1	Freezer on, lights off! Environmental effects on activity rhythms
2	of fish in the Arctic
3	
4	Final accepted version 10 November 2017
5	
6	Kate L. Hawley ^{*a,b,e} , Carolyn M. Rosten ^c , Thrond O. Haugen ^b , Guttorm
7	Christensen ^d and Martyn C. Lucas ^e
8	^a Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349 Oslo, Norway
9	^b Faculty of Environmental Sciences and Natural Resource Management, Norwegian
10	University of Life Sciences, 1432 Ås, Norway
11	^c Norwegian Institute for Nature Research (NINA), Høgskoleringen 9, 7034 Trondheim,
12	Norway
13	^d Akvaplan-niva, Fram Centre, 9296 Tromsø, Norway
14	^e Department of Biosciences, Durham University, Science Laboratories, South Road, Durham,
15	DH1 3LE, UK
16	*Corresponding author: <u>kate.louise.hawley@nmbu.no</u>
17	
18	
19	Circadian rhythm, biotelemetry, photoperiod, behavioural ecology, Salvelinus
20	alpinus, seasonal activity

21 Abstract

Polar regions are characterised by acute seasonal changes in environment, with organisms 22 inhabiting these regions lacking diel photoperiodic information for parts of the year. We 23 present, to our knowledge, the first high-resolution analysis of diel and seasonal activity of 24 free-living fishes in polar waters (74°N), subject to extreme variation in photoperiod, 25 temperature and food availability. Using biotelemetry, we tracked two sympatric ecomorphs 26 of lake-dwelling Arctic charr (Salvelinus alpinus n=23) over an annual cycle. Charr activity 27 rhythms reflected the above-surface photoperiod (including under ice), with diel rhythms of 28 activity observed. During the dark winter solstice period, charr activity became arrhythmic 29 and much reduced, even though estimated light levels were within those at which charr can 30 31 feed. When twilight resumed charr activity ensued as diel vertical migration, which continued 32 throughout spring and increasing day-length, despite stable water temperatures. Diel activity rhythms ceased during polar day, with a sharp increase in arrhythmic fish activity occurring 33 34 at ice-break. Despite contrasting resource use, circannual rhythms were mirrored in the two ecomorphs, although individual variability in activity rhythms was evident. Our data support 35 conclusions of functionally adaptive periods of arrhythmicity in polar animals, suggesting 36 maintenance of a circannual oscillator for scheduling seasonal behavioural and 37 developmental processes. 38

39

40 Introduction

Fitness depends on forecasting the optimal timing of season-specific activities, such as migration, hibernation and reproduction, to exploit optimal conditions[1]. Organisms are able to anticipate seasonal conditions by use of photoperiod, a predictable environmental signal or cue[1]. In polar regions extreme seasonal changes occur, driven by rapidly shifting day length. This results in periods of several months per year when the sun remains permanently

46 above (polar day) or below (polar night) the horizon, limiting the diel photoperiodic 47 information polar organisms receive, as the amplitude of diel light level change is minimal 48 during these periods. The daily molecular oscillator or circadian clock coordinates many 49 aspects of physiology, metabolism and behaviour [e.g. 2,3], and is usually entrained by the 50 light/dark cycle[3]. This pervasiveness of circadian rhythms suggests that circadian clocks are 51 functionally adaptive[1], yet some high-latitude species present periods of around-the-clock 52 activity[4] suggesting that the expression of an internal circadian clock is temporally 53 uncoupled, or possibly lacking [4, 5]. For example, under constant summer light conditions 54 Svalbard reindeer (Rangifer tarandus platyrhynchus) show intensive feeding activity with an 55 absence of circadian rhythmicity. In order to anticipate and prepare for forthcoming seasonal 56 events such species alternatively possess functional, circannual clocks[4, 5]. 57 58 The Arctic charr (Salvelinus alpinus), "charr" hereafter, is the most northerly-distributed

59 freshwater fish. It is adapted for life in cold, dark and nutrient poor environments, and is 60 capable of foraging at low temperatures and light levels (<1°C, <0.001 lux)[6, 7]. 61 Polymorphic populations of lake-dwelling charr commonly occur, and divergence follows 62 ecological gradients that correlate with the number and availability of habitats and food 63 resources[8]. These sympatric discrete phenotypes constitute ecomorphs that differ in 64 morphology and ecological traits. At high-latitudes where charr have access to the sea, 65 anadromous forms also occur, which undertake annual, short-lasting feeding migrations 66 during summer[9]. Thus, these high-latitude aquatic environments are characterised by acute 67 temporal and spatial variations in food availability.

68

We present the first year-round study of individual fish activity levels, in response to Arcticconditions, through acoustic tracking of co-occurring ecomorphs of lake-dwelling charr. We

hypothesised that during periods of distinct light-dark cycles diel rhythms of fish activity would occur, but that during polar night, insufficient distinction between dark and lighter phases would result in loss of rhythmicity and reduced fish activity. We also expected that during polar day, activity levels would remain high and arrhythmic, with circannual activity rhythms alike in both charr ecomorphs.

76

77 Methods

78 a) Study area and data collection

Lake Ellasjøen (maximum depth, 34m), is located on Bear Island (74°30'N, 19°00'E), a highArctic island. Temperature loggers (Vemco: V13T-1L) recorded water temperature over the
study period (1/9/2009–12/8/2010). The lake showed negligible summer stratification, but an
inverse temperature gradient occurred over winter, inferring the likely period of ice coverage
(16/12/2009–24/5/2010, 158 days).

84

Charr were tracked using an underwater, autonomous acoustic telemetry array, the VR2W Positioning System (Vemco, Halifax, Canada). Details of the tracking experiment are explained in Hawley *et al*[10]. Briefly, fish were implanted with tags yielding time-stamped positions of longitude, latitude and depth, allowing individual fish displacement to be calculated from the three-dimensional distance between consecutive positions. Tracking data was obtained for two ecomorphs, a littoral epibenthic (littoral) form (n=13) and an offshore zooplanktivorous (pelagic) form (n=10).

92

93

b) Data analysis

94 Individual mean values of fish displacement and depth were calculated from tracking data for
95 each hour (0-23) of each calendar week (figure1, figureS1 for 95% C.L.). To determine

96 whether individual displacement or depth use differed between hours, we employed Linear 97 *Mixed Effects* models with hour as a predictor, for littoral or pelagic ecomorphs and 98 photoperiod categories (see table1 and supplementary methods). To assess heterogeneity in 99 displacement within individuals, Welch's ANOVA were applied with hour as a factor predictor for each photoperiod category for each individual (tables S7, S8 and supplementary 100 101 figures for 95% C.L.). To evaluate the probability of type II error due to limited sample size 102 power simulations were conducted on the Welch's ANOVAs (table S5). Analyses were 103 conducted in JMP Pro13 (SAS institute Inc.) and R (version 3.3.3).

104

105 **Results**

106 For both ecomorphs a significant effect of hour was observed in displacement during the 107 light/dark- decreasing photoperiod (a), dark (b(i)), light/dark- increasing photoperiod (c) and 108 ice-covered polar day (d(i)) categories of photoperiod (table1, figureS1). During the period of 109 absent twilight (b(ii)) a significant effect was observed for littoral charr only. No significant 110 hour effect was shown for either ecomorph during the weeks of winter solstice (b(iii)), or the 111 period of ice-free continuous light (d(ii)). No effect of hour was observed on fish depth, 112 except for the period of increasing photoperiod (c) where a significant effect was revealed in 113 both littoral and pelagic ecomorphs (table1).

