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Abstract

We study the asymptotic behaviour of the resolvents (Aε + I )−1 of elliptic
second-order differential operatorsAε in R

d with periodic rapidly oscillating coef-
ficients, as the period ε goes to zero. The class of operators covered by our analysis
includes both the “classical” case of uniformly elliptic families (where the elliptic-
ity constant does not depend on ε) and the “double-porosity” case of coefficients
that take contrasting values of order one and of order ε2 in different parts of the
period cell. We provide a construction for the leading order term of the “operator
asymptotics” of (Aε + I )−1 in the sense of operator-norm convergence and prove
order O(ε) remainder estimates.

1. Introduction

The subject of the present article is the investigation of analytical properties
of partial differential equations (PDE) of a special kind that emerge in the mathe-
matical theory of homogenisation for periodic composites. The study of composite
media has been attracting interest since the middle of the last century (see for ex-
ample §9 of the monograph [11], where some heuristic relationships for the overall
properties of mixtures are discussed), although the question of “averaging” the mi-
crostructure in order to get intuitively expected macroscopic quantities goes back a
few more decades still. In the early 1970’s a number of works appeared concerning
the analysis of PDE with periodic rapidly oscillating coefficients, which could be
thought of as the simplest, yet already mathematically challenging, object repre-
senting the idea of a composite structure. For a classical overview of the related
developments we refer the reader to the books [2,8].

In the following years a large amount of literature followed, extending ho-
mogenisation theory in various directions. One of the central themes of this activity
has been in understanding the relative strength of various notions of convergence in
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terms of characterising the homogenised medium. Unlike in the “classical” case of
uniformly elliptic PDE, whose solutions are compact in the usual Sobolev spaces
Wl,p, non-uniformly elliptic problems offer a variety of descriptions for the ho-
mogenised medium that depend on the notion of convergence used. From the com-
putational point of view, one is presentedwith the question ofwhat approaches yield
controlled error estimates for the difference between the original and homogenised
solutions.

A number of results have been obtained recently concerning the difference, in
the operator norm, between the resolvent of the differential operator representing
the original heterogeneous medium

−div
(
A
( x

ε

)
∇u

)
, u ∈ Dε ⊂ L2(�), ε > 0, (1.1)

and the resolvent of the operator representing the “homogenisation limit”

−div
(
Ahom∇u

)
, u ∈ Dhom ⊂ L2(�). (1.2)

Here � is an open connected subset of R
d , the matrix function A is [0, 1)d -

periodic, bounded and uniformly positive definite, the constant matrix Ahom rep-
resents the homogenised medium, and Dε, Dhom denote the domains of the cor-
responding operators. While a basic order O(

√
ε) estimate for this setup has been

known for a long time, see for example [8], one should in principle expect the bet-
ter rate of convergence of order O(ε) suggested by the formal asymptotic analysis
(assuming that the domain � is sufficiently regular). The work [3] contains the
related result for problems in the whole space (� = R

d ), via a combination of
spectral theoretic machinery based on the Bloch fibre decomposition of periodic
PDE and asymptotic analysis. Earlier works [4,13] used similar ideas to prove re-
solvent convergence, but they did not go as far as getting the order O(ε) operator
norm estimates. The more recent papers [10,16] use different techniques to show
an improved rate of convergence of order O(ε| log ε|σ ), σ > 0, for problems in
bounded domains: [16] for scalar equations and [10] for systems. Finally, the pa-
pers [5,12] prove the “expected” order O(ε) convergence for such problems: [5]
by using the method of periodic unfolding (and only for scalar problems), and [12]
by combining the earlier results of [3] with some elements of the approach of [16]
(and including the case of a system).

The focus of the present paper is on obtaining operator-norm resolvent-type
estimates for a class of non-uniformly elliptic problems of the “double porosity”
type, where thematrix A = Aε takes values of order one and of order ε2 inmutually
complementary parts of the “unit cell” [0, 1)d . The presence of multiscale effects
for such problems was first highlighted in the paper [1]. An analysis of the relation
between these effects and the resolvent behaviour of double-porosity problems was
carried out in [14].

The earlier results [3] concerning resolvent estimates for (1.1)–(1.2) are based
on the analysis of spectral projections of the associatedoperators in a neighbourhood
of zero. This approach does not suffice in the double porosity case as all spectral
projections provide a leading-order contribution to the behaviour of the resolvent as
ε → 0. Bearing this in mind, we analyse the asymptotic behaviour of the operator
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fibres provided by the Bloch decomposition. As was observed by [6], the pointwise
limit of the fibres is insufficient for norm-resolvent estimates. We show that in fact
the convergence of the individual fibre resolvents is non-uniformwith respect to the
quasimomentum κ ∈ [0, 2π)d . This effect is due to the presence of a “boundary
layer” in the neighbourhood of the origin κ = 0, where the asymptotics for each
fixed κ fails to be valid. To obtain uniform estimates in this neighbourhood we
study the asymptotics for the “rescaled fibres” parametrised by θ = κ/ε. The
corresponding inner expansion is coupled to the pointwise outer expansion in a
matching region where neither expansion is uniform.

We briefly outline the structure of the paper. In Section 2 we introduce the
sequence of problems we analyse. In Section 3 we recall the notions of the direct
fibre decomposition and of the associated Gelfand transform. Section 4 contains
the formulation of our main result using these notions. In Section 5 we describe
the resolvent asymptotics in the “inner” region for relevant values of the quasi-
momentum θ ∈ ε−1[0, 2π)d . In Section 6 we introduce spaces V (κ) ⊂ H1

# (Q),

κ ∈ [0, 2π)d , which play a key role in our construction. We also prove some lem-
mas used in the proof of the main result, namely a special Poincaré-type inequality
for the projection on the space orthogonal to V (κ)with respect to the inner product
of H1

# (Q), as well as several elliptic estimates that are uniform in θ. Section 7
is devoted to the proof of our main result (Theorem 4.1), which consists of two
pieces of analysis, in the inner region |θ | ≤ 1 and in its complement |θ | > 1. In
Section 8 we discuss the “outer” region |θ | ≥ ε−1/2 and show that the inner and
outer approximations jointly are only sufficient to obtain a norm-resolvent estimate
of order O(εα), α ∈ (0, 1). In Section 9 we calculate the limit of the spectra of
the operators −div

(
Aε(·/ε)∇)

and explain its relation to an earlier study of [14].
Finally, in Section 10 we show that our main theorem contains as a particular case
a result of [3], followed by a discussion of some key points of the work [14] and
the relation of its result to our convergence statement.

2. Problem Setup

In what follows we study the problem

−div
(
Aε

( x
ε

)
∇u

)
+ u = f, f ∈ L2(Rd). (2.1)

In the above equation

Aε = A1 + ε2A0,

where A0, A1 are Q-periodic symmetric (d × d)-matrix functions with entries in
L∞(Q). We assume that A0 ≥ ν I , ν > 0 and that A1 ≥ ν I on a Lipschitz open
set Q1 ⊂ Q := [0, 1)d (the “stiff” component of the composite) with A1 = 0 on
the interior of Q \ Q1 (the “soft” component), which we denote by Q0. We also
assume that Q0 ⊂ (0, 1)d ,which implies, in particular, that the set ∪n∈Zd

(
Q1 +n

)
is connected in R

d .
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We next recall the construction of the operator Aε associated with (2.1). The
closed sesquilinear form

aε(u, v) =
∫

Rd
Aε

( x
ε

)
∇u(x) · ∇v(x)dx, u, v ∈ H1(Rd),

is symmetric and non-negative in L2(Rd), hence it generates a self-adjoint operator
Aε whose domain D(Aε) is dense in L2(Rd) and whose action is described by the
identity (Aεu, v)L2(Rd ) = aε(u, v) for u ∈ D(Aε), v ∈ H1(Rd). The solution
u = uε to (2.1) is understood as the result of applying the resolvent of Aε to f,
that is uε = (Aε + I )−1 f. The last formula is well defined for any f ∈ L2(Rd) :
indeed, the operator Aε + I is clearly bounded below by I, hence it is injective,
and the only element g ∈ L2(Rd) orthogonal to the image of Aε + I is g = 0 by
virtue of the fact that the form aε(u, v) + (u, v)L2(Rd ), u, v ∈ H1(Rd), is positive.
The same fact implies that the resolvent (Aε + I )−1 is a bounded operator.

