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Abstract: We construct the gravity dual of three-dimensional, SU(Nc) super Yang-Mills

theory with Nf flavors of dynamical quarks in the presence of a non-zero quark density Nq.

The supergravity solutions include the backreaction of Nc color D2-branes and Nf flavor

D6-branes with Nq units of electric flux on their worldvolume. For massless quarks, the
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2N4
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YMNc the ’t Hooft coupling, and describe renormalization group flows between

the super Yang-Mills theory in the ultraviolet and a non-relativistic theory in the infrared.

The latter is dual to a hyperscaling-violating, Lifshitz-like geometry with dynamical and

hyperscaling-violating exponents z = 5 and θ = 1, respectively. If ρ� 1 then at intermedi-

ate energies there is also an approximate AdS4 region, dual to a conformal Chern-Simons-

Matter theory, in which the flow exhibits quasi-conformal dynamics. At zero temperature

we compute the chemical potential and the equation of state and extract the speed of sound.

At low temperature we compute the entropy density and extract the number of low-energy

degrees of freedom. For quarks of non-zero mass Mq the physics depends non-trivially on

ρ and MqNc/λNf.
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1 Introduction and discussion of results

Quantum Chromodynamics (QCD) at non-zero quark density is notoriously difficult to

analyze. The only first-principle, non-perturbative tool, namely lattice QCD, is of very

limited applicability due to the so-called sign problem [1]. It is therefore useful to con-

struct toy models of QCD in which interesting questions can be posed and answered. The

gauge/string duality, or holography for short [2–4], provides a framework in which the con-

struction of some such models is possible. The goal is not to do precision physics but to be
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able to perform first-principle calculations that may lead to interesting insights applicable

to QCD (see e.g. [5] for a discussion of the potential and the limitations of this approach).

In the case of QCD at non-zero temperature, the insights obtained through this program

range from static properties to far-from-equilibrium dynamics of strongly coupled plasmas

(see e.g. [6] and references therein).

A simple class of holographic models can be obtained from the supergravity solutions

for a collection of Nc Dp-branes. In this case one finds an equivalence between the d = p+1

dimensional, SU(Nc), supersymmetric gauge theory living on the stack of branes and string

theory on the near-horizon limit of the geometry sourced by the Dp-branes [7]. Since the

matter in these theories is in the adjoint representation of the gauge group, in order to

consider a non-zero quark density new degrees of freedom in the fundamental representation

must be included. On the gravity side this can be done by adding Nf so-called flavor branes

to the Dp-brane geometry [8]. For conciseness we will refer to these new degrees of freedom

as ‘quarks’ despite the fact that they include both bosons and fermions. Placing the theory

at a finite quark density Nq then corresponds to turning on Nq units of electric flux on

the flavor branes [9]. This flux sources the same supergravity fields as a density Nq of

fundamental strings dissolved inside the flavor branes. We will thus refer to Nq as the

quark density, as the electric flux on the branes, or as the string density interchangeably.

Note that Nc and Nf are dimensionless integer numbers, whereas Nq is a continuous variable

with dimensions of (energy)d−1.

If Nf � Nc and Nq is parametrically no larger than O(N2
c ) then there exists an energy

range in which one can study this system in the so-called ‘probe approximation’, meaning

that the gravitational backreaction of the flavor branes and strings on the original Dp-

brane geometry can be neglected.1 However, for d = 3, 4 the backreaction of the charge

density always dominates the geometry sufficiently deep in the infrared (IR) no matter

how small Nq is. In other words, the probe approximation always fails at sufficiently low

energies [10, 11], and changing the value of Nq simply shifts the energy scale at which

this happens. Therefore, for d = 3, 4 the inclusion of backreaction is not an option but a

necessity in order to identify the correct ground state of the theory.

In this paper we will find the fully backreacted supergravity solutions when d = 3. As

we will explain in section 4, we will distribute, or smear, the flavor branes and the strings

over the compact part of the geometry. This in itself is not an approximation, since the

distribution of the flavor branes in the internal directions simply specifies the couplings be-

tween the quarks and the adjoint fields in the dual gauge theory. Although this means that

the gauge theory we consider and the gauge theory obtained by placing all the flavor branes

on top of one another are different theories, many qualitative properties, in particular the

IR physics, are expected to be the same, as suggested e.g. by the results of [12–14].

We will make the further assumption that the distribution of flavor branes in the

internal directions can be modelled as a continuous distribution. This is an approximation

because any finite number of flavor branes will obviously lead to a discrete distribution.

However, effects not captured by the continuous approximation are small since they are

suppressed by positive powers of Nf and we will assume that Nf is large.

1Since the tension of the strings is Nc-independent, their backreaction is of order Nq/N
2
c .
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We will focus on the case in which this geometry is an S6, but our results are also valid

(with the sole modification of some numerical coefficients) if this is replaced by any other

nearly-Kähler six-dimensional manifold, as in [15]. On the gauge theory this corresponds to

replacing the maximally supersymmetric SU(Nc) gauge theory by an N = 1 quiver theory.

The d = 3 case is simpler than the d = 4 one because the gauge theory is asymptotically

free even after the addition of flavor. In contrast, for d = 4 the addition of flavor causes

the gauge theory to develop a Landau pole in the UV. This does not preclude the study of

the IR physics associated to the charge density, but the analysis is technically harder and

hence it will be presented elsewhere [16]. Moreover, the d = 3 case is interesting in its own

right in the context of AdS/CMT applications to e.g. thin layer systems, particularly for

IR-properties that are governed by a non-relativistic scaling geometry.

Many qualitative features of the solutions that we will construct can be understood by

considering the limits in which the backreaction of the strings or the flavor branes dominate

over one another. The supergravity solution in which the strings dominate was constructed

in [17] following the d = 4 example of [13]. It interpolates between the D2-brane geometry

at large values of the holographic coordinate, and a hyperscaling-violating Lifshitz (HVL)

solution at small values of the holographic coordinate. This interpolating solution is dual

on the gauge theory to a Renormalization Group (RG) flow between the SYM theory in

the ultraviolet (UV) and a non-relativistic (NR) theory in the IR, as one would expect

from the presence of a charge density. This flow is represented by the vertical line on the

left-hand side of figure 1.

The HVL solution has a four-dimensional metric of the form

ds2 =
( r
L

)−θ [
−
( r
L

)2z
dt2IR +

( r
L

)2
dx2

2 + β2

(
L

r

)2

dr2

]
, (1.1)

where z is the dynamical exponent characterizing the different scalings of time and space,

and θ is the HV exponent capturing the scaling properties of the line element.

The normalization constant β is arbitrary from the viewpoint of the IR geometry, but

it takes a specific value when this geometry is connected to the UV geometry (2.2) along

an RG flow. In our solutions the dynamical and HV exponents take the values

z = 5 , θ = 1 , (1.2)

respectively. The emergence of a Lifshitz geometry [18] with HV in the IR could have been

expected based on the analysis of [19, 20].

The existence of this flow shows that the far UV is unmodified by the charge density.

Indeed, in this limit the backreaction of the charge falls off as

U4
charge/U

4 , (1.3)

with

Ucharge ∼ λ1/2

(
Nq

N2
c

)1/4

(1.4)

and λ = g2
YMNc the ’t Hooft coupling constant of the gauge theory, which has dimensions

of energy. The holographic coordinate U , which we will often use throughout this paper,
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SYM theory | D2 geometry

CSM theory | AdS4 geometry

NR theory | HVL geometry

Uflavor

Ucharge

Ucross

no charge | ρ→ 0

no flavor | ρ→∞

charge and flavor | 0 < ρ <∞

Figure 1. Pictorial representation of the family of supergravity solutions and corresponding RG

flows presented in this paper.

also has dimensions of energy and therefore it can be directly identified with an energy

scale in the gauge theory. We thus see that Ucharge is the energy scale at which the presence

of the charge produces an effect of order one on the gauge theory state, or equivalently the

scale at which the backreaction of the strings becomes of order unity on the gravity side.

The supergravity solution with flavor branes and no strings was constructed in [15].

In this case the gauge theory is d = 3 SYM coupled to Nf flavors of dynamical quarks

but no charge density is turned on. As depicted by the top diagonal line in figure 1,

the supergravity solution interpolates between the D2-brane geometry in the UV and an

AdS4 × S6 geometry in the IR. In the gauge theory this corresponds to an RG flow

between SYM in the UV and an IR fixed point described by a conformal Chern-Simons-

Matter (CSM) theory. As with the charge density, the presence of flavor leaves the UV

unmodified, since its effect falls off as

Uflavor/U (1.5)

with

Uflavor ∼ λ
Nf

Nc

, (1.6)

but it produces an effect of order unity at the energy scale Uflavor. Below this scale the

geometry is approximately AdS4 × S6 and the flow approaches the IR fixed point.
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The natural question that arises is what happens if a non-zero charge density is added

to the CSM theory. The answer can be guessed by noting, as we will show, that the addition

of strings to the AdS4 geometry is a relevant deformation from the viewpoint of this fixed-

point geometry. In other words, the strings leave the UV of the AdS4 geometry unmodified

but they induce a flow to a different geometry in the IR. Complementarily, we will show

that the addition of flavor branes to the HVL geometry corresponds to adding an irrelevant

deformation to the dual NR theory. This means that the flavor leaves the IR of the HVL

geometry intact but modifies the UV of this geometry. Therefore, it is natural to expect

that the addition of strings to the AdS4 geometry triggers a flow that drives the solution to

an HVL solution in the IR, thus closing the triangle in figure 1 with the bottom diagonal

line. Note that, because the flow starts at a fixed point with no dimensionful scales, all

values of Nq are physically equivalent since Nq simply sets the units along the flow.

As we will see, if both flavor branes and strings are present from the beginning, the

full set of supergravity solutions depending on Nc, Nf, Nq and λ can be reduced through a

simple rescaling to a family parametrized only by the dimensionless ratio of the two scales

introduced above:

ρ ∼
(
Ucharge

Uflavor

)4

∼ 1

λ2

(
Nc

Nf

)4 Nq

N2
c

, (1.7)

where the fourth power is chosen for convenience. In other words, physical observables in

any two solutions with arbitrary values of Nc, Nf, Nq and λ but with the same value of ρ are

related to one another by a rescaling. In this sense, we may say that the physics depends

on Nc, Nf, Nq and λ nontrivially only through ρ.

Several flows with different values of ρ are depicted in figure 1 by the dashed curves.

For any value ρ > 0 the flow begins in the UV at the SYM theory and ends in the IR at

a NR theory. On the gravity side the solution starts with the D2-brane geometry at large

radius and ends with an HVL geometry in the IR. We emphasize that the precise NR theory

to which the theory flows depends on the value of ρ. Although in all cases the dynamical

and the HV violating exponents are given by (1.2), other features are different. A simple

example is the number of active degrees of freedom at low temperature, as measured by

the entropy density. The exponents (1.2) imply that this must scale as

s ∼ c T (2−θ)/z ∼ c T 1/5 , (1.8)

but the T -independent constant c is not fixed by the scaling properties of the solution. We

will see in section 6.2 that this constant, which measures the number of low-energy degrees

of freedom, depends on the values of Nc, Nf, Nq and λ.

In the limit ρ→∞ the flow is dominated by the backreaction of the strings: the scale

Ucharge becomes much larger than Uflavor, meaning that the flow is driven by the charge to

the HVL fixed point well before the flavor can have a significant effect. Note from (1.3)

and (1.5) that the backreaction of the charge falls off with U faster than that of the flavor.

This means that, for any large but finite ρ, there is always a UV scale above which the flavor

backreaction is larger than the charge backreaction. However, this is irrelevant because

this happens in a region in which they are both a small effect with respect to the D2-brane

geometry, and moreover this UV scale is pushed to infinity as ρ→∞.
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In the opposite limit, ρ → 0, the hierarchy of scales is inverted and the flavor drives

the flow to the AdS4 fixed point before the charge can have a significant effect. If ρ is

very small but non-zero, then the flow is first driven very close to the AdS4 fixed point but

it eventually ‘realizes’ that the charge density is non-zero and is then driven to the HVL

geometry in the deep IR. The scale Ucross at which the transition between AdS4 and HVL

takes place can be determined from the position in the holographic direction where the

backreaction of the strings on the AdS4 geometry becomes of order one. The result is

Ucross ∼ λ3/7

(
Nc

Nf

)1/7 (Nq

N2
c

)2/7

. (1.9)

Note that this scale is parametrically smaller than Uflavor if ρ� 1, since

U4
flavor ∼ ρ−1 U4

charge ∼ ρ−8/7 U4
cross . (1.10)

Thus in the small-ρ limit the theory exhibits quasi-conformal or ‘walking’ dynamics in the

energy range Ucross � U � Uflavor.
2 In section 5 we will verify this explicitly by showing

that the energy between a pair of external quarks separated a distance L from one another

exhibits the conformal scaling Eqq̄ ∼ 1/L in the energy range above.

The dynamics of the theory at different energy scales for different values of ρ is sum-

marized in figure 2.

The family of solutions that we will construct provide a set of possible IR behaviors

of the gauge theory under consideration. As we will see, these solutions are thermody-

namically stable and have vanishing entropy density at zero temperature. However, the

possibility that other IR geometries or finite-density phases exist that could compete with

the current ones cannot be discarded. It would be interesting to investigate this possibility

in future work.