114

115 Individual variation in displacement was evident, particularly among littoral-morph fish, with

116 18 and 42% of littoral charr showing a significant effect of hour during the two polar-day

117 periods respectively (d(i)), (d(ii)) (tables \$7,\$8). 10% of pelagic and 46% littoral fish

118 responded to the variable hour of day during the period of absent twilight (b(ii)). No

119 individuals from either morph exhibited an hour effect during the winter solstice (b(iii)).

121 Discussion

122 Our findings show that charr activity rhythms reflect the above-surface photoperiod 123 (including under ice), with diel rhythms of activity observed, except when the diel amplitude 124 of change in solar irradiance was weakest, at the winter solstice and during the polar day. Our 125 data also show evidence for individual variability in the strength of activity rhythms within 126 both ecomorphs. This is, to our knowledge, the first full-year analysis of diel and seasonal 127 activity of free-living fishes in polar waters, and contributes evidence to the high diversity of 128 biological rhythms at polar-latitudes by describing a functional circannual rhythm largely 129 mirrored in conspecifics.

130

Seasonal activity rhythms of Ellasjøen charr are concordant with previous descriptions of 131 132 distinct periods of feeding and growth in charr[7], typified by summer satiation and food 133 deprivation in winter, which presumably have developed as a response to the seasonal 134 differences in water temperature and food availability at high-latitudes[7]. Diel rhythms of 135 activity were observed for much of the year in Ellasjøen charr, with greatest activity recorded 136 during dawn, dusk and daylight. Charr are visual feeders and are capable of foraging for food 137 at very low temperatures and light levels[6]. It is likely, therefore, that charr were able to 138 detect changes in sub-surface irradiance, even during polar-night and under ice[11]. The 139 cessation of diel activity rhythms during the darkest period around the winter solstice, and the 140 sharp increase in arrhythmic activity during the ice-free polar day indicates that the amplitude 141 of change in sub-surface irradiance was too weak to be detected by Ellasjøen charr. Sensory 142 information about daily and seasonal photoperiod is required for the entrainment of circadian 143 and circannual rhythms[1]. Thus, similarly to Svalbard reindeer, the output rhythms of an 144 internal circadian clock maybe temporarily uncoupled or unsynchronised in constant 145 light/dark, coinciding with periods of food abundance and scarcity. The re-emergence of diel

146 rhythms, immediately after the winter solstice, when the sun remained 6° or more below the horizon (twilight absent), indicates anticipation of spring, with diel vertical migration 147 148 continuing throughout spring and increasing day-length, despite stable water temperatures. In 149 charr, the timing of appetite return after winter is thought to be controlled by internally timed 150 changes in appetite regulation[12], and when held at constant low temperature and given food 151 in excess, captive offspring of anadromous charr maintain seasonal rhythms of food intake 152 and growth[13]. The persistence of circannual rhythms, even when environmental cycles are 153 absent must therefore depend upon internal mechanisms which regulate appetite and energy 154 homeostasis on a seasonal basis[9].

155

156 Littoral charr were seemingly more sensitive to distinguishing light/dark transitions, 157 maintaining rhythmicity even when twilight was absent. However no differences in 158 photoreceptor cells and visual pigments between charr forms have been found[14]. Individual 159 variability in activity rhythms was evident, consequently the mechanisms controlling 160 circadian rhythms in Ellasjøen charr may be somewhat plastic, a recent concept of 161 speculation[15], with variation in circadian behaviour considered an independent axis of fish 162 personality[16]. Both ecomorphs of Ellasjøen charr present synchronous, distinct seasonal 163 rhythms. Because of the freshwater-sea smoltification transition in juveniles and a narrow 164 sea-sojourn migration window, circannual rhythmicity is likely more defined in anadromous 165 than in land-locked charr forms[9, 11].

166

We propose that the daily and seasonal activity rhythms observed in Ellasjøen charr indicate the possible presence of a circannual oscillator, when distinct cycles of feeding, growth and reproduction are functional for a fish adapted for life in the freezer.

170

171	Ethics
172	Experimental protocols were conducted according to approved guidelines, and authorised by
173	the Norwegian national authority for animal research (Forsøksdyrutvalget, ref. 2010/136894-
174	1).
175	
176	Data accessibility
177	The data underlying this study are available from the Dryad Digital Repository:
178	http://dx.doi.org/10.5061/dryad.6k294[17]
179	
180	Authors' contributions
181	M.C.L and C.M.R conceived the study, G.N.C, C.M.R and K.L.H collected the data. K.L.H,
182	T.O.H, C.M.R and M.C.L analysed the data and drafted the manuscript, and all authors
183	revised it. All authors agree to be held accountable for the content therein and approve the
184	final version of the manuscript.
185	
186	Competing interest
187	We have no competing interests.
188	
189	Funding
190	Funding was provided by the Norwegian Institute for Water Research (NIVA) and the
191	Norwegian Institute for Nature Research (NINA).
192	
193	Acknowledgements

- 194 Thanks to O.Isaksen, I.Allan, A.Evenset, the Norwegian Coastguard and the Bjørnøya
- 195 Meteorological Station for field support, A.Hertel for assisting with data analyses and to four
- anonymous reviewers for their highly constructive and useful comments.
- 197

198 **References**

- [1] McNamara, J.M., Barta, Z., Klaassen, M. & Bauer, S. 2011 Cues and the optimal timing
 of activities under environmental changes. *Ecology Letters* 14,1183-1190.
- 201 [2] Atamian, H.S., Creux, N.M., Brown, E.A., Garner, A.G., Blackman, B.K. & Harmer, S.L.
- 202 2016 Circadian regulation of sunflower heliotropism, floral orientation, and pollinator visits.
- 203 Science **353**,587.
- 204 [3] Goldman, B.D. 2001 Mammalian photoperiodic system: formal properties and
- 205 neuroendocrine mechanisms of photoperiodic time measurement. *Journal of Biological*206 *Rhythms* 16,283-301.
- 207 [4] van Oort, B.E.H., Tyler, N.J.C., Gerkema, M.P., Folkow, L., Blix, A.S. & Stokkan, K.-A.
- 208 2005 Circadian organization in reindeer. *Nature* **438**,1095-1096.
- 209 [5] Lu, W., Meng, Q.-J., Tyler, N.J.C., Stokkan, K.-A. & Loudon, A.S.I. 2010 A circadian
- 210 clock is not required in an Arctic mammal. *Current Biology* **20**,533-537.
- [6] Elliott, J.M. 2011 A comparative study of the relationship between light intensity and
- 212 feeding ability in brown trout (*Salmo trutta*) and Arctic charr (*Salvelinus alpinus*).
- 213 Freshwater Biology **56**,1962-1972.
- 214 [7] Klemetsen, A., Knudsen, R., Staldvik, F.J. & Amundsen, P.A. 2003 Habitat, diet and food
- assimilation of Arctic charr under the winter ice in two subarctic lakes. Journal of Fish
- 216 *Biology* **62**,1082-1098.

- 217 [8] Gíslason, D., Ferguson, M.M., Skúlason, S. & Snorrason, S.S. 1999 Rapid and coupled
- 218 phenotypic and genetic divergence in Icelandic Arctic char (Salvelinus alpinus). Canadian

219 *Journal of Fisheries and Aquatic Sciences* **56**,2229-2234.

