .The six representative cases are depicted schematically in Figure 1.  

Note that since D  is an unbounded region, the above boundary conditions must be 

supplemented by the regularity conditions at infinity 

 

, 0pq pqkm     as   2 2r x y    .  (39) 
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Figure 1: Elastic strain-gradient half-plane loaded at its surface with a concentrated: (a) normal force (b) 

tangential force (c) dipole force with moment in the x-direction (d) dipole force without moment in the y-

direction, (e) dipole force with moment in the y-direction (f) dipole force without moment in the x-direction. 

 

 

The following point now deserves attention: in plane-strain gradient elasticity we can define six 

types of concentrated surface loads in a half-plane through the use of the true tractions ( )n
qt  and ( )n

pqT . 

These tractions are then connected with the four auxiliary tractions ( )n
qP  and ( )n

qR  through the relations 

(26). The latter are used for the solution of the pertinent traction boundary value problems (cases (A)-

(F)). In particular, cases (A) and (B) are the counterparts of the classical Flamant problem in strain-

gradient elasticity. Cases (C) and (D) have no classical counterpart and can be defined only in the 

context of strain-gradient theory. Finally, cases (E) and (F) can be directly defined through the 

employment of the true dipolar tractions ( )n
xxT  and ( )n

xyT . In the classical theory, the respective cases are 

obtained only by the superposition of two opposite normal or tangential forces, respectively, where the 

distance between them tends to zero (e.g. Timoshenko, 1970). Note that an analogous superposition 



 14

scheme does not apply in cases (C) and (D). It is perhaps remarkable that a uniform distribution of the 

true dipolar tractions ( )n
xxT  and ( )n

xyT  along the surface of the half-plane ( 0y  )  does not produce any 

deformation in the body. Indeed, in this case, according to Eq. (26), the surface derivatives of these 

quantities and, accordingly, all auxiliary tractions become zero ( ( ) ( ) 0n n
q qP R  ) resulting to a null 

solution. This situation closely resembles the case of Kirchhoff plates (constrained plate theory) where 

a uniform distribution of twisting couples at a free edge produces no flexure (Kelvin and Tait, 1895: p. 

192, section 647). 

The plane-strain traction boundary value problems for the half-plane, corresponding to Cases 

(A)-(F) are conveniently attacked with the aid of the Fourier transform. The direct Fourier transform 

and its inverse are defined as follows 

 

ˆ ( ) ( ) i xf f x e dx



  ,     

1 ˆ( ) ( )
2

i xf x f e d 


 


  , (40) 

 

where  1 2
1i   . Transforming the equations of equilibrium (22) and (23) with the aid of (40)1, we 

obtain a system of differential equations for the transformed displacements  ˆ ,xu y  and  ˆ ,yu y  that 

can be written in compact form as: 

 

 
ˆ 0
ˆ 0

x

y

u
K

u

   
   
  

, (41) 

 

where  K  is the differential operator that reads 

 

  11 12

21 22

q q
K

q q

 
  
 

, (42) 

 

with components 

 

     2 2 2 2 2 2 2 2
11 1 22 2q                      d d d , 

     2 2 2 2
12 21 1 22q q i i                d + d d , (43) 



 15

     2 2 2 2 2 2 2 2
22 1 22 2q                     d d d , 

 

 where  n n nd dyd . The system of ODEs in (41) has a non-trivial solution if and only if the 

determinant of  K  is equal to zero (Sneddon, 1975). Hence,  

 

        22 2 2 2 2 2 2 2
1 2det 2 1 1 0K                    d d d  . (44) 

 

Equation (44) has the two double roots:  d  as in the classical elasticity case, and four single roots: 

 1 22 2
11   d  and  1 22 2

21   d  which correspond to the presence of the gradient effects. 

Accordingly, after some rather extensive algebra, a bounded transformed solution of (41) is obtained 

as y   

 

        1 21 1 1
1 2 2 3 1 4 2ˆ , + sgn 3 4 y y y

xu y i B B y B e iB e iB e                     , (45) 

    1 2
1 2 3 4ˆ , y y y

yu y B B y e B e B e         , (46) 

 

where    1 22 2
1 1 1      ,    1 22 2

2 2 2      , and  sgn  is the sign function. Note that 

for the derivation of Eqs. (45) and (46) use of the relation   1
2 1 2      has been made, relating 

the Lame’s constant   with the Poisson’s ratio  . 

The functions  q qB B   ( 1,...,4q  ) and accordingly the transformed displacements will be 

determined through the enforcement of the appropriate boundary conditions for each case of plane-

strain problem described above.  