This paper is organized as follows. In section 2 we describe the three geometries

corresponding to the vertices of the triangle in figure 1. In section 3 we determine the

crossover scales between these geometries. In section 4 we provide the full numerical

solutions describing the RG flows depicted in figure 1. In section 5 we compute the energy

of a quark-antiquark pair as a function of their separation and prove that, for RG flows with

small ρ, it exhibits the expected quasi-conformal behavior at intermediate separations. In

section 6 we compute the chemical potential, the equation of state and the speed of sound

at zero temperature, as well as the entropy density at low temperature. Finally, in section 7

we explain how the set of RG flows summarized in figure 1 is modified upon the introduction

of a non-zero quark mass.

2 Fixed points

We will now study the solutions corresponding to each of the three vertices in the triangle

of figure 1 and derive the crossover scales between them. This analysis does not require

2In the context of AdS/CMT, examples of d = 3 solutions with walking behavior near an intermediate

fixed point include [21–23].
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log ρ

logU

0

CSM theory

SYM theory

non-relativistic theory

Figure 2. Dynamics of the system at different energy scales U as a function of the dimensionless

ratio (1.7). We choose a normalization such that the scale governing the SYM-CSM crossover is

Uflavor ∼ ρ0. The scale governing the YM-non relativistic crossover is then Ucharge ∼ ρ1/4, and the

scale governing the CSM-non relativistic crossover is Ucross ∼ ρ2/7. We emphasize that the lines

separating the different regions simply indicate smooth crossovers between different asymptotic

behaviors.

the knowledge of the entire RG flows between the vertices. We refer to these solutions as

‘fixed points’ because the D2 and the HVL solutions are dual to the UV and the IR fixed

points of any flow, and the AdS4 solution can be approached arbitrarily closely along RG

flows with sufficiently small values of ρ.

2.1 Asymptotic D2-brane solution

Maximally supersymmetric, three dimensional, SU(Nc) SYM theory arises in type IIA

string theory as the field theory on the worldvolume of a stack of Nc D2-branes in the

decoupling limit, `s → 0, with fixed Yang-Mills coupling

g2
YM = gs/`s . (2.1)

In string frame, the dual supergravity solution takes the form [7]

ds2 =
(u
L

)5/2
dx2

1,2 +

(
L

u

)5/2 (
du2 + u2 dΩ2

6

)
, (2.2a)

eφ =

(
L

u

)5/4

, (2.2b)

F6 = Qc ω6 , (2.2c)

where dΩ2
6 is the metric of a unit-radius six-sphere with volume form ω6 and volume

V6 =
∫
ω6. The equations of motion relate the D2-brane charge Qc to the length scale L as

Qc = 5L5. Moreover, in the quantum theory the Ramond-Ramond (RR) flux must satisfy

– 7 –
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the quantization condition
1

(2π`s)5 gs

∫
F6 = Nc , (2.3)

which relates the dimensionful constants Qc and L to the number of colors of the gauge

theory

Qc = 5L5 =
(2π`s)

5

V6
gsNc . (2.4)

Note that, without loss of generality, the dilaton in (2.2) is normalized in a gs-independent

way, so that the local string coupling is actually gse
φ. Consistently, we have included an

explicit factor of gs in (2.3).

The holographic coordinate u in (2.2) has dimensions of length. As explained in [7], it

is useful to define a new radial coordinate

U = u/2π`2s (2.5)

with dimensions of energy which can be directly identified with an energy scale in the

gauge theory. The solution (2.2) provides a valid description in the range in which both

the curvature in string units and the dilaton are small. This region is given by

Udual � U � Upert , (2.6)

with

Udual ≡ λN−4/5
c , Upert ≡ λ , (2.7)

and is parametrically large in the large-Nc limit.

2.2 Hyperscaling-violating Lifshitz solution

Adding a quark density to the SYM theory above is dual on the gravity side to adding a

density of strings appropriately distributed. In the UV this induces a subleading correction

to the solution (2.2) that falls off as in (1.3). In the IR, this drives the theory to an HVL

geometry [17]. Here we summarize the necessary results for the discussion of the crossover

scales; additional details will be presented below.

The metric and dilaton are given by

ds2 =
38416

6655 (Qst L)2

[
−Ct

r11

L11
dt2 +

r3

L3
dx2

2 +
363

343

L

r
Qst L

(
dr2 +

5

12
r2dΩ2

6

)]
, (2.8a)

eφ =
25 73

113

√
7/5

(Qst L)5/2

r5/2

L5/2
, (2.8b)

where L is the same as in (2.2), Ct is a positive number (determined dynamically by the

RG flow from the UV) that we will discuss further in section 6.2, and the constant

Qst = 2π`2s λ
Nq

N2
c

(2.9)

measures the string charge density. The precise numerical factors and the powers of Qst

in (2.8) are such that the reduced four-dimensional metric is of the form given in eq. (1.1)

– 8 –
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with IR time tIR =
√
Ct t, and coincides exactly with the solution given in ref. [17]. In

order to compare with the notation in that paper, the reader should note that

Qst

∣∣
here

=
Q

L

∣∣∣
there

. (2.10)

The dynamical and HV exponents of the solution are given by (1.2) and can be read

off from the fact that, in Einstein frame, the metric behaves as

ds2 ∼ r−2θ/D
[
− r2zdt2 + r2dx2

2 + r−2
(
dr2 + r2dΩ2

6

) ]
, (2.11)

with D = 8 the number of spatial directions excluding the holographic direction.3

The metric and the dilaton (2.8) are supported by the RR fluxes

F6 = Qc ω6 = 5L5 ω6 , F2 = Qst dx1 ∧ dx2 , (2.12)

associated to the presence of a stack of D2-branes and a density of strings, respectively. In

order to ensure that the string density of the perturbed D2-brane solution in the UV and

the HVL solution in the IR are the same, as it should be for them to be part of the same RG

flow, we must require that the x-directions are normalized in the same way. This can be

accomplished by matching the IR and the UV forms of the gxx components of the effective,

S6-reduced metric. This leads to the following identification between the IR coordinate

used in (2.8) and the UV coordinate used in (2.2) [17]:

r

L
=
(u
L

)7/2
. (2.13)

The range of validity of the solution (2.8), namely the region where both the dilaton

and the curvature in string units are small, is given by

Ulower � U � Uupper (2.14)

with

Ulower = λ3/7

(
Nq

N2
c

)2/7

, Uupper = N4/35
c Ulower , (2.15)

which is parametrically large in the large-Nc limit.

In order for the region where the geometry transitions between the D2-brane solution

and the HVL solution to be described by type IIA supergravity, we must require that

both (2.6) and (2.14) be satisfied at U = Ucharge, which translates into the following bounds

on the charge density:

λ2N−16/5
c � Nq

N2
c

� λ2 . (2.16)

Note that both bounds are compatible with Nq being of order N2
c . If the lower bound is

relaxed, then there is a region along the flow where the dilaton is large and the correct

description of that region is provided by eleven-dimensional supergravity.

3Reducing upon the S6 and using D = 2 yields a metric like (1.1) with the same exponents [24].
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2.3 AdS4 solution

Adding Nf flavors of dynamical quarks to the three-dimensional SYM theory is dual on the

gravity side to adding Nf D6-branes. Ref. [15] constructed the corresponding solution when

the D6-branes are smeared over the S6 directions transverse to the D2-branes in a way that

restores the maximum amount of symmetry compatible with N = 1 supersymmetry. In

the UV this induces a subleading correction to the solution (2.2) that falls off as in (1.5).

In the IR, this drives the theory to a fixed point described by an AdS4 × S6 geometry.

Here we summarize the necessary results for the discussion of the crossover scales; further

details will be given below.

The construction of [15] makes use of the fact that the S6 admits a nearly Kähler

(NK) structure, which implies that it is equipped with a real two-form, J , and a complex

three-form, Ω, satisfying:

dJ = 3 Im Ω , d Re Ω = 2 J ∧ J , (2.17a)

J ∧ Ω = 0 ,
1

6
J ∧ J ∧ J =

i

8
Ω ∧ Ω = ω6 , (2.17b)

∗6J =
1

2
J ∧ J , ∗6Ω = −iΩ . (2.17c)

A specific construction of J,Ω in a particular coordinate system was given in [15]. These

forms provide a natural basis for writing the RR fluxes of the solution,

F6 = Qc ω6 = 5L5 ω6 , F2 = Qf J , (2.18)

where for massless quarks one has a constant

Qf =
2π`2s
V2

λ
Nf

Nc

, (2.19)

with V2 =
∫
J , measuring the number of D6-branes. Alternatively we can view Qf as

characterizing the strength of the backreaction of the flavor branes on the color geometry.

The RR six-form is the same one as in eq. (2.2c), originating from the stack of D2-branes,

whereas the RR two-form violates the Bianchi identity, dF2 6= 0, signalling the presence of

D6-brane sources. The fluxes above support the following metric and dilaton

ds2 =
R2

L2
IR

dx2
1,2 +

L2
IR

R2

(
dR2 +

9

4
R2dΩ2

6

)
, (2.20a)

gs e
φ =

(
217

54

π2

3

Nc

N5
f

)1/4

, (2.20b)

where

LIR = `s

(
2

35 π2

Nc

Nf

)1/4

(2.21)

is the AdS4 radius. The requirement that type IIA supergravity provides a reliable de-

scription of this geometry implies that

N1/5
c � Nf � Nc , (2.22)
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which in turn guarantees that

Udual � Uflavor � Upert , (2.23)

with Udual, Upert defined as in (2.7). This means that, in fact, the entire flow from the

D2-geometry to the AdS4 geometry is well described by type IIA supergravity.

3 Crossover scales

With the three solutions (2.2), (2.8) and (2.20) in hand, we are now ready to show how the

crossover scales (1.4), (1.6) and (1.9) are determined. As mentioned in section 1, Ucharge and

Uflavor can be determined from the full solutions interpolating between the D2-geometry and

the HVL and AdS geometries, respectively. These solutions are known explicitly enough to

determine the radial positions at which the backreaction of the strings [17] or of the flavor

branes [15] becomes of order unity. Translating between these positions and gauge theory

energy scales leads to (1.4) and (1.6).

Alternatively, one may determine the three crossover scales by equating the dilatons

in the three solutions (2.2), (2.8) and (2.20). This amounts to identifying the crossover

point with the point at which the dilaton changes behavior from one solution to another.

Equating the dilaton in (2.2) and (2.8) and using (2.13) to express both dilatons in terms

of the same radial coordinate u, and then translating this into an energy scale via (2.5),

leads to Ucharge. Equating the dilatons in (2.2) and (2.20) and using again (2.5) leads to

Uflavor. Finally, equating the dilatons in (2.8) and (2.20), using (2.13) to translate from r

to u, and then using (2.5) to translate from u to U , leads to Ucross.

We will now show that the three scales above can also be determined in a third way,

namely by comparing the stress tensor of a D6-brane probe with strings dissolved in it with

the stress tensor supporting the geometry in which the D6-brane is placed. The strategy is

to determine the radial position at which the stress tensor of the brane-plus-strings system

would compete with that of the background geometry. At that point the backreaction

would become of order unity. This will also allow us to show in which geometries the

addition of flavor branes or strings corresponds to a relevant or irrelevant deformation on

the field theory side.

For the purposes of this discussion it suffices to consider the Dirac-Born-Infeld (DBI)

part of the D6-brane action (see the paragraph below eq. (3.11) for the justification). This

takes the form

SDBI = −TD6

∫
d7ξ e−φ

√
−P [G] + F (3.1)

with

TD6 =
1

(2π`s)6 gs`s
(3.2)

the tension of the brane, P[· · · ] the pullback of a spacetime object in string frame to the

worldvolume of the brane,

F = P[B] + 2π`2s dA , (3.3)
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B the Neveu-Schwarz (NS) two-form and A the BI gauge potential. We assume that the

probe brane wraps an equatorial S3 ⊂ S6 and is extended along the Minkowski and radial

directions. The presence of strings dissolved inside the brane is encoded in an electric BI

potential of the form

A = At(y)dt , (3.4)

with y the holographic radial coordinate. For backgrounds of the form

ds2 = Gtt(y) dt2 +Gxx(y) dx2
2 +Gyy(y) dy2 +GΩΩ(y) dΩ2

6 (3.5)

with a vanishing B-field, which includes (2.2), (2.8) and (2.20), the DBI action reduces to

SDBI = −2π2 TD6

∫
d3x dy e−φ

√
−
(
GttGyy + (2π`2s)

2A′2t
)
G2
xxG

3
ΩΩ , (3.6)

where we have integrated out the three sphere angles, thus producing the 2π2 factor. Since

At enters only via its derivative, the solution for this field can be written in terms of a

constant of integration, nq, as

2π`2s A
′
t =

√
n2

q|Gtt|Gyy
n2

q + (2π2 TD6 2π`2s)
2e−2φG2

xxG
3
ΩΩ

. (3.7)

This constant is precisely the string density on the probe, and will play an important role

in the rest of the paper. Note that we use a lower-case symbol to distinguish the string

density on the probe from that in the background. To work at fixed charge density we

perform a Legendre transform in (3.6), and express the action in terms of nq instead of At,

obtaining

S̃DBI = −2π2 nf TD6

∫
d3x dy e−φ

√
−GttG2

xxGyyG
3
ΩΩ

√
1 +

e2φ n2
q

(2π2 TD6 nf 2π`2s)
2G2

xxG
3
ΩΩ

,

(3.8)

where we have included factors of nf to account for the possibility of multiple overlapping

probe branes. Finally, we compute the stress tensor associated to the D6-brane action.