- 220 [9] Jørgensen, E.H. & Johnsen, H.K. 2014 Rhythmic life of the Arctic charr: Adaptations to
- life at the edge. *Marine Genomics* **14**,71-81.
- 222 [10] Hawley, K.L., Rosten, C.M., Christensen, G. & Lucas, M.C. 2016 Fine-scale
- 223 behavioural differences distinguish resource use by ecomorphs in a closed ecosystem.
- 224 Scientific Reports 6,24369.
- [11] Strand, J.E.T., Aarseth, J.J., Hanebrekke, T.L. & Jørgensen, E.H. 2008 Keeping track of
- time under ice and snow in a sub-arctic lake: plasma melatonin rhythms in Arctic charr
- 227 overwintering under natural conditions. *Journal of Pineal Research* **44**,227-233.
- 228 [12] Bottengård, L. & Jørgensen, E.H. 2008 Elevated spring temperature stimulates growth,
- 229 but not smolt development, in anadromous Arctic charr. Comparative Biochemistry and
- 230 *Physiology Part A: Molecular & Integrative Physiology* **151**,596-601.
- 231 [13] Sæther, B.S., Johnsen, H.K. & Jobling, M. 1996 Seasonal changes in food consumption
- and growth of Arctic charr exposed to either simulated natural or a 12:12 LD photoperiod at
- constant water temperature. *Journal of Fish Biology* **48**,1113-1122.
- 234 [14] Kahilainen, K.K., Smura, T., Knudsen, R., Amundsen, P.A., Jokela-Määttä, M. &
- 235 Donner, K. 2016 Visual pigments of Arctic charr (Salvelinus alpinus (L.)) and whitefish
- 236 (*Coregonus lavaretus* (L.)) morphs in subarctic lakes. *Hydrobiologia* **783**,223-237.
- [15] Bloch, G., Barnes, B.M., Gerkema, M.P. & Helm, B. 2013 Animal activity around the
- 238 clock with no overt circadian rhythms: patterns, mechanisms and adaptive value. *Proceedings*
- 239 of the Royal Society B: Biological Sciences 280.
- 240 [16] Alós, J., Martorell-Barceló, M. & Campos-Candela, A. 2017 Repeatability of circadian
- behavioural variation revealed in free-ranging marine fish. *Royal Society Open Science* **4**.

- 242 [17] Hawley, K.L., Rosten, C.M., Haugen, T.O., Christensen, G. & Lucas, M.C. 2017 Data
- 243 from: Freezer on, lights off! Environmental effects on activity rythms of fish in the Arctic.
- 244 Dryad Digital Repository. (doi:10.5061/dryad.6k294).

246	Table1: T	Fest results of	of <i>LME</i> and	alysis for respon	nse variables;	fish displa	cement (BLs	s^{-1}) and d	lepth (m)	with predicto	or hour (23df), f	for littoral
				V 1		1	```	/	1 \ /	1	````		

- 247 (*n*=13) or pelagic (*n*=10) ecomorphs and photoperiod categories: (*a*) Light/dark-decreasing photoperiod, (*b*(i)) Dark-sun below horizon, (*b*(ii))
- 248 Dark- twilight absent, (b(iii)) Dark-winter solstice, weeks 52,1, (c) Light/dark- increasing photoperiod, (d(i)) Light –ice covered and (d(ii))
- Light- ice free. Data were derived from telemetry of Ellasjøen Arctic charr, weekly individual hourly mean values were used, total n=24,053, n
- of individuals varies between photoperiod categories (tableS1). Individual fish identification was modelled as a random effect (table S2, 95%
- 251 confidence limits were calculated figureS1). A first-order autocorrelation structure (AR1) was modelled as a repeated effect (table S2).
- 252 Kenward–Roger approximation was used to estimate degrees of freedom (*df*den).

	Littoral morph fish								Pelagic morph fish					
	Fish displacement				Fish depth			Fish displacement				Fish depth		
Photoperiod category	n	<i>df</i> den	F	р	<i>df</i> den	F	р	п	<i>df</i> den	F	р	<i>df</i> den	F	р
(a) Light/dark	3108	907.0	13.4206	<.0001	927.2	0.0599	1.0000	2348	671.0	7.3226	<.0001	695.4	0.3641	0.9975
(<i>b</i> (i)) Dark-sun below horizon	3687	1117.3	9.5418	<.0001	1069.2	0.4197	0.9930	2812	756.6	4.2312	<.0001	762.0	0.0566	1.0000
(b(ii)) Dark-twilight absent	2127	1935.9	2.1269	0.0014				1615	462.0	1.2829	0.1722			
(b(iii)) Dark-winter solstice	580	494.2	0.7441	0.8003				472	369.0	0.4763	0.9815			
(c) Light/dark	3915	1041.1	8.3657	<.0001	1037.8	1.5493	0.0476	2735	740.1	12.1192	<.0001	710.9	3.3968	<.0001
(d(i)) Light-ice covered	1131	1012.6	2.7669	<.0001	1018.0	0.9077	0.5884	734	640.3	1.6073	0.0364	652.0	1.2711	0.1784
(<i>d</i> (ii)) Light-ice free	2611	2381.0	1.4373	0.0815	2431.4	1.1533	0.2780	972	863.5	0.9237	0.5662	878.0	0.8980	0.6019

Figure1: Hourly average values of fish displacement (body lengths per second, BLs⁻¹) and depth calculated per calendar week (n=24,053) for tracked littoral (blue n=13) and pelagic (red n=10) Arctic charr ecomorphs from Lake Ellasjøen. Values are presented for photoperiod categories; (a) Light/dark- decreasing photoperiod, (b(i)) dark- sun below horizon, (b(ii)) Dark-twilight absent, sun more than 6° below horizon (shaded area), (b(iii)) Dark-winter solstice (dark-blue shading), (c) Light/dark- increasing photoperiod, (d(i)) Lightice covered and (d(ii) Light –ice free. Weekly mean water temperature (°C) measured at 3 (light-grey), 25 (dark-grey) and 31 (black) metres is plotted for each calendar week. Dashed lines on the date axis show estimated timing of ice-formation (week 49) and break-up (week 23).

Supplementary material

Kate L. Hawley, Carolyn M. Rosten, Thrond O. Haugen, Guttorm Christensen and Martyn C. Lucas. Freezer on, lights off! Environmental effects on activity rhythms of fish in the Arctic. *Biology Letters*.

Supplementary Methods – statistical analysis

The positional data was pre-treated in order to filter lower quality positional fixes due to both suboptimal geometry between receivers, and daily environment-induced noise within the system (for more details see [1]). The frequency of detections derived from 19 stationary 'synchronisation' tags (V13-1L) distributed within the receiver array (for locations see [1]) were used to test for heterogeneity in the diel spatial-temporal variation in the total number of detections derived by the acoustic telemetry system over the study period (photoperiod categories A-D, see below). A non-significant interaction effect of synchronisation tag x hour x photoperiod was observed (*GLM*: n = 15706, 1242*df*, F = 0.70, p = 0.99), indicating noise to be constant in time and space throughout the study period for the synchronisation tags. As the synchronisation tags transmit at higher power (they derive millisecond synchronisation of the receiver-positioning array) than the tags implanted into the sampled charr, a control 'fish' tag was also used to test for heterogeneity in the number of positions derived per hour, in Lake Ellasjøen. We observed no hour x photoperiod effect on the mean number of positions derived by the positioning system per hour, per week (n = 478, 89df, F = 0.25, p = 0.99), indicating noise to be constant over time-of-day for the duration of the study, within the area of the lake covered by four receivers detecting signals from the control fish tag (located at 439964.7 E and 8255562.6 N (UTM 34) at 15 metres depth).

