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Abstract: In this study, the modified Cramér-Rao lower bounds (MCRLBs) on the joint estimation
of target position and velocity is investigated for a universal mobile telecommunication system
(UMTS)-based passive multistatic radar system with antenna arrays. First, we analyze the
log-likelihood redfunction of the received signal for a complex Gaussian extended target. Then, due to
the non-deterministic transmitted data symbols, the analytically closed-form expressions of the
MCRLBs on the Cartesian coordinates of target position and velocity are derived for a multistatic
radar system with Nt UMTS-based transmit station of Lt antenna elements and Nr receive stations of
Lr antenna elements. With the aid of numerical simulations, it is shown that increasing the number
of receiving elements in each receive station can reduce the estimation errors. In addition, it is
demonstrated that the MCRLB is not only a function of signal-to-noise ratio (SNR), the number
of receiving antenna elements and the properties of the transmitted UMTS signals, but also a
function of the relative geometric configuration between the target and the multistatic radar
system.The analytical expressions for MCRLB will open up a new dimension for passive multistatic
radar system by aiding the optimal placement of receive stations to improve the target parameter
estimation performance.

Keywords: modified Cramér-Rao lower bound (MCRLB); modified fisher information matrix (MFIM);
maximum likelihood estimation; universal mobile telecommunications system (UMTS) signals;
multistatic radar; antenna arrays

1. Introduction

1.1. Background and Motivation

Multiple-input multiple-output (MIMO) radar systems have received contentiously growing
attention from the research community in the last decade [1,2], which exploit multiple transmitted
waveforms and jointly process the echoes scattered off the target at the multiple receivers. In general,
MIMO radar systems can be classified as MIMO radar with widely separated antennas [3] and MIMO
radar with colocated antennas [4]. With widely separated transmit and receive antennas, the distributed
MIMO radar, sometimes called multistatic radar system or distributed radar network [5,6], can combine
the benefits from viewing the targets from different directions. To make the best use of the target
information from different directions to achieve high estimation performance, perfect time and space
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synchronization is required so that all the transmit and receive antennas exploit a common time and
space reference in distributed MIMO radar architecture. On the other hand, all the transmit and receive
antennas in the colocated MIMO radar are closely spaced, thus providing only a single “view” of the
target. Hence, MIMO radar systems with widely distributed antennas can provide improved target
parameter estimation capabilities by employing increased geometric diversity [7].

Technically speaking, parameter estimation performance can be assessed by evaluation of bounds
on the estimation errors [8]. Cramér-Rao lower bound (CRLB) is one of the most widely used bounds,
which can predict the variance of the estimation error when SNR is large or the number of taken data
samples is large [9,10]. The CRLBs for distributed MIMO radar systems have been computed for target
velocity estimation [11], target location estimation [9], noncoherent and coherent joint target position
and velocity estimation [10,12], and multiple-target joint parameter estimation [13]. Recently, He et al.
in [14] derive the generalized CRLB for joint estimation of target position and velocity for distributed
MIMO radar networks under more general conditions, such as the non-orthogonal signals, spatially
dependent target reflection coefficients, and spatially dependent noise. This result is of high importance
due to the fact that it describes the best achievable performance for some practical cases. In [15], the
CRLBs of the joint time delay and Doppler shift estimation are derived for an extended target, and
the effects of transmitted waveform parameters on the CRLBs are analyzed. The authors in [16]
investigate the target parameter estimation performance of linear frequency modulation (LFM)-based
radar networks in a Rice fading environment. It is shown that the dominant scatterer (DS) component
can be exploited to decrease the estimation errors, which is because the reception of DS component
increases the received signal-to-noise ratio (SNR) at the radar receiver. Reference[17] derives the
CRLB for joint location and velocity estimation of moving target in distributed phased array radars
on moving platforms. Numerical examples show that increasing the signal bandwidth is beneficial
to improve the location estimation accuracy, while the extended observation time can enhance the
velocity estimation accuracy. Furthermore, the target parameter estimation performance is explored
in [8] for a radar employing a set of widely separated transmitting and receiving antenna arrays, which
considers multiple extended targets under stochastic and deterministic signal model assumptions.
It is also worth mentioning that ad-hoc asymptotic performance analysis of algorithms for multistatic
localization have appeared in the studies [18–20], where the theoretical performance of multiple signal
classification (MUSIC) in computational time-reversal (TR) applications is analyzed. The closed-form
expression of mean square error (MSE) matrix of TR-MUSIC is calculated for the single-frequency
case in both multistatic co-located and non co-located cases, and numerical examples are provided to
demonstrate the theoretical results.