Since the only non-zero component of the gauge field is the temporal one, we focus on the

time-time component of the stress tensor. This takes the form

T̃tt =
−2√
−G

G2
tt

δS̃DBI

δGtt
= 2π2 TD6 nf e

−φ Gtt

G
3/2
ΩΩ

√
1 +

e2φ n2
q

(2π2 TD6 nf 2π`2s)
2G2

xxG
3
ΩΩ

, (3.9)

where the tilde is a reminder that this is the probe’s stress tensor. Our goal is to compare

this result to the supergravity stress tensor supporting each of the solutions (2.2), (2.8)

or (2.20), namely to the right-hand side of Einstein’s equations

1

κ2
Eµν = e2φ Tµν , (3.10)

where
1

2κ2
=

2π

(2π`s)8g2
s

, (3.11)

Eµν is the Einstein tensor and the factor of e2φ appears because we are working in

string frame.
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Eqs. (3.7) and (3.9) would not be modified if we had included the Wess-Zumino (WZ)

part of the D6-brane action in our discussion. The reasons are, first, that for the back-

grounds of interest in this section the WZ term does not contain any At-dependent con-

tributions that could modify our definition (3.7) of nq and, second, that the WZ term is

topological, i.e. metric-independent, and therefore it does not contribute to our definition

of the probe stress tensor (3.9).

We are now ready to determine the crossover scales by comparing the stress tensors.

We begin with the D2-brane geometry (2.2). The probe stress tensor behaves as

e2φ T̃tt '
nf TD6

L5
u2 at zero nq , (3.12a)

e2φ T̃tt '
1

L5 `2s

nq

u
+O(u5) for small u at non-zero nq , (3.12b)

e2φ T̃tt '
nf TD6

L5
u2 +O(u−4) for large u at non-zero nq , (3.12c)

whereas the supergravity stress tensor scales as

1

κ2
Ett '

1

κ2

u3

L5
. (3.13)

Consider first nq = 0. In this case we see that the probe stress tensor is subleading at large

u, meaning that the flavor branes are a small correction in the UV. The scale at which their

stress tensor becomes comparable to the background stress tensor is u = uflavor such that

1

κ2

u3
flavor

L5
∼ nf TD6

L5
u2

flavor . (3.14)

Via (2.5) this leads precisely to (1.6) with Nf replaced by nf. This is as expected, since

this is the scale at which the backreaction of the nf flavor probe branes would become

important if we were to include it.

Consider now nq 6= 0. We see that the presence of the strings does not change the

UV behavior of the probe stress tensor, meaning that the backreaction of the strings is

subleading with respect to that of the flavor branes in this regime. This is consistent with

the fall-offs (1.3) and (1.5) mentioned in section 1, and with the fact that the UV geometry

is unmodified even in the presence of both charge and flavor. In contrast, in the IR we see

that the stress tensor of the brane is dominated by the string density, since the 1/u leading

term is proportional to nq and nf-independent, and that this would actually dominate over

the supergravity stress tensor. This is consistent with the fact that the addition of charge

always changes the IR geometry completely, and it drives the RG flow to an HVL solution.

The scale at which the crossover takes place is u = ucharge such that

1

κ2

u3
charge

L5
∼ 1

L5 `2s

nq

ucharge

, (3.15)

which via (2.5) leads precisely to (1.4) with Nq replaced by nq, as expected.
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We now turn to the HVL geometry. The probe stress tensor reads

e2φT̃tt '
nf TD6 Ct

(Qst L)3 L3

r12

L12
at zero nq , (3.16a)

e2φT̃tt '
nq Ct

`2s (Qst L)2 L6

r10

L10
+O(r14) for small r at non-zero nq , (3.16b)

e2φT̃tt '
nf TD6 Ct

(Qst L)3 L3

r12

L12
+O(r8) for large r at non-zero nq , (3.16c)

whereas the supergravity stress tensor is

1

κ2
Ett ∼

1

κ2

Ct

(Qst L)L2

r10

L10
. (3.17)

We see that at small r the probe stress tensor is dominated by the string contribution,

meaning that the addition of flavor leaves the IR geometry unmodified, in agreement with

our previous discussion. Moreover, this string contribution in the IR scales exactly in

the same way as the supergravity stress tensor. This is consistent with the fact that the

HVL geometry is sourced by strings, with only subleading contributions from the flavor

branes. The radial position rcross at which the contribution of the flavor to the probe

stress tensor becomes comparable to that of the strings, and of course also to that of the

background, determines the crossover scale between the string-dominated HVL geometry

and the flavor-dominated AdS4 solution. This position obeys

1

κ2

Ct

(Qst L)L2

r10
cross

L10
∼ nf TD6 Ct

(Qst L)3 L3

r12
cross

L12
. (3.18)

Using (2.13) and (2.5) this leads to (1.9) with Nf replaced by nf, as expected.

Finally, we turn to the AdS4 solution. The probe stress tensor is

e2φ T̃tt ∼
nf TD6

g2
s `

5
sNc

R2 at zero nq , (3.19a)

e2φ T̃tt '
nq

g2
s `

8
s Nf Nc

+O(R4) for small R at non-zero nq , (3.19b)

e2φ T̃tt '
nf TD6

g2
s `

5
s Nc

R2 +O(R−2) for large R at non-zero nq , (3.19c)

whereas the supergravity stress tensor reads

1

κ2
Ett ∼

1

κ2

R2

L4
IR

. (3.20)

If nq = 0 the probe stress tensor scales in the same way as the background stress tensor,

consistently with the fact that in this case the background is sourced by a large collection

of flavor branes. This remains true at large R even if nq 6= 0, meaning that the addition

of charge leaves the UV of the AdS4 geometry unmodified. In contrast, at small R the

strings contribution dominates the probe tensor, and this dominates over the background

stress tensor. This confirms that the addition of strings is a relevant deformation from the
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viewpoint of the fixed point dual to the AdS4 geometry that drives the theory to a new IR

geometry. The scale at which the crossover between the two geometries takes place can be

determined by comparing (3.19b) to (3.20), with the result

Rcross ∼
n1/2

q `2s
Nf

. (3.21)

Note that, from the AdS4 prespective, the dependence on nq is fixed by dimensional anal-

ysis, since this is the only scale at this fixed point. In other words, the theory at this fixed

point has lost any memory of the other dimensionful parameter in the gauge theory, the ’t

Hooft coupling λ. This means that from the AdS4 viewpoint all values of nq are equivalent:

they simply set the units in which all other scales such as the crossover scale (3.21) are

measured. The dependence on λ is recovered when the AdS4 coordinate R is mapped to

the IR coordinate r and then to the UV coordinate u via (2.13). As usual, the relation be-

tween r and R is established by matching the gxx components of the dimensionally reduced

metrics, which gives

r

L
=

(
27

8

gs L
2
IR

L3

N
5/4
f

N
1/4
c

R

)2

. (3.22)

This relation together with (2.13) and (2.5) maps Rcross to Ucross.

4 Full solutions

We finally turn to the main result of our paper: the family of supergravity solutions dual

to three-dimensional SU(Nc) SYM in the presence of Nf flavors of dynamical quarks and

a non-zero quark density Nq. The flavor branes and the strings act as sources for both

the RR fields and the H-field, and hence they modify their equations of motion. For the

RR fields, through the Hodge-duality relations that these fields obey, this also leads to

a modification of their Bianchi identities, and therefore to a modification of their very

definition in terms of gauge potentials. The full action in the presence of these sources is

discussed in appendix A, to which we refer the reader for additional details.

4.1 Ansatz

The full action of the system consists of type IIA supergravity coupled to a set of D6-branes

with strings dissolved inside them:

S = SIIA + SD6 . (4.1)

The supergravity action is the sum of the NS and the RR sectors,

SIIA = SNS + SRR . (4.2)

Similarly, the D6-action is the sum of the DBI and the WZ terms:

SD6 = SDBI + SWZ . (4.3)
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As we will explain below, the presence of the strings will not change the fact that the

metric in the solution is invariant under the full isometry group of the S6, just like when only

flavor but no charge is present [15]. This means that the most general metric compatible

with the symmetries of our system takes the form (3.5), and also that the solution is

naturally equipped with the forms J and Ω obeying the relations (2.17) associated to the

NK structure of the S6.

The brane action describes a collection of Nf D6-branes appropriately smeared over

the S6 internal directions of the geometry, with a density of strings appropriately smeared

within each D6-brane. In the limit in which the number of branes and strings is large, one

can approximate their distribution by a continuous function, which will allow us to turn

the seven-dimensional D6-brane action into an integral over all spacetime directions. The

information about the orientation and the density of branes at each point is encoded in

the so-called smearing three-form Ξ that will be determined below. In order to write the

smeared DBI part of the action, let us first rewrite the DBI action for a single brane (3.1) as

SDBI = −TD6

∫
D6
P [K] , (4.4)

where the seven-form K is defined as

K = e−φ
√
− det (G+ F) dt ∧ dx1 ∧ dx2 ∧ dy ∧ Re Ω . (4.5)

In terms of K and the smearing form, the DBI action for the smeared set of branes takes

the form

SDBI = −TD6

∫
K ∧ Ξ . (4.6)

Similarly, while the WZ part of the action for a single brane is given by

SWZ = TD6

∫
D6
LWZ , (4.7)

the smeared action is

SWZ = TD6

∫
LWZ ∧ Ξ . (4.8)

The form of LWZ can be found in appendix A.

In order to model the presence of the strings, the BI field on the branes takes the same

form as in (3.4). Note that the fact that the BI electric field only depends on the radial

coordinate y implies that the distribution of the strings respects the full isometry group of

the S6. As we will see below, the NS field B will vanish in our solution, meaning that

F = 2π`2s dA = 2π`2s A
′
t(y) dy ∧ dt . (4.9)

This implies that F ∧ F = 0, which leads to a simplification with respect to the general

setup discussed in appendix A. Through the WZ part of the branes’ action, F modifies the

equations of motion for the RR field strengths F8 and F6 with respect to pure supergravity

without sources. Equivalently, it modifies the Bianchi identities for their Hodge duals

F2 = − ∗ F8 , F4 = ∗F6 , (4.10)
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which in the presence of the D6-branes and the strings read

dF2 = −2κ2 TD6 Ξ , (4.11a)

dF4 = H ∧ F2 − 2κ2 TD6F ∧ Ξ . (4.11b)

The first equation is commonly referred to as the ‘violation’ of the Bianchi identity for F2,

and it expresses the simple fact that D6-branes are magnetic sources for F2. This violation

was already present in the case of flavor without strings discussed in [15]. In contrast, the

second term on the right-hand side of the Bianchi identity for F4 was not present for the

solutions with strings but without flavor studied in [17]. Indeed, this term is only present

when the system contains both strings and D6-branes, since it comes from the electric

components of C5 sourced by the term ∫
C5 ∧ F (4.12)

contained in the WZ part of the D6-branes’ action. Through the duality relations (4.10)

these electric components give rise to the second term on the right-hand side of dF4. We

thus see that, although it is the string density represented by F that sources C5, the

presence of the D6-branes is necessary since the coupling between F and C5 is supported

on their worldvolume.

We are now ready to specify the ansatz for our solution and to integrate the corre-

sponding equations of motion. We begin with the RR forms. We choose to specify directly

F2 and F6; their Hodge duals F4 and F8 can be obtained via (4.10). Our ansatz for F2 is

F2 = Qst dx1 ∧ dx2 +Qf J . (4.13)

This is the most general form compatible with the symmetries of our system, in particular

with the SU(3) structure of the S6, except for the fact that we have omitted a term

proportional to dt ∧ dy. This term is allowed by symmetry considerations, but we will

show below that it must vanish by virtue of the equation of motion for the B-field. As we

will see, the constant Qst is related to the string density [25]. Similarly, Qf is related to

the distribution of D6-branes along the radial direction. If some of the quark flavors in the

gauge theory are massive, then Qf becomes a function of the radial direction, Qf(y). Here we

will restrict ourselves to the case in which all quarks are massless, which translates into the

fact that Qf is a constant related to the number of D6-branes through (2.19). Computing

dF2 with (4.13) and (2.17) and comparing to (4.11a) we deduce that the smearing form is

Ξ = − 3Qf

2κ2 TD6

Im Ω . (4.14)

In order to specify F6, we first note from (4.9) and (4.14) that the coupling in (4.12)

implies that C5 must contain a term of the following form:

C5 ⊃ B(y) dx1 ∧ dx2 ∧ Re Ω . (4.15)
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Including also the term necessary to account for the presence of D2-branes in the solution,

as in (2.2c), we see that F6 must take the form

F6 =
Qc

6
J ∧ J ∧ J + B′ dy ∧ dx1 ∧ dx2 ∧ Re Ω + 2B dx1 ∧ dx2 ∧ J ∧ J , (4.16)

where ′ denotes differentiation with respect to y and we have used (2.17) to write the

volume form on the six-sphere in terms of J . The constant Qc is related to the number

of D2-branes through (2.4). The equation of motion for the function B(y) is obtained by

Hodge-dualizing F6 to F4 with the metric (3.5), which yields

F4 = Qc

√
−GttGyy Gxx

G3
ΩΩ

dt ∧ dx1 ∧ dx2 ∧ dy

+ 4B
√
−GttGyy
GxxGΩΩ

dt ∧ dy ∧ J

+ B′
√
−Gtt√
Gyy Gxx

dt ∧ ImΩ , (4.17)

and then substituting into the Bianchi identity (4.11b). The result is

∂y

(√
−Gtt
Gyy

B′

Gxx

)
− 12

√
−GttGyy
GxxGΩΩ

B − 3Qf 2π`2s A
′
t = 0 . (4.18)

The physical meaning of the ‘magnetic potential’ B is more easily understood by rewriting

it in terms of an electric, dual potential. For this purpose, we write the following ansatz

for the three-form RR potential:

C3 = C̃3 + C(y) dt ∧ J , (4.19)

where C̃3 is the usual piece associated to the presence of D2-branes that obeys

dC̃3 = Qc

√
−GttGyy Gxx

G3
ΩΩ

dt ∧ dx1 ∧ dx2 ∧ dy . (4.20)

Substituting dC3 in the definition (A.19) of the modified field strength F4 and comparing

to (4.17) we see that C(y) and its first derivative must satisfy the equations

C = −1

3

√
−Gtt
Gyy

B′

Gxx
, C′ +Qf 2π`2s A

′
t = −4

√
−GttGyy
GxxGΩΩ

B . (4.21)

These equations allow us to eliminate B in favor of C and vice versa. The term in C3

proportional to C can now be interpreted as associated to D2-branes wrapped on the cycle

threaded by J . Upon reduction along the compact directions, this gives rise to a massive

vector field with positive mass squared.4 Therefore the field C(y) is dual to (the time

component of) an irrelevant vector operator constructed out of adjoint fields in the gauge

4An analogous field was present in the four-dimensional case of [26] and its dual interpretation around

the AdS5 region was given in [27].
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theory. This should be contrasted with the vector field A on the D6-branes, which is dual

to a conserved, and therefore marginal, current operator in the gauge theory constructed

out of the microscopic fields in the fundamental representation of the gauge group. Below

we will have more to say about the interplay between these two vector fields.