In what follows, we focus attention on the evaluation of the surface displacements and strains 

(i.e. for 0y  ), with a view towards obtaining an explicit analytical solution. Notice, however, that 

determining the field at points ‘inside’ the half-space ( 0y  ) follows along the same general lines of 

the present analysis but it involves additional numerical work because of the presence of the exponential 

terms in Eqs. (45) and (46). The present solution is intended to determine the behavior of the 

displacement and strain fields near to the point of application of the concentrated loads and will allow 

detecting possible deviations from the predictions of classical theory. In addition, comparison of the 

present results will be made with the corresponding ones obtained using the simplified theory of 
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gradient elasticity (involving only one gradient parameter - Georgiadis and Anagnostou, 2008) in order 

to highlight the role of the additional gradient parameters in the complete Toupin-Mindlin theory of 

gradient elasticity. 

Finally, it is noted that since the solution procedure to be followed is essentially the same for 

all the six cases, it will suffice to consider in detail only Case (A) which corresponds to a concentrated 

normal force acting upon a strain-gradient elastic half-plane.  

 

4.1 Case (A). Concentrated normal force 

The first traction boundary value problem under investigation describes the celebrated Flamant problem 

(see e.g. Timoshenko 1970; Barber, 1992). The elastic half-plane is acted upon by a normal line load 

P  at the origin of the Cartesian rectangular coordinate system (see Fig. 1a).  

The solution procedure follows the steps shown in Georgiadis and Anagnostou (2008). In 

particular, subjecting the boundary conditions (28) to the Fourier transform (40)1 gives rise to a non-

homogeneous 4 4  algebraic system from the solution of which the unknown functions  qB   are 

subsequently obtained. The expressions for the functions  qB   are quite lengthy and are not shown 

here. Exploiting the symmetry of the Flamant problem, the surface displacement field can be expressed 

by the following inverse Fourier integrals 

 

         
0

ˆ, 0 , 0 sinP P
x x

i
u x y u y x d  




     , (47) 

         
0

1
ˆ, 0 , 0 cosP P

y yu x y u y x d  



    , (48)  

 

where the evenness/oddness of the transformed displacement components: 

 

       ˆ ˆ, ,P P
x xu y u y    ,            ˆ ˆ, ,P P

y yu y u y   , (49)  

 

has been taken into account in Eqs (47) and (48). 

Next, by using partial-fraction decompositions, the surface displacements can be written in 

terms of three integrals, in the following form 

 

               1 2, 0P P P P
x class grad gradu x y I x I x I x      ,  (50) 
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               1 2, 0P P P P
y class grad gradu x y J x J x J x      ,  (51) 

with 

 

           
0

1
sin

1 2 1 2
sgn

2 4
P

classI x d
P P

x x


 



 

 
   




,  (52) 

            2

1

2
2

2 2
0 2

1 2 1 2
s sgn e

1
in

2 4
P

gr d
x

a x
P P

I x xd
 

 
 







 
 

 






, (53) 

         
   

0

2 2
2

2

1
si

1 2

2
nˆ ,0

1
P

x
P

gradI xx i u d
P

 
 




 










 
  
  




 

, (54) 

and 

 

         
0

1 11
cos lnP

classJ x d
P P

x x
 

 
   

 
  




F.P. , (55) 

     
 

   
1

0

2
0 21 22 2

2

1 1
co

1
sP

grad

P P
x x d K xJ


 














 


 


  





 


, (56) 

           
 

 2

1 22 2
2 2

1 22 2
2

0

111
,0

1
cosˆP

gra
P

yd x
P

x uJ d


 
 


  





  
 
 











 


, (57) 

 

where  0K  is the modified Bessel function of the second kind and the symbol F.P.  denotes finite-

part integration.  

In view of the above, the final expressions for the displacement components in the Toupin-

Mindlin theory of strain-gradient elasticity read 

 

            2

2

1 2
sgn

4
, 0 1xP P

x grad

P
x e xu x y I


 

  


 , (58) 

           0 2 2ln
1

, 0P P
y grad

P
xu y xKx x J




    


    . (59) 
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In the limit case of classical linear elasticity, the second and third terms in the RHS of each one 

of equations (58)-(59) vanish and the surface displacements are then provided by the following 

relations 

 
       . , 0

1 2
sgn

4
P

x classu
P

xx y



  


, (60) 

 
     

. n
1

0 l,P
y classu x y

P
x







   , (61) 

  

i.e. a solution which is discontinuous and unbounded at the point of application of the concentrated 

force (Barber, 1992). 

