- 1 Orthrozanclus elongata n. sp. and the significance of sclerite-covered
- 2 taxa for early trochozoan evolution
- 3 Fangchen Zhao,^{1*} Martin R. Smith,^{2*} Zongjun Yin,¹ Han Zeng,^{1·3} Guoxiang Li,¹
- 4 and Maoyan Zhu^{1,3}
- ⁵ State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of
- 6 Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road,
- 7 Nanjing 210008, China
- 8 ² Department of Earth Sciences, Durham University, Durham DH1 3LE, UK
- 9 ³ University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049,
- 10 China
- 11 *Correspondence: fczhao@nigpas.ac.cn (F.C.Z.), martin.smith@durham.ac.uk
- 12 (M.R.S.)

13 Abstract

14	Orthrozanclus is a shell-bearing, sclerite covered Cambrian organism of uncertain
15	taxonomic affinity, seemingly representing an intermediate between its fellow
16	problematica Wiwaxia and Halkieria. Attempts to group these slug-like taxa into a
17	single 'halwaxiid' clade nevertheless present structural and evolutionary difficulties.
18	Here we report a new species of Orthrozanclus from the early Cambrian Chengjiang
19	Lagerstätte. The scleritome arrangement and constitution in this material corroborates
20	the link between Orthrozanclus and Halkieria, but not with Wiwaxia — and calls into
21	question its purported relationship with molluscs.
22	Instead, the tripartite construction of the halkieriid scleritome finds a more
23	compelling parallel in the camenellan tommotiids, relatives of the brachiopods and
24	phoronids. Such a phylogenetic position would indicate the presence of a scleritome
25	in the common ancestor of the three major trochozoan lineages, Mollusca, Annelida
26	and Brachiozoa. On this view, the absence of fossil Ediacaran sclerites is evidence
27	against any 'Precambrian prelude' to the explosive diversification of these phyla in
28	the Cambrian, c. 540–530 million years ago.
20	Introduction
29	

The Cambrian fossil record is renowned for the morphologically puzzling organisms
that it preserves. Such taxa often represent long-extinct combinations of characters,
offering a unique perspective on the early origin of modern body plans – presuming,
of course, that relationships with modern groups can be established ¹. The

34	reconstructed origins of the molluscan lineage, for example, have been overhauled in
35	order to accommodate two emblematic Cambrian taxa, <i>Halkieria</i> and <i>Wiwaxia</i> ^{2–9} .
36	These two genera bear superficially similar sclerites, which occur the world over as
37	carbonaceous and mineralized microfossils ^{10–13} ; the grouping Sachitida was erected
38	to reflect this perceived commonality ¹⁴ . The case for phylogenetic proximity was
39	strengthened by the discovery of articulated specimens in the Burgess Shale and
40	Sirius Passet Lagerstätten, which showed that the sclerites of both taxa were dorsal
41	and imbricating ^{2,15,16} . This arguably overlooks some notable differences between the
42	two genera – Halkieria has dorsal valves, Wiwaxia bears elongate spines, and the
43	sclerites of the two groups are far from identical – but suggestions that these
44	differences might denote a degree of phylogenetic separation ^{17,18} were soon
45	countered by the description of the Burgess Shale animal Orthrozanclus reburrus,
46	which incorporates a single Halkieria-like valve within a spiny non-mineralized
47	scleritome ¹⁹ . The 'halwaxiid' clade, incorporating Wiwaxia, Orthrozanclus, Halkieria
48	and other sachitids, was erected on the basis that the scleritomes of these taxa were
49	consequently homologous. A new species of Orthrozanclus from the Chengjiang
50	lagerstätten, however, prompts a re-evaluation of the basis for a halwaxiid grouping,
51	and calls into question the position of Halkieria and Orthrozanclus in molluscan
52	evolution.

Results

54 Systematic Palaeontology

55	Superphylum Lophotrochozoa
56	Family Halkieriidae Poulsen 1967 ²⁰
57	Remarks. Orthrozanclus falls within the emended diagnosis of Halkieriidae provided
58	by Conway Morris and Peel 1995 ¹⁶ , negating the need for a separate family
59	Orthrozanclidae ¹⁹ .
60	Orthrozanclus Conway Morris and Caron 2007 ¹⁹
61	Orthrozanclus elongata Zhao et Smith n. sp. Figs 1 and 2.
62	Type material. NIGPAS 164892 (Fig. 1f-l), holotype; 164893 (Fig. 1a-e), paratype,
63	each comprising part and counterpart and preserved in the characteristic Chengjiang
64	fashion ²¹ as weathered aluminosilicate films associated with superficial iron oxides.
65	Provenance. Maotianshan Shale, Yu'anshan Formation, Eoredlichia-Wutingaspis
66	Zone, Cambrian Series 2, Stage 3. The holotype was collected from Jiucun, near
67	Chengjiang (24°41'33" N, 102°59'26" E); the paratype from Yuanbaocun,
68	Chenggong, Kunming (24°49'24" N, 102°49'14" E), Yunnan, southwest China.
69	Diagnosis. Species of Orthrozanclus with elongate (c. 1:7) aspect ratio. Dorsal
70	sclerites mineralized, oblong in aspect, occurring in regular rows. Dorsolateral

71 spinose sclerites flat, ribbed and blade-like, without central cavity.