We now turn to the equation of motion for the B-field. This may be written as

d
(
e−2φ ∗H

)
=
δS

δB
, (4.22)

where the right-hand side includes all variations with respect to B but not dB, and is

given by

δS

δB
= F2 ∧ ∗F4 +

1

2
F4 ∧ F4 (4.23)

+ 2κ2 T6 e
−φ
√
G2
xxG

3
ΩΩ

2π`2s A
′
t√

− (GttGyy + (2π`2sA
′
t)

2)
dx1 ∧ dx2 ∧ Re Ω ∧ Ξ .

The second line in this equation is the DBI contribution. We will solve this equation with

B = H = 0, which immediately implies that the term proportional to dt ∧ dy allowed by

symmetry considerations in (4.13) must vanish. At first sight it may seem surprising that

the presence of strings does not automatically lead to a non-zero H, but the non-linearities

of supergravity imply that the H sourced by the strings can be exactly cancelled by the

H sourced by the products of RR forms in (4.23). Requiring this cancellation fixes the BI

field on the D6-branes to

2π`2s A
′
t =

√
−GttGyy

eφG
−3/2
ΩΩ (Qc Qst + 12Qf B)√

(12Qf Gxx)2 + e2φG−3
ΩΩ (Qc Qst + 12Qf B)2

. (4.24)

To close the circle we note that (4.24) is automatically a solution of the equation of

motion for the BI field obtained by varying the full action with respect to A. The reason is

that dA always appears together with B in the gauge-invariant combination dA+B. This

means that
δS

δdA
=
δS

δB
(4.25)

and therefore that the equation of motion for A,

d
δS

δdA
= 0 , (4.26)

is automatically implied by the exterior derivative of (4.22). In fact, substituting (4.24)

in (4.23) gives the explicit result for the so-called electric displacement

δS

δdA
= 2π`2s

Qc Qst

2κ2
dx1 ∧ dx2 ∧ ω6 . (4.27)

The string density in the x1 − x2 directions is obtained by integrating this expression over

the six-sphere,

Nq dx1 ∧ dx2 =

∫
S6

δS

δdA
, (4.28)
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which finally yields the relation between the string density and Qst:

Qst =
2κ2

Qc

Nq

2π`2s V6
= 2π`2s λ

Nq

N2
c

. (4.29)

Note that Nq is the total string density in the system, whereas the string density per

D6-brane is qst = Nq/Nf. Thus one may formally consider a limit in which the number of

D6-branes goes to zero and the string density per D6-brane diverges in such a way that

the total string density is kept fixed:

Nf → 0 , qst →∞ , Nq fixed . (4.30)

In this limit B = 0 and the model presented in this section reduces to the one in [17],

which describes the flow along the vertical line on the left-hand side of the triangle in

figure 1. In particular, the DBI term (4.6) reduces to a smeared Nambu-Goto action for a

uniform distribution of strings stretching along the radial direction. In the opposite limit

in which we set Qst = B = 0 the model of this section reduces to that of [15], where the

supersymmetric flow with flavor but no charge represented by the upper diagonal edge of

the triangle in figure 1 was constructed.

4.2 Scalings

In principle, the physics in our system depends on the four parameters λ,Nc, Nf and Nq.

However, through appropriate rescalings we will now see that the physics depends non-

trivially only on a dimensionless combination of these parameters. In order to show this,

it is useful to begin by recalling the length dimensions of the dimensionful variables in

our set-up:

[y] ∼ ` , [Qc] ∼ `5 , [Qf] ∼ ` , [Qst] ∼ `−1 , [B] ∼ `3 , [GΩΩ] ∼ `2 , [At] ∼ `−1 .

(4.31)

The metric components Gtt, Gxx, Gyy and the dilaton are dimensionless.

In order to work with dimensionless quantities we need to choose a specific unit of

length. Any combination of Qc, Qf and Qst with length dimensions is a valid choice, and

we find it convenient to simply use Qf (which implies that taking the Nf → 0 limit in the

dimensionless variables is not straightforward). We thus write the radial coordinate and the

dimensionful functions in our ansatz in terms of the following dimensionless counterparts:

y = Qf y , GΩΩ = Q2
f G̃ΩΩ , B = Q3

f B . (4.32)

The reason for using a tilde on GΩΩ instead of an overline will become clear shortly.

Upon implementing this transformation in the radicand in eq. (4.24), we observe that the

following dimensionless quantity measures the effect of the charge density:

ρ ≡ Qc Qst

12Q4
f

=
π2 V 4

2

3V6

1

λ2

(
Nc

Nf

)4 Nq

N2
c

, (4.33)

where we recall that V2 and V6 are dimensionless volumes. Note that all the dependence

on the string theory parameters `s, gs has cancelled, indicating that ρ is directly a gauge

theory parameter. We will now show that the physics depends non-trivially only on this

parameter.
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In order to do so, we rescale some of our functions with the following powers of the

second dimensionless quantity Qc/Q
5
f :

Gtt =

(
Qc

Q5
f

)−1/2

Gtt , Gxx =

(
Qc

Q5
f

)−1/2

Gxx , (4.34a)

Gyy =

(
Qc

Q5
f

)1/2

Gyy , G̃ΩΩ =

(
Qc

Q5
f

)1/2

GΩΩ , (4.34b)

eφ =

(
Qc

Q5
f

)1/4

eφ . (4.34c)

Note that G̃ΩΩ gets rescaled to its final counterpart GΩΩ. Through eq. (4.24), the rescalings

above imply that A′t does not get rescaled i.e. that

A′t = A
′
t (4.35)

with

2π`2s A
′
t =

√
−GttGyy

eφG
−3/2
ΩΩ

(
ρ+ B

)√
G

2
xx + e2φG

−3
ΩΩ

(
ρ+ B

)2 . (4.36)

When the original functions and radial coordinate are replaced by their overlined coun-

terparts, all the dependence on Qf and Qc in the action (4.1) cancels out, leaving behind

only a dependence on ρ except for an overall factor of Q5
f in front of the action. The ef-

fective gravitational coupling Q5
f /2κ

2 thus has dimension `−3, since the only dimensionful

coordinates to integrate over after the rescaling are the three Minkowski coordinates. This

result means that the equations of motion in terms of the rescaled variables depend only

on ρ, as we wanted to show. In fact, by performing a further rescaling of the form

Gxx → ρGxx , B → ρB , (4.37)

we could eliminate the dependence on ρ from the equations of motion, but only at the

expense of introducing ρ dependence in the boundary conditions. We will therefore not

perform this rescaling.

We conclude that only the parameter ρ distinguishes inequivalent RG flows (i.e. flows

that cannot be mapped to one another by simple rescalings) in the space of theories

parametrized by λ,Nc, Nf and Nq. This parameter can be naturally understood as the

ratio between the typical energy scales associated to charge and flavor, as anticipated in

eq. (1.7). Unless stated otherwise, in the rest of the paper we will work with the dimen-

sionless (overlined) variables, and we will omit the overlines for simplicity. The full set of

equations of motion written in terms of these variables can be found in appendix B.

4.3 Numerical integration

In this section we will provide an overview of how we integrated the equations of motion

numerically, relegating some technical details and long equations to appendix C. We will

begin with equations in which λ,Nc, Nf and Nq have not been eliminated yet, and later

we will explain how to exploit the fact that the physics only depends on ρ to construct

the solutions.
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To obtain a numerical solution, it is convenient to parametrize the string-frame metric

and the dilaton as

ds2 = h−
1
2
(
−f1dt2 + dx2

2

)
+ h

1
2 e2χ

(
dy2

f2
+ y2ds2

6

)
,

eφ = h
1
4 e3χg , (4.38)

where f1, f2, h, χ and g depend only on the radial coordinate y. This choice of parametriza-

tion is motivated by the fact that it generalizes that of the chargeless case [15] by allowing

for the breaking of Lorentz invariance expected in the presence of a charge density. Using

diffeomorphism invariance, we fix the radial coordinate by setting

h =
Qc

5y5
, (4.39)

as in the D2-brane solution. Fixing the form of h allows us to solve algebraically for the

function f2, whose expression is given in (C.1). Moreover, the gauge field At on the D6-

branes can be solved for in terms of the other functions, as given in (C.3), and eliminated

from the remaining equations.

We are thus left with a set (C.4) of four coupled, second-order differential equations

for f1, χ, g and B that we must solve numerically, subject to the boundary conditions that

they interpolate between the D2-brane solution in the UV and the HVL solution in the IR.

The asymptotic solution in the UV, eq. (C.5), depends on four undetermined constants

associated to the VEVs of the following four operators: the stress tensor, TrF 2, TrF 4, and

the operator dual to B. Similarly, the asymptotic solution in the IR (C.6) depends on

another four undetermined constants. The match between the number of undetermined

constants is a necessary consistency check for the existence of solutions connecting these

two asymptotic behaviors.

A further consistency check comes from requiring the existence of flows that come very

close to the AdS4 fixed point in figure 1. Any such flow must be driven from the fixed

point to the UV by modes that grow (or at least stay constant) towards the UV, and from

the fixed point to the IR by modes that grow (or at least stay constant) towards the IR.

This immediately implies that the fields that are turned on around the fixed point cannot

be dual to relevant operators. Indeed, a field dual to an operator of dimension ∆ behaves

as a combination of %d−∆ (dual to a source) and %−∆ (dual to a VEV), where % is the

usual Fefferman-Graham coordinate and the AdS boundary is at % → ∞. For a relevant

operator both modes decay towards the UV and grow towards the IR, so the presence

of such an operator would preclude the necessary matching. In contrast, irrelevant or

marginal operators are allowed. In appendix D we compute the spectrum of fluctuations

around the AdS4 fixed point and verify that no relevant operator is turned on.

We choose to solve the system of four coupled second-order ODEs using a relaxation

method. We begin by compactifying the radial coordinate using the transformation

y =
1 + Y

1− Y
, (4.40)
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so that our functions are defined on the domain Y ∈ [−1, 1]. For numerical convenience,

we redefine the unknown functions by removing their IR scaling behavior as follows:

B =

(
1 + Y

2

)10/3

B̃ , (4.41a)

f1 =

(
1 + Y

2

)20/3

f̃1 , (4.41b)

g =

(
1 + Y

2

)4/3

g̃ , (4.41c)

eχ =

(
1 + Y

2

)2/3

eχ̃ . (4.41d)

The advantage of this redefinition lies in the fact that it simplifies the implementation of

the boundary conditions. To be more precise, the boundary conditions that we need to

impose are

{B̃, f̃1, g̃, e
χ̃} = {0, 1, 1, 1} (4.42)

in the UV (Y = 1) and{
B̃, f̃ ′1, g̃, eχ̃} = {− 3 · 52/3Qf

(14QcQst)1/3
, 0,

51/6142/3

√
11(QcQst)1/3

,
101/3

(7QcQst)1/6

}
(4.43)

in the IR (Y = −1). Note that we are fixing the derivative of f1 to zero in the IR. The

value of f1 itself in the IR is determined by the flow and is given by the constant Ct

in eq. (C.6). We will see below that this constant plays an important role in the low-

temperature thermodynamics of the system.

We proceed by evenly discretising the coordinate Y to form a lattice and we approx-

imate the derivatives of our functions at each lattice point using a fourth-order finite-

difference scheme.5 The problem is then reduced to solving a set of non-linear algebraic

equations for the values of each function at each point on the grid. This is done using the

Newton-Raphson method: one starts with an initial guess for the unknown functions at

each lattice point, which presumably does not solve the differential equations, and then

iteratively improves the guess in order to obtain functions that solve the equations to the

desired accuracy.