Regarding the behavior of the gradient solution near to the point of application of the 

concentrated load, we note first that functions defined by the integrals in Eqs (54) and (57) are bounded 

and continuous as 0x   

 

     20
im 1l P

gradx
I x O

      and           20
im 1l P

gradx
J x O

 . (62) 

 

Moreover, taking into account that:    00
lim ln
x

xK O x


  , it can be readily inferred from (59) that 

the logarithmic singularity of    , 0P
yu x  predicted by the classical theory is eliminated in the context of 

the complete Toupin-Mindlin theory. In addition, in view of Eqs (52), (53), and (62), the discontinuity 

of    , 0P
xu x  attained in the classical elasticity disappears. However, the normal displacement at infinity 

remains logarithmically unbounded as in the classical theory, since away from the origin the strain-

gradient effects decay and the classical elasticity solution dominates. Such a pathological behavior is 

known in 2D elastostatic problems involving concentrated loads in the context of classical elasticity 

and couple-stress elasticity (see e.g. Turteltaub and Sternberg 1968; Bigoni and Gourgiotis 2016). 

Finally, using asymptotic analysis it can be shown that in the Toupin-Mindlin theory of gradient 

elasticity the strain components pq  are bounded at the point of application of the force, whereas the 

strain gradients rpq  exhibit a logarithmic singularity as 0r  . The observation that the both 

displacements and strains are bounded in the Flamant problem was first made by Lardner (1970). The 

boundness of the strain field implies, accordingly, that the monopolar stresses pq  are also bounded at 

the origin, a result which is in marked contrast with the predictions of the classical theory where simple 

equilibrium considerations dictate that these stresses exhibit a 1r   singularity. On the other hand, as it 
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will be shown in more detail in section 5, the dipolar stresses rpqm  become logarithmically unbounded 

at the point of application of the force. 

In view of the above results, it can be readily inferred that the strain-energy density W  defined 

in (1) behaves at most as:    2 2
lnk pqW O O r   , which, in turn, implies that the (total) strain 

energy in any (non-zero) area surrounding the concentrated load is finite. The latter observation shows 

that the Kirchhoff-type theorem established for strain-gradient elasticity (Grentzelou and Georgiadis, 

2005) guarantees uniqueness of solution (within a rigid body field) in the present problem. Note that 

analogous results hold for the 3D problems of Boussinesq and Cerruti (Georgiadis et al., 2014; 

Anagnostou et al., 2013) in strain-gradient elasticity.  

 

4.2 Case (B). Concentrated tangential force 

In this case, the elastic half-plane is acted upon by a tangential line load S  at the origin of the Cartesian 

rectangular coordinate system (see Fig. 1b). Following an analogous analysis as the one outlined in 

section 4.1, the components of the displacement vector assume the following form 

 

         
0

1
ˆ, 0 , 0 cosS S

x xu x y u y x d  



    , (63) 

         
0

ˆ, 0 , 0 sinS S
y y

i
u x y u y x d  




     , (64)  

 

where the evenness/oddness of the transformed displacement components has been taken into account 

in the above equations. The surface displacements can then be written again in terms of three integrals 

as 

 

               1 2, 0S S S S
x class grad gradu x y I x I x I x      ,  (65) 

               1 2, 0S S S S
y class grad gradu x y J x J x J x      ,  (66) 

 

where 

 

         
0

1 11
cos lnS

classI x d
S S

x x
 

 
   

 
  




F.P.  ,  (67) 
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     
 

   
1

0

2
0 21 22 2

2

1 1
co

1
sS

grad

S S
x x d K xI


 














 


 


  





 


, (68) 

           
 

 2

1 22 2
2 2

1 22 2
2

0

111
,0

1
cosˆS

gra
S

xd x
S

x uI d


 
 


  





  
 
 











 


, (69) 

 

and 

 

           
0

1
sin

1 2 1 2
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In view of the above, the final expressions for the displacement components in the Toupin-

Mindlin theory of strain-gradient elasticity read 
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In the limit case of classical linear elasticity, the second and third terms in the RHS of each one 

of equations (73)-(74) vanish and the surface displacements are then provided by the following 

relations 
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Regarding the behavior of the solution near to the point of application of the concentrated load, 

we note first that functions defined by the integrals in Eqs (69) and (72) are bounded and continuous 

as 0x  . Accordingly, the surface tangential displacement    , 0S
xu x  is bounded in the context of the 

complete Toupin-Mindlin theory, whereas the discontinuity of    , 0S
yu x  attained in the classical 

elasticity is eliminated. 