Throughout the text we denote by H1
# (Q) the space of H1

loc(R
d) functions that

are Q-periodic and by H−1
# (Q) its dual. For a normed space X and its dual X∗, we

write 〈 f, v〉 for the action of f ∈ X∗ on v ∈ X . We use the letter C for any positive
constant whose exact value may vary from line to line.

3. Bloch Formulation and Gelfand Transform

Using a procedure similar to the above definition of (Aε + I )−1, for each
θ ∈ ε−1Q′, where Q′ := [0, 2π)d , we define uε

θ ∈ H1
# (Q) as the solution to

− ε−2 (∇ + iεθ) · Aε (∇ + iεθ) uε
θ + uε

θ = F, F ∈ L2(Q). (3.1)

In other words, for all θ ∈ ε−1Q′ one has uε
θ = (Bε,θ + I )−1F,where the operators

Bε,θ are generated by the closed sesquilinear forms

bε,θ (u, v) =
∫

Q

(
ε−2A1 + A0

)(∇ + iεθ
)
u · (∇ + iεθ

)
v, u, v ∈ H1

# (Q).

Lemma 3.1. For each ε > 0 there is a unitary map Uε : L2(Rd)→L2(ε−1Q′×Q)

such that

Uε(Aε + I )−1U−1
ε =

∫ ⊕

ε−1Q′
(Bε,θ + I )−1dθ,

that is for all f ∈ L2(Rd) the formula (Aε + I )−1 f = U−1
ε g holds, where for

each θ ∈ ε−1Q′ one has g(θ, ·) = (Bε,θ + I )−1(Uε f )(θ, ·).
Proof. For a given ε > 0 set

(Uε f )(θ, y) :=
(

ε2

2π

)d/2 ∑

n∈Zd

f
(
ε(y + n)

)
e−iεθ ·(y+n), θ ∈ ε−1Q′, y ∈ Q.
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Note that for each ε the operator Uε is the composition TεGε of a scaled version of
the usual Gelfand transform Gε : L2(Rd) → L2(ε−1Q′ × εQ), given by

(Gε f )(θ, z) :=
(

ε

2π

)d/2 ∑

n∈Zd

f (z + εn)e−iθ ·(z+εn), θ ∈ ε−1Q′, z ∈ εQ,

and the scaling transform Tε : L2(ε−1Q′ × εQ) → L2(ε−1Q′ × Q) given by

(Tεh)(θ, y) := εd/2h(θ, εy).

The inverse U−1
ε is the composition G−1

ε T −1
ε of the inverse of Tε given by

(T −1
ε g)(θ, x) := ε−d/2g(θ, x/ε), θ ∈ ε−1Q′, x ∈ R

d ,

and the inverse of Gε given by

(G−1
ε h)(x) =

(
ε

2π

)d/2 ∑ ∫

ε−1Q′
h(θ, x)eiθ ·xdθ, x ∈ R

d .

The map Uε is unitary since the corresponding property clearly holds for Tε and is
well known for Gε, see for example [2]. ��

4. Homogenised Operator in θ -Representation and the Main Convergence
Result

First, we introduce a θ -parametrised operator family that plays a central role in
our analysis of the operators Aε as ε → 0.

We denote H0 := C × H1
0 (Q0), and for each ε > 0 and θ ∈ ε−1Q′ consider

the sesquilinear form

bhomε,θ

(
(c, u), (d, v)

) := Ahomθ · θcd

+
∫

Q
A0(∇ + iεθ)u · (∇ + iεθ)v, (c, u), (d, v) ∈ H0,

(4.1)

where Ahom is the usual homogenised matrix

Ahomξ · ξ = min
u∈H1

# (Q)

∫

Q
A1(ξ + ∇u) · (ξ + ∇u), ξ ∈ R

d . (4.2)

Note that the matrix Ahom is positive definite. Indeed, using the ellipticity as-
sumption on A1 one has, for ξ ∈ R

d ,

Ahomξ · ξ ≥ ν min
u∈H1

# (Q)

∫

Q1

|ξ + ∇u|2 = ν|ξ |2M(ξ/|ξ |),

where the function

M(η) := min
u∈H1

# (Q)

∫

Q1

|η + ∇u|2, |η| = 1

has a positive minimum Mmin, hence Ahom ≥ νMmin.
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In what follows we also denote

L := {c + ũ : c ∈ C, ũ ∈ L2(Q), ũ|Q1 = 0} ⊂ L2(Q),

and use the invertible “identification” map I : C × L2(Q0) → L that takes each
pair (c, u) to the function c + ũ ∈ L with ũ = u on Q0 and ũ = 0 on Q1.

We next define operators Bhom
ε,θ in the Hilbert space C × L2(Q0) equipped with

the inner product
(
(c, u), (d, v)

)
0 = (

I(c, u), I(d, v)
)
L2(Q)

. These operators are

associated, for each value of θ ∈ ε−1Q′, with the forms bhomε,θ by means of the
identity

(
Bhom

ε,θ (c, u), (d, v)
)
0 = bhomε,θ

(
(c, u), (d, v)

)
, (d, v) ∈ H0,

where the pairs (c, u) are taken from themaximal possible domain D
(
Bhom

ε,θ

)
,which

can be shown to be dense in H0 and hence in C × L2(Q0).

The operators Bhom
0,θ can be viewed, roughly speaking, as the θ -components

of the Fourier transform of the two-scale homogenised operator, see Section 10
below, with respect to the “macroscopic” variable. However, as we also discuss in
the same section, in order to obtain operator-norm resolvent estimates it is important
to dealwith a suitable “truncation” of this Fourier transform that restricts the Fourier
variable θ to the set ε−1Q′. From this perspective the analysis below can be viewed
as a rigorous procedure for such a truncation. Note that in view of the non-uniform
behaviour of these truncations as ε → 0, as we discuss in Sections 1 and 8, the
expression εθ in (4.1) can not be set to zero in the region |θ | ≥ 1, hence the
dependence of the operators Bhom

ε,θ on ε.

We also denote by P the orthogonal projection of the Hilbert space
L2(ε−1Q′ × Q) onto its closed subspace

{
c + g : c ∈ L2(ε−1Q′), g ∈ L2(ε−1Q′ × Q),

g(θ, y) = 0 for almost all (θ, y) ∈ ε−1Q′ × Q1
}
,

and by Pf its analogue on each “fibre”, the orthogonal projection of L2(Q) onto L.

The main result of the present paper is as follows.

Theorem 4.1. The resolvents of the operator family Aε are asymptotically close
as ε → 0 to the family

Rε := U−1
ε

∫ ⊕

ε−1Q′
I
(
Bhom

ε,θ + I
)−1I−1 dθ PUε,

where the corresponding approximation error is of order O(ε). More precisely,
there exists a constant C > 0, independent of ε, such that

∥∥(Aε + I )−1 − Rε
∥∥
L2(Rd )→L2(Rd )

≤ Cε. (4.3)

Note that the operator Rε can also be written as

Rε = U−1
ε

∫ ⊕

ε−1Q′
I
(
Bhom

ε,θ + I
)−1I−1Pf dθ Uε,

which follows from the definitions of the projection operators P and Pf .
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5. The Inner Expansion and Principal Term for Bhom
ε,θ in the Inner Region

|θ | ≤ 1

In this section we provide an explicit representation for the behaviour in ε of
the operators Bhom

ε,θ in the region |θ | ≤ 1. We refer to this expansion as the inner
expansion and to its region of validity as the inner region.

Let us consider an asymptotic expansion for solutions to (3.1) of the form

uε
θ =

∞∑
n=0

εnu(n)
θ , u(n)

θ ∈ H1
# (Q), n = 0, 1, 2, . . . (5.1)

Substituting (5.1) into (3.1) and comparing the coefficients in front of ε−2 on both
sides of the resulting equation we find

∇ · A1∇u(0)
θ = 0, (5.2)

or, equivalently,

u(0)
θ ∈ V :=

{
u ∈ H1

# (Q)
∣∣ A1∇u = 0

}
, (5.3)

which is a space naturally isometric to H0 via the mapping I defined above:

H0 � (c, v) �→ u = c + ṽ ∈ V,

where, as before, ṽ = v on Q0 and ṽ = 0 on Q1.This implies that u(0)
θ = c(0)

θ +v
(0)
θ ,

where the pair
(
c(0)
θ , v

(0)
θ

)
belongs toH0.