72	Description. The two specimens of Orthrozanclus elongata n. sp. (Fig. 1) are 20 mm
73	long and a uniform 3 mm in width. Their dorsal scleritome bears an anterior valve and
74	three zones of sclerites: a medial zone covers the flattened dorsal surface of the
75	organism, and inner and outer peripheral zones surround its flanks. Its rectangular
76	outline, rounded anterior and posterior ends and overall architecture resemble that of
77	O. reburrus.
78	The medial sclerite zone comprises transverse chevron-like rows, each containing
79	fourteen sclerites, seven on each side (Figs 1c and 2). These sclerites measure
80	$220\times90~\mu m,$ are oblong to teardrop shaped, and lie flat to the body. Their
81	pronounced three-dimensionality distinguishes these sclerites from those in other
82	zones, and - in view of the well-defined margins of the individual sclerites - indicates
83	an originally mineralized composition. Neither phosphatization of labile tissue ²² nor
84	secondary infilling of original cavities (as observed in <i>Wiwaxia</i> and <i>O. reburrus</i> ^{8,19})
85	are consistent with the observed preservation. The enhanced relief of the dorsal
86	elements relative to the dorsolateral and ventral sclerites presumably reflects original
87	three-dimensional structure.
88	The spinose dorsolateral sclerites reach 6 mm in length, and form a c. 45° angle
89	to the body, with their tips directed posteriad (Figs 1 and 2). They are regularly spaced
90	(Fig. 1h-j) in a single series that encircles the body, surrounding the anterior margin

91	of the valve and the posterior of the dorsal area (Fig. 1d). The spines bear ribs, but are
92	otherwise flat in cross-section; in contrast to O. reburrus, there is no evidence of a
93	central cavity (Fig. 1j–l). Their flat surfaces lie at an angle of 20–45° to the bedding
94	surfaces – indicating a high original angle (Fig. 1j). Apparent differences in width
95	between spines can be attributed to differential angles of burial relative to the bedding
96	surface. The proximal configuration of the spines (Fig. 11) has a putative similarity to
97	the auricle of certain <i>Halkieria</i> sclerites ¹⁰ .
98	Dagger-shaped (cultrate) sclerites occupy the lateral surfaces of the organism,
99	extending to partly enclose the ventral surface (Fig. 1h). The best-preserved sclerites
100	bear a bilaterally symmetrical series of ribs (Fig. 1k). These sclerites (but not the
101	spines or dorsal sclerites) encircle the valve to enclose the anterior margin of the
102	organism (Fig. 1h); the tips of the sclerites were originally directed dorsally, rather
103	than radially as depicted for O. reburrus.
104	The valve is denoted by a region of pronounced relief, presumably reflecting a
105	robustly mineralized original constitution (Fig. 1c-d, h). The shape of the valve
106	suggests a posterior umbo: though the opposite has been interpreted in O. reburrus,
107	the umbo is difficult to locate with certainty in either taxon. The posterior and anterior
108	margins of the valve are overlapped by sclerites of the medial and outer peripheral
109	zones respectively (Fig. 1h).
110	A three-dimensionally preserved structure, presumably representing the digestive
111	tract, follows the main body axis (Figs 1d, h and 3a). As with the presumed gut of O.

112	reburrus, this begins slightly posterior to the shell; the gap between the gut and the
113	shell marks a 90° bend in the axis of NIGPAS 164892, reminiscent of an equivalent
114	bend in many Halkieria fossils (see ref. 16 and Fig. 3b).
115	Discussion
116	The new material strengthens the case for a close relationship between
117	Orthrozanclus and Halkieria (Fig. 3). Mineralized dorsal sclerites, occurring in
118	oblique transverse rows behind an anterior shell, are now evident in both taxa (Fig.
119	3a-b, d-e) - even if Orthrozanclus has no counterpart to the posterior shell of
120	Halkieria. And each taxon exhibits two peripheral sclerite zones: the inner,
121	dorsolateral zone contains long spines in Orthrozanclus and short cultrate sclerites in
122	Halkieria; the outer, ventrolateral zone bears regularly spaced cultrate sclerites in
123	Orthrozanclus and siculate sclerites in Halkieria (Fig. 3a-b, d-e). Homology of the
124	zones is thus recognized based on their position, rather than the shape or constitution
125	of the sclerites that they contain.
126	An equivalent sclerite arrangement was once envisaged in <i>Wiwaxia</i> ^{15,23} , but
127	recent studies ^{8,9} have shown that the <i>Wiwaxia</i> scleritome conforms to a metameric
128	architecture, comprising 8–9 transverse rows (Fig. 3c, f). Even though the most lateral
129	sclerites are morphologically distinct in certain Wiwaxia species, they belong to the
130	same transverse rows as the medial sclerites, rather than forming a distinct peripheral
131	zone that surrounds the entire circumference of the organism 9,24 (Fig. 3c). The two

132 dorsal rows of spines in *Wiwaxia* are highly variable in their number, size, spacing,

region of the scleritome architecture. As such, the peripheral sclerite zones in *Orthrozanclus* (Fig. 3a) and *Halkieria* (Fig. 3b) have no counterpart in *Wiwaxia*, and
it is not clear that the two scleritome layouts are equivalent in any meaningful way –
undermining the case for a 'halwaxiid' clade.

and orientation, both within and between species 8,15,25 , so do not form a distinct

138 Are halkieriids molluscs?

133

- 139 At a broader taxonomic level, perceived similarities in scleritome construction are
- said to indicate a close relationship between halkieriids and aculiferan molluscs

141 $^{4,6,19,26-28}$. This position has most recently been propounded based on the Ordovician

142 aculiferan *Calvapilosa*, which has been interpreted as a close relative of halkieriids 28 .