Finally, we note that as in the classical theory of elasticity, the reciprocal relation: 

)()( P

x

S

y uSuP   holds true in view of the Betti-Rayleigh reciprocal theorem established by 

Georgiadis and Grentzelou (2006) for strain-gradient elasticity (see also Georgiadis and Anagnostou, 

2008; Agiasofitou and Lazar, 2009). 

 

4.3 Case (C). Concentrated force dipole with moment in the x-direction 

In this case, the elastic half-plane is loaded by a concentrated force dipole M  (Fig. 1c). The boundary 

conditions at the surface of the half-plane ( 0y  ) are given in (32), whereas the components of the 

displacement vector can be written in the following form 
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ˆ, 0 , 0 sinM M
y x

i
u x y u y x d  
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    , (78) 

 

taking into account the evenness/oddness of the transformed displacements. The expressions for the 

transformed displacements in (77) and (78) are lengthy and are not shown here. The above Fourier 

integrals are convergent as 0x   and thus can be directly evaluated taking into account their 

oscillatory character. 

It is remarked that in the simplified (3-parameter) gradient elasticity theory the transformed 

surface displacements assume the simple form: 
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. (80) 
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where    1 22 2       and 

          2 2 2 2 21 1 2 1 2 2 3 2 3N                         . (81) 

 

Note that case C has no counterpart in the classical elasticity theory. 

 

4.4 Case (D). Concentrated force dipole without moment in the y-direction 

In this case, the elastic half-plane is loaded by a concentrated dipole force without moment T  (Fig. 1d). 

The boundary conditions at the surface of the half-plane ( 0y  ) are given in (34) and the components 

of the displacement vector can be written as 
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y yu x y u y x d  
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   . (83) 

 

The expressions for the transformed surface displacements in (82) and (83) are lengthy and are not 

presented here. In the case of the simplified (3-parameter) gradient elasticity the transformed surface 

displacements assume the simple form 
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Note that case D has no counterpart in the classical elasticity theory. A structural mechanics analogue 

of such similar self-equilibrating dipolar forces without moment can be found in the bending analysis 

of a beam with a T-type cross-section (Vardoulakis and Giannakopoulos, 2006). 

Finally, we remark that according to the reciprocal theorem in strain-gradient elasticity 

(Georgiadis and Grentzelou, 2006), the following relation holds true: 
( )( ) MT

y x y y
M u T u    . 

 

4.5 Case (E). Concentrated force dipole with moment in the y-direction 
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In this case, the elastic half-plane is loaded by a concentrated dipole force with moment in the y-

direction (Fig. 1e). The boundary conditions are given in Eqs (36). As it can be readily seen from  Eq. 

(26)2 , the non-zero traction ( )n
yP  is implicitly connected with the surface derivative of the dipole traction 

( )n
xyT . Therefore, in the context of strain-gradient elasticity such a concentrated couple can be directly 

incorporated through the enforcement of the boundary condition:  ( )n
xyT Q x . On the other hand, in 

the context of classical elasticity, such a concentrated couple can be generated only indirectly by the 

superposition of two normal to the boundary concentrated forces with opposite directions placed at an 

infinitesimal distance to each other. The problem of a concentrated couple in classical elasticity was 

examined (among others) by Timoshenko (1970).  

The components of the displacement vector can be written as 

 

         
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4.6 Case (F). Concentrated force dipole without moment in the x-direction 

In this case, the elastic half-plane is loaded by a concentrated force dipole without moment in the x-

direction (Fig. 1f). The boundary conditions are given in Eqs (38). Similarly to case (E), the non-zero 

traction ( )n
xP  is implicitly connected with the surface derivative of the dipole traction ( )n

xxT  through Eq. 

(26)1. Therefore, in the context of strain-gradient elasticity such a concentrated dipole can be directly 

incorporated through the enforcement of the boundary condition:  ( )n
xxT N x . On the other hand, in 

the context of classical elasticity, a concentrated dipole without moment can be generated only 

indirectly by the superposition of two tangential to the boundary concentrated forces with opposite 

directions placed at an infinitesimal distance to each other.  

 

5. On the role of edge forces in strain-gradient elasticity 

In this Section, the role of edge forces (Eq. (7)) arising in strain-gradient elasticity is elucidated using 

simple equilibrium considerations in the case of a half-plane loaded by a concentrated normal force P  

(case A). For simplicity, the simplified gradient elasticity theory is employed here, nonetheless the 

results obtained apply also in the complete Toupin-Mindlin theory of strain-gradient elasticity. It is 

recalled that for the simplified gradient elasticity case: 1 2    .  
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The role of edge forces in strain-gradient elasticity was first investigated by Green and Naghdi 

(1968), who illustrated how these forces contribute in the equilibrium of a finite cylinder under pure 

torsion. Recently, the role of these edge forces was highlighted in crack problems by Gourgiotis et al. 