Further, comparing the coefficients in front of ε−1 and using (5.3) yields

− ∇ · A1∇u(1)
θ = i∇ · A1θc

(0)
θ . (5.4)

Introducing “unit-cell solutions” Nk, k = 1, . . . , d, that satisfy

−
d∑

i, j=1

∂i
(
(A1)i j∂ j Nk

) =
d∑
j=1

∂ j (A1)k j , (5.5)

we note that, up to an arbitrary additive constant, one has

u(1)
θ = i

d∑
j=1

N jθ j c
(0)
θ . (5.6)

The concrete choice of the constant added to the right-hand side of (5.6) plays an
important role in the justification of the asymptotic expansion, which we discuss
in Section 6.2 (see proof of Lemma 6.3).

Finally, comparing the coefficients in front of ε0 yields an equation for u(2)
θ as

follows

− ∇ · A1∇u(2)
θ = Fθ , (5.7)



1068 K. D. Cherednichenko & S. Cooper

where

Fθ := F + i (∇ · A1θ + θ · A1∇) u(1)
θ + ∇ · A0∇u(0)

θ − θ · A1θc
(0)
θ − u(0)

θ .

(5.8)

Solvability of (5.7) requires that
〈
Fθ , v

〉 = 0 for all v ∈ V . The formula (5.6) and

the solvability condition for (5.7) imply that u(0)
θ = c(0)

θ + v
(0)
θ , where the pair(

c(0)
θ , v

(0)
θ

) ∈ H0 satisfies the identity

Ahomθ · θc(0)
θ d +

∫

Q
A0∇v

(0)
θ · ∇ϕ +

∫

Q

(
c(0)
θ + v

(0)
θ

)
(d + ϕ)

=
∫

Q
PfF(d + ϕ) ∀(d, ϕ) ∈ H0. (5.9)

Following the method outlined in Section 4 for the construction of Bhom
ε,θ , we intro-

duce the operator Bhom
0,θ associated with the problem (5.9) such that (c(0)

θ , v
(0)
θ ) =(

Bhom
0,θ + I

)−1I−1PfF . The next result shows that Bhom
0,θ is ε-close in norm to Bhom

ε,θ

in the inner region of θ.

Lemma 5.1. There exists C > 0 such that the estimate
∥∥∥I(

Bhom
0,θ + I

)−1I−1Pf − I
(
Bhom

ε,θ + I
)−1I−1Pf

∥∥∥
L2(Q)→L2(Q)

≤ Cε,

holds for all θ ∈ ε−1Q′ satisfying the inequality |θ | ≤ 1.

Proof. For each θ as in the lemma, consider the pairs (c, v) = (Bhom
0,θ +I )−1I−1PfF

and (cε, vε) = (Bhom
ε,θ + I )−1I−1PfF, that is

Ahomθ · θcd +
∫

Q
A0∇v · ∇ϕ +

∫

Q
(c + v)(d + ϕ)

=
∫

Q
PfF(d + ϕ) ∀(d, ϕ) ∈ H0, (5.10)

and

Ahomθ · θcεd +
∫

Q
A0(∇ + iεθ)vε · (∇ + iεθ)ϕ +

∫

Q

(
cε + vε

)
(d + ϕ)

=
∫

Q
PfF(d + ϕ) ∀(d, ϕ) ∈ H0. (5.11)

By setting (d, ϕ) = (cε, vε) in (5.11) and noting that vε ∈ H1
0 (Q0) we arrive at

the a priori bound

‖∇vε‖L2(Q0)
≤ C‖F‖L2(Q) (5.12)

for some constant C .
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To prove the result we show that for uε := I(cε, vε) and u := I(c, v) there
exists a constant C > 0 independent of ε, θ such that

‖uε − u‖H1(Q) ≤ Cε|θ |‖F‖L2(Q). (5.13)

Subtracting (5.10) from (5.11) implies

Ahomθ · θ(cε − c)d +
∫

Q
A0∇(vε − v) · ∇ϕ +

∫

Q

(
cε + vε − c − v

)
(d + ϕ)

= −
∫

Q
A0∇vε · iεθϕ −

∫

Q
A0iεθvε · (∇ + iεθ)ϕ ∀(d, ϕ) ∈ H0. (5.14)

Setting (d, ϕ) = (cε − c, 0) in (5.14) gives

(
Ahomθ · θ + 1

)
(cε − c)(cε − c) = −(cε − c)

∫

Q
(vε − v),

hence

|cε − c| ≤ C
∥∥∇(vε − v)

∥∥
L2(Q0)

,

since vε, v ∈ H1
0 (Q0).

Setting (d, ϕ) = (cε − c, vε − v) in (5.14) gives

∥∥∇(vε − v)
∥∥2
L2(Q0)

≤ C
∫

Q
A0∇(vε − v) · ∇(vε − v)

≤ C

[
−

∫

Q
A0∇vε · iεθ(vε − v)

−
∫

Q
A0iεθvε · (∇ + iεθ)(vε − v)

]

≤ Cε|θ |‖∇vε‖L2(Q0)

∥∥∇(vε − v)
∥∥
L2(Q)

.

Taking into account (5.12) this implies (5.13), since

‖uε − u‖L2(Q) ≤ |cε − c| + ‖vε − v‖L2(Q0)
≤ C

∥∥∇(vε − v)
∥∥
L2(Q0)

. ��

6. Auxiliary Material

6.1. Cell Problems

One of the key elements in the proof of our main result is the analysis of the
properties of the following family of auxiliary “cell problems”:

− ∇ · A1∇w = G, G ∈ H−1
κ (Q) := (H1

κ(Q))∗. (6.1)
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Here H1
κ(Q), κ ∈ Q′, is the space of κ-quasiperiodic functions belonging to

H1(Q), that is u ∈ H1
κ(Q) if and only if u(y) = exp(iκ · y)v(y), y ∈ Q, where1

v ∈ H1
# (Q). Note that (5.2), (5.4), (5.7) all have the form (6.1) for κ = 0 with

G = 0, G = i∇ · A1θc
(0)
θ , G = Fθ , respectively.

For a given matrix function A1 we consider the space

V (κ) := {
v ∈ H1

κ(Q)
∣∣ A1∇v = 0

}
. (6.2)

Note that, for A1 satisfying the assumptions prescribed in Section 2, we find

V (κ) =
{
V for κ = 0,
H1
0 (Q0) for κ �= 0.

A criterion for the existence of solutions to (6.1) is given below by a variant of
the Lax–Milgram lemma. The related ideas are inspired by the work [10], where
Poncaré-type inequalities similar to (6.2), for the case κ = 0, were shown to be
sufficient for homogenisation (in the strong two-scale resolvent sense) of “partially
degenerate problems”with periodic rapidly oscillating coefficients. For the normre-
solvent asymptotics, however, a κ- dependent version of the inequality is required,
which we prove by following the line of the argument of [10].

Lemma 6.1. For all κ ∈ Q′, denote by V (κ)⊥ the orthogonal complement of
V (κ) in H1

κ(Q). Then, for all values of κ:

(i) There exists a constant C > 0 independent of κ such that

‖PV (κ)⊥w‖H1(Q) ≤ Cd(κ)‖A1∇w‖L2(Q) ∀w ∈ H1
κ(Q), (6.3)

where

d(κ) =
{
1 for κ = 0,
|κ|−1 for κ �= 0,

and PV (κ)⊥ is the orthogonal projection of H1
κ(Q) onto V (κ)⊥.

(ii) There exists a solution w ∈ H1
κ(Q) to (6.1) if and only if 〈G, ϕ〉 = 0 for all

ϕ ∈ V (κ).
(iii) Any solution to (6.1) is unique up to the addition of an element from V (κ) :

if w satisfies (6.1) then w + v satisfies (6.1) for any v ∈ V (κ), and if w1, w2
satisfy (6.1) then w1 − w2 ∈ V (κ). In particular, if w is a solution to (6.1)
then PV (κ)⊥w is the unique part in V (κ)⊥ of any solution to (6.1).

Proof. (i) The inequality (6.3) holds if there exists a constant C > 0 such that for
all u ∈ H1

κ(Q) there exists v ∈ V (κ) such that

‖u − v‖H1(Q) ≤ Cd(κ)

∫

Q1

|∇u|2 dy.

We shall now verify this for two distinct cases.