143 The evidence that *Calvapilosa* is an aculiferan is strong; the evidence that it is a

- 144 halkieriid warrants more careful consideration.
- 145 Sclerites a likely inheritance from the ancestral lophotrochozoan ^{17,18,29,30} have
- been assembled into scleritomes on multiple occasions: the scleritomes of the
- scaly-footed gastropods ³¹ and chrysopetalid annelids ^{32,33}, for example, represent
- 148 independent innovations that are demonstrably unique to the respective clades 31 .
- 149 Indeed, multiple groups incorporate both shell-like valves and mineralized plates into
- 150 dorsal imbricating skeletons witness machaeridians, Pelagiella and certain

151 tommotiids, who have affinities with annelids, gastropods and brachiopods,

152 respectively ^{34–37}.

153	It is therefore significant that the Calvapilosa scleritome prominently lacks the
154	differentiated sclerite morphologies and peripheral morphological zones that
155	characterize halkieriids. Halkieriid sclerites exhibit a broad range of morphologies,
156	but none resemble the slender, spinose sclerites of <i>Calvapilosa</i> ²⁸ . The central cavity
157	present in both halkieriid and Calvapilosa sclerites has little taxonomic value
158	(discussed in ref. 8). The shell of Calvapilosa is a markedly different shape to that of
159	Halkieria, and bears depressions (interpreted as aesthete canals) that have no
160	counterpart in halkieriid shells.
161	In the absence of any demonstrably equivalent constructional features or an
162	unambiguously close genetic relationship, it is difficult to defend the homology of the
163	halkieriid scleritome with that of Calvapilosa.
164	One thing that <i>Calvapilosa</i> (and <i>Wiwaxia</i> ⁷) does establish is that where a radula
165	is present, it preserves readily in Burgess Shale-type conditions. But importantly, this
166	robust and distinctive multi-row mouthpart is prominently absent in both
167	Orthrozanclus and Halkieria. (A potentially radula-like structure evident in a single
168	specimen of Halkieria ¹⁶ corresponds in angle and dimensions with diagonal
169	displacements of sclerites elsewhere in the scleritome, and is not associated with any
170	diagnostically radular characteristics, such as teeth ³⁸ ; its identification as a radula
171	must be considered unproven.) As a radula was present in the ancestral mollusc ³⁹ , and
172	perhaps deeper in the trochozoan lineage ⁹ , its absence in halkieriids is difficult to
173	reconcile with a molluscan affinity.

Could halkieriids be tommotiids?

175	One set of organisms whose scleritomes exhibit an intriguing similarity with those of
176	halkieriids are the camenellan tommotiids, a group that is implicated in the earliest
177	ancestry of brachiopods ⁴⁰⁻⁴³ . The scleritome of the kennardiid camenellan <i>Dailyatia</i>
178	³⁵ has been reconstructed as comprising median and peripheral fields (Fig. 3f). The
179	medial region bears a series of transverse 'rows' of one or two sclerites (A and B
180	sclerites); the peripheral field bears dorsally-directed sclerites with a distinct
181	morphology (C sclerites). As no fully articulated camenellan scleritomes have yet
182	been found, this comparison does of course warrant a degree of caution, particularly
183	in view of the tube-like configuration of other tommotiid scleritomes $^{37,44-46}$ – but the
184	general arrangement reconstructed from sclerite asymmetry, fused arrays of sclerites,
185	morphological proportions and relative sclerite frequency is fundamentally
186	compatible with a halkieriid-like construction. Taking this further, sclerites in the
187	peripheral zones of camenellan scleritomes occur in dextral and sinistral forms ^{35,47} , as
188	do the sclerites of <i>Halkieria</i> ¹⁰ and – in view of the symmetrical scleritome
189	arrangement revealed by O. elongata n. sp those of Orthrozanclus. Camenellan
190	sclerites show continuous variation within a particular morphological category 47 – as
191	do spines in the dorsolateral zone of the Orthrozanclus scleritome. Certain camenellan
192	sclerites ⁴⁸ exhibit a tuberculate ornament and apical tip that correspond closely to the
193	sclerites of, for example, Halkieria mira (see figs 4, 6 in ref. ⁴⁹). More speculatively,