(2010), and Sciarra and Vidoli (2012), and by Charalambopoulos and Polyzos (2015) who studied a 

simple 2D problem of an elastic rectangle subjected to different types of boundary conditions.  

We consider a semi-circular sector of radius 0r  and attach a polar coordinate system  ,r   at 

the point of application of the concentrated force (Fig. 2). Along the circular arc AB  the outward unit 

normal vector is rn = e  whereas along the traction-free plane surface becomes yn = e . As it can be 

seen from Figure 2, two straight edges are formed lying parallel to the z -axis with unit tangent vector 

 0,0,1s  and passing through the corner points  0 , 0A r    and  0 ,B r   , respectively. Note 

that n  becomes discontinuous at A  and B . In fact, in view of (7),  the following geometric relations 

hold employing the polar coordinate system:  
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Figure 2.  Equilibrium of a semi-circular sector in the Flamant problem  

in strain-gradient elasticity. 
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The discontinuity in the outward unit normal vector gives rise to two edge forces qE  (line loads constant 

along the z -direction) which are exerted upon the two edges (Fig. 2).  According to Eq. (7), the polar 

components of these forces assume the following form: 

 

   ( )
0 0,0 ,0A

r r r rrE m r m r    ,        ( )
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r rE m r m r      , (90) 
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r rE m r m r      , (91) 

 

Moreover, the expressions for the force tractions  )()( , nn
r PP   and dipolar-force tractions  )()( , n

θ
n

r RR  that 

are distributed along the arc AB  become (Gourgiotis et al., 2010) 
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( )n
r rrrR m ,   ( )n

rrR m  . (94) 

 

where rn e . 

As we shall now show, the role of the edge forces in (90) and (91) is to balance the resultant 

force and moment of the force and dipolar-force tractions acting on the semi-circular arc AB . To this 

purpose, it is expedient to derive the dominant asymptotic stress fields near the point of application of 

the concentrated force. As it was pointed out in Section 4.1, the monopolar stresses are bounded 

whereas the dipolar stresses exhibit a logarithmic singularity as 0r  . Hence, the dominant asymptotic 

behavior of the tractions in (92)-(94) is due to the logarithmically singular dipolar stress field. The latter 

is found by using the Abel-Tauber theorem and employing results from the theory of generalized 

functions (Roos, 1969). In particular, with the aid of the elementary expansions (see also Muki and 

Sternberg, 1965), we obtain within the framework of the simplified strain-gradient elasticity:  

 

           1 3 51
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valid for 0y   and    , and retaining only the dominant asymptotic terms, the components of the 

transformed dipolar stress tensor assume can be written as 
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Utilizing the inverse Fourier transform (40)2, we can analytically derive the asymptotic behavior of the 

dipolar stress field as 0r  . The dipolar stress components in polar coordinates finally read 
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where   ( 0 577.  ) is the Euler-Mascheroni constant. It is remarked that the above asymptotic field 

satisfies the dominant part of the equations of equilibrium (4). 

    Substituting (103)-(108) into (90)-(91), the edge forces at points A  and B  finally become 
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On the other hand, the resultant force and couple due to the distribution of tractions along the semi-

circular arc AB  of radius 0r  are 

 

  ( ) ( ) ( )
0 0

cos sin 0AB n n
x rF r P P d



      , (110) 

    ( ) ( ) ( )
0 0

sin c
2 1

5 4
osAB n n

y rF r
P

P P d


  




  


 , (111) 

    ( ) ( ) ( ) ( ) ( )
0 0 0 00 0

2 0AB n n n n
zM r Q r P d r R r P d

 

          , (112) 

 

where ( ) ( )2n n
k pqk p qQ e n R  is the tangential component of the moment vector (Mindlin and Eshel, 1967). 

For the plane strain case considered here the only non-vanishing component of the moment vector is 

( )n
zQ , which on the semi-circular arc AB  ( rn e ) assumes, according to its definition, the form: 

( ) ( )2n n
zQ R . Note further that, in (112) only the dipolar force traction ( )nR  contributes in the 

equilibrium of moments, since ( )n
rR  is a self-equilibrated traction (see Fig. 2). 

The total resultant forces in the horizontal and vertical direction and the total resultant moment 

with respect to the origin are written then as 
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( ) ( ) ( ) 0AB A B
x x r rF F E E      , (113) 

( ) ( ) ( ) 0AB A B
y yF P F E E        , (114) 

  ( ) ( ) ( )
0 0AB A BM M r E E       , (115) 

 

showing that equilibrium is satisfied in a strain-gradient continua only when the edge forces at the 

corners of the domain are taken into account. These forces are determined a posteriori from the solution 

of the boundary value problem. 