Given the scaling (4.34), we can restrict our attention without loss of generality to

solutions with Qc = Qst = 1 and 0 < Qf < ∞. Each of these solutions then provides

a representative of a flow with a value of ρ given by ρ = 1/12Q4
f , from which the most

general solution with arbitrary values of all the parameters can be obtained through the

rescalings discussed in section 4.2. The strategy for finding these solutions is to start by

picking Qf = 0 (B = 0), describing the flow [17] between the D2-brane in the UV and the

HVL in the IR, and then slightly deform this solution by introducing a small amount of

flavor. This is feasible because in both cases the end points of the integration are the same.

5We choose to work with finite differences over pseudospectral methods because of the logarithms that

appear in the UV expansion (C.5).
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Once a solution with a small but non-vanishing Qf is obtained, one can slowly increase the

flavor using the previous solution as an initial guess for the next one. The profiles of the

functions for solutions with various values of Qf are shown in figure 3, while in figure 4 we

plot the dilaton and the ten-dimensional Ricci scalar in the string frame.

5 Quasi-conformal dynamics and Wilson loops

In figure 4 we see that the dilaton profile develops a large plateau in the radial direction

(note the logarithmic scale on the horizontal axis), in which it becomes approximately

constant, for flows with large values of Qf, or equivalently with small values of ρ. Given

that radial position in the bulk maps to energy scale in the gauge theory, this plateau should

correspond to the ‘walking’ energy region in the gauge theory in which the dynamics is

quasi-conformal, as expected for small-ρ flows that come close to the AdS fixed point in

figure 1. However, one must recall that the profile of the dilaton as a function of the radial

coordinate is not a gauge-invariant quantity, since it can be changed by a reparametrization

of the radial coordinate.

In order to establish the existence of a walking region in the gauge theory, one must

therefore compute a gauge-invariant observable that exhibits quasi-conformal dynamics

directly as a function of a gauge theory energy or length scale. For this purpose we have

computed the quark-antiquark potential between two external sources as a function of their

separation, L. As usual, this can be extracted from the expectation value of a Wilson loop,

which can be computed on the gravity side from the length of a fundamental string hanging

from the quark and the antiquark [28, 29]. The details of the calculation follow those in

the original papers above, so we have relegated them to appendix E. Here we will simply

describe the result, which is summarized by figure 5. To obtain this figure it is convenient

to add to the rescalings (4.32) and (4.34) a further rescaling of the x-coordinate given by

x→ Qf

(
Qc

Q5
f

)1/2

x . (5.1)

Under these conditions the energy of the quark-antiquark pair and their separation scale as

E =
Qf

2π`2s
E(ρ) ∼ λNf

Nc

E(ρ) , L = Qf

(
Qc

Q5
f

)1/2

L(ρ) ∼ 1

λ

(
Nc

Nf

)3/2

L(ρ) . (5.2)

We thus see that the scalings (4.32), (4.34) and (5.1) allow us to reduce the problem of

computing the quark-antiquark potential in a four-parameter flow with generic values of

Nc, Nf, Nq and λ to a calculation in a flow characterized by a single parameter ρ.

Figure 5 shows that for large-ρ flows (small Qf) the dependence of the quark-antiquark

potential transitions directly from E ∼ L
−2/3

in the UV (small L) to E ∼ L
−6

in the IR

(large L). The former behavior is that of the D2-brane geometry, whereas the latter is

what one obtains for the HVL solution. In contrast, for small-ρ flows (large Qf) we see

that a large intermediate plateau appears (note the logarithmic scale on the horizontal

axis). In this region the potential behaves as E ·L−1 ∼ constant, as expected in the quasi-

conformal region near a fixed point. The precise value of this constant can be computed
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Figure 3. Plots of the functions B̃(Y ), f̃1(Y ), g̃(Y ), eχ̃(Y ) for several flows with ρ = 1/12Q4
f .
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Figure 4. Plots of the dilaton φ(y) and the ten-dimensional Ricci scalar R10(y) in the string frame

for several solutions with ρ = 1/12Q4
f . In the lower panel, the continuous black curves correspond

to the HVL solution (at small y) and to the D2-brane solution (at large y), respectively.

using eq. (E.10) and the rescaled version of (E.7) and is given by

− E · L =
16π

27

Γ
(

3
4

)2
Γ
(

1
4

)2 ' 0.213 . (5.3)

This result, represented by the dotted horizontal line in figure 5, agrees perfectly with the

location of the plateau.

6 Thermodynamics

In this section we will study several thermodynamic properties of our system. First we

will compute the chemical potential, the equation of state and the speed of sound at zero

temperature. Then we will consider a small temperature and determine the entropy density.
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Figure 5. Dimensionless potential energy for an external quark-antiquark pair times the separation

distance, E · L, as a function of their dimensionless separation, L, for various geometries with

ρ = 1/12Q4
f . The dotted horizontal line corresponds to the value (5.3) at the AdS4 fixed point.

6.1 Chemical potential and equation of state

The chemical potential µ, conjugate to the quark density, is given by the work that is

necessary to take a unit of charge from the IR to the UV, namely by

µ =

∫ y=∞

y=0
A′t(y) dy . (6.1)

Using (4.32) and (4.36) this can be written in terms of the rescaled variables as

µ =
Qf

2π`2s
µ(ρ) =

λ

V2

Nf

Nc

µ(ρ) (6.2)

with

µ(ρ) =

∫ y=∞

y=0
dy
√
−GttGyy

eφG
−3/2
ΩΩ

(
ρ+ B

)√
G

2
xx + e2φG

−3
ΩΩ

(
ρ+ B

)2 . (6.3)

We see that we have again reduced the calculation for generic values of the several param-

eters of the theory to a calculation of a function of a single parameter ρ.

The result of evaluating the integral (6.3) numerically is plotted in figure 6. We see

that at small values of ρ the chemical potential scales as

µ ∼ ρ1/2 , i.e. µ ∼
N1/2

q

Nf

, (6.4)

whereas at large values of ρ we have

µ ∼ ρ1/3 , i.e. µ ∼
λ1/3N1/3

q

N
1/3
c N

1/3
f

. (6.5)

The exponents above can be understood as follows. In figure 7 we plot the integrand

of eq. (6.3) as a function of the compact radial coordinate Y defined in (4.40). We observe
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Figure 6. Dimensionless chemical potential (6.3) as a function of ρ. We show dashed lines with

behavior µ = 0.5 ρ1/2 at small ρ and µ ∼ 1.4 ρ1/3 at large ρ.
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Figure 7. Integrand of eq. (6.3) as a function of the compact radial coordinate for different values

of ρ. Notice the logarithmic scale on the vertical axis. For large (small) values of ρ the integrand

is mostly supported near the boundary (origin).

that the electric field A′t has support in different regions of the geometry depending on the

value of ρ. In particular, we see that for large or small values of ρ it is mostly supported in

the far UV or the deep IR, respectively (note the logarithmic scale on the vertical axis). To

illustrate this point further, in figures 8 and 9 we have superimposed the dilaton and the A′t
profiles, as functions of the non-compact radial coordinate y, for our largest and smallest

available values of ρ respectively. In the first case we see that the electric field is peaked at

a scale much higher than the scale Ucharge at which the dilaton profile turns around (note

the logarithmic scale on the horizontal axis). In the second case we see that A′t is peaked

around the scale Ucross at which the geometry transitions between HVL and AdS4, and

has very little support in the region connecting AdS4 and the D2-brane geometry. These

observations suggest that we can estimate the chemical potential as follows.
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Figure 8. Integrand of eq. (6.3) (blue dotted curve) and radial profile of the dilaton (gray dashed

curve) as a function of the radial coordinate y, for a large value of ρ = 1/12Q4
f . The turning point

of the dilaton takes place at a radial position dual to the energy scale Ucharge.
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Figure 9. Integrand of eq. (6.3) (orange continuous curve) and radial profile of the dilaton (gray

dashed curve) as a function of the radial coordinate y, for a small value of ρ = 1/12Q4
f . The radial

position at which A′t is peaked is dual to the energy scale Ucross.

In the case of large ρ we can approximate the integral in (6.3) by the corresponding

integral in the UV region in which the geometry is that of the D2-branes:

µ '
∫ ∞
`2s Ucharge

√
−GttGyy

eφG
−3/2
ΩΩ ρ√

G
2
xx + e2φG

−3
ΩΩρ

2

dy + · · · , (6.6)

where the dots stand for ρ-subleading corrections that include flavor effects near y =

`2s Ucharge where A′t is still small. Performing the integral (6.6) in the background (2.2) we get

µ '
Γ
(

1
6

)
Γ
(

1
3

)
6
√
π

ρ1/3 ' 1.4 ρ1/3 . (6.7)
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Note that not just the 1/3 exponent but the numerical 1.4 prefactor agree with the numer-

ical fit in figure 6. This result coincides with the one obtained in the probe approxima-

tion [30], where one considers a single D6-brane in the background of a stack of D2-branes,

with the probe brane wrapping an S3 ⊂ S6. From our discussion in section 3 we know that

the probe approximation fails to describe correctly the IR physics of the theory, but it is

reliable in the UV. This presumably explains the agreement with our result (6.7), since in

the large-ρ limit the dominant contribution to the chemical potential comes from the UV

part of the geometry.

In the opposite limit, ρ → 0, the dominant contribution to the chemical potential

comes from the region between the AdS4 fixed point and the HVL geometry. Since Nq is

the only scale from the viewpoint of this fixed point, this means that the chemical potential

is constrained by dimensional analysis to take the form

µ ∼M(Nf, Nc)N
1/2
q i.e. µ ∼ ρ1/2 . (6.8)

The prefactor M goes as M ∼ N−1
f from our result (6.4), which is a consequence of the

scaling of the system discussed in section 4.2. The contribution (6.8) is indeed dominant

with respect to that of the region between the AdS4 and the D2-brane geometries. To see

this, we note that the asymptotic form (C.5) of B, together with the rescalings of section 4.2,

imply that B ∼ ρ at small ρ. It then follows from eq. (6.3) that the contribution to µ from

the region between the AdS4 and the D2-brane geometries is linear in ρ.

The scalings in (6.4) and (6.5) can be understood in the light of the anomalous charge

density scaling introduced in [31], which characterizes the scaling dimension of the chemical

potential and charge density (we follow the notation of [32], see also [33])

[µ] = z − Φ , [Nq] = d− θ − Φ . (6.9)

The new exponent Φ is not just a property of the IR geometry, like the z and θ expo-

nents, but a dynamically-selected one. With the scaling given above one expects a zero

temperature behavior given by

µ ∼ N
z−Φ
d−θ−Φ

q . (6.10)

For (6.4) we have argued that the relevant contribution to the result is given by the DBI

part of the action in the AdS4 geometry, for which z = 1 and θ = 0. According to [32]

a U(1) field in the DBI action in this type of geometry has a vanishing anomalous charge

exponent, Φ = 0, and the result (6.4) follows from (6.10). In the opposite ρ� 1 limit the

relevant geometry is the D2-brane one, with z = 1 and θ = −1/3. From section 4.3 in [32]

in this case the DBI action gives an anomalous exponent Φ = 1/3, and (6.10) leads to the

scaling shown in eq. (6.5).

With the results (6.4) and (6.5) in hand we now turn to the equation of state. We recall

that the grand canonical potential Ω = Ω(T, µ) is equal to minus the pressure, Ω = −p,
and obeys

dΩ = −s dT −Nqdµ . (6.11)
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In contrast, the energy density is naturally a function ε(s,Nq) and obeys the first law of

thermodynamics

dε = T ds+ µ dNq . (6.12)

At zero temperature this relations imply that

dp

dε
=
Nq

µ

dµ

dNq
=
ρ

µ

dµ

dρ
=
ρ

µ

dµ

dρ
. (6.13)

Consequently, for small values of ρ we find ε = 2p, while for large values we get ε =

3p + const. We thus see that the speed of sound, c2
s = dp/dε, varies from the conformal

value c2
s = 1/2 at small ρ to c2

s = 1/3 at large ρ.

The fact that the chemical potential is a monotonically increasing function of the

charge density, i.e. that
∂µ

∂ρ
> 0 , (6.14)

indicates that the system is locally thermodynamically stable against charge fluctuations.

6.2 Entropy density at low temperature and IR degrees of freedom

We have seen that the IR geometry is always an HVL metric with fixed exponents z, θ

regardless of the values of λ,Nc, Nf and Nq that define the theory. This symmetry implies

that the entropy density at low temperatures must scale as in (1.8). However, the pro-

portionality coefficient in this equation, which measures the number of low-energy degrees

of freedom in the theory, does depend on λ,Nc, Nf and Nq. Following section 3.4 of [17],

in this section we will determine this dependence analytically for flows with very large or

very small ρ, and numerically for the rest of them. In the equations below we will omit

factors of `s, since they can be simply reinstated by dimensional analysis, as well as purely

numerical factors, since we are only interested in the parametric dependence of the entropy

density on λ,Nc, Nf and Nq.