194	the camerate construction of certain halkieriid sclerites ^{6,10} might find a parallel in the
195	internal chambers of <i>Kelanella</i> sclerites or <i>Micrina</i> valves ^{47,50} .
196	Looking more widely, the paired muscle scars and shelly internal projections
197	evident in Morph A valves of <i>Oikozetetes</i> ^{51,52} , some of the best documented halkieriid
198	shells, have possible parallels in the equivalent paired muscle scars and internal
199	processes present in the mitral sclerite of the tommotiids <i>Micrina</i> ⁴⁴ and <i>Dailyatia</i> ³⁵
200	and the operculum of hyolithids ⁵³ (potential relatives of tommotiids ⁵⁴).
201	In view of these similarities, we therefore propose that halkieriids and
202	camenellans may be closely related (Fig. 4). If camenellans are derived from an
203	ancestrally tube-dwelling tommotiid 55, then a vagrant, slug-like habit would represent
204	an apomorphy of a halkieriid + camenellan clade; alternatively, the halkieriid
205	condition may be ancestral for the tommotiid + brachiopod lineage 16,40 , with the
206	bivalved condition perhaps arising through paedomorphic retention of an ancestral
207	state ⁴¹ .
208	One obvious objection to this taxonomic hypothesis is that camenellan elements
209	are composed of calcium phosphate, whereas halkieriids secreted calcium carbonate,
210	probably in the form of aragonite ⁵⁶ . This said, tommotiids and early brachiopods
211	deploy a wide variety of biominerals (Fig. 4): examples exist of non-mineralized,
212	agglutinated, aragonitic, calcitic, phosphatic, and mixed calcite-phosphate shells

213 ^{54,57,58}.

214	Switching from one biomineral to another is generally the exception rather than
215	the rule ^{59,60} , but members of the brachiopod lineage have nevertheless changed their
216	primary biomineral from phosphate to calcite ^{61,62} , from calcite to aragonite ⁶³ , and
217	from phosphate to a non-mineralized configuration ⁶⁴ ; indeed, some living
218	brachiopods switch from using silica to calcite as they grow ⁶⁵ .
219	On a broader view, biomineralization has evolved multiple times within Metazoa
220	⁶⁶ , seemingly coming and going in Ediacaran lineages according to prevailing
221	environmental conditions ⁶⁷ . If this situation persisted into the early Cambrian, it is
222	possible to envision a predominantly non-mineralised brachiopod stem lineage that
223	obtained biomineralization on multiple occasions, each time reflecting the prevailing
224	seawater chemistry. The aragonite mineralogy of halkieriids and hyoliths arose in the
225	aragonite seas of the Fortunian; the calcitic and phosphatic mineralogies of
226	tommotiids and crown-group brachiopods arose in the calcite seas of the Tommotian
227	⁵⁹ . Linguliforms and tommotiid-like specimens from Burgess Shale-type deposits
228	^{64,68,69} attest to the persistence of non-mineralized skeletons across the brachiopod
229	total group into the mid-Cambrian. In any case, whether modification or multiple
230	innovations account for the diversity of biomineral use in brachiopods and tommotiids,
231	the carbonate elements of halkieriids clearly fit within this gamut.

232 Conclusion

Because halkieriid-like sclerites occur so early in the Cambrian period ^{70,71}, their
affinity has profound implications for the timing of early trochozoan evolution.

235	Removing halkieriids from Mollusca would shift the origin of this phylum
236	significantly later: notwithstanding hyoliths (now interpreted as brachiozoans, i.e.
237	brachiopods or phoronids ⁵⁴) and helcionellids (which lack any compelling molluscan
238	apomorphies), there are no strong candidates for crown group molluscs until the
239	Tommotian, and no unequivocal cases until the Late Cambrian ¹ .
240	If, on the other hand, brachiozoans evolved from a halkieriid-like ancestor, then
241	multi-element scleritomes characterise the earliest brachiozoans as well as molluscs
242	and annelids ⁹ (Fig. 4). The absence of such sclerites among Ediacaran and earliest
243	Cambrian fossil assemblages ⁵⁵ either requires special taphonomic pleading or
244	genuinely denotes that Trochozoans had not yet originated. The subsequent
245	appearance of a rich diversity of exoskeletal elements in the early Cambrian fossil
246	record ^{12,72} points to a very rapid origin and divergence of the key lophotrochozoan
247	phyla in the first few million years of the Cambrian period – representing a truly
248	'explosive' evolutionary radiation.

249 Methods

The paratype was prepared with a fine blade. Photographs were taken using a Zeiss
Stereo Discovery V16 microscope system and processed using TuFuse and the GNU
image manipulation program.

253 Data availability

- 254 Specimens are accessioned at the Nanjing Institute of Geology and Palaeontology,
- 255 Chinese Academy of Sciences (NIGPAS); high resolution images are available at the
- 256 FigShare repository⁷³. (Reviewers may access the FigShare repository using the
- temporary private URL https://figshare.com/s/4333ed088fe59c609037)

258 **References**

259 1. Budd, G. E. & Jensen, S. A critical reappraisal of the fossil record of the

260 bilaterian phyla. *Biol. Rev.* **75**, 253–295 (2000).