1 H1
κ(Q) coincides with H1

# (Q) when κ = 0.
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Case 1: κ = 0. For fixed u ∈ H1
# (Q), denote ũ ∈ H1

# (Q) to be an extension of
u such that

‖∇ũ‖L2(Q) ≤ C‖∇u‖L2(Q1)
.

Notice that such an extension exists for connected Q1 (cf. [8, Section 3.1]).
Defining v := u − ũ + |Q1|−1

∫
Q1

ũ, we see that v ∈ V and

‖u − v‖H1(Q) =
∥∥∥∥ũ − 1

|Q1|
∫

Q1

ũ

∥∥∥∥
H1(Q)

≤ C
∫

Q
|∇ũ|2 ≤ C

∫

Q1

|∇u|2,

where the first inequality is a variant of the standard Poincaré inequality.
Case 2: κ �= 0. For fixed u ∈ H1

κ(Q), we show there exists v ∈ V (κ) such that

‖u − v‖2H1(Q)
≤ C

|κ|2 ‖∇u‖2L2(Q1)
.

Denoting the map˜as above, we find that u− ũ =: v ∈ H1
0 (Q0)

(= V (κ)
)
and

‖u − v‖2H1(Q)
= ‖ũ‖2H1(Q)

≤ C

|κ|2 ‖∇ũ‖2L2(Q)
≤ C

|κ|2 ‖∇u‖2L2(Q1)
,

which proves the result. Here we have used the Poincaré-type inequality

‖u‖2L2(Q)
≤ C

|κ|2 ‖∇u‖2L2(Q)
∀u ∈ H1

κ(Q),

which is true since |κ|2 is the first eigenvalue of the Laplace operator with
κ-quasiperiodic boundary conditions.

(ii) Let w be a solution of (6.1) and let ϕ ∈ V (κ). Then, using the symmetry of
A1 and (6.2),

〈G, ϕ〉 =
∫

Q
A1∇w · ∇ϕ =

∫

Q
∇w · A1∇ϕ = 0, (6.4)

which yields 〈G, ϕ〉 = 0 for all ϕ ∈ V (κ). Conversely, suppose 〈G, ϕ〉 = 0
for all ϕ ∈ V (κ), and seek w ∈ H1

κ(Q) that satisfies (6.1). By (6.4), the
identity

∫

Q
A1∇w · ∇ϕ = 〈G, ϕ〉 (6.5)

holds automatically for all ϕ ∈ V (κ), therefore it is sufficient to verify it for
all ϕ ∈ V (κ)⊥. Seeking w in V (κ)⊥ reduces the problem to showing that,
in the Hilbert space H := V (κ)⊥ with the norm inherited from H1(Q), the
problem (6.5) satisfies the conditions of theLax–Milgram lemma (see example
[8, Section 1.1]). As the bilinear form

B[v,w] :=
∫

Q
A1∇v · ∇w

is clearly bounded in H , that is for some C > 0 one has
∣∣B[v,w]∣∣ ≤

C‖v‖H1(Q)‖w‖H1(Q), in order to satisfy the conditions of the Lax–Milgram
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lemma it remains to show that the form B is coercive, that is for some ν > 0
the bound B[v, v] ≥ ν‖v‖2

H1(Q)
holds. To this end, note that the boundedness

of A1 and (6.3) imply

B[v, v] :=
∫

Q
A1∇v · ∇v = ∥∥(A1)

1/2 ∇v
∥∥2
L2(Q)

≥ C ‖A1∇v‖2L2(Q)

≥ ν‖v‖H1(Q).

Now by the Lax–Milgram lemma, there exists a unique solution w ∈ V (κ)⊥
to the problem

B[w, ϕ] = 〈G, ϕ〉 ∀ϕ ∈ V (κ)⊥,

and hence to (6.1).
(iii) If w satisfies (6.1) and v ∈ V (κ), then A1∇v = 0 and hence w + v also

satisfies (6.1). Assuming further that w1 and w2 both satisfy (6.1), notice that
v = w1 −w2 is a solution of (6.1) with G = 0. Finally, setting ϕ = v in (6.5)
yields

0 =
∫

Q
A1∇v · ∇v = ∥∥(A1)

1/2 ∇v
∥∥2
L2(Q)

,

implying that (A1)
1/2 ∇v = 0 and hence A1∇v = 0, that is one has v ∈

V (κ). Assuming now that the solutions w1, w2 are in V (κ)⊥, the difference
v = w1 − w2 belongs to both V (κ) and V (κ)⊥ and is therefore zero. ��

Corollary 6.1. For each k = 1, . . . , d, there exists a unique solution Nk ∈ V⊥ to
the unit-cell problem (5.5). In particular, for all θ ∈ ε−1Q′ and c(0) ∈ C, there
exists a unique solution u(1) ∈ V⊥ to the problem (5.4), for which the estimate

∥∥u(1)
∥∥
H1(Q)

≤ ‖Nk‖H1(Q)|θk |
∣∣c(0)

∣∣ (6.6)

holds.

6.2. Elliptic Estimates

In our proof of Theorem 4.1 we use the following two statements.

Lemma 6.2. For each θ ∈ ε−1Q′, let u(0)
θ = I(c(0)

θ , v
(0)
θ ), where

(
c(0)
θ , v

(0)
θ

)
is the

solution to (5.9) with F ∈ L2(Q), and let u(1)
θ ∈ H1

# (Q) be the solution (5.6) to
the unit-cell problem (5.4). Then the following estimates hold with some C > 0 :

∣∣c(0)
θ

∣∣ ≤ C
(
1 + |θ |2)−1‖F‖L2(Q), (6.7)

∥∥u(0)
θ

∥∥
H1(Q)

≤ C‖F‖L2(Q), (6.8)
∥∥u(1)

θ

∥∥
H1(Q)

≤ C |θ |(1 + |θ |2)−1‖F‖L2(Q). (6.9)
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Proof. Setting (d, ϕ) = (c(0)
θ , v

(0)
θ ) in (5.9), and dropping the scripts “(0)” and “θ”

for convenience, yields

Ahomθ · θ |c|2 +
∫

Q
A0∇u · ∇u +

∫

Q
|u|2 =

∫

Q
PfFu,

and (6.8) follows by the Cauchy–Schwarz inequality.
Setting (d, ϕ) = (c(0)

θ , 0) in (5.9) yields

Ahomθ · θ |c|2 + |c|2 =
(∫

Q
PfF

)
c −

(∫

Q0

v

)
c.

Using the estimate

(∫

Q
PfF

)
c −

(∫

Q0

v

)
c ≤ ‖F‖L2(Q)|c| + |Q0|1/2‖v‖L2(Q)|c|

≤ ‖F‖L2(Q)|c| + |Q0|1/2‖u‖L2(Q)|c| + |Q0|1/2|c|2,

along with the positivity of Ahom and the bound (6.8), we infer (6.7). The estimate
(6.9) is now a direct consequence of (6.7) and (6.6). ��

Lemma 6.3. For each θ ∈ ε−1Q′, |θ | ≥ 1, let u(0)
ε,θ = I

(
c(0)
ε,θ , v

(0)
ε,θ

)
, where the pair(

c(0)
ε,θ , v

(0)
ε,θ

) ∈ H0 satisfies the identity

bhomε,θ

((
c(0)
ε,θ , v

(0)
ε,θ

)
, (d, ϕ)

)
+

∫

Q

(
c(0)
ε,θ + v

(0)
ε,θ

)
(d + ϕ)

=
∫

Q
PfF(d + ϕ) ∀(d, ϕ) ∈ H0, (6.10)

with F ∈ L2(Q). We denote by u(1)
ε,θ a solution to the unit-cell problem

−∇ · A1∇u(1)
ε,θ = i∇ · A1θc

(0)
ε,θ

such that
∫

Q
A1θ · θ u(1)

ε,θ = 0. (6.11)

Then the following estimates hold with some C > 0:

∣∣c(0)
ε,θ

∣∣ ≤ C (1 + |θ |)−2 ‖F‖L2(Q), (6.12)
∥∥u(0)

ε,θ

∥∥
L2(Q)

≤ C‖F‖L2(Q), (6.13)
∥∥(∇ + iεθ)v

(0)
ε,θ

∥∥
L2(Q)

≤ C‖F‖L2(Q), (6.14)
∥∥u(1)

ε,θ

∥∥
H1(Q)

≤ C |θ |(1 + |θ |2)−1‖F‖L2(Q). (6.15)
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Proof. Taking the unique solution wε,θ ∈ V⊥ to the problem

−∇ · A1∇wε,θ = i∇ · A1θc
(0)
ε,θ ,

we find by Corollary 6.1 that

∥∥wε,θ

∥∥
H1(Q)

≤ C |θ |
∣∣∣c(0)

ε,θ

∣∣∣ .