It is straightforward to construct the non-zero-temperature generalization of the HVL

solution (2.8), which is a black hole with horizon radius rH whose explicit form is given in

section 3.2 of [17]. With this solution in hand one can compute the entropy density at low

temperature from the area of the horizon. The result is

s ∼ N2
c

λ3/2
U

7/2
T , (6.15)

with UT the scale associated to the radius of the horizon via the relation (2.13). The

temperature is obtained from the Einstein-frame metric, GE, as

T ∼ ∂r(−GE
tt)√

−GE
ttG

E
rr

∣∣∣∣∣
r→rH

∼
√
Ct Nc U

35/2
T

λ43/10N
1/2
q

. (6.16)

Using (6.16) to eliminate UT and substituting in (6.15) we find

s ∼ C−1/10
t λ−16/25N2

c

(
Nq

N2
c

)1/10

T 1/5 . (6.17)
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It is crucial to note that the temperature is computed with respect to a time coordinate

t that is continuous along the flow and is normalized in the UV as in eq. (2.2). In general,

this normalization differs by a rescaling from our (arbitrary) normalization of the coordinate

that appears in the IR metric (2.8), which we will denote here as tIR. Thus we have

t =
1√
Ct

tIR . (6.18)

This is the origin of the
√
Ct factor in (6.16).

To determine Ct we approximate it by its value in the zero-temperature solutions

presented in section 4.3, which is accurate for low temperature. This means that we read

Ct numerically by fitting the IR behavior shown in eq. (C.6b), where we have anticipated

our approximation by naming the arbitrary constant with the same name as in (6.18). In

particular, from our numerics we can determine the ρ-dependence of the constant Ct up to

an overall normalization. To determine this normalization we can study how the scalings

in section 4.2 affect eq. (C.6b). This exercise shows that, since the function f1 is scale

invariant, Ct must take the form

Ct(λ,Nc, Nf, Nq) =
Q4/15

c

Q
16/3
st Q

20/3
f

Ct(ρ) . (6.19)

We have to complement the argument with a physical input that we will confirm below with

an independent calculation: since in the limit ρ → ∞ the effects of flavor are suppressed

everywhere along the flow, in this limit the entropy density must become Nf-independent.

For the r.h.s. of (6.19) to be Nf-independent we must have

lim
ρ→∞

Ct(ρ) ∼ ρ−5/3 i.e. lim
ρ→∞

Ct(λ,Nc, Nf, Nq) ∼ N14
c

N7
q λ

42/5
. (6.20)

Therefore, we can write

Ct ∼
N14

c

N7
q λ

42/5
T (ρ) , (6.21)

where we are omitting purely numerical factors and T is a dimensionless function satisfying

the condition limρ→∞ T = 1. We present this function, obtained from the numerical

solutions at zero temperature, in figure 10. With this result in hand we can write the

entropy density in terms of the ρ-dependent quantity T as

s ∼ N2/5
c N4/5

q λ1/5 T 1/5 T (ρ) . (6.22)

The behavior in eq. (6.20) can be determined independently by requiring that the

norm of ∂t be continuous across the different transition scales, i.e. by imposing that the

time components of the UV and the IR metrics be related through (6.18) at the transition

scales. For flows with very large ρ that transition directly from the D2 geometry to the

HVL geometry we must demand continuity at Ucharge. This exercise was done in [17] with

the result shown in (6.20).

Using this strategy we can understand analytically also the 1/ρ behavior at small

values of ρ shown in figure 10. In this limit the flow goes through an intermediate AdS
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Figure 10. The dimensionless function T (ρ) that enters the expression for the entropy density at

low temperature, eq. (6.22). The dashed lines correspond to 1 and a 1/ρ behavior.

region, and in principle one must demand continuity of Ct across the two transition scales

Uflavor and Ucross. However, the normalization of the time coordinate is parametrically the

same in the D2 and in the AdS solutions, so it suffices to require continuity across Ucross.

This results in

lim
ρ→0

Ct ∼
N14

c

N7
q λ

42/5

1

ρ
i.e. lim

ρ→0
T ∼ 1

ρ
, (6.23)

and thus

lim
ρ→0

s ∼
N3/5

c N9/10
q

N
2/5
f

T 1/5 . (6.24)

From this behavior we observe that the number of IR degrees of freedom decreases

with increasing Nf as s ∼ N
−2/5
f . One possible explanation for this behavior is that, as

Nf grows larger, the flow remains close to the AdS fixed point for a longer range of length

scales, meaning that more degrees of freedom are integrated out before the flow finally

reaches the HVL regime.

7 Massive quarks

The qualitative behavior of the theory in the presence of a non-zero quark mass, Mq, can

be understood rather straightforwardly. This new scale in the gauge theory translates into

a new radial position on the gravity side given by [15]

uM = 2π`2sMq . (7.1)

The dynamics now depends non-trivially not only on ρ but also on the dimensionless ratio

between Mq and the flavor scale (1.6):

m ≡ Mq

Uflavor

. (7.2)
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(B.1)

(A)

(B.2)

(B.3)

1

1

ρ

m

Figure 11. Qualitatively different classes of solutions in the presence of charge and massive quarks

as a function of the dimensionless parameters ρ and m measuring the charge and the mass, respec-

tively. The black square at the bottom left-hand corner represents the RG flow between the SYM

and the CSM theories in the theory with massless quarks and no charge.

In the absence of charge the full solution for all values of m was found in [15]. The

qualitative physics can be simply understood by noticing that at energies below the quark

mass the quarks decouple from the dynamics. On the gravity side this means that at radial

positions below uM the geometry is again given by the unflavored D2-brane geometry (albeit

with renormalized parameters). Thus, if m > 1, the quarks decouple from the theory before

they can have a significant effect and the geometry is essentially given by the D2-brane

geometry everywhere. In contrast, if m < 1, then the theory exhibits quasi-conformal

dynamics at energies Mq < U < Uflavor. On the gravity side, the solution is given by the

D2-brane geometry everywhere except for an approximate AdS4 region between the radial

positions uM < u < uflavor.

Consider now the theory in the presence of charge and massive quarks. Depending on

the values of ρ and m there are four qualitative classes of flows, represented in figure 11,

corresponding to the following situations:

(A) If m > 1 then the quarks decouple before they can have a significant effect on the

dynamics, so the latter is qualitatively that of the unflavored theory with charge. The

geometry is therefore well approximated by that of ref. [17], which corresponds to

infinitely massive quarks.

(B) For m < 1 we have to differentiate three cases, depending on the ordering of {m, ρ, 1}.

(B.1) If m < 1 < ρ, eqs. (1.7) and (7.2) imply that Mq < Ucharge. Since ρ > 1 we are

in the regime in which the charge density dominates the geometry, and since

Mq < Ucharge the quarks decouple at a scale below the relevant scale Ucharge. In

other words, the quarks behave as effectively massless and the geometry is well

approximated by that associated to the vertical line on the left-hand side of

figure 1.
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(B.2) For m < ρ < 1, eqs. (1.7), (1.10) and (7.2) imply that Mq < Ucross. Since ρ < 1

we are in the regime in which the flow is close to the right-hand side of the

triangle of figure 1, and since Mq < Ucross the quarks decouple at a scale below

the lowest relevant scale Ucross. In other words, the quarks behave as effectively

massless and the geometry is well approximated by one of the flows with an

intermediate AdS4 region on the right-hand side of figure 1.

(B.3) Finally, consider the case in which ρ < m < 1 in such a way that Ucross < Mq <

Uflavor. The flow starts off in the UV with the D2-brane geometry, exhibits an

AdS4 region at energy scales Mq < U < Uflavor, becomes again well approximated

by the D2-brane geometry at energy scales U ′cross < U < Mq, and finally enters

a charge-dominated HVL region at energies U < U ′cross. The coupling constant

in the second D2 region is renormalized with respect to the UV coupling due to

the integrating out of the quarks and (omitting some purely numerical factors)

is given by [15]

λ′ ∼
(

1 +
1

m

)
λ . (7.3)

Correspondingly, the scale U ′cross is given by (1.4) with the replacement λ→ λ′,

i.e.

U ′cross ∼
√
λ′
(
Nq

N2
c

)1/4

∼M1/2
q

(
Nq

N2
f

)1/4

, (7.4)

where the last expression is valid if m is sufficiently smaller than 1.
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A Supergravity with sources

In this appendix we will derive the equations of motion that we have solved in the main

part of the paper. Our starting point is the type IIA supergravity action. This is the sum

of a Neveu-Schwarz (NS) and a Ramond-Ramond (RR) sector,

SIIA = SNS + SRR , (A.1)

respectively given by

SNS =
1

2κ2

∫
e−2φ

(
R ∗ 1 + 4 dφ ∧ ∗dφ− 1

2
H ∧ ∗H

)
, (A.2a)

SRR =
1

2κ2

1

2

∫
(−G2 ∧ ∗G2 −G4 ∧ ∗G4 +H ∧ C3 ∧ dC3) , (A.2b)

where the field strengths are defined as

G2 = dC1 , G4 = dC3 −H ∧ C1 , H = dB . (A.3)

The equations of motion that follow from this action for the NS and RR forms are

d ∗G2 = −H ∧ ∗G4 , (A.4a)

d ∗G4 = −H ∧G4 , (A.4b)

d
(
e−2φ ∗H

)
= G2 ∧ ∗G4 +

1

2
G4 ∧G4 . (A.4c)

Note that in order to write the topological G4 ∧G4 term in the last equation in this form

one must use (A.4b).

We will now consider the addition of electric and magnetic sources for C1 and C3. For

this purpose it is convenient to use the so-called ‘democratic formulation’ [34] in which

the Hodge duals of these potentials are treated as independent fields, thus making all

the sources purely electric and hence mutually independent. The democratic formulation

provides a pseudo-action instead of an action in the sense that the duality relations between

Hodge potentials must be imposed by hand after obtaining the equations of motion. In

this formulation the RR part of the action is replaced by

Sdemocratic
RR =

1

2κ2

1

2

∫ (
−1

2
G2 ∧ ∗G2 −

1

2
G4 ∧ ∗G4 −

1

2
G6 ∧ ∗G6 −

1

2
G8 ∧ ∗G8

)
, (A.5)

where the extra factors of 1/2 account for the doubling of the degrees of freedom. The field

strengths are defined as

Gn = dCn−1 −H ∧ Cn−3 (A.6)

with n = 2, 4, 6, 8 and C−1 = 0. The equations of motion that follow from the new pseudo-

action for the RR fields are

d ∗G8 = 0 , (A.7a)

d ∗G6 = −H ∧ ∗G8 , (A.7b)

d ∗G4 = −H ∧ ∗G6 , (A.7c)

d ∗G2 = −H ∧ ∗G4 , (A.7d)
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whereas the equation for the H-field is

d
(
e−2φ ∗H

)
=

1

2
d
(
C1 ∧ ∗G4 + C3 ∧ ∗G6 + C5 ∧ ∗G8

)
=

1

2
G2 ∧ ∗G4 +

1

2
G4 ∧ ∗G6 +

1

2
G6 ∧ ∗G8 . (A.8)

Note that in order to obtain this last equation one must make use of (A.7). The duality

equations that must be imposed after the equations of motion have been obtained are

G8 = ∗G2 G6 = − ∗G4 , (A.9)

where ∗∗ = −1 for even forms. By means of these duality relations one may turn the

equations of motion (A.7) into the set of Bianchi identities

dGn = H ∧Gn−2 , (A.10)

which are explicitly solved by the definitions (A.6) in terms of gauge potentials.

We now consider the addition of smeared D6-branes with an arbitrary worldvolume

gauge field turned on. The action for the D6-branes is the sum of a Dirac-Born-Infeld

(DBI) term and a Wess-Zumino (WZ) term:

SD6 = SDBI + SWZ . (A.11)

In the following we will only need the explicit form of the WZ term:

SWZ =
1

2κ2

∫
1

2

(
C7 − C5 ∧ F +

1

2
C3 ∧ F ∧ F −

1

6
C1 ∧ F ∧ F ∧ F

)
∧ Γ . (A.12)

As above, the overall factor of 1/2 is due to the doubling of degrees of freedom. We

have absorbed the brane tension in the definition of Γ, which is a closed three-form that

characterizes the distribution of D6-branes in the codimension-three space transverse to

them. For example, for a single brane located at a particular point, specified by three

coordinates ζD6, one would have

Γ ∼ δ3(ζ − ζD6) dζ1 ∧ dζ2 ∧ dζ3 . (A.13)

The field strength appearing in the WZ action is

F = B + 2π`2s dA , (A.14)

where A is the Born-Infeld field living on the worldvolume of the D6-branes, and it satisfies

the Bianchi identity

dF = H . (A.15)

The WZ term acts as a source for both the RR fields and the H-field, and hence it

modifies their equations of motion. For the RR fields, we will see that, through the duality

relations, this also leads to a modification of their Bianchi identities, and therefore to a

modification of their very definition in terms of gauge potentials. For this reason we write
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the modified equations of motion in terms of new RR field strengths that we denote Fn.

The equations for these RR fields read

d ∗ F8 = Γ , (A.16a)

d ∗ F6 = −H ∧ ∗F8 −F ∧ Γ , (A.16b)

d ∗ F4 = −H ∧ ∗F6 +
1

2
F ∧ F ∧ Γ , (A.16c)

d ∗ F2 = −H ∧ ∗F4 −
1

6
F ∧ F ∧ F ∧ Γ . (A.16d)

Apart from the change of notation Gn → Fn, these are just equations (A.7) augmented

with the extra source terms coming from the variation of (A.12). We now see that in order

to impose duality relations analogous to (A.9), namely

F8 = ∗F2 F6 = − ∗ F4 , (A.17)

we must modify the definitions of the RR field strengths with respect to those in (A.6).