- 261 2. Conway Morris, S. & Peel, J. S. Articulated halkieriids from the Lower
 262 Cambrian of north Greenland. *Nature* 345, 802–805 (1990).
- 263 3. Bengtson, S. The cap-shaped Cambrian fossil *Maikhanella* and the relationship
- between coeloscleritophorans and molluscs. *Lethaia* **25**, 401–420 (1992).
- 265 4. Vinther, J. & Nielsen, C. The Early Cambrian *Halkieria* is a molluse. *Zool. Scr.*
- **34,** 81–89 (2005).
- 267 5. Caron, J.-B., Scheltema, A. H., Schander, C. & Rudkin, D. A soft-bodied
- 268 mollusc with radula from the Middle Cambrian Burgess Shale. *Nature* **442**,
- 269 159–163 (2006).
- 270 6. Vinther, J. The canal system in sclerites of Lower Cambrian Sinosachites
- 271 (Halkieriidae: Sachitida): significance for the molluscan affinities of the

272 sachitids. *Palaeontology* **52**, 689–712 (2009).

273 7. Smith, M. R. Mouthparts of the Burgess Shale fossils *Odontogriphus* and

Wiwaxia: implications for the ancestral molluscan radula. Proc. R. Soc. B 279,
4287–4295 (2012).
Smith, M. R. Ontogeny, morphology and taxonomy of the soft-bodied
Cambrian 'mollusc' <i>Wiwaxia</i> . <i>Palaeontology</i> 57 , 215–229 (2014).

- 278 9. Zhang, Z.-F., Smith, M. R. & Shu, D.-G. New reconstruction of the Wiwaxia
- 279 scleritome, with data from Chengjiang juveniles. Sci. Rep. 5, 14810 (2015).
- 280 Bengtson, S. & Conway Morris, S. A comparative study of Lower Cambrian 10.
- 281 Halkieria and Middle Cambrian Wiwaxia. Lethaia 17, 307–329 (1984).
- 282 11. Porter, S. M. Skeletal microstructure indicates chancelloriids and halkieriids
- 283 are closely related. Palaeontology 51, 865–879 (2008).
- 284 12. Kouchinsky, A. V. et al. Chronology of early Cambrian biomineralization. Geol. 285 Mag. 149, 221–251 (2012).
- 286 Slater, B. J., Harvey, T. H. P., Guilbaud, R. & Butterfield, N. J. A cryptic record 13.
- 287 of Burgess Shale-type diversity from the early Cambrian of Baltica.
- 288 Palaeontology 60, 117–140 (2017).

274

275

276

277

8.

- 289 14. Hao, T.-G. Lower Cambrian (Meishucunian) sachitids and their stratigraphic
- 290 significance [in Chinese]. J. Chengdu Coll. Geol. 2, 84-90 (1981).
- 291 15. Conway Morris, S. The Middle Cambrian metazoan Wiwaxia corrugata
- 292 (Matthew) from the Burgess Shale and Ogygopsis Shale, British Columbia,
- 293 Canada. Phil. Trans. R. Soc. Lond. B 307, 507-582 (1985).
- 294 16. Conway Morris, S. & Peel, J. S. Articulated halkieriids from the Lower

- 295 Cambrian of North Greenland and their role in early protostome evolution. *Phil.*
- 296 Trans. R. Soc. B 347, 305–358 (1995).
- 297 17. Butterfield, N. J. A reassessment of the enigmatic Burgess Shale fossil Wiwaxia
- *corrugata* (Matthew) and its relationship to the polychaete *Canadia spinosa*Walcott. *Paleobiology* 16, 287–303 (1990).
- 300 18. Butterfield, N. J. Hooking some stem-group 'worms': fossil lophotrochozoans
- 301 in the Burgess Shale. *BioEssays* **28**, 1161–1166 (2006).
- 302 19. Conway Morris, S. & Caron, J.-B. Halwaxiids and the early evolution of the
 303 lophotrochozoans. *Science* 315, 1255–1258 (2007).
- 304 20. Poulsen, C. Fossils from the Lower Cambrian of Bornholm. *Danske Vidensk.*305 *Selsk. Mat. Meddelelser* 36, 1–48 (1967).
- 306 21. Zhu, M.-Y., Babcock, L. E. & Steiner, M. Fossilization modes in the
- 307 Chengjiang Lagerstätte (Cambrian of China): testing the roles of organic
- 308 preservation and diagenetic alteration in exceptional preservation. *Palaeogeogr.*
- 309 *Palaeoclimatol. Palaeoecol.* **220,** 31–46 (2005).
- 310 22. Butterfield, N. J. *Leanchoilia* guts and the interpretation of three-dimensional
- 311 structures in Burgess Shale-type fossils. *Paleobiology* **28**, 155–171 (2002).
- 312 23. Eibye-Jacobsen, D. A reevaluation of *Wiwaxia* and the polychaetes of the
- 313 Burgess Shale. *Lethaia* **37**, 317–335 (2004).
- 314 24. Yang, J., Smith, M. R., Lan, T., Hou, J.-B. & Zhang, X.-G. Articulated Wiwaxia
- from the Cambrian Stage 3 Xiaoshiba Lagerstätte. *Sci. Rep.* **4**, 4643 (2014).