Denoting u(1)
ε,θ = wε,θ −

(∫
Q A1θ · θ

)−1 ∫
Q A1θ ·θwε,θ , it is clear that (6.11) holds.

By the properties of boundedness and ellipticity of A1 we find that

(∫

Q
A1θ · θ

)−1 ∫

Q
A1θ · θwε,θ ≤ C

∥∥wε,θ

∥∥
L2(Q)

.

In particular, the estimate

∥∥u(1)
ε,θ

∥∥
H1(Q)

≤ C |θ |
∣∣∣c(0)

ε,θ

∣∣∣ .

holds.
Inequalities (6.12)–(6.15) are now shown by appropriately modifying the proof

of Lemma 6.2. ��
Lemma 6.4. Let θ ∈ ε−1Q′, and let Fθ be given by (5.8). There exists a function
Rθ ∈ H1

# (Q) satisfying

−∇ · A1∇Rθ = Fθ ,

such that
∥∥Rθ

∥∥
H1(Q)

≤ C‖F‖L2(Q) (6.16)

for some constant C > 0 independent of ε, θ .

Proof. The functions u(0) and u(1) are chosen so that Fθ satisfies the solvability
condition for the equation (5.7), thus the existence of a solution u(2) is guaranteed
by Lemma 6.1. Denoting by Rθ the unique part in V⊥ of any such solution, that is
letting Rθ ∈ V⊥ be such that

∫

Q
A1∇Rθ · ∇ϕ = 〈Fθ , ϕ〉 ∀ϕ ∈ H1

# (Q), (6.17)

we find, by choosing ϕ = Rθ in (6.17) and using the assumptions on A1, that
∥∥A1∇Rθ

∥∥2
L2(Q)

≤ ∥∥A1/2
1

∥∥2
L∞(Q)

∥∥A1/2
1 ∇Rθ

∥∥2
L2(Q)

≤ C
∥∥Fθ

∥∥
H−1
# (Q)

∥∥Rθ

∥∥
H1
# (Q)

,

where A1/2
1 is the square root of the matrix A1. Due to Lemma 6.1(i), it remains to

show that

‖Fθ‖H−1
# (Q)

≤ C‖F‖L2(Q)



Resolvent Estimates for High-Contrast Elliptic Problems 1075

for some constantC . This can be seen by Lemma 6.2 and by noting, for θ ∈ ε−1Q′,
that

∣∣〈Fθ , ϕ〉∣∣

=
∣∣∣∣
∫

Q
Fϕ − iA1u

(1)
θ θ · ∇ϕ + iθ · A1∇u(1)

θ ϕ − A0∇u(0)
θ · ∇ϕ − θ · A1θc

(0)
θ ϕ − u(0)

θ ϕ

∣∣∣∣

≤ C
(
‖F‖L2(Q) + |θ |∥∥u(1)

θ

∥∥
H1(Q)

+ ∥∥u(0)
θ

∥∥
H1(Q)

+ |θ |2∣∣c(0)
θ

∣∣) ‖ϕ‖H1(Q)

for all ϕ ∈ H1
# (Q). ��

Lemma 6.5. For each ε > 0, θ �= 0, consider Hε,θ ∈ H−1
# (Q) such that

〈Hε,θ , ϕ〉 = 0 for all ϕ ∈ H1
0 (Q0). Then there exists a solution Rε,θ ∈ H1

# (Q) to
the problem

−(∇ + iεθ
) · A1

(∇ + iεθ
)
Rε,θ = Hε,θ

that satisfies the estimate

∥∥Rε,θ

∥∥
H1(Q)

≤ C

[
1

|εθ |
∥∥Hε,θ − 〈Hε,θ , 1〉

∥∥
H−1
# (Q)

+ 1

|εθ |2
∣∣〈Hε,θ , 1〉

∣∣
]

(6.18)

for some constant C > 0 independent of ε, θ .

Proof. For κ �= 0, V (κ) = H1
0 (Q0), see (6.2). By Lemma 6.1, the assumption

〈Hε,θ , ϕ〉 = 0 for all ϕ ∈ H1
0 (Q0) implies that there exists a unique weak solution

wε,θ ∈ V⊥(εθ) to the problem

−∇ · A1∇wε,θ (y) = exp(iεθ · y)Hε,θ (y), y ∈ Q,

and

‖wε,θ‖H1(Q) ≤ C

|εθ |
∥∥A1∇wε,θ

∥∥
L2(Q)

. (6.19)

As wε,θ ∈ H1
εθ (Q), the function rε,θ (y) := exp(−iεθ · y)wε,θ (y) is an element of

H1
# (Q) and satisfies the identity

∫

Q
A1

(∇ + iεθ
)
rε,θ · (∇ + iεθ

)
ϕ = 〈Hε,θ , ϕ〉 ∀ϕ ∈ H1

# (Q), (6.20)

and by (6.19) we find that

‖rε,θ‖H1(Q) ≤ C

|εθ |2 ‖Hε,θ‖H−1
# (Q)

. (6.21)

The estimate (6.18) can be viewed as a refined version of (6.21) by writing rε,θ =
sε,θ + tε,θ ,where sε,θ , tε,θ are the solutions to (6.20) for the right-hand sides Hε,θ −
〈Hε,θ , 1〉ψ and 〈Hε,θ , 1〉ψ respectively, for any chosen ψ ∈ L2(Q), ψ |Q0 = 0,



1076 K. D. Cherednichenko & S. Cooper

∫
Q ψ = 1.We then argue that in order to prove the theorem it is sufficient to ensure

that there exists a function Rε,θ solving (6.20) which satisfies the bound

‖Rε,θ‖H1(Q) ≤ C

|εθ | ‖Hε,θ‖H−1
# (Q)

(6.22)

for the class of Hε,θ ∈ H−1
# (Q) such that 〈Hε,θ , 1〉 = 0. Indeed, one has

〈
Hε,θ − 〈Hε,θ , 1〉ψ, ϕ

〉 = 0,
〈〈Hε,θ , 1〉ψ, ϕ

〉 = 0 ∀ϕ ∈ H1
0 (Q0),

and

〈
Hε,θ − 〈Hε,θ , 1〉ψ, 1

〉 = 〈Hε,θ , 1〉 − 〈Hε,θ , 1〉
∫

Q
ψ = 0.

Let wε,θ , rε,θ be as above for a given Hε,θ ∈ H−1
# (Q) such that 〈Hε,θ , 1〉 = 0.

Denoting by Rε,θ an extension of rε,θ such that

Rε,θ = rε,θ in Q1, (6.23)∥∥∇Rε,θ

∥∥
L2(Q)

≤ C
∥∥∇rε,θ

∥∥
L2(Q1)

, (6.24)

it is clear that Rε,θ also satisfies (6.20) with rε,θ replaced by Rε,θ . We next show
that Rε,θ satisfies the inequality (6.22).

Substituting ϕ ≡ 1 in (6.20), and recalling that 〈Hε,θ , 1〉 = 0, we infer that

∫

Q
Rε,θ =

(∫

Q
ε2A1θ · θ

)−1 (
−

∫

Q
ε2A1θ · θ

(
Rε,θ −

∫

Q
Rε,θ

)
+ iε

∫

Q
A1∇Rε,θ · θ

)
,

and hence
∣∣∣∣
∫

Q
Rε,θ

∣∣∣∣ ≤ C

|εθ |2
(

|εθ |2
∥∥∥∥Rε,θ −

∫

Q
Rε,θ

∥∥∥∥
L2(Q)

+ |εθ | ∥∥∇Rε,θ

∥∥
L2(Q1)

)
.

In particular, by (6.24) and the standard Poincaré inequality, it follows that
∣∣∣∣
∫

Q
Rε,θ

∣∣∣∣ ≤ C

|εθ |
∥∥∇rε,θ

∥∥
L2(Q1)

. (6.25)

Therefore, by (6.23)–(6.25) we find that

∥∥Rε,θ

∥∥
H1(Q)

≤ C

(∣∣∣∣
∫

Q
Rε,θ

∣∣∣∣
2

+
∫

Q

∣∣∇Rε,θ

∣∣2
)1/2

≤ C

|εθ |
∥∥∇rε,θ

∥∥
L2(Q1)

.