 
 
6.  Results and Discussion 

Before we proceed, it is expedient to normalize the components of the displacement and the strain fields 

for the force and force-dipole problems, respectively, as 

 

   1
i iku u   ,          1

2ij ijk     ,       ,k P S  

   1
2i iku u    ,      2 1

2ij ijk     ,      , , ,k M T Q N  (116) 

 

with    , ,i j x y . Accordingly, we define the normalized distance from the point loads as: 2x x 

. 

To facilitate numerical computations, we introduce three dimensionless parameters which 

characterized effectively a strain-gradient material under plane-strain conditions 

 

 
 

 2
3 1 1 4

0 1 22
2 2 2 2

2 1 2 1 22
, ,

1

c c c
d d d

c c c

 
 
 

   





 .  (117) 

 

Note that the parameter 
1

d  is equal to the squared ratio of the characteristic lengths in gradient 

elasticity. Moreover, the special case 0 1 2 1d d d    corresponds to the simplified gradient elasticity. 

The ranges of the new material parameters in the strain-gradient theory are found by resorting to the 

condition for positive definiteness (PD) of the strain energy density function. In light of the inequalities 

in (16), we find that in order for the strain energy density to be (PD) the following inequalities must 

hold for the above three parameters: 
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(i) 0   

       0 0 0

0

1 0 0 0

1 1
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1
d d d d d d

d
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          
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,  (118) 

 

(ii) 
1

0
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  


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




 ,  (119) 

 

where 

 

           0 1 0 0 1

1,2

9 1 2 15 1 6 1 2 8 15 2 1 2 5 1

15

d d d d d
r

    



        



. (120) 

 

Note that when 0  , (PD) conditions do not depend upon the parameter 2d . Similar results were 

obtained by Eshel and Rosenfeld (1970) using, however, different definitions for the dimensionless 

gradient parameters. 

In what follows, we present selected representative results for the displacement and/or strain 

fields for the six loading cases described in Section 4. For the shake of brevity, we discuss in detail 

only case (A) while the other loading cases are briefly commented upon. The purpose is to reveal the 

effect of the gradient parameters and the Poisson’s ratio upon the half-plane’s elastic response. 

We begin with case (A) corresponding to a concentrated normal force P  acted upon a traction-

free half-plane (Fig. 1a). Figure 3 illustrates the variation of the normalized tangential ( )P

xu  and normal 

( )P

yu  surface ( 0y  ) displacements in strain-gradient elasticity and in the classical theory. In particular, 

Figs. 3a and 3b exhibit the effect of the Poisson’s ratio   upon the strain-gradient and the classical 

solutions. It is observed that the tangential displacement (Fig. 3a) becomes smooth at the point of 

application of the concentrated force whereas the classical solution is discontinuous. The gradient 

effects are dominant within the zone 26x   , while outside this region the gradient solution converges 
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quickly to the classical one. It is worth noting that when the material becomes incompressible, 0.5   

(green line in Fig. 3a), a reversal in the sign of the surface tangential displacement is observed very 

close to the point of application of the load. On the other hand, as it can be seen from Fig. 3b, the 

surface normal displacement becomes bounded and continuous at the origin. The gradient effects, 

however, are not so pronounced as for the tangential displacement being significant only in the narrow 

zone 22x   .  

Further, Figs 3c-3h illustrate the effects of the gradient parameters  0 1 2, ,d d d  on the surface 

displacements for a material with Poisson’s ratio 0.3  . The goal here is to highlight the possible 

deviations from the simplified gradient elasticity solution ( 0 1 2 1d d d   ) when the complete Toupin-

Mindlin theory is employed. To this purpose, in all Figures, two of the gradient parameters kd  are taken 

to be equal to unity while the third one varies spanning the range of positive definiteness as defined by 

Eqs (118) and (119). It is observed that the effect of the parameters 0d  and 2d  upon the solution is 

more significant than the effect of 1d . More specifically, it is shown that as the gradient parameter 0d  

decreases, approaching the lower bound of (PD) ( 0 0d  ), the tangential and the normal surface 

displacements become significantly larger as compared to the simplified gradient theory (Figs 3c and 

3d). Furthermore, a sign reversal is noticed in the values of the tangential displacement (black curve, 

Fig. 3c) very close to the point of application of the load. On the other hand, as the gradient parameter 

2d  increases, approaching the upper bound of (PD) ( 2 3.03d  ), both surface displacements 

significantly decrease in magnitude (green curves, Figs 3g and 3h). 