1.2. Brief Survey of Similar Work

In the last couple of years, extensive research has been conducted in passive radar systems, which
utilizes the signals of opportunity as illuminators for target detection [21], parameter estimation [22],
target tracking [23], etc. Since passive radars do not require expensive transmission equipments, these
systems have the advantages of stealth target detection, low probability of intercept (LPI) [24–28], low
implementation cost, anti-jamming [29], and robustness. Further, a passive radar system will offer
geometric and signal diversities when it is deployed in a multistatic architecture, which is able to
enhance its detection and estimation performance. In [30–36], the CRLB has been studied and applied
to passive radar systems. In [30], the CRLB analysis for the joint target position and velocity estimation
is presented for a frequency modulation (FM) based passive radar networks, and it is suggests that
more antennas mean better estimation performance. Based on the 3G wireless communications
standard, the downlink signal of universal mobile telecommunications systems (UMTS) has been a
potential illuminator of opportunity for a passive radar system because of its favourable ambiguity
function properties. Moreover, since the transmitted data symbols in UMTS-based waveform are
non-deterministic, calculating the classical CRLB is not feasible in this study. In this case, modified
CRLB (MCRLB) can provide a looser bound than the classical CRLB in realistic scenarios when
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computing the classical CRLB is not feasible, which can be employed as a good alternative method
by averaging the conventional Fisher information matrix (FIM) conditioned on a given sequence
of the transmitted symbols with respect to the stochastic data symbols. Therefore, the MCRLB for
UMTS-based passive radar networks is derived in [31], where both noncoherent and coherent modes
are considered. However, the studies in [30,31] only investigate the target parameter estimation
performance for a passive radar network with widely distributed omnidirectional antennas and do
not consider multichannel radar receivers placed on moving platforms. In [32], the results in [31] are
extended and the joint target parameter estimation performance of a UMTS-based passive multistatic
radar is analyzed in a line-of-sight (LoS) environment. In addition, the MCRLB evaluation of an
orthogonal frequency-division multiplexing (OFDM)-based passive radar network can be found
in [33], where the OFDM-based L band digital aeronautical communication system type 1 (LDACS1)
communication signals are implemented as signals of opportunity for the passive radar networks.
The authors in [34] address the target parameter estimation performance of an OFDM-based passive
multistatic radar system in a Rice fading environment, which is composed of multiple OFDM-based
LDACS1 transmitters of opportunity and multiple radar receivers placed on moving platforms.
Reference [35] presents two illumination of opportunity subset selection schemes for FM-based passive
radar network configurations, which are formulated as knapsack problems (KPs) and tackled with
greedy selection methods. Xie et al. in [36] investigate the problem of joint optimization of receiver
placement and transmitter selection for a passive radar network system.

This study addresses the joint target parameter estimation performance of a UMTS-based passive
multistatic radar system with antenna arrays, where the multichannel receive stations are placed on
moving platforms. The passive multistatic radar system can combine the advantages from geometric
diversity, with the benefits of employing standard coherent array processing [8]. It is important to
point out that almost all referenced works consider radars with widely distributed omnidirectional
antennas and do not consider widely distributed transmitters/receivers with antenna arrays. For the
passive multistatic radar system with antenna arrays placed on moving platforms, the things are much
more complicated. To the best of our knowledge, there has no study on the problem of joint target
parameter estimation in UMTS-based passive multistatic radar system with antenna arrays until now.