To prove (6.22) it now remains to show that
∥∥∇rε,θ

∥∥
L2(Q1)

≤ C
∥∥Hε,θ

∥∥
H−1
# (Q)

(6.26)

for some constant C > 0. By virtue of the inequality ‖rε,θ‖L2(Q) ≤ ‖wε,θ‖H1(Q)

and (6.19) we find that
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∥∥∇rε,θ
∥∥
L2(Q1)

≤ ∥∥(∇ + iεθ) rε,θ
∥∥
L2(Q1)

+ |εθ | ‖rε,θ‖L2(Q1)
≤ C

∥∥(∇ + iεθ) rε,θ
∥∥
L2(Q1)

(6.27)

Further, substituting ϕ = Rε,θ in (6.20) and recalling (6.23) yields
∫

Q
A1 (∇ + iεθ) rε,θ · (∇ + iεθ) rε,θ = 〈

Hε,θ , Rε,θ

〉

=
〈
Hε,θ , Rε,θ −

∫

Q
Rε,θ

〉
+

〈
Hε,θ ,

∫

Q
Rε,θ

〉

=
〈
Hε,θ , Rε,θ −

∫

Q
Rε,θ

〉
≤ C‖Hε,θ‖H−1

# (Q)

∥∥∇Rε,θ

∥∥
L2(Q)

≤ C
∥∥Hε,θ

∥∥
H−1
# (Q)

∥∥∇rε,θ
∥∥
L2(Q1)

. (6.28)

The last equality above follows from the assumption that 〈Hε,θ , 1〉 = 0. Finally,
inequalities (6.27) and (6.28) imply (6.26). ��

7. Proof of the Main Result

In terms of the notation introduced in Sections 3 and 4, proving Theorem 4.1
is equivalent to showing that there exists a constant C > 0 independent of θ and ε

such that
∥∥∥(
Bε,θ + 1

)−1 − I
(
Bhom

ε,θ + 1
)−1I−1Pf

∥∥∥
L2(Q)→L2(Q)

≤ Cε.

This fact is a consequence of the following theorem.

Theorem 7.1. For each ε > 0, θ ∈ ε−1Q′, let uε
θ be the solution to (3.1) and let

u(0)
ε,θ := c(0)

ε,θ + v
(0)
ε,θ where the pair

(
c(0)
ε,θ , v

(0)
ε,θ

) ∈ H0 satisfies the identity (6.10).
Then there exists a constant C > 0 independent of θ and ε such that

∥∥uε
θ − u(0)

ε,θ

∥∥
L2(Q)

≤ Cε‖F‖L2(Q).

Proof. To prove the result we consider θ ∈ ε−1Q′ in two regions.
Case 1: |θ | ≤ 1. Let U (1)

ε,θ = u(0)
θ + εu(1)

θ + ε2Rθ , where u
(0)
θ , u(1)

θ and Rθ are
given by (5.9), (5.4) and Lemma 6.4, respectively. Due to the fact that the functions
u(0)

θ and u(0)
ε,θ are ε-close in L2(Q) uniformly in θ for |θ | ≤ 1 (cf. Lemma 5.1), it is

sufficient to prove that

∥∥uε
θ −U (1)

ε,θ

∥∥
L2(Q)

≤ Cε‖F‖L2(Q).

By direct calculation we find that the difference z(1)ε,θ := uε
θ − U (1)

ε,θ is the H1
# (Q)-

solution of the equation

− ε−2 (∇ + iεθ) · Aε (∇ + iεθ) z(1)ε,θ + z(1)ε,θ = F (1)
ε,θ , (7.1)
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where the coefficients for the non-positive powers of ε have cancelled due to the
construction of U (1)

ε,θ . The right-hand side F (1)
ε,θ ∈ H−1

# (Q) of (7.1) takes the form

F (1)
ε,θ :=

4∑
n=1

εnT (n)
θ ,

where

T (1)
θ := i

(∇ · A1θ + θ · A1∇
)
Rθ + (∇ · A0∇ − θ · A1θ − I

)
u(1)

θ

+i
(∇ · A0θ + θ · A0∇

)
u(0)

θ , (7.2)

T (2)
θ := (∇ · A0∇ − θ · A1θ − I

)
Rθ + i

(∇ · A0θ + θ · A0∇
)
u(1)

θ − θ · A0θu
(0)
θ ,

(7.3)

T (3)
θ := i

(∇ · A0θ + θ · A0∇
)
Rθ − θ · A0θu

(1)
θ , (7.4)

T (4)
θ := −θ · A0θRθ (7.5)

are elements of H−1
# (Q).

A straightforward calculation shows that equations (7.2)–(7.5) with the inequal-
ities (6.8), (6.9) and (6.16) imply the bound

‖F (1)
ε,θ ‖H−1

# (Q)
≤ Cε‖F‖L2(Q).

Hence, the required inequality

‖z(1)ε,θ‖L2(Q) ≤ Cε‖F‖L2(Q)

follows.
Case 2: |θ | ≥ 1. Let U (2)

ε,θ = u(0)
ε,θ + εu(1)

ε,θ + ε2Rε,θ , where u
(1)
ε,θ is defined in

Lemma 6.3 and Rε,θ is given by Lemma 6.5 for the right-hand side

Hε,θ := F + i (∇ · A1θ + θ · A1∇) u(1)
ε,θ − εθ · A1θu

(1)
ε,θ

+(∇ + iεθ) · A0(∇ + iεθ)v
(0)
ε,θ − θ · A1θc

(0)
ε,θ − u(0)

ε,θ .

Notice that the following inequalities hold
∥∥Hε,θ − 〈Hε,θ , 1〉

∥∥
H−1
# (Q)

≤ C‖F‖L2(Q),
∣∣〈Hε,θ , 1〉

∣∣ ≤ C |εθ |‖F‖L2(Q),

for some constant C > 0 independent of ε and θ . These follow from Lemma 6.3
and the estimates

∣∣〈Hε,θ , ϕ〉∣∣ =
∣∣∣∣
∫

Q

(
Fϕ − iA1u

(1)
ε,θ θ · ∇ϕ + iθ · A1∇u(1)

ε,θϕ − εθ · A1θu
(1)
ε,θϕ

)

−
∫

Q

(
A0(∇ + iεθ)v

(0)
ε,θ · (∇ + iεθ)ϕ + θ · A1θc

(0)
ε,θϕ + u(0)

ε,θϕ
)∣∣∣∣
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≤ C
(
‖F‖L2(Q) + |θ |∥∥u(1)

ε,θ

∥∥
H1(Q)

+∥∥(∇ + iεθ)v
(0)
ε,θ

∥∥
L2(Q0)

+ |θ |2∣∣c(0)
ε,θ

∣∣ + ‖u(0)
ε,θ‖L2(Q)

)
‖ϕ‖H1(Q)

and

∣∣〈Hε,θ , 1〉
∣∣ =

∣∣∣∣
∫

Q
A0(∇ + iεθ)v

(0)
ε,θ · iεθ

∣∣∣∣ ≤ C |εθ |∥∥(∇ + iεθ)v
(0)
ε,θ

∥∥
L2(Q0)

.