316	25.	Conway Morris, S., Selden, P. A., Gunther, G., Jamison, P. M. & Robison, R. A.
317		New records of Burgess Shale-type taxa from the middle Cambrian of Utah. J.
318		Paleontol. 89, 411–423 (2015).
319	26.	Sigwart, J. D. & Sutton, M. D. Deep molluscan phylogeny: synthesis of
320		palaeontological and neontological data. Proc. R. Soc. B 274, 2413-2419
321		(2007).
322	27.	Sutton, M. D., Briggs, D. E. G., Siveter, D. J., Siveter, D. J. & Sigwart, J. D. A
323		Silurian armoured aplacophoran and implications for molluscan phylogeny.
324		Nature 490 , 94–97 (2012).
325	28.	Vinther, J., Parry, L., Briggs, D. E. G. & Van Roy, P. Ancestral morphology of
326		crown-group molluscs revealed by a new Ordovician stem aculiferan. Nature
327		542, 471–474 (2017).
328	29.	Schiemann, S. M. et al. Clustered brachiopod Hox genes are not expressed
329		collinearly and are associated with lophotrochozoan novelties. <i>bioRxiv</i> (2016).
330		doi:10.1101/058669
331	30.	Peterson, K. J. & Eernisse, D. J. Animal phylogeny and the ancestry of
332		bilaterians: inferences from morphology and 18S rDNA gene sequences. Evol.
333		<i>Dev.</i> 3, 170–205 (2001).
334	31.	Chen, C., Copley, J. T., Linse, K., Rogers, A. D. & Sigwart, J. How the mollusc
335		got its scales: convergent evolution of the molluscan scleritome. Biol. J. Linn.
336		<i>Soc.</i> 114, 949–954 (2015).

- 337 32. Watson Russell, C. Description of a new species of Arichlidon
- 338 (Chrysopetalidae: Polychaeta) from the West Atlantic and comparison with the
- East Atlantic species Arichlidon reyssi. Bull. Mar. Sci. 67, 465–477 (2000).
- 340 33. Watson Russell, C. Patterns of growth and setal development in the deep-sea
- 341 worm, *Strepternos didymopyton* (Polychaeta: Chrysopetalidae). *Bull. Mar. Sci.*
- **60,** 405–426 (1997).
- 343 34. Vinther, J., Van Roy, P. & Briggs, D. E. G. Machaeridians are Palaeozoic
- 344 armoured annelids. *Nature* **451**, 185–188 (2008).
- 345 35. Skovsted, C. B., Betts, M. J., Topper, T. P. & Brock, G. A. The early Cambrian
- 346 tommotiid genus *Dailyatia* from South Australia. *Mem. Assoc. Australas.*
- 347 *Palaeontol.* **48,** 1–117 (2015).
- 348 36. Thomas, R. D. K., Vinther, J. & Matt, K. Structure and evolutionary
- 349 implications of finely preserved chaetae associated with *Pelagiella*, a
- 350 stem-group gastropod from the Kinzers Formation (Early Cambrian) at
- 351 Lancaster, Pennsylvania. in International Palaeontological Congress 3, London,
- 352 *U.K. Programme & Abstracts* 375 (2010).
- 353 37. Larsson, C. M. et al. Paterimitra pyramidalis from South Australia: scleritome,
- 354 shell structure and evolution of a lower Cambrian stem group brachiopod.
- 355 *Palaeontology* **57**, 417–446 (2014).
- 356 38. Smith, M. R. Putative 'radula' in *Halkieria evangelista*. FigShare (2017).
- doi:10.6084/m9.figshare.5501596

- 358 39. Scheltema, A. H. The original molluscan radula and progenesis in Aplacophora
 359 revisited. *J. Nat. Hist.* 48, 2855–2869 (2014).
- 360 40. Holmer, L. E., Skovsted, C. B. & Williams, A. A stem group brachiopod from
- the lower Cambrian: support for a *Micrina* (halkieriid) ancestry. *Palaeontology*45, 875–882 (2002).
- 363 41. Holmer, L. E., Skovsted, C. B., Larsson, C., Brock, G. A. & Zhang, Z. First
- 364 record of a bivalved larval shell in Early Cambrian tommotiids and its
- 365 phylogenetic significance. *Palaeontology* **54**, 235–239 (2011).
- 366 42. Balthasar, U., Skovsted, C. B., Holmer, L. E. & Brock, G. A. Homologous
- 367 skeletal secretion in tommotiids and brachiopods. *Geology* 37, 1143–1146
 368 (2009).
- 369 43. Harper, D. A. T., Popov, L. E. & Holmer, L. E. Brachiopods: origin and early
 370 history. *Palaeontology* 60, 609–631 (2017).
- 44. Holmer, L. E., Skovsted, C. B., Brock, G. A., Valentine, J. L. & Paterson, J. R.
- 372 The Early Cambrian tommotiid *Micrina*, a sessile bivalved stem group
- 373 brachiopod. *Biol. Lett.* **4**, 724–728 (2008).
- 45. Skovsted, C. B., Clausen, S., Álvaro, J. J. & Ponlevé, D. Tommotiids from the
- arly Cambrian (Series 2, Stage 3) of Morocco and the evolution of the
- tannuolinid scleritome and setigerous shell structures in stem group
- 377 brachiopods. *Palaeontology* **57**, 171–192 (2014).
- 378 46. Skovsted, C. B., Brock, G. A., Topper, T. P., Paterson, J. R. & Holmer, L. E.