Individual mean values of fish displacement and depth were calculated from Arctic charr tracking data for each hour (0-23) of each calendar week. To assess whether charr activity or depth use differed between hours, we employed Linear Mixed Effects models (LMEs)[2], with hour as a categorical predictor, for littoral or pelagic charr ecomorphs and each photoperiod category: A) Light/dark, with decreasing photoperiod, B1) Dark (polar night)sun below the horizon, B2) Dark (polar night)- twilight absent, sun more than 6° below horizon, B3) Dark (polar night)- winter solstice, sun more than 6° below horizon (weeks 52, 1)], C) Light/dark, with increasing photoperiod, D1) Light (polar day)- ice covered and D2) Light (polar day)– ice free¹. Gross patterns of fish activity were compared as average relative displacement between fixes, given in body lengths per second, BLs⁻¹ to standardise for body length. Though this is a measure of speed, we describe it as displacement since activity is in all cases likely to be underestimated (since valid fish detections were on average approximately every 80 minutes). Where a shift in photoperiod category occurred mid-week, values from that entire week were included, so that only complete weeks were analysed for each photoperiod category. Data from week number 53 (2009), were combined with week 52 data. A first-order autocorrelation structure (AR1) was included in the LME to account for the autocorrelation of time series data and individual fish identification was modelled as a random intercept effect to account for observational dependency caused by repeated individual measures. Estimates of variance among (random effect) and within (residual) individuals are stated, as well as the estimate of autocorrelation in the model (AR1) (table S2). Hourly 95% confidence limits were calculated on the raw data (n=162,530) and are presented in figure S1. Estimates and standard error of hour effect are also given for fish displacement (tables S3, S4) and depth (tables S5, S6). To assess diel heterogeneity in displacement within individuals, we used Welch's ANOVA tests (allowing for variance

¹ The manuscript uses lower case letters and Roman numerals, instead of the capitalised lettering and Arabic numerals adopted throughout this document.

heterogeneity) with hour as a categorical predictor for each photoperiod category for each charr individual (tables S7, S8, supplementary figures). Bonferroni correction was applied (adjusted significance level based on 23 individual tests per photoperiod: p = 0.002), and 95% confidence limits were calculated and presented in the supplementary figures. Track durations differed for individuals (table S1 and supplementary figures of individual fish tracks), with a reduced number of individuals towards the end of the study resulting in larger confidence limits, values of *n* for each study week are stated in figure S1. The sample sizes were limited by the increasing probability of tag code collisions with greater numbers of active tags in a restricted area [3] and by the relative availability of the two morphs during the short field campaign. To evaluate the probability of type II error due to limited sample size, power simulations based on parametric resampling (number of resamples = 10,000) were performed for the Welch's ANOVAs (power values (π) reported in tables S7, S8). For analyses with $\pi < 0.8$, simulations to estimate Least Significant Number of observations (LSN) were conducted, none of which attained LSN estimates below the maximum observation limit, set as two per hour (given our code-repeat rate of 80 minutes). All statistical analyses were performed in JMPPro (v.10.0 SAS Institute, USA) and R (version 3.3.3) [4].

Supplementary Results

Table of contents

- 1. Table S1: Summary of Arctic charr tracking data (page 5)
- 2. Figure S1: Hourly mean values with 95% confidence intervals of fish displacement, presented per study week, for each charr morph (page 6).
- 3. Table S2: LME estimates of variance (page 7).
- Table S3: Estimate values and standard error of hour effect on displacement– littoral fish (page 8).
- Table S4: Estimate values and standard error of hour effect on displacement– pelagic fish (page 9).
- Table S5: Estimate values and standard error of hour effect on depth– littoral fish (page 10).
- Table S6: Estimate values and standard error of hour effect on depth– pelagic fish (page 11).
- 8. Table S7: Welch's ANOVA by individual fish (pages 12-16).
- 9. Table S8: Welch's ANOVA by morph (page 17).
- Individual figures– Hourly mean values of fish displacement and 95% confidence limits for each category of photoperiod (pages 18-29).
- 11. Individual figures of fish tracking data– Hourly average values of fish displacement calculated per calendar week for individual tracked Arctic charr (pages 30-37).
- 12. References (page 38).

Table S1: Summary information of telemetry derived data for sampled Arctic charr from Lake Ellasjøen, Bear Island. The total number of data positions and individuals are stated for each category of photoperiod: A) Light/dark, with decreasing photoperiod, B1) Dark (polar night)– sun below the horizon, B2) Dark (polar night)– twilight absent, sun more than 6° below horizon, B3) Dark (polar night)– winter solstice, sun more than 6° below horizon, C) Light/dark, with increasing photoperiod, D1) Light (polar day)– ice covered and D2) Light (polar day)– ice free.

Photoperiod category	Start date (week no.)	End date (week no.)	n weeks	n positions	n individuals	mean <i>n</i> positions per individual per week	mean n positions per individual per hour per week
A) Light/dark- decreasing photoperiod	01/09/2009 (36)	06/11/2009 (45)	10	41 916	23	1822	1.08
B1) Dark- sun below horizon	07/11/2009 (46)	02/02/2010 (5)	12	26 474	23	1151	0.57
B2) Dark- twilight absent (sun more than 6° below horizon)	29/11/2009 (49)	12/01/2010 (3)	7	14 117	23	614	0.52
B3) Dark-winter solstice (weeks 52 and 1)	20/12/2009 (52)	2/1/2010 (1)	2	6 055	23	263	0.78
C) Light/dark- increasing photoperiod	03/02/2010 (6)	28/04/2010 (18)	13	43 752	22	1989	0.91
D1) Light (polar day)- ice cover	29/04/2010 (19)	24/05/2010 (22)	4	13 060	22	594	0.88
D2) Light (polar day)- ice free	25/05/2010 (23)	12/08/2010 (33)	11	17 156	21	817	0.44

Figure S1: Hourly (0-23) mean values and 95% confidence limits of fish displacement (BLs^{-1}) calculated per calendar week for tracked littoral (blue) and pelagic (red) Arctic charr ecomorphs from Lake Ellasjøen, the number of individuals is stated for each week. Photoperiod category (A-D2) is stated alongside week number (36-33). Mean water temperature ± standard error for each week is also given. Ice formation was predicted to occur week 49, break-up week 23. ToD=time of day.

ToD, hr

Table S2: LME estimated values of variance among individual (random effect-fish ID) and within (residual) Arctic charr individuals, estimates of covariance in the model (AR1) are also stated. The response variables; fish displacement (body lengths per second) and fish depth (metres) were modelled with predictor hour (23 *df*), for littoral (n=13) or pelagic (n=10) charr ecomorphs and the photoperiod categories: A) Light/dark, with decreasing photoperiod, B1) Dark– sun below horizon, B2) Dark– twilight absent, sun more than 6 ° below horizon, B3) Dark– winter solstice, sun more than 6 ° below horizon (weeks 52 and 1), C) Light/dark, with increasing photoperiod, D1) Light (polar day)– ice covered and D2) Light (polar day)– ice free. Data were derived from telemetry of Ellasjøen Arctic charr, weekly individual hourly mean values were used, total n=24,053, n of individuals varies between photoperiod categories (table S1).