The above inequalities, in combination with (6.18), imply that Rε,θ ∈ H1
# (Q) can

be chosen so that

‖Rε,θ‖H1(Q) ≤ C
1

|εθ | ‖F‖L2(Q). (7.6)

By direct calculation we find that the “error” z(2)ε,θ := uε
θ − U (2)

ε,θ is the H1
# (Q)-

solution of the equation

−ε−2 (∇ + iεθ) · Aε (∇ + iεθ) z(2)ε,θ + z(2)ε,θ = F (2)
ε,θ ,

where the coefficients for the non-positive powers of ε have cancelled due to the
construction of U (2)

ε,θ . In the above equation the right-hand side F (2)
ε,θ ∈ H−1

# (Q) is
given by

F (2)
ε,θ :=

4∑
n=1

εn S(n)
θ ,

where

S(1)
θ := (∇ · A0∇ − I

)
u(1)

ε,θ + i
(∇ · A0θ + θ · A0∇

)
c(0)
ε,θ , (7.7)

S(2)
θ := (∇ · A0∇ − I

)
Rε,θ + i

(∇ · A0θ + θ · A0∇
)
u(1)

ε,θ − θ · A0θc
(0)
ε,θ , (7.8)

S(3)
θ := i

(∇ · A0θ + θ · A0∇
)
Rε,θ − θ · A0θu

(1)
ε,θ , (7.9)

S(4)
θ := −θ · A0θRε,θ (7.10)

are elements of H−1
# (Q). Equations (7.7)–(7.10) together with inequalities (6.12),

(6.15) and (7.6) imply that

‖F (2)
ε,θ ‖H−1

# (Q)
≤ Cε‖F‖L2(Q).

Therefore, the bound

∥∥z(2)ε,θ

∥∥
H1(Q)

≤ Cε‖F‖L2(Q)

holds, and the result follows. ��
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8. The Outer Expansion and Principal Term for Bhom
ε,θ in the Outer Region

|θ | ≥ ε−1/2

For fixed κ �= 0 we shall study the asymptotics of the following problem: find
wε,κ ∈ H1

κ(Q) such that

− ∇ ·
(
ε−2A1 + A0

)
∇wε,κ + wε,κ = F, F ∈ L2(Q). (8.1)

Let us consider an asymptotic expansion for the solution to the above problem
of the form

wε,κ =
∞∑
n=0

ε2nw(n)
κ , w(n)

κ ∈ H1
κ(Q), n = 0, 1, 2, . . . (8.2)

Substituting (8.2) in (8.1) and comparing the coefficients in front of ε−2 on both
sides of the resulting equation yields

∇ · A1∇w(0)
κ = 0,

that isw
(0)
κ ∈ V (κ) or, equivalently,w(0)

κ ∈ H1
0 (Q0), see (6.2). Further, comparing

the coefficients in front of ε0 yields

− ∇ · A1∇w(1)
κ = F + ∇ · A0∇w(0)

κ − w(0)
κ . (8.3)

The existence of a solution to (8.3) is guaranteed by Lemma 6.1 if and only if w
(0)
κ

satisfies the identity
∫

Q0

(
A0∇w(0)

κ · ∇ϕ + w(0)
κ ϕ

) = 〈F, ϕ〉 ∀ϕ ∈ H1
0 (Q0). (8.4)

Existence and uniqueness of w
(0)
κ is implied by the ellipticity of A0 in Q0 and

standard ellipticity estimates give the inequality

‖w(0)
κ ‖H1

0 (Q0)
≤ C‖F‖L2(Q). (8.5)

Furthermore, by Lemma 6.1, (8.5) and (8.3) the unique part in V (κ)⊥ of such a
solution satisfies the inequality

∥∥PV (κ)⊥w(1)
κ

∥∥
H1(Q)

≤ C

|κ|2 ‖F‖L2(Q), (8.6)

for some constant C independent of κ. Comparing the terms with ε2n , for n ≥ 1,
yields

− ∇ · A1∇w(n+1)
κ = ∇ · A0∇w(n)

κ − w(n)
κ . (8.7)

The existence of a solution to (8.7) is guaranteed by requiring that PV (κ)w
(n)
κ

satisfies the identity
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∫

Q0

(
A0∇PV (κ)w

(n)
κ · ∇ϕ + PV (κ)w

(n)
κ ϕ

)

= −
∫

Q0

(
A0∇PV (κ)⊥w(n)

κ · ∇ϕ + PV (κ)⊥w(n)
κ ϕ

) ∀ϕ ∈ H1
0 (Q0). (8.8)

Equation (8.8) implies
∥∥PV (κ)w

(n)
κ

∥∥
H1(Q)

≤ C
∥∥PV (κ)⊥w(n)

κ

∥∥
H1(Q)

(8.9)

for some constant C . Therefore, by Lemma 6.1, (8.9) and (8.7), there exists a
constant C > 0 independent of κ such that

∥∥PV (κ)⊥w(n+1)
κ

∥∥
H1(Q)

≤ C

|κ|2
∥∥PV (κ)⊥w(n)

κ

∥∥
H1(Q)

.

In particular, by recalling (8.6) we find that

‖w(n)
κ ‖H1(Q) ≤ C

|κ|2n ‖F‖L2(Q). (8.10)

Now constructing the function

U (N )
ε,κ =

N∑
n=0

ε2nw(n)
κ ∈ H1

κ(Q),

we have the following result.

Theorem 8.1. Let wε,κ be the solution to (8.1). Then for any positive integer N
there exists a constant CN > 0 independent of κ and ε such that

∥∥wε,κ −U (N )
ε,κ

∥∥
H1(Q)

≤ CN

(
ε

|κ|
)2(N+1)

‖F‖L2(Q). (8.11)

In particular,

∥∥wε.κ − w(0)
κ

∥∥
H1(Q)

≤ C1

(
ε

|κ|
)2

‖F‖L2(Q).

Proof. Substituting U (N+1)
ε,κ in to (8.1) and equating powers of ε yields

−∇ ·
(
ε−2A1 + A0

)
∇(

wε,κ −U (N+1)
ε,κ

) + wε,κ −U (N+1)
ε,κ

= ε2(N+1)(∇ · A0∇w(N+1)
κ − w(N+1)

κ

)
.

Using (8.10) and the standard ellipticity estimates results in an estimate similar
to (8.11) for the differencewε,κ−U (N+1)

ε,κ . Finally, noticing thatU (N )
ε,κ = U (N+1)

ε,κ −
ε2(N+1)w

(N+1)
κ and once again employing (8.10) yields the required estimate

(8.11). ��
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Denote by [g] the multiplication operator for a given function g, and denote by
B0 the operator associatedwith theproblem (8.4) such thatw(0)

κ = (B0 + I )−1 P0F ,
whereP0 is the orthogonal projection of L2(Q) onto H1

0 (Q0).Theorem 8.1 implies
that that B0 is ε-close to Bhom

ε,θ in the region |θ | ≥ ε−1/2, in the following sense.

Corollary 8.1. There is a constant C > 0 such that the estimate
∥∥[e−iεθ ·] (B0 + I )−1 P0 [eiεθ ·] − I(Bhom

ε,θ + I )−1I−1Pf
∥∥
L2(Q)

≤ Cε,

holds for all θ ∈ ε−1Q′ such that |θ | ≥ ε−1/2.

Corollary 8.1 and Theorem 7.1 imply that in the region |κ| ≥ ε1/2 the term
w

(0)
κ is the principal term in the approximation to wε,κ(y) = exp(iκ · y)uε

ε−1κ
(y),

y ∈ Q, in the “slow” variable κ. Furthermore, Lemma 5.1 states that in the region
|θ | ≤ 1 the function u(0)

θ = I(c(0)
θ , v

(0)
θ ) is the principal term in the approximation

to uε
θ in the “fast” variable θ = κ/ε. This leads to the presence of a boundary

layer in the Bloch space in the region 1 ≤ |θ | ≤ ε−1/2, where neither the “outer”
operatorB0 nor the “inner” operatorBhom

0,θ is suitable for order O(ε) estimates. This

leads to an interpretation of Bhom
ε,θ as a non-trivial matching of B0 and Bhom

0,θ in the
boundary layer necessary to achieve order O(ε) estimates. This interpretation is
further supported by the following result, which states that by extending B0 and
Bhom
0,θ into the boundary layer one can only achieve O(ε2/3)-estimates.

Corollary 8.2. For all ε > 0, α ∈ (0, 1), denote Bεα−1(0) := {θ : |θ | < εα−1} and
consider the operators

Sε,α := U−1
ε

(∫ ⊕

θ∈B
εα−1 (0)

I
(
Bhom
0,θ + I

)−1
I−1Pf dθ

+
∫ ⊕

θ∈ε−1Q′\B
εα−1 (0)

[e−iεθ ·] (B0 + I )−1 P0[eiεθ ·] dθ
)
Uε

There exists a constant C = C(α) independent of ε such that
∥∥(
Aε + I

)−1 − Sε,α
∥∥
L2(Rd )→L2(Rd )

≤ C
(
εα + ε2(1−α)

)
.

In particular, minimising the estimates over α, the operators Sε,α are shown to be
ε2/3-close in the operator norm to the resolvents

(
Aε + I

)−1
.