Scleritome construction, biofacies, biostratigraphy and systematics of the
tommotiid Eccentrotheca helenia sp. nov. from the Early Cambrian of South
Australia. Palaeontology 54, 253–286 (2011).

- 382 47. Devaere, L. et al. The tommotiid Kelanella and associated fauna from the early
- 383 Cambrian of southern Montagne Noire (France): implications for camenellan
 384 phylogeny. *Palaeontology* 57, 979–1002 (2014).
- 385 48. Devaere, L. & Skovsted, C. B. New early Cambrian sclerites of Lapworthella
- 386 schodakensis from NE Greenland: advancements in knowledge of
- 387 lapworthellid taxonomy, sclerite growth and scleritome organization. *Geol.*
- 388 *Mag.* (2016). doi:10.1017/S0016756816000698
- 389 49. Conway Morris, S. & Chapman, A. J. Lower Cambrian halkieriids and other
- 390 coeloscleritophorans from Aksu-Wushi, Xinjiang, China. J. Paleontol. **71**, 6–22
- 391 (1997).

379

380

381

- 392 50. Li, G.-X. & Xiao, S.-H. Tannuolina and Micrina (Tannuolinidae) from the
- 393 Lower Cambrian of eastern Yunnan, South China, and their scleritome
- 394 reconstruction. J. Paleontol. **78**, 900–913 (2004).
- 395 51. Paterson, J. R., Brock, G. A. & Skovsted, C. B. Oikozetetes from the early
- 396 Cambrian of South Australia: implications for halkieriid affinities and
- 397 functional morphology. *Lethaia* **42**, 199–203 (2009).
- 398 52. Jacquet, S. M., Brock, G. A. & Paterson, J. R. New data on Oikozetetes
- 399 (Mollusca, Halkieriidae) from the lower Cambrian of South Australia. J.

- 400 *Paleontol.* **88,** 1072–1084 (2014).
- 401 53. Martí Mus, M. & Bergström, J. The morphology of hyolithids and its
- 402 functional implications. *Palaeontology* **48**, 1139–1167 (2005).
- 403 54. Moysiuk, J., Smith, M. R. & Caron, J.-B. Hyoliths are Palaeozoic
- 404 lophophorates. *Nature* **541**, 394–397 (2017).
- 405 55. Budd, G. E. & Jackson, I. S. C. Ecological innovations in the Cambrian and the
- 406 origins of the crown group phyla. *Phil. Trans. R. Soc. B* **371,** 20150287 (2016).
- 407 56. Porter, S. M. Halkieriids in Middle Cambrian phosphatic limestones from
- 408 Australia. J. Paleontol. **78**, 574–590 (2004).
- 409 57. Balthasar, U. An Early Cambrian organophosphatic brachiopod with calcitic
- 410 granules. *Palaeontology* **50**, 1319–1325 (2007).
- 411 58. Zhang, Z.-F. et al. An early Cambrian agglutinated tubular lophophorate with
- 412 brachiopod characters. *Sci. Rep.* **4**, 4682 (2014).
- 413 59. Porter, S. M. Calcite and aragonite seas and the *de novo* acquisition of
- 414 carbonate skeletons. *Geobiology* **8**, 256–77 (2010).
- 415 60. Zhuravlev, A. Y. & Wood, R. A. Eve of biomineralization: Controls on skeletal
 416 mineralogy. *Geology* 36, 923–926 (2008).
- 417 61. Balthasar, U. *Mummpikia* gen. nov. and the origin of calcitic-shelled
- 418 brachiopods. *Palaeontology* **51**, 263–279 (2008).
- 419 62. Skovsted, C. B. A silicified tommotiid from the lower Cambrian of Greenland.
- 420 Bull. Geosci. **91**, 553–559 (2016).

421	63.	Balthasar, U. et al. Relic aragonite from Ordovician-Silurian brachiopods:
422		Implications for the evolution of calcification. <i>Geology</i> 39 , 967–970 (2011).
423	64.	Holmer, L. E. & Caron, JB. A spinose stem group brachiopod with pedicle
424		from the Middle Cambrian Burgess Shale. Acta Zool. 87, 273–290 (2006).
425	65.	Williams, A., Lüter, C. & Cusack, M. The nature of siliceous mosaics forming
426		the first shell of the brachiopod Discinisca. J. Struct. Biol. 134, 25–34 (2001).
427	66.	Knoll, A. H. in Reviews in Mineralogy and Geochemistry (eds. Dove, P. M.,
428		DeYoreo, J. J. & Weiner, S.) 54, 329–356 (Mineralogical Society of America,
429		2003).
430	67.	Wood, R., Ivantsov, A. Y. & Zhuravlev, A. Y. First macrobiota
431		biomineralization was environmentally triggered. Proc. R. Soc. B 284,
432		20170059 (2017).
433	68.	Balthasar, U. & Butterfield, N. J. Early Cambrian 'soft-shelled' brachiopods as
434		possible stem-group phoronids. Acta Pal. Pol. 54, 307–314 (2009).
435	69.	Zhang, ZF. et al. A sclerite-bearing stem group entoproct from the early
436		Cambrian and its implications. Sci. Rep. 3, 1066 (2013).
437	70.	Zhu, MY., Zhuravlev, A. Yu., Wood, R. A., Zhao, F. & Sukhov, S. S. A deep
438		root for the Cambrian explosion : Implications of new bio- and