		Littoral morph fish						Pelagic morph fish					
	Fish	displace	ment		Fish depth			Fish displacement			Fish depth		
Classification of photoperiod	Fish ID	AR(1)	Residual	Fish ID	AR1(1)	Residual	Fish ID	AR (1)	Residual	Fish ID	AR (1)	Residual	
A) Light/dark- decreasing photoperiod	0.0006	0.3545	0.0016	30.2744	0.5209	25.1423	0.0019	0.4505	0.0071	14.7488	0.5194	40.9124	
B1) Dark- sun below horizon	0.0006	0.2126	0.0006	80.3432	0.2743	5.4123	0.0004	0.4946	0.0020	15.9704	0.4058	7.7350	
B2) Dark- twilight absent	0.0004	0.4652	0.0004				0.0015	0.1213	0.0009				
B3) Dark- winter solstice	0.0009	0.3733	0.0003				0.0000	0.4532	0.0002				
C) Light/dark- increasing photoperiod	0.0003	0.4001	0.0008	73.4598	0.4211	5.3171	0.0004	0.3235	0.0015	17.3048	0.4242	10.6905	
D1) Light (polar day)- ice covered	0.0001	0.5709	0.0003	71.5898	0.7909	3.0255	0.0016	0.3031	0.0008	38.3380	0.7947	2.0073	
D2) Light (polar day)- ice free	0.0009	0.4376	0.0033	24.7871	0.8954	29.1056	0.0018	0.3362	0.0051	33.3946	0.8852	25.0482	

	Α		В	1	Bź	2	B	B3 C		D1		D2		
	Est.	S.E.												
Intercept	0.0338	0.0086	0.0198	0.0066	0.0201	0.0062	0.0223	0.0091	0.0212	0.0058	0.0145	0.0036	0.0886	0.0103
hour[1-0]	0.0082	0.0066	0.0015	0.0033	0.0027	0.0023	0.0010	0.0042	-0.0004	0.0044	0.0017	0.0025	-0.0036	0.0057
hour[2-1]	0.0078	0.0066	0.0011	0.0033	-0.0013	0.0023	-0.0048	0.0041	0.0006	0.0044	-0.0012	0.0025	-0.0071	0.0058
hour[3-2]	0.0152	0.0066	-0.0009	0.0033	-0.0004	0.0023	0.0032	0.0041	0.0060	0.0044	0.0014	0.0025	0.0073	0.0059
hour[4-3]	0.0106	0.0066	0.0033	0.0033	0.0025	0.0023	0.0033	0.0042	0.0079	0.0044	0.0013	0.0024	0.0015	0.0059
hour[5-4]	0.0029	0.0066	0.0002	0.0033	0.0009	0.0023	-0.0036	0.0042	0.0048	0.0044	-0.0015	0.0025	-0.0004	0.0059
hour[6-5]	0.0118	0.0066	0.0026	0.0033	-0.0028	0.0023	0.0038	0.0042	0.0055	0.0044	0.0042	0.0025	0.0009	0.0059
hour[7-6]	0.0002	0.0066	0.0044	0.0033	-0.0001	0.0023	0.0020	0.0042	0.0044	0.0044	0.0020	0.0025	0.0079	0.0059
hour[8-7]	-0.0066	0.0066	0.0044	0.0033	0.0034	0.0023	-0.0060	0.0043	-0.0012	0.0044	0.0023	0.0025	-0.0091	0.0060
hour[9-8]	-0.0042	0.0066	0.0050	0.0033	0.0048	0.0023	0.0076	0.0042	-0.0033	0.0044	0.0013	0.0024	-0.0055	0.0060
hour[10-9]	0.0032	0.0066	-0.0006	0.0033	0.0034	0.0023	-0.0011	0.0041	0.0024	0.0044	0.0062	0.0024	0.0021	0.0060
hour[11-10]	-0.0038	0.0066	0.0004	0.0033	0.0007	0.0023	-0.0015	0.0043	-0.0068	0.0044	0.0026	0.0024	-0.0082	0.0060
hour[12-11]	-0.0051	0.0066	-0.0017	0.0033	-0.0036	0.0023	-0.0025	0.0043	-0.0014	0.0043	-0.0053	0.0024	0.0099	0.0059
hour[13-12]	0.0033	0.0066	-0.0040	0.0033	-0.0057	0.0023	-0.0070	0.0042	-0.0034	0.0044	-0.0117	0.0024	0.0059	0.0059
hour[14-13]	-0.0058	0.0066	-0.0048	0.0033	-0.0015	0.0023	0.0036	0.0042	-0.0012	0.0044	0.0034	0.0024	-0.0131	0.0059
hour[15-14]	-0.0034	0.0066	-0.0062	0.0033	-0.0022	0.0023	-0.0014	0.0042	-0.0030	0.0044	-0.0021	0.0025	0.0061	0.0059
hour[16-15]	-0.0086	0.0066	-0.0020	0.0033	-0.0016	0.0023	0.0025	0.0042	0.0035	0.0044	-0.0004	0.0025	-0.0074	0.0059
hour[17-16]	0.0024	0.0066	-0.0015	0.0033	-0.0014	0.0023	-0.0015	0.0042	-0.0021	0.0044	0.0017	0.0025	0.0057	0.0058
hour[18-17]	-0.0073	0.0066	0.0012	0.0033	0.0038	0.0023	0.0051	0.0043	-0.0036	0.0044	0.0010	0.0025	-0.0083	0.0058
hour[19-18]	-0.0062	0.0066	-0.0004	0.0033	0.0006	0.0023	0.0033	0.0043	-0.0026	0.0044	0.0001	0.0025	0.0041	0.0058
hour[20-19]	-0.0029	0.0066	-0.0003	0.0033	-0.0013	0.0023	-0.0026	0.0042	-0.0044	0.0044	-0.0040	0.0024	0.0135	0.0058
hour[21-20]	-0.0087	0.0066	0.0011	0.0033	0.0021	0.0023	-0.0004	0.0042	0.0001	0.0044	-0.0009	0.0024	-0.0062	0.0058
hour[22-21]	-0.0050	0.0066	-0.0001	0.0033	0.0009	0.0023	0.0003	0.0042	-0.0031	0.0044	-0.0002	0.0024	0.0106	0.0058
hour[23-22]	0.0026	0.0066	-0.0020	0.0033	-0.0043	0.0023	-0.0028	0.0043	0.0005	0.0044	-0.0013	0.0024	-0.0054	0.0057

Table S3: Estimated values of hour effect and standard error, generated from a LME for the response variable fish displacement (body lengths per second, BLs^{-1}) for littoral charr ecomorphs (*n*=13). Values are given for each photoperiod category (A-D2), intercept hour[0-23].