The variation of the surface strain components in strain-gradient elasticity for case (A) is 

displayed in Fig. 4 with respect to the Poisson’s ratio and the gradient parameter 1d . It is noted that in 

classical elasticity all surface ( 0y  ) strain components are null. The simplified gradient elasticity case 

( 0 1 2 1d d d   ) is also depicted for comparison by a dash-dot (blue) line in Figs 4b, 4d, and 4f. It is 

remarkable that, in all cases, the strain components are bounded at the point of application of the 

concentrated force. The gradient effects are significant in the range 210x   , outside this zone the 

surface strains tend to zero approaching the classical elasticity solution. In more detail, the distribution 

of the normalized surface strain ( )P
xx  is depicted in Figs 4a and 4b. It is observed that as the Poisson’s 

ratio increases approaching incompressibility, ( )P
xx  changes from compressive to tensile (Fig. 4a). 

Furthermore, as 1d  increases, approaching the upper bound of (PD) ( 1 1.63d  ), ( )P
xx  increases 
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significantly in a narrow region 22x    below the concentrated force (green curve – Fig. 4b). Similar 

observations hold for the strain component ( )P
yy  (Figs 4c and 4d). Finally, it is shown that the shear 

strain ( )P
xy  exhibits a bounded maximum at a distance 2x    from the origin and then quickly 

diminishes to zero approaching the classical null solution (Figs 4e and 4f).  

A further comparison of the strain components in classical elasticity and in strain gradient 

elasticity can be seen in the contour plots presented in Fig. 5. It is noted that the full field solutions (

0y  ) for the strain components have been obtained by numerically inverting the pertinent Fourier 

transforms. It is clearly observed that, contrary to the classical case, the strain gradient solution is 

bounded at the point of application of the concentrated vertical force. As we move away from the origin, 

the iso-contours of strain gradient theory converge to the classical ones. 

Next, we examine case (B) corresponding to a concentrated tangential force S  acting on the 

surface of the traction-free half-plane (Fig. 1b). In particular, Fig. 6 depicts the variation of the 

normalized tangential surface displacement ( )S
xu  in strain-gradient elasticity and in the classical theory. 

The vertical normalized displacement ( )S
yu   is not shown here since, according to Betti’s reciprocal 

theorem (see section 4.2), is equal to ( )P
xu  (Fig. 3). Contrary to the classical elasticity case, the tangential 

displacement becomes bounded and continuous at the point of application of the load. 
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Figure 3: Normalized tangential and vertical surface displacements ( )P

xu  and ( )P

yu  for the case of the normal 

concentrated force P . The effects of the Poisson’s ratio   and of the gradient parameters 0d , 1d , 2d  are 

presented. 
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Figure 4: Normalized surface strain components  ( ) ( ) ( ), ,P P P

xx yy xy    for the case of the normal concentrated load 

P . The effects of the Poisson’s ratio   and of the gradient parameter 1d  are presented. 
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Figure 5: Iso-contours of normalized strain components (a) ( )P

yy  and (b) ( )P

xy , for the case of the normal 

concentrated load P . Results are shown for the cases of classical and simplified strain gradient elasticity (

0 1 2 1d d d   ). 

 

 

 
 

Figure 6: Normalized tangential surface displacement ( )S

xu  for the case of the tangential concentrated force S . 

The effects of the Poisson’s ratio   and of the gradient parameters 0d , 1d , 2d  are presented. 
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Furthermore, the results for the displacement field in the cases (C)-(F), corresponding to a half-

plane loaded by concentrated dipole forces with moments and without moments are shown in Fig. 7-

14, at the surface of the half-plane as well as inside the half-plane in terms of contour plots. The effects 

of the Poisson’s ratio   and of the gradient parameters 0d , 1d , 2d are highlighted. As previously, the 

values of the gradient parameters kd  span the range of positive definiteness. It is observed that for all 

cases the displacement field is bounded at the point of application of the concentrated dipole force.  

In particular, for case (C) (Fig. 1c), corresponding to a dipole force M  with moment in the x-

direction, Fig. 7 shows that as 0d  decreases approaching the lower bound of (PD), keeping all the other 

parameters fixed, the normal displacement changes sign in the region of the application of the load. A 

similar observation holds for 2d  but the effect is then less significant. The full field solution for the 

displacement field is shown in terms of contours in Fig. 8 for the case of the simplified gradient 

elasticity. 