- 439 chemostratigraphy from the Siberian Platform. *Geology* **45**, 459–462 (2017).
- 440 71. Kouchinsky, A. *et al.* Terreneuvian stratigraphy and faunas from the Anabar
- 441 Uplift, Siberia. Acta Pal. Pol. 62, 311–440 (2017).

- 442 72. Telford, M. J., Budd, G. E. & Philippe, H. Phylogenomic insights into animal
 443 evolution. *Curr. Biol.* 25, R876–R887 (2015).
- 444 73. Zhao, F.-C., Smith, M. R., Yin, Z.-J., Zeng, H. & Zhu, M.-Y. High resolution
- 445 images of Orthrozanclus elongata. FigShare (2017).
- 446 doi:10.6084/m9.figshare.c.3841387

447

448 Acknowledgements

- 449 Research was supported by the Strategic Priority Research Program (B) of the
- 450 Chinese Academy of Sciences (XDB18000000, XDB10010101); and the National
- 451 Natural Science Foundation of China. Lars Holmer and Tim Topper provided
- 452 constructive thoughts on an early draft of the manuscript. We thank Mr. Huihong
- 453 Zhang for field assistance and finding the paratype specimen. We are grateful to
- 454 reviewers for invaluable suggestions and comments.

455 Author Contributions

- 456 Conceptualization, F.C.Z., M.R.S.; Investigation, F.C.Z., M.R.S., Z.J.Y., H.Z., G.X.L.,
- 457 M.Y.Z.; Resources: F.C.Z.; Writing Original Draft, M.R.S.; Writing Review &
- 458 Editing, F.C.Z., M.R.S., M.Y.Z.; Visualization, M.R.S.; Funding Acquisition, F.C.Z.;
- 459 Supervision, F.C.Z., M.R.S., M.Y.Z.

460 Additional information

461 The authors declare no competing financial interests.

462 Figure Legends

463	Figure 1. Orthrozanclus elongata n. sp. (a–e) NIGPAS164893, paratype. (a, b) part
464	and counterpart of entire specimen. (c) part, anterior region, dorsal sclerites exhibit
465	relief. (d), counterpart, showing 'fanning' of spines at posterior. (e) counterpart,
466	showing arrangement of spines and ventrolateral sclerites. (f-l) NIGPAS164892,
467	holotype. (f, g) part and counterpart of entire specimen. (h) part, anterior region, dark
468	field illumination emphasizes relief of ventrolateral sclerites. (i) counterpart, anterior
469	region, bright field illumination emphasizes sclerite margins. (j) counterpart, left
470	lateral region showing inclination of spines relative to the bedding plane – the anterior
471	edge (+) is raised above the posterior edge ($-$) – and ribs on ventrolateral sclerites (k)
472	and dorsolateral spines (l). Abbreviations: ds, dorsal sclerites; sp, spines; valv, valve;
473	vls, ventrolateral sclerites. Bars = 1 mm except k, 100 μ m.

474 **Figure 2.** Reconstruction of *Orthrozanclus elongata* n. sp. in life.

475 Figure 3. Scleritome arrangement in *Orthrozanclus elongata* n. sp. (a,

476 NIGPAS164892), Halkieria evangelista (b, Sedgwick Museum of Earth Sciences

477 X24914.2) and *Wiwaxia corrugata* (c, Royal Ontario Museum 61510). The

- 478 Orthrozanclus (d) and Halkieria (e) scleritomes are arranged in three concentric zones:
- 479 a medial zone of oblique transverse rows (vermillion); a dorsolateral 'inner peripheral'
- 480 zone (purple), containing long spines in Orthrozanclus and cultrate sclerites in

482	(Orthrozanclus) or siculate (Halkieria) sclerites. Dailyatia bacata (f) is reconstructed
483	as having a medial region containing A and B sclerites and a single peripheral zone of
484	C sclerites. The approximately 4:1 ratio of C1:A sclerites and 4:2 ratio of C2:B
485	sclerites ³⁵ is taken to indicate that C sclerites occur at twice the frequency of elements
486	in the medial zone. The Wiwaxia scleritome (g) comprises eight transverse rows
487	(shaded) intersected by two rows of intermittently spaced spines.

Halkieria; and a ventrolateral 'outer peripheral' zone, containing cultrate

488 **Figure 4.** Possible position of halkieriids within tommotiids. The common ancestor of

489 Trochozoa is reconstructed as a non-mineralizing scleritomous organism with serially

490 repeated elements. The presence of biomineralized elements is denoted by line colour,

491 with changes in biomineral marked by circles.

481