	А	`	В	1	Bź	2	B	3	C	l ,	D	1	D	2
	Est.	S.E.	Est.	S.E.	Est.	S.E.	Est.	S.E.	Est.	S.E.	Est.	S.E.	Est.	S.E.
Intercept	0.0657	0.0185	0.0301	0.0090	0.0272	0.0131	0.0171	0.0044	0.0251	0.0084	0.0399	0.0143	0.1018	0.0185
hour[1-0]	0.0075	0.0164	0.0027	0.0084	0.0030	0.0050	0.0008	0.0035	0.0045	0.0068	0.0102	0.0059	0.0085	0.0129
hour[2-1]	0.0262	0.0164	0.0010	0.0084	-0.0034	0.0049	-0.0007	0.0035	0.0059	0.0068	-0.0079	0.0058	-0.0251	0.0128
hour[3-2]	0.0499	0.0164	0.0024	0.0084	0.0025	0.0050	0.0004	0.0035	0.0095	0.0068	0.0086	0.0059	0.0192	0.0125
hour[4-3]	0.0165	0.0164	0.0018	0.0084	-0.0006	0.0050	-0.0013	0.0035	0.0024	0.0067	0.0011	0.0060	-0.0083	0.0128
hour[5-4]	0.0080	0.0164	0.0058	0.0084	0.0036	0.0049	-0.0002	0.0035	0.0118	0.0067	-0.0069	0.0061	0.0030	0.0128
hour[6-5]	0.0072	0.0164	0.0108	0.0084	-0.0023	0.0050	-0.0001	0.0035	0.0133	0.0068	0.0066	0.0061	-0.0012	0.0128
hour[7-6]	-0.0246	0.0164	0.0127	0.0084	0.0045	0.0050	0.0047	0.0035	0.0035	0.0068	-0.0017	0.0062	0.0132	0.0127
hour[8-7]	-0.0090	0.0164	0.0031	0.0084	0.0040	0.0050	-0.0003	0.0035	-0.0049	0.0068	0.0055	0.0061	0.0037	0.0126
hour[9-8]	0.0046	0.0164	-0.0030	0.0085	-0.0031	0.0051	-0.0009	0.0035	0.0035	0.0068	0.0001	0.0061	-0.0087	0.0127
hour[10-9]	0.0027	0.0164	-0.0027	0.0084	0.0059	0.0050	0.0028	0.0035	-0.0007	0.0068	-0.0023	0.0060	0.0177	0.0129
hour[11-10]	-0.0007	0.0164	-0.0066	0.0084	-0.0012	0.0050	-0.0004	0.0035	-0.0004	0.0067	0.0158	0.0060	-0.0185	0.0134
hour[12-11]	-0.0111	0.0164	0.0017	0.0084	-0.0039	0.0049	0.0020	0.0035	-0.0108	0.0067	-0.0064	0.0060	0.0012	0.0134
hour[13-12]	0.0041	0.0164	-0.0004	0.0084	0.0031	0.0050	-0.0041	0.0035	-0.0082	0.0068	-0.0120	0.0060	-0.0047	0.0130
hour[14-13]	-0.0070	0.0164	-0.0127	0.0084	-0.0077	0.0050	-0.0020	0.0035	0.0059	0.0067	-0.0050	0.0060	0.0125	0.0129
hour[15-14]	-0.0072	0.0164	-0.0120	0.0084	-0.0032	0.0049	0.0006	0.0035	-0.0063	0.0067	0.0062	0.0060	-0.0148	0.0130
hour[16-15]	-0.0154	0.0164	-0.0049	0.0084	0.0007	0.0050	0.0014	0.0035	-0.0104	0.0067	-0.0028	0.0061	0.0158	0.0132
hour[17-16]	0.0002	0.0164	0.0002	0.0084	-0.0009	0.0050	0.0025	0.0035	0.0011	0.0067	-0.0077	0.0062	-0.0021	0.0132
hour[18-17]	-0.0153	0.0164	0.0035	0.0084	0.0031	0.0050	0.0014	0.0035	-0.0098	0.0067	-0.0003	0.0062	-0.0116	0.0133
hour[19-18]	-0.0063	0.0164	-0.0031	0.0084	-0.0038	0.0050	-0.0032	0.0035	-0.0020	0.0067	0.0007	0.0060	0.0119	0.0130
hour[20-19]	-0.0180	0.0164	-0.0003	0.0084	0.0014	0.0049	-0.0052	0.0035	-0.0037	0.0067	0.0047	0.0061	-0.0222	0.0129
hour[21-20]	-0.0035	0.0164	0.0020	0.0084	0.0005	0.0049	0.0035	0.0035	0.0005	0.0068	-0.0023	0.0061	0.0091	0.0129
hour[22-21]	0.0039	0.0164	-0.0014	0.0084	-0.0031	0.0049	0.0003	0.0035	-0.0013	0.0068	-0.0012	0.0062	0.0214	0.0131
hour[23-22]	-0.0128	0.0164	0.0038	0.0084	0.0085	0.0049	0.0005	0.0035	0.0001	0.0068	-0.0018	0.0062	-0.0212	0.0129

Table S4: Estimated values of hour effect and standard error, generated from a LME for the response variable fish displacement (body lengths per second, BLs^{-1}) for pelagic charr ecomorphs (*n*=10). Values are given for each photoperiod category (A-D2), intercept hour[0-23].

	А	L	B1	B1			D1		D2		
	Est.	S.E.									
Intercept	8.4078	1.6667	12.4325	2.4976	11.1441	2.3911	10.7329	2.3598	9.5028	1.4821	
hour[1-0]	0.1450	0.8666	0.0014	0.3307	0.0935	0.3516	0.0116	0.1637	-0.2521	0.2269	
hour[2-1]	-0.0217	0.8670	-0.0975	0.3292	-0.0306	0.3527	0.2076	0.1624	0.3243	0.2281	
hour[3-2]	-0.0107	0.8670	-0.0415	0.3297	0.1930	0.3518	0.0105	0.1623	-0.2901	0.2295	
hour[4-3]	-0.0575	0.8660	0.0318	0.3306	0.0818	0.3510	0.0325	0.1613	-0.1280	0.2307	
hour[5-4]	0.3641	0.8660	-0.0661	0.3306	0.0473	0.3527	0.0586	0.1618	0.0564	0.2311	
hour[6-5]	-0.1399	0.8660	0.0954	0.3301	0.0544	0.3540	0.0496	0.1617	-0.0995	0.2315	
hour[7-6]	0.1028	0.8670	0.1176	0.3311	0.3414	0.3523	-0.1056	0.1621	-0.4120	0.2329	
hour[8-7]	0.1032	0.8660	0.2120	0.3311	0.1651	0.3514	-0.0595	0.1621	0.2749	0.2339	
hour[9-8]	0.1064	0.8650	-0.0651	0.3301	0.0445	0.3518	-0.0279	0.1606	0.1794	0.2331	
hour[10-9]	-0.0025	0.8649	0.2087	0.3297	-0.0346	0.3531	0.3110	0.1612	-0.0556	0.2336	
hour[11-10]	-0.0456	0.8649	-0.0465	0.3306	-0.0745	0.3523	0.0302	0.1611	0.0821	0.2332	
hour[12-11]	-0.0869	0.8649	-0.0180	0.3316	-0.1363	0.3502	0.1992	0.1598	0.2067	0.2320	
hour[13-12]	0.1605	0.8649	-0.2365	0.3306	-0.2468	0.3510	0.0541	0.1597	-0.2114	0.2298	
hour[14-13]	-0.3427	0.8649	0.0127	0.3311	-0.1989	0.3518	-0.1849	0.1608	-0.1372	0.2304	
hour[15-14]	0.1469	0.8649	-0.1645	0.3320	-0.1594	0.3514	-0.3454	0.1620	0.0233	0.2298	
hour[16-15]	-0.0158	0.8650	0.1520	0.3316	0.0124	0.3519	0.0006	0.1628	-0.3917	0.2298	
hour[17-16]	-0.0036	0.8660	-0.1645	0.3316	0.0531	0.3540	-0.0972	0.1622	-0.2101	0.2279	
hour[18-17]	0.1134	0.8660	0.0235	0.3316	-0.2428	0.3540	0.1983	0.1627	0.1674	0.2279	
hour[19-18]	-0.1305	0.8660	-0.0172	0.3316	0.2187	0.3527	-0.2974	0.1625	0.2941	0.2284	
hour[20-19]	-0.1648	0.8670	0.0027	0.3320	-0.1842	0.3531	-0.0078	0.1606	0.0950	0.2283	
hour[21-20]	0.0562	0.8670	-0.0031	0.3316	0.0474	0.3523	0.0435	0.1599	0.4174	0.2289	
hour[22-21]	-0.0314	0.8670	0.0426	0.3306	-0.0057	0.3523	-0.0913	0.1594	0.3943	0.2279	
hour[23-22]	-0.1015	0.8676	0.0187	0.3316	-0.0480	0.3524	-0.0579	0.1606	-0.0504	0.2258	

Table S5: Estimated values of hour effect and standard error, generated from a LME for the response variable fish depth (m) for littoral charr ecomorphs (n=13). Values are given for each photoperiod category (A-D2), intercept hour[0-23].