For example, upon use of (A.17), the first equation in (A.16) reads

dF2 = −Γ , (A.18)

which is obviously incompatible with F2 = dC1. This problem is familiar from electro-

magnetism when both electric and magnetic sources are simultaneously present. In such a

situation, in order to be able to define a gauge potential, one must modify the definition of

the electric and magnetic fields in terms of this potential. In our case, the set of Bianchi

identities that is obtained by using (A.17) in (A.16) is solved by the definitions

F2 = G2 + γ , (A.19a)

F4 = G4 + F ∧ γ , (A.19b)

F6 = G6 +
1

2
F ∧ F ∧ γ , (A.19c)

F8 = G8 +
1

6
F ∧ F ∧ F ∧ γ , (A.19d)

where Gn are defined as in (A.6) and γ is a two-form satisfying

dγ = −Γ . (A.20)

Note that γ always exists locally because Γ is closed.

The equation of motion for H is (A.8) augmented by contributions from both the D6-

brane action and the definitions (A.19). Upon the replacement Gn → Fn in the action,

and taking into account the DBI and WZ terms this equation is now

d
(
e−2φ ∗H

)
=

1

2
d (C1 ∧ ∗F4 + C3 ∧ ∗F6 + C5 ∧ ∗F8) (A.21)

+
1

2

(
∗F4 + F ∧ ∗F6 +

1

2
F ∧ F ∧ ∗F8

)
∧ γ

+
1

2

(
C5 −F ∧ C3 +

1

2
F ∧ F ∧ C1

)
∧ Γ

+ DBI-terms.
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Using (A.19) and the equations of motion (A.16), the equation for the H-field can be simply

written as

d
(
e−2φ ∗H

)
=

1

2
F2 ∧ ∗F4 +

1

2
F4 ∧ ∗F6 +

1

2
F6 ∧ ∗F8

+ DBI-terms . (A.22)

It is possible to write down the RR part of the supergravity action and the WZ term of

the D6-brane action directly in terms of the modified field strengths Fn. In the democratic

formulation these are given by

Sdemocratic
RR = − 1

2κ2

1

2

∫ (
1

2
F2 ∧ ∗F2 +

1

2
F4 ∧ ∗F4 +

1

2
F6 ∧ ∗F6 −

1

2
F8 ∧ ∗F8

)
, (A.23)

SWZ = − 1

2κ2

1

2

∫ (
F8 − F6 ∧ F +

1

2
F4 ∧ F ∧ F −

1

6
F2 ∧ F ∧ F ∧ F

)
∧ γ . (A.24)

We finally return to the non-democratic formulation and note that, in the presence of

sources, the RR part of the supergravity action and the WZ term of the D6-brane action

can be written directly in terms of the modified field strengths F2 and F4 alone:

SRR = − 1

2κ2

1

2

∫ (
F2 ∧ ∗F2 + F4 ∧ ∗F4 −

1

2
H ∧ C3 ∧ dC3

)
, (A.25)

SWZ = − 1

2κ2

∫ (
1

2
F4 ∧ F ∧ F −

1

6
F2 ∧ F ∧ F ∧ F −

1

6
F ∧ F ∧ F ∧ γ

)
∧ γ . (A.26)

By varying the resulting complete action with respect to the dilaton, the metric and the

RR and NS potentials, one obtains complete set of equations that we have solved in this

paper and which we collect here. The equations of motion for the RR and NS forms are

d ∗ F4 = −H ∧ F4 +
1

2
F ∧ F ∧ Γ , (A.27a)

d ∗ F2 = −H ∧ ∗F4 −
1

6
F ∧ F ∧ F ∧ Γ , (A.27b)

d
(
e−2φ ∗H

)
= F2 ∧ ∗F4 +

1

2
F4 ∧ F4 + DBI-term . (A.27c)

Since the gauge field A living in the worldvolume of the D6-branes can be seen as a

Stückelberg vector field for the NS two-form B, the equation of motion for A follows from

the equation of motion for B and it takes the form

d

[
F2 ∧ ∗F4 +

1

2
F4 ∧ F4 + DBI-terms

]
= 0 . (A.28)

The equation of motion for the dilaton is given by

R ∗ 1 + 4d ∗ dφ− 6dφ ∧ ∗dφ− 1

2
H ∧ ∗H + DBI-terms = 0 (A.29)

Finally, the Einstein equations read

Rµν = −2∇µ∇νφ+
1

4
HµρσHν

ρσ (A.30)

+ e2φ

[
1

2
(F2)µρ (F2)ν

ρ +
1

12
(F4)µρσα (F4)ν

ρσα − 1

4
Gµν (F2yF2 + F4yF4)

]
+ DBI-terms ,
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where for any two n-forms ω, ξ we have defined

ωyξ =
1

n!
ωM1...Mnξ

M1...Mn . (A.31)

In the bulk of the paper we have written

Γ = 2κ2 TD6 Ξ , γ = Qf J . (A.32)

B Equations of motion

In this section we will write down explicitly the full set of equations of motion for the

overlined variables introduced in section 4.2. Eq. (4.24) for the time component of the U(1)

vector field takes the form (4.36) in terms of these variables. This could be substituted

in the remaining equations to eliminate the dependence on A′t. However, we will follow

the alternative route of eliminating A′t at the level of the action by performing a Legendre

transform that modifies the contribution of the sources in (4.1) to

Ssources−
∫
∂Ssources

∂A′t
A′t = − Q

5
f

2κ2

∫
e−φG

−3/2
ΩΩ

√√√√1 +

(
eφ(ρ+ B)

GxxG
3/2
ΩΩ

)2

∗1+TD6

∫
C7∧Ξ . (B.1)

To arrive at (B.1) we have explicitly used the fact that the NSNS form vanishes, B = 0.

Otherwise there would be an extra term proportional to Byt, coming from the coupling in

the WZ part of the D6-action between B and and the worldvolume gauge field, A. In our

case it is consistent to set B = 0 in the action at this stage because the sourcing due to

the strings has already been taken into consideration explicitly.

After elimination of A′t, the equations of motion take the following form. The equation

for the function B appearing in the RR fluxes is

∂y

(√
−Gtt
Gyy

B′

Gxx

)
− 12

√
−GttGyy
GxxGΩΩ

B −
3 eφ

√
−GttGyy (ρ+ B)√

G2
xxG

3
ΩΩ + e2φ (ρ+ B)2

= 0 . (B.2)

The dilaton equation of motion becomes

0 = φ′′ + log′

[
e−2φ

√
−GttGxxG3

ΩΩ√
Gyy

]
φ′ +

e2φ B′2

G2
xxG

3
ΩΩ

+
1

2
F1,−9,−3,3(y) (B.3)

− 3 eφ
Gyy

(
3G2

xxG
3
ΩΩ + 2 e2φ (ρ+ B)2

)
GxxG3

ΩΩ

√
G2
xxG

3
ΩΩ + e2φ (ρ+ B)2

,

where for notational convenience we have defined

FA,B,C,D(y) = e2φ Gyy
2G2

xxG
6
ΩΩ

[
G2
xx

(
A+BG4

ΩΩ

)
+ 16G2

ΩΩ

(
9C ρ2G4

ΩΩ +DB2
) ]
. (B.4)
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Finally, Einstein equations reduce to the following set of second order differential equations

0 = G′′tt + log′

[
e−2φ GxxG

3
ΩΩ√

−GttGyy

]
G′tt +

(
2 e2φ B′2

G2
xxG

3
ΩΩ

−F1,3,1,3(y)

)
Gtt (B.5a)

− 6 eφ
Gyy Gtt

(
G2
xxG

3
ΩΩ + 2 e2φ (ρ+ B)2

)
GxxG3

ΩΩ

√
G2
xxG

3
ΩΩ + e2φ (ρ+ B)2

,

0 = G′′xx + log′

[
e−2φ

√
−GttG3

ΩΩ√
Gyy

]
G′xx +

(
2 e2φ B′2

G2
xxG

3
ΩΩ

+ F−1,−3,1,3(y)

)
Gxx (B.5b)

− 6 eφ
Gyy G

2
xx√

G2
xxG

3
ΩΩ + e2φ (ρ+ B)2

,

0 = G′′ΩΩ + log′

[
e−2φ

√
−GttGxxG2

ΩΩ√
Gyy

]
G′ΩΩ + F1,−1,−1,1(y)GΩΩ − 10Gyy , (B.5c)

together with the first order constraint

0 = φ′ log′
[
e−φ
√
−GttGxxG3

ΩΩ

]
+ log′

[
G
−3/2
ΩΩ

]
log′

[√
−GttGxxG5/4

ΩΩ

]
(B.6)

+ log′
[
G−1/2
xx

]
log′

[√
−GttG1/4

xx

]
+

e2φ B′2

2G2
xxG

3
ΩΩ

+
15

2

Gyy
GΩΩ

− 1

4
F1,3,1,3(y)

− 3
eφGyy
GxxG3

ΩΩ

√
G2
xxG

3
ΩΩ + e2φ (ρ+ B)2 .

An effective one-dimensional Lagrangian giving rise to these equations of motion can be

derived from the constraint as

Leff = H −
∑
i

ψ′i
∂H

∂ψ′i
, (B.7)

with ψi running over all fields and H the r.h.s. of (B.6).

C Numerical construction of solutions

With the ansatz (4.38) the equation of motion for f2 can be solved algebraically with

the result

f2 =
e−4χf1 g

2(−1500e4χy8 + 50Z e6χy4 g + (e12χQ2
cQ

2
st + 75e8χQ2

f y
6 + 625y8 + 1200e4χy2B2)g2)

25y4(y5gf ′1(4yg′ − 7g) + f1(4g4B′2 + 38y5gg′ − 8y6g′2 + y4g2(−35− 6yχ′ + 12y2χ′2))))
,

(C.1)

where we have defined

Z2 = 144Q2
f y

6 + (QcQst + 12QfB)2g2 . (C.2)

The gauge field At on the D6-branes can be solved in terms of the other functions and is

given by

2πα′A′t =

√
f1

f2

eχ(QcQst + 12QfB)g

Z
. (C.3)
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The remaining functions obey the following set of four, coupled, second-order differential

equations

0 = B′′ + log′[
√
f1f2e

−χ]B′ − 12B
y2f2

−Qf

3 e2χ g (QcQst + 12QfB)

f2Z
,

0 = g′′ − g3B′2

2y6
+

1

2
log′

[
f2y

19/2

g4

]
− 7

8

g

y
log′[y5f2e

−20χ/7]−χ′ (ge
3χ/2)′

e3χ/2
+

15g

2y2f2
− g

2e2χZ
4y6f2

− g3 e−4χ

200 y10 f2
(625 y8 + 1200 y2 e4χB2 +Q2

cQ
2
st e

12χ + 75 y6Q2
f e

8χ)

0 = χ′′ − 1

2
log′

[
f1 f2

g4

]
log′[y1/4e−χ]− χ′2 − 5

4 y
log′[y e−5χ]− 5

y2f2

+
g2 e−4χ

100 y10 f2
(625 y8 + 400 y2 e4χB2 −Q2

cQ
2
st e

12χ − 25 y6Q2
f e

8χ)

0 = f ′′1 − f ′1 log′[y−29/4 f
1/2
1 eχ] +

(y5/2f1)′

2 y5/2
log′

[
f2

g4

]
− g f1 e

2χ

y6 f2Z
(
Z2 − 72Q2

f y
6
)
− 5 f1

2 y
χ′

− 2g2f1

y6
B′2+

25f1

2y2
− g

2f1e
−4χ

50y10f2
(625y8+1200y2e4χB2+Q2

cQ
2
ste

12χ+75y6Q2
f e

8χ) (C.4)

The boundary conditions that must be imposed are as follows. In the UV, as y →∞,

we demand that we have the asymptotic behavior given by

B =
Qc Qst

Qf

(
0− 1

40

Qf

y
+

41

400

Q2
f

y2
+ B3

Q3
f

y3
+ · · ·+ log

[
Qf

y

](
143

840

Q3
f

y3
+ · · ·

))
, (C.5a)

f1 = 1 + V1
Q5

f

y5
+ · · ·+ log

[
Qf

y

](
−143Q2

cQ
2
st

42000

Q2
f

y10
+ · · ·

)
, (C.5b)

g = 1− 13

10

Qf

y
+ · · ·+ V2

Q5
f

y5
+ · · ·+ log

[
Qf

y

](
−143Q2

cQ
2
st

120000

Q2
f

y10
+ · · ·

)
, (C.5c)

χ = 0− 17

30

Qf

y
+ · · ·+ V3

Q10
f

y10
+ · · ·+ log

[
Qf

y

](
5291Q2

cQ
2
st

2520000

Q2
f

y10
+ · · ·

)
, (C.5d)

The most important thing to notice is that this implies that the solution approaches the

D2-brane solution (2.2). The expansion (C.5) is specified by four dimensionless parameters

B3, V1, V2 and V3 holographically dual to the expectation values of the operators dual to

B, the stress tensor, TrF 2 and TrF 4 respectively.