The results for case (D) (Fig. 1d), corresponding to a dipole force T  in the y-direction, are 

shown in Figs. 9 and 10. This type of loading does not produce a resultant force or moment. For this 

reason, the solution decays much faster than the one in case (C). This is clearly illustrated in Fig. 10 

where the two components of the displacement field are shown in terms of contours for the case of the 

simplified gradient elasticity. 

The results for case (E) regarding a dipole force Q  with moment in the y-direction (Fig. 1e) are 

shown in Figs. 11 and 12. In this case, the classical elasticity solution suggests null tangential surface 

displacement xu , a result which is in marked contrast with the gradient solution. Indeed, as it can be 

seen from Fig. 11, the variation of the 0d  and 1d  parameters alter significantly the behavior of the 

tangential surface displacement not only quantitatively but also qualitatively. Moreover, contrary to the 

classical elasticity result, yu  is bounded but is moderately affected by the variation of the gradient 

parameters kd .  

Finally, the results for case (F) regarding the application of concentrated dipole force without 

moment in the x-direction (Fig. 1f) are shown in Figs. 13 and 14. Only the tangential displacement is 

shown here since, according to Betti’s reciprocal theorem (see section 4.2), the normal displacement 

( )N
yu  in this case is equal to ( )Q

xu  (Fig. 11). Contrary to the classical elasticity case, the tangential 

displacement becomes bounded and continuous at the point of application of the load. 
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Figure 7: Normalized tangential and normal surface displacements ( )M

xu  and ( )M

yu  for the case of a dipole force 

with moment M in the x-direction. The effects of the Poisson’s ratio   and of the gradient parameters 0d , 1d , 

2d  are presented. 
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Figure 8: Iso-contours of normalized displacement components (a) ( )M
xu  and (b) ( )M

yu , due to a dipole force 

with moment M in the x-direction ( 0 1 2 1d d d    and 0.3  ). 
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Figure 9: Normalized tangential and normal surface displacements ( )T

xu  and ( )T

yu  for the case of a dipole force 

without moment T . The effects of the Poisson’s ratio   and of the gradient parameters 0d , 1d , 2d  are presented. 
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Figure 10: Iso-contours of normalized displacement components (a) ( )T

xu  and ( )T

yu  (b), for the case of the dipole 

force without moment T  ( 0 1 2 1d d d    and 0.3  ). 
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Figure 11: Normalized tangential and normal surface displacements ( )Q

xu  and ( )Q

yu  for the case of a dipole force 

Q  with moment. The effects of the Poisson’s ratio   and of the gradient parameters 0d , 1d , 2d  are presented. 
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Figure 12: Iso-contours of normalized displacement components (a) ( )Q

xu  and ( )Q

yu  (b), for the case of a dipole 

force Q  with moment ( 0 1 2 1d d d    and 0.3  ). 

 
 

 
 

Figure 13: Normalized tangential and normal surface displacements ( )N

xu  and ( )N

yu  for the case of a dipole force 

N  without moment. The effects of the Poisson’s ratio   and of the gradient parameters 0d , 1d , 2d  are 

presented. 
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Figure 14: Iso-contours of normalized displacement components: (a) ( )N

xu  and ( )N

yu  (b) for the case of a dipole 

force N  without moment ( 0 1 2 1d d d    and 0.3  ). 

 
 

7.  Conclusions 

In the present work, the Green’s functions for various concentrated load half-plane problems were 

derived in the context of the complete Toupin-Mindlin theory of isotropic strain-gradient elasticity. An 

isotropic material in this framework is characterized by the two Lamé constants and additionally five 

strain-gradient parameters. Our main concern here was to determine possible deviations from the 

predictions of classical theory of elasticity but also from the simplified strain-gradient theory 

(involving only one gradient parameter) that is extensively used nowadays for the solution of boundary 

value problems. 

The solution method is based on integral transforms and is exact. Of special importance is the 

behavior of the new solutions near to the point of application of the loads where pathological 

singularities and discontinuities exist in the classical solutions. In marked contrast with the predictions 

of classical elasticity, our results show that, in all cases, the displacement components are bounded and 

continuous at the points of application of the concentrated loads. This may have important implications 

for more general contact problems and the Boundary Element Method. For the Flamant problem, it 

was additionally shown that the strain field is also bounded which implies a finite energy contained 

within any finite portion of the body. Such a behavior seems to be more natural than the singular 

behavior present in the classical solutions. The use of the complete Toupin-Mindlin theory revealed 

interesting solution behaviors that cannot be captured by the simplified strain-gradient elasticity theory. 

Finally, we notice that an analytical solution such as the present one has an advantage over numerical 

solutions, especially in new areas of research where benchmark solutions do not exist. 
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