	А	L	B1		C		D1		D2		
	Est.	S.E.									
Intercept	9.4700	1.5600	11.2803	1.3153	12.1577	1.4568	13.4089	2.0798	21.2061	2.2001	
hour[1-0]	0.2735	1.2670	0.0330	0.4929	-0.4352	0.6036	0.2277	0.1589	0.8003	0.3622	
hour[2-1]	-0.2699	1.2660	-0.0813	0.4919	0.1148	0.6012	0.3079	0.1573	0.0887	0.3587	
hour[3-2]	0.6866	1.2659	0.0489	0.4935	0.0794	0.5992	0.1821	0.1585	-0.2181	0.3587	
hour[4-3]	0.6128	1.2659	0.0320	0.4935	0.1017	0.5981	0.0887	0.1602	0.1545	0.3612	
hour[5-4]	0.0747	1.2660	0.0088	0.4919	0.1395	0.5971	-0.2655	0.1623	-0.3980	0.3613	
hour[6-5]	0.1072	1.2680	-0.0985	0.4935	0.7955	0.5992	0.0300	0.1627	-0.4126	0.3621	
hour[7-6]	0.0941	1.2699	-0.0484	0.4951	0.5946	0.6012	-0.2134	0.1657	0.2175	0.3567	
hour[8-7]	0.0768	1.2680	-0.1717	0.4960	0.3544	0.6002	0.0421	0.1635	-0.2307	0.3559	
hour[9-8]	-0.1924	1.2680	0.1404	0.4985	-0.0062	0.6012	-0.1759	0.1621	-0.0461	0.3607	
hour[10-9]	0.0456	1.2679	-0.0345	0.4969	0.3093	0.6012	-0.0894	0.1620	0.3259	0.3605	
hour[11-10]	-0.1283	1.2660	0.0921	0.4927	-0.6664	0.5972	0.0115	0.1603	-0.4577	0.3702	
hour[12-11]	0.2261	1.2659	-0.0359	0.4927	0.4316	0.5972	0.0233	0.1604	0.1292	0.3700	
hour[13-12]	0.4984	1.2659	0.0402	0.4943	-0.8074	0.6002	0.4703	0.1603	-0.2272	0.3615	
hour[14-13]	-0.4479	1.2659	-0.0308	0.4935	-0.2751	0.5982	-0.0407	0.1608	-0.0342	0.3642	
hour[15-14]	0.1987	1.2660	0.1818	0.4911	-0.3845	0.5961	-0.1007	0.1609	0.2672	0.3656	
hour[16-15]	-0.4175	1.2679	-0.0946	0.4919	-0.1937	0.5981	-0.2382	0.1637	0.3453	0.3678	
hour[17-16]	0.1558	1.2679	0.0424	0.4927	-0.4870	0.5971	-0.1456	0.1635	-0.2910	0.3662	
hour[18-17]	-0.1833	1.2660	0.0049	0.4927	0.0768	0.5971	0.1069	0.1645	-0.1744	0.3705	
hour[19-18]	-0.2024	1.2659	-0.0296	0.4927	-0.1764	0.5981	-0.0382	0.1618	0.1349	0.3629	
hour[20-19]	-0.8389	1.2659	-0.0524	0.4911	0.1905	0.5982	0.0461	0.1619	-0.7380	0.3618	
hour[21-20]	-0.2434	1.2659	0.2002	0.4910	-0.3052	0.6012	0.1372	0.1627	-0.0277	0.3627	
hour[22-21]	0.0294	1.2660	-0.1661	0.4919	0.2384	0.6002	-0.1274	0.1634	0.6291	0.3660	
hour[23-22]	-0.0543	1.2670	0.0426	0.4929	-0.3359	0.5996	0.0389	0.1660	0.0865	0.3669	

Table S6: Estimated values of hour effect and standard error, generated from a LME for the response variable fish depth (m) for pelagic charr ecomorphs (n=10). Values are given for each photoperiod category (A-D2), intercept hour[0-23].

1	Table S7: Welch ANOVA outputs for the response variable fish displacement (BLs ⁻¹)
2	with predictor hour-of-day (23 df), for each charr individual and each photoperiod
3	category (A-D2). Where insufficient data were available, N/A is stated. Power
4	simulations based upon parametric resampling were performed; values are stated (π).
5	Fish 1-13 are littoral morph fish, fish 14-23 pelagic. Bonferroni correction was
6	applied (adjusted significance level $p = 0.002$, indicated as an asterisk when
7	significant), hourly 95% confidence limits were calculated and presented in the
~	

Category of photoperiod	Fish ID	F	df Den	р	π
А		38.8125	741.6620	<0.0001 *	1.000
B 1		8.1793	391.3488	<0.0001 *	1.000
B2		2.7300	331.2078	<0.0001 *	0.996
B3	Fish 1	1.7671	124.5447	0.0253	0.827
С		16.7845	990.7668	<0.0001 *	1.000
D1		1.2383	242.0668	0.2130	0.578
D2		1.3271	562.8634	0.1417	0.647
А		1.8305	537.8601	0.0109	0.893
B 1		4.9767	275.1682	<0.0001 *	1.000
B2		1.5047	194.3366	0.0723	0.743
B3	Fish 2	2.0489	80.0375	0.0101	0.912
С		6.5513	713.6694	<0.0001 *	1.000
D1		1.6463	183.6913	0.0380	0.788
D2		1.4241	253.8473	0.0990	0.678
А		12.9965	695.3854	<0.0001 *	1.000
B1		8.4362	321.6754	<0.0001 *	1.000
B2		1.3967	296.3607	0.1096	0.692
B3	Fish 3	N/A			
С		46.6336	853.7830	<0.0001 *	1.000
D1		1.2760	238.0514	0.1845	0.601
D2		1.6831	573.0204	0.0246	0.841
А		34.5011	735.5468	<0.0001 *	1.000
B1		2.9589	263.4622	<0.0001 *	0.997
B2		3.2827	268.2331	<0.0001 *	1.000
B3	Fish 4	N/A			
С		4.2708	640.5082	<0.0001 *	1.000
D1		N/A			
D2		N/A			

8 supplementary figures.

1.000
0.041
0.941
0.927
0.259
1.000
0.18/
1.000
1.000
0.911
0.931
1.000
0.986
0.988
1.000
1.000
1.000
0.595
0.991
0.505
0.886
1.000
0.990
0.994
0.616
1.000
1.000
1.000
1.000
1.000
0.927
0.287
1 000
0.684
0.475

Category of photoperiod	Fish ID	F	<i>df</i> Den	р	π
A		19.7210	591.3423	<0.0001 *	1.000
B1		6.2833	289.2912	<0.0001 *	1.000
B2		1.5703	216.7680	0.0522	0.778
B3	Fish 10	1.0598	96.4339	0.4034	0.411
С		21.5763	792.8364	<0.0001 *	1.000
D1		1.0067	176.1688	0.4594	0.388
D2		1.6074	586.2534	0.0368	0.800
A		16.8488	631.2482	<0.0001 *	1.000
B1		5.7809	263.3221	<0.0001 *	1.000
B2		3.4496	240.1522	<0.0001 *	0.999
B3	Fish 11	N/A			
С		33.8914	671.1527	<0.0001 *	1.000
D1		2.0481	182.2982	0.0049	0.922
D2		2.1989	604.3354	0.0011 *	0.951
Α		7.0643	715.9239	< 0.0001 *	1.000
B1		1.9103	317.6356	0.0080	0.910
B2		4.5749	253.6985	<0.0001 *	1.000
B3	Fish 12	1.3775	55.2533	0.1652	0.635
С		5.8383	352.2732	<0.0001 *	1.000
D1		N/A			
D2		5.4183	532.3787	<0.0001 *	1.000
Α		9.8890	667.1307	<0.0001 *	1.000
B1		7.8040	356.1513	<0.0001 *	1.000
B2		0.9405	209.4917	0.5445	0.371
B3	Fish 13	0.5762	96.9063	0.9344	0.152
С		9.3449	806.1942	<0.0001 *	1.000
D1		1.6200	215.7337	0.0412	0.805
D2		0.8019	185.4604	0.7265	0.259