In the IR, as y → 0, we demand that the fields approach their values in the HVL

solution (2.8). In the radial coordinate that we have chosen this implies the following
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expansion

B = CB y
∆3 − 3 · 52/3Qf

(14QcQst)1/3
y10/3 + · · · , (C.6a)

f1 = Ct

Q
16/3
st

Q
4/15
c

y20/3

(
1 +

1

11
(87 +

√
793)c1 y

∆1 +
1

11
(87−

√
793)c2 y

∆2 + · · ·
)
, (C.6b)

g =
51/6142/3

111/2(QcQst)1/3
y4/3

(
1+

1

22
(21+

√
793)c1y

∆1 +
1

22
(21−

√
793)c2y

∆2 + · · ·
)
, (C.6c)

eχ =
101/3

(7QcQst)1/6
y2/3

(
1 + c1 y

∆1 + c2 y
∆2 + · · ·

)
. (C.6d)

where we have reabsorbed a purely numeric factor in Ct with respect to the one in (2.8) and

∆1 =
5

6

(
−3 +

√
3

11
(381− 4

√
793)

)
(C.7)

∆2 =
5

6

(
−3 +

√
3

11
(381 + 4

√
793)

)
(C.8)

∆3 =
5

6

(
−1 +

√
149

5

)
. (C.9)

Note that the IR expansion is completely determined in terms of four constants c1, c2, Ct

and CB.

The modes labelled by the powers ∆1,2 arise from the fluctuations of the metric and

the dilaton, and have appeared already in [17]. There it is explained that there exist

companion modes dual to relevant deformations (which we set to vanish in our solutions),

characterized by powers ∆̃1,2 satisfying the relation

∆1,2 + ∆̃1,2 = −5

6
(p+ z − θ) (C.10)

with p = 2, z = 5 and θ = 1 in our case. The factor 5/6 appears because we work with the

y radial coordinate, in which the metric does not take the standard HV-Lifshitz form given

in eq. (1.1). In [17] it is shown that there is an additional deformation of the metric due

to the possibility of adding a temperature to the system. We have set it to zero to ensure

that the system remains at zero temperature. The third power in the IR expansion, ∆3,

appears only for the fluctuation of the function B, and comes accompanied by a relevant

deformation (which we set to zero) with a power ∆̃3 satisfying the relation

∆3 + ∆̃3 = −5

6
(p+ z − θ − 4) (C.11)

as this function corresponds to a two-form in Minkowski spacetime (see eq. (4.15)).

D Spectrum of fluctuations around AdS4

In this appendix we will compute the spectrum of fluctuations around the AdS4 fixed point

present in figure 1. Using the standard AdS/CFT dictionary this will allow us to find the

dimension of the dual operators in the gauge theory.
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The internal geometries we considered admit a NK structure, which is a particular

instance of SU(3) structure in six dimensions. Reduction of massive type IIA supergravity

on this type of manifolds was considered in [35] and gives rise to an N = 2 supergravity

in four dimensions. When Romans’ mass is non-vanishing, this supergravity admits the

N = 1 AdS solution first found in [36, 37]. If furthermore one allows for explicit (smeared)

D6-brane sources then a new AdS vacuum exists: the IR fixed point in the flows of [15]

represented by one of the vertices in figure 1. In the following we will compute the spectrum

of fluctuations around this solution.

In order to respect the NK structure, we have to expand the supergravity fields using

the globally defined forms. For instance, the NS-form is expanded as

B = b2 + b0 J , (D.1)

which implies

H = db2 + db0 ∧ J + 3 b0 Im Ω , (D.2)

where b0 and b2 are respectively a scalar and a two-form living in the four-dimensional

external spacetime. Similarly, the RR one and three-form potentials take the form

C1 = ã1 ,

C3 = a3 + a1 ∧ J + a0 Im Ω + ã0 Re Ω , (D.3)

where again ai and ãi are i-forms in four dimensions. Notice that three-forms like a3 are

non-dynamical in four dimensions and should eventually be dualized to a constant. Up to

this point the ansatz coincides with the one in [35] (which in addition considered a non-

vanishing Romans’ mass). However, in our case the explicit sources modify the Bianchi

identities and induce new couplings in the reduced action. We then choose to solve the

Bianchi identities as6

F2 = dC1 +Qf J ,

F4 = dC3 + F ∧ F2 , (D.5)

where F = 2π`2s dA + B, with A denoting the gauge field on the D6-branes. Since there

is no globally-defined one-form in our construction, the gauge field on the branes will not

have internal components. The final piece of the ansatz is the metric in string frame,

which reads

ds2
string = e

φ
2
(
e−6U ds2

4 + e2U ds2
6 (NK)

)
(D.6)

where the dilaton φ is assumed to depend only on the external coordinates ds2
4. The internal

metric ds2
6 is that of a nearly Kähler manifold normalized to have curvature RNK = 30, and

we have tuned the factors so that the reduced action is in Einstein frame.
6This choice is different from that used in appendix A, since it is more convenient for the dimensional

reduction. Of course, the two choices are related by a gauge transformation given by

Cthere
3 = Chere

3 + F ∧ C1 . (D.4)
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The properties of the globally defined forms, in particular closure of the set of forms

under exterior derivative, wedging and Hodge duality, ensures that the ansatz is consistent

and one can reduce the equations of motion to a four-dimensional system. We begin by

analyzing the scalar-plus-gravity sector of this system, which can be described by the

action7

Sscalar =
1

2κ2
4

∫ [
R ∗ 1− 24 dU ∧ ∗dU − 1

2
dφ ∧ ∗dφ− 3

2
e−4U−φdb0 ∧ ∗db0

−2 e−6U+φ
2 dã0 ∧ ∗dã0 − V ∗ 1

]
, (D.7)

with a potential

V =
1

2
e−18U−φ

2
(
12 b0 ã0 + 3Qfb

2
0 −Qc

)2
+ 6 e−14U+φ

2 (2ã0 +Qfb0)2

+
3

2
Q2

f e
−10U+ 3

2
φ − 30 e−8U + 18 b20e

−12U−φ + 12Qfe
−9U+ 3

4
φ . (D.8)

The potential in [35] for vanishing Romans’ mass can be recovered by setting Qf = 0 to

zero. Another known limit is to fix b0 = ã0 = 0 so that the potential in [15] is reproduced

with the appropriate change of variables. The constant parameter Qc, proportional to the

number of color branes, is roughly the Hodge dual of the three-form a3.

This potential admits an AdS vacuum solution preserving N = 1 at the values of the

scalars

e4U+φ =
1

9

Qc

Qf

, ã0 = 0 ,

e−6U+φ
2 =

9

4

1

Qc Qf

, b0 = 0 ,

(D.9)

which is the IR fixed point in the RG flows of [15] and one of the vertices in figure 1. The

radius of this solution is

L =
4

9
√

3

(
Q3

cQf

) 1
4 . (D.10)

It is now straightforward to compute the spectrum of fluctuations around this fixed point,

together with the dimension of the dual operator in the CFT, with the result summarized

in table 1.

In the flow from three-dimensional SYM to a CSM theory found in [15], the IR fixed

point is approached along the irrelevant directions corresponding to the operators of di-

mensions ∆ = 6 and ∆ = 11/3. These scalar operators are also the only ones active in

the charged flows presented in the bulk of the paper. As explained in section 4.3, the fact

that there are no relevant operators turned on at the AdS4 fixed point is an important

consistency condition.

Finding the spectrum of vectors is more involved because several dualizations are

needed. We start with the action for the vectors at quadratic order, which is all we need

7The scalar a0 in (D.3) is axionic in nature, its only coupling being a Stückelberg one to a vector. It will

therefore be considered together with the vector fluctuations. Likewise, the two-form b2 could be dualized

to a scalar. This also leads to a Stückelberg coupling to another vector and we thus postpone the discussion.
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Mass Eigenstate m2L2 ∆

36 δU + δφ 18 6

2 δã0 − 3Qf δb0 10 5

4 δU − 3 δφ 22
9

11
3

δã0 + 2Qf δb0 −8
9

8
3

Table 1. Spectrum of scalars around the supersymmetric AdS4 solution.

for the study of the spectrum:

Svector =
1

2κ2
4

∫ [
−1

2
e12U−φdb2 ∧ ∗db2 −

3

2
e2U+φ

2 f2 ∧ ∗f2 −
1

2
e6U+ 3

2
φdã1 ∧ ∗dã1

−2e−6U+φ
2 Da0 ∧ ∗Da0 − 6Qf e

3U−φ
4F2 ∧ ∗F2 −Qc ã1 ∧ db2

]
, (D.11)

where the scalars are to be understood as taking the values in (D.9) and we have defined

the field strengths

Da0 = da0 − 3 a1 , F2 = 2π`2s dA+ b2 , f2 = da1 +QfF2 . (D.12)

The kinetic term for F2 descends from the (smeared) DBI action for the D6-branes ex-

panded to quadratic order in the fluctuations. The last term is topological but plays an

important role in the diagonalization. The first step is to get rid of the would-be mass

terms for b2 contained in f2 and F2, which is achieved by dualizing A to a new vector Ã.

Let us define 2π`2s dA = H2 and H̃2 = dÃ and add to the action the total derivative

Qc

2κ2
4

∫
H2 ∧ H̃2 . (D.13)

Varying with respect to H2 and substituting back the result we obtain an action that

depends on b2 only through derivatives

Svector =
1

2κ2
4

∫ [
−1

2
e12U−φdb2 ∧ ∗db2 +Qc db2 ∧

(
ã1 + Ã

)
+ . . .

]
. (D.14)

This is now suitable for dualization of the two-form to a scalar. This results in a Stückelberg

coupling precisely to the combination ã1 + Ã, which in this way becomes massive. The

resulting spectrum is displayed in table 2. There are in addition two axionic scalars, a0 and

the dual to b2, that are of course massless. It can be seen that the vector corresponding to

the dimension ∆ = 4 operator is switched on in our flows, whereas the one corresponding

to the ∆ = 5 vector operator is turned off by our choice of b2 = 0.
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Mass Eigenstate m2L2 ∆

δã1 + δÃ 12 5

δa1 6 4

δã1 − 3 δÃ 0 2

Table 2. Spectrum of vectors around the supersymmetric AdS4 solution.

E Calculation of the Wilson loop

A natural observable to study is the Wilson loop. We perform a simple calculation for a

time invariant configuration of two external sources placed at the boundary, separated by

a distance L, and a string hanging between them in the bulk. We choose a parametrization

on the world-sheet by coordinates σ and τ . The string world-sheet in the bulk is then given

by an embedding XM (σ, τ) and the Nambu-Goto action is

SNG =
1

2π`2s

∫
C

dσ dτ
√

det
ab

(GMN∂aXM∂bXN ) . (E.1)

We choose

t = τ , x = σ , y = y(σ) ≡ y(x) (E.2)

and we obtain the following action

SNG =
1

2π`2s

∫ L/2

−L/2

∫ T

0
dt dx

√
−Gtt(Gxx +Gyyy′2) . (E.3)

Since the problem is invariant under time translations, the energy

H =
δL

δ(∂xy)
∂xy − L =

GxxGtt√
−Gtt(Gxx +Gyyy′2)

(E.4)

is conserved. Its value can be computed at the turning point of the string, which for

convenience is taken to be at x = 0 and y = y0. Since at that point y′(0) = 0, we have

H = −
√
−Gxx(0)Gtt(0) . (E.5)

This leads to the following differential equation for y

y′ =

√
Gxx
Gyy

√
GxxGtt −Gxx(0)Gtt(0)

Gxx(0)Gtt(0)
, (E.6)

from which we get
L

2
=

∫ L/2

0
dx =

∫ ∞
r0

dy

y′
. (E.7)

We saw in section 4.2 that the dependence of the supergravity equations of motion on

the several parameters of the theory can be reduced to a dependence on a single parameter
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ρ through the rescalings (4.32) and (4.34). In order to reduce the Nambu-Goto equations

of motion to the same dependence we must further rescale the x-coordinate as in eq. (5.1).

Under these circumstances the Nambu-Goto action scales homogeneously as SNG = Qf SNG.

One immediate consequence of (5.1) is that the distance between the endpoints of the

strings satisfies the same scaling property

L(λ,Nc, Nf, Nq) = Qf

(
Qc

Q5
f

)1/2

L(ρ) , (E.8)

and the energy of the system, which is evaluated by calculating the on-shell action divided

by the integral over time, can be expressed in terms of dimensionless variables as

E(λ,Nc, Nf, Nq) =
S

T
= Qf

S

T
=

2Qf

2π`2s

∫ ∞
y0

√
−Gtt(Gxx +Gyyy′2)

dy

y′
≡ Qf

2π`2s
E(ρ) . (E.9)

The above quantity is divergent. The interpretation of this divergence is that we are really

computing the energy of a pair of quarks including their large self-energy. Since we are

only interested in the potential energy of the two sources, we subtract the energy of each

individual quark, corresponding to a string stretching all the way from y = 0 to y = ∞.

The final result is then given by

E = 2

(∫ ∞
y0

√
−Gtt(Gxx +Gyyy′2)

dy

y′
−
∫ ∞

0

√
−GttGyy dy

)
. (E.10)

Applying the above procedure to the D2-brane solution we obtain

L ∼ y−3/2
0 , E ∼ y0 . (E.11)

In the case of AdS4, in the coordinate system used here, we get

L ∼ y−5/4
0 , E ∼ y5/4

0 . (E.12)

More precisely, using (E.10) and the rescaled version of (E.7) we have that the product

E · L in the AdS4 region is a constant given by (5.3). Finally, for the HVL geometry the

results are

L ∼ y−5/6
0 , E ∼ y5

0 . (E.13)

In figure 5, we have plotted the potential energy E in units of 1/L against the distance

between the two sources, L. We see that for small L, the Wilson loop is probing only the

UV part of the geometry and thus the energy scales as in the D2-brane solution. For large

L, the string penetrates deeper in the bulk, probing the IR region, and thus the scaling is

given by the HVL solution. At intermediate values of L, we see an AdS region building up.
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