The above result can be extended to get error estimates in terms of higher pow-
ers of ε, by including further correcting terms from the asymptotic expansions for
the functions uε

θ (Section 5) in the new “inner” region |θ | ≤ εβ−1 and for the
functions wε,κ (the present section above) in the new “outer” region |κ| ≥ ε1−γ

(equivalently, |θ | ≥ ε−γ ) for β, γ > 0 such that β + γ ≤ 1. A direct con-
struction of this kind yields operator-norm estimates for (Aε + I )−1 of order
O

(
εβ(N+1) + ε2γ (N+1)

)
, which is optimised to O

(
ε2(N+1)/3

)
by setting β = 2/3,

γ = 1/3. Further, using the fact that the two expansions coincide in the “over-
lapping” region ε−γ ≤ |θ | ≤ εβ−1, when β + γ < 1, one can then construct
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a θ -uniform asymptotic expansion, whose N -th truncation [that is replacing “∞”
with “N” in (5.1) and (8.2)] yields an error of order O

(
εσ(N+1)

)
with 0 < σ ≤ 1.

This asymptotic procedure is well known in the analysis of parameter-dependent
functions of the spatial variables (x, y), see for example [7], especially in the con-
text spatial representation of solutions to PDE. Our approach exploits similar ideas
in the “dual” formulation, with respect to the quasimomenta (θ, κ), which in our
view has a potential to yield powerful results for operator-norm resolvent estimates
for a general class of parameter-dependent families of operators. In particular, the
proof of our main result (Theorem 4.1) can be viewed as a matching procedure that
achieves σ = 1 for the case N = 0.

9. Spectra of the Operators Bhom
ε,θ

Using the definition of the form bhomε,θ , see Section 4, we infer that a pair (c, u) ∈
H0 is an eigenvector of the operator Bhom

ε,θ corresponding to an eigenvalue λ if and
only if

Ahomθ · θcd +
∫

Q
A0(∇ + iεθ)u · (∇ + iεθ)v

= λ

∫

Q
(c + u)(d + v) ∀(d, v) ∈ H0. (9.1)

Setting v = 0 in (9.1) with an arbitrary d ∈ C yields

Ahomθ · θc = λ

(
c +

∫

Q
u

)
. (9.2)

Further, setting d = 0 in (9.1) with an arbitrary v ∈ H1
0 (Q0) yields

∫

Q
A0(∇ + iεθ)u · (∇ + iεθ)v = λ

∫

Q
(c + u)v,

from which we deduce that either λ ∈ S0 := {λ j }∞j=0, the set of eigenvalues of the

operator A0 = −∇ · A0∇ in L2(Q), defined by the sesquilinear form

a0(u, v) :=
∫

Q
A0∇u · ∇v, u, v ∈ H1

0 (Q0),

on the maximal possible domain D(A0), or λ /∈ S0 and

u = λc
∞∑
j=0

(λ j − λ)−1
(∫

Q0

ϕ∗
j

)
ϕ∗
j , (9.3)

where ϕ∗
j (y) := ϕ j (y) exp(iεθ · y), y ∈ Q, and ϕ j is the eigenfunction of A0

corresponding to the eigenvalue λ j , j = 0, 1, . . . (We assume that the eigenvalues
are ordered by magnitude, λ0 < λ1 ≤ λ2 ≤ . . . , where multiple eigenvalues are
appear the number of times equal to their multiplicity and that ϕ j , j = 0, 1, 2, . . . ,



1084 K. D. Cherednichenko & S. Cooper

are real-valued and linearly independent.) In the former case one has c = 0 and
(9.2) implies

∫
Q u = 0,while in the latter case c ∈ C is arbitrary and by substituting

(9.3) into (9.2) one gets

Ahomθ · θ = λ

(
1 + λ

∞∑
j=0

(λ j − λ)−1
∣∣∣
∫

Q0

ϕ∗
j

∣∣∣
2
)

. (9.4)

The expression

β(λ) := λ

(
1 + λ

∞∑
j=0

(λ j − λ)−1
(∫

Q0

ϕ j

)2)
,

obtained by setting εθ = 0 in the right-hand side of (9.4), appeared in thework [14],
where the behaviour of the spectra of the operatorsAε was analysed. In particular,
our main theorem above (Theorem 4.1) implies the result of [15] on convergence
of the spectra of Aε, as follows.

Theorem 9.1. The spectra of the operatorsAε converge in the Hausdorff sense as
ε → 0 to the union of the set S0 and the set

lim
ε→0

⋃

θ∈ε−1Q′

{
λ : β(λ) = Ahomθ · θ

} = {
λ : β(λ) ≥ 0

}
.

10. Two Particular Examples of the Family Aε

Here we discuss two model cases included in our analysis that have emerged
in the literature.

10.1. Classical Homogenisation: Q0 = ∅
This is the case when V consists of constant functions on Q. The inequality

(6.3) trivially holds forκ �= 0, and forκ = 0 it takes the form of the usual Poincaré
inequality for functions with zero mean over Q. Clearly, the spaceH0 is isometric
to C and the operator family Rε consists of just one element, the resolvent of the
usual homogenised operator

Ahomv := −∇ · Ahom∇,

where thematrix Ahom is given by (4.2). Indeed, in this example the operator family
Bhom

ε,θ does not depend on ε and for each specific value of ε represents θ -components
of the direct fibre decomposition of the operator Ahom treated as an operator with
ε-periodic coefficients, that is

U−1
ε AhomUε =

∫ ⊕

ε−1Q′
θ · Ahomθ dθ =

∫ ⊕

ε−1Q′
IBhom

ε,θ I−1 dθ.

Hence in this case Theorem 4.1 recovers the result of Birman and Suslina [3]
regarding the resolvent convergence estimates for classical homogenisation in R

d .
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10.2. The “Double Porosity” Problem: Q0 �= ∅, A0|Q1 = 0

This was considered in thework byZhikov [15], where the spectrum of double-
porosity problems in R

d was analysed, following an earlier work [14] concerning
double-porosity models in bounded domains.

The paper [15] contains a proof of the strong two-scale convergence of the
sequence of solutions u = uε to the problems (2.1) to the solution (v1, v0) ∈
Hdp := H1(Rd) × L2

(
R
d , H1

0 (Q0)
)
, v0 = v0(x, y), of the problem

adp
(
(v1, v0), (ϕ1, ϕ0)

) +
∫

Rd

∫

Q
(v1 + v0)(ϕ1 + ϕ0) =

∫

Rd

∫

Q
f (ϕ1 + ϕ0),

where the form adp, with D(adp) = Hdp, is given by

adp
(
(v1, v0), (ϕ1, ϕ0)

) :=
∫

Rd
Ahom∇v1 · ∇ϕ1 +

∫

Rd

∫

Q
A0∇yv0 · ∇yϕ0.

The author of [15] refers to the operatorAdp generated by adb as the homogenised
operator for the family Aε and proves that the spectra of Aε converge to the spec-
trum of Adp as ε → 0. For continuous right-hand sides f , the strong two-scale
convergence result of [14] implies that

∥∥∥uε − v1(x) − ṽ0

(
x,

x

ε

)∥∥∥
L2(Rd )

< Cε, (10.1)

where ṽ0 is the Q-periodic extension of the function v0 = v0(x, y) after setting it to
zero for y ∈ Q1. In the estimate (10.1) the constant C = C( f ) > 0 is independent
of ε, but it can not be replaced byC‖ f ‖L2(Rd ) with a constantC that is independent
of both ε and f. (In other words, there are sequences f ε that are bounded in L2(Rd)

and are such that C( f ε) → ∞ as ε → 0.)
The estimate (10.1) can also be written in the form

∥∥∥(Aε + I )−1 f − Sε(Adp + I )−1 f
∥∥∥
L2(Rd )

< C( f )ε, (10.2)

where in the expression (Adp + I )−1 f the function f is treated as an element
of L2(Rd × Q), and the operator Sε : L2(Rd × Q) → L2(Rd) is defined by
(Sεu)(x) = u(x, x/ε), x ∈ R

d . The inequality (10.2), however, can not be up-
graded to an operator-norm resolvent type statement, in view of the fact that the
difference of the corresponding spectral projections on a neighbourhood of any
point of the form (λ∞ + I )−1,where λ∞ is such that β(λ) → ∞ as λ → λ∞, does
not go to zero in the operator norm as ε → 0. (Such points λ∞ are the eigenvalues of
the operatorA0 that have at least one eigenfunction with non-zero integral over Q.)
Our estimate (4.3) therefore rectifies this drawback and captures the operator-norm
resolvent asymptotic behaviour of the sequence Aε.
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