Category of photoperiod	Fish ID	F	df Den	р	π
A		12.6417	733,0367	< 0.0001 *	1.000
B1		6.8105	360.6786	<0.0001 *	1.000
B2		1.0454	328.9311	0.4072	0.414
B3	Fish 14	0.9504	98,4995	0.5342	0.317
C		27.1084	950.4367	<0.0001 *	1.000
D1		3.1626	240.5691	<0.0001 *	0.999
D2		1.6864	90.1534	0.0430	0.799
A		8.7644	389.6029	<0.0001 *	1.000
B1		7.6983	284.7996	<0.0001 *	1.000
B2		3.6353	230.7562	<0.0001 *	1.000
B3	Fish 15	2.1702	74.1070	0.0066	0.935
С		N/A			
D1		N/A			
D2		N/A			
Α		8.4885	710.4896	<0.0001 *	1.000
B1		7.5218	344.9057	<0.0001 *	1.000
B2		1.4739	304.2301	0.0771	0.753
B3	Fish 16	0.9796	85.2507	0.4991	0.372
С		20.3462	880.2496	<0.0001 *	1.000
D1		1.5498	243.1818	0.0561	0.752
D2		0.6463	501.4255	0.8963	0.155
Α		39.2473	757.3803	<0.0001 *	1.000
B1		11.2327	379.2809	<0.0001 *	1.000
B2		1.9584	384.7224	0.0056	0.914
B3	Fish 17	0.7700	142.0166	0.7632	0.238
С		30.3257	667.6151	<0.0001 *	1.000
D1		N/A			
D2		N/A			
А		7.0324	613.7663	<0.0001 *	1.000
B1		5.4553	218.7568	<0.0001 *	1.000
B2		1.2579	149.1443	0.2064	0.543
B3	Fish 18	1.2200	70.0377	0.2584	0.484
С	C		653.2705	<0.0001 *	1.000
D1		1.2244	132.9148	0.2353	0.546
D2		2.2611	23.7282	0.0285	

Category of	Fish ID	F	<i>df</i> Den	р	π
		8 2852	744 3454	<0.0001 *	1 000
R1		2 7295	362 1036	<0.0001 *	0.080
B2		2.1275	295 8766	0.0023	0.907
B2 B3	Fish 19	0.9658	66 0542	0.5180	0.374
C D3	1 1511 17	1 9117	708 8075	0.0160	0.974
D1		1.9117	204 1163	0.0004	0.900
D1 D2		1.0003	419 9261	0.0097	0.500
A		14 8159	646 8509	<0.0001 *	1.000
R1		8 4625	332 2673	<0.0001 *	1.000
B1 B2		1 5871	147 6911	0.0536	0.765
B2 B3	Fish 20	N/A	117.0911	0.0550	0.705
C	1 1511 20	8.6392	816,1629	<0.0001 *	1.000
D1		1.8082	180,2067	0.0173	0.879
D2		2.5549	115.6852	0.0006 *	0.980
A		3.8992	664.8595	<0.0001 *	0.999
B1		4.6981	317.4549	<0.0001 *	1.000
B2		1.2292	278.1275	0.2186	0.565
B3	Fish 21	0.8197	88.8190	0.6987	0.291
С		15.3341	778.4542	<0.0001 *	1.000
D1		2.4669	211.9906	0.0004 *	0.980
D2		1.0686	327.8895	0.3793	0.457
А		12.7627	655.5499	<0.0001 *	1.000
B1		6.2422	227.8794	<0.0001 *	1.000
B2		0.8470	159.7520	0.6680	0.316
B3	Fish 22	0.7310	64.6702	0.7965	0.227
С		5.8897	742.6640	<0.0001 *	1.000
D1		1.9261	147.3989	0.0107	0.884
D2		N/A			
А		8.9047	680.3825	<0.0001 *	1.000
B1		6.6756	315.5817	<0.0001 *	1.000
B2		1.1961	277.1639	0.2472	0.561
B3	Fish 23	0.9956	82.4518	0.4802	0.402
С		7.2144	791.7514	<0.0001 *	1.000
D1		1.3158	199.0944	0.1604	0.614
D2		N/A			

Table S8: Results of Welch ANOVA outputs summarised by Lake Ellasjøen Arctic charr ecomorph, littoral or pelagic. Welch tests were conducted with the response variable fish displacement (BLs⁻¹) with predictor hour of day (23 *df*), for each charr individual and each photoperiod category (A-D2) total n=162,530. Bonferroni correction was applied (adjusted significance level p = 0.002), hourly 95% confidence limits were calculated and presented in the supplementary figures.

			Significant		Non-significant		
Mo	orph	Photoperiod	n	%	n	%	Total fish
		А	12	92.31	1	7.69	13
		B1	10	76.92	3	23.08	13
		B2	6	46.15	7	53.85	13
Litt	oral	B3	0	0.00	9	100.00	9
		С	13	100.00	0	0.00	13
		D1	2	18.18	9	81.82	11
		D2	5	41.67	7	58.33	12
		А	10	100.00	0	0.00	10
		B1	10	100.00	0	0.00	10
		B2	1	10.00	9	90.00	10
Pel	agic	B3	0	0.00	9	100.00	9
		С	8	88.89	1	11.11	9
		D1	2	25.00	6	75.00	8
		D2	1	16.67	5	83.33	6

- Individual figures of hourly (0-23) mean values of fish displacement (BLs⁻¹) and 95%
 confidence limits for each category of photoperiod (A-D2), derived from tracking data
 of Lake Ellasjøen Arctic charr. Fish 1-13 are littoral morph fish (blue), fish 14-23
 pelagic (red). Where blank panels are presented, insufficient data were available to
 perform Welch tests, *df*Den are stated in table S6.

Individual figures of fish tracking data. Hourly mean values of fish displacement
(body lengths per second, BLs⁻¹) and fish depth (negative m) calculated per calendar
week for individual tracked Arctic charr from Lake Ellasjøen. Shading represents the
period when twilight is absent (sun more than 6 degrees below the horizon, weeks 49–
3) and the darkest winter solstice period (weeks 52,1). Track duration differs for
individuals, *n* and ecomorph (littoral or pelagic) of individual is stated.

Fish 1-Littoral (n = 1, 196)

93 Fish 10-Littoral (n = 1,185)

References

[1] Hawley, K.L., Rosten, C.M., Christensen, G. & Lucas, M.C. 2016 Fine-scale beha vioural differences distinguish resource use by ecomorphs in a closed ecosystem. Scie ntific Reports 6, 24369

- [2] Zuur, A.F., Leno, E.I., Walker, N.J., Saveliev, A.A. & Smith, G.M. 2009 Mixed
- effects models and extensions in ecology with R. Springer, New York, NY, USA.
- [3] Cooke, S., Hinch, S., Lucas, M. & Lutcavage, M. 2012 Biotelemetry and
- biologging. Fisheries techniques 3rd edition (Eds, A.V. Zale, D.L. Parrish, T.M.
- Sutton), pp. 819-881. American Fisheries Society, Bethesda, Maryland.

- [4] R Core Team. 2016. R: A language and environment for statistical computing. R
- Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.or <u>g/</u>.