1.3. Main Contributions

This paper investigates the joint target position and velocity estimation performance for a
UMTS-based passive multistatic radar system with antenna arrays, where the multichannel receive
stations are placed on moving platforms. It is assumed that each receive station is able to estimate and
separate the scattered signals off the target due to different UMTS-based illuminators of opportunity
with perfect accuracy. Owing to the stochastic parameters describing the UMTS waveform, the MCRLB
is utilized as an alternative to the classical CRLB.

The major contributions of this work are summarized as follows:

(1) We formulate the signal model and derive the log-likelihood function for a multistatic radar
system with Nt UMTS-based transmit stations of Lt antenna elements and Nr receive stations of Lr

antenna elements. As aforementioned, it is noteworthy that references [30–34] only evaluate the
target parameter estimation performance for a passive multistatic radar with widely distributed
omnidirectional antennas and do not consider receive stations placed on moving platforms. While
Khomchuk et al. in [8] concentrate on stationary platforms, and the passive multistatic radar
system is ignored in [8,17]. As an extension, this paper is a much more generalized case and quite
different from the obtained results in [8,17,30–34].

(2) The analytically closed-form expressions of MCRLB on the joint estimation of target position and
velocity are derived in the presence of the nuisance parameters. These expressions for MCRLB
can be used as a unified performance metric in that they enable the optimal placement of receive
stations to improve the target parameter estimation accuracy.
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(3) The obtained numerical simulation results suggest that increasing the number of receiving
elements in each receive station can reduce the estimation errors. Previous results in [31,32]
only demonstrate that the CRLB is a function of the properties of the transmitted signals
and the geometric configuration between the target and the distributed MIMO radar systems.
Herein, the effects of SNR and the number of receiving antenna elements on the joint target
position and velocity estimation performance are also discussed. Specifically, it is shown that the
joint MCRLB is a function of SNR, the number of receiving antenna elements, the UMTS signal
parameters, as well as the relative geometric architecture between the target and the passive
multistatic radar systems.

Note that the objective of a typical UMTS-based communication system is to transfer information
from a source to a sink and recover that information reliably. While the passive multistatic radar
system uses the signals transmitted from the UMTS-based illuminators of opportunity to detect and
estimate targets, which makes it a potential technology for LPI and other as aforementioned advantages.
Thus, modifying the transmitted UMTS waveform parameters to maintain LPI performance may be
out of the scope of the UMTS-based communication systems and will not be discussed in this paper.

1.4. Outline of the Paper

The remainder of this paper is organized as follows. The signal model for UMTS-based passive
multistatic radar with antenna arrays is discussed in Section 1, in which each receive station employs
coherent processing. The log-likelihood function is derived and the maximum likelihood estimation
(MLE) is analyzed in Section 2. In Section 3, the closed-form expressions of MCRLB for target parameter
estimation are computed. Numerical simulations and performance analysis are presented in Section 4.
Finally, our concluding remarks are summarized in Section 5.

Notation: The superscript T represents the transpose operator; E{·} and (·)∗ represent the
expectation and conjugation operators, respectively. | · | denotes the absolute value, <{·} is the real
part, and ={·} is the imaginary part. � represents the Hardmard product, ⊗ represents the Kronecker
product. Ui( f ) denotes the Fourier transform of ui(t).

2. Signal Model

Let us consider a passive multistatic radar system with Nt widely spaced transmit stations and
Nr widely spaced receive stations. Each transmit and receive station consists of Lt and Lr antenna
elements respectively. Here, the receive stations can receive echoes from the target due to the UMTS
signals scattered off the target as well as the UMTS signals from the transmit stations whose locations
are supposed to be known. The UMTS signals are received via two directions: a path which is due
to scattering off the target and a direct path. It is also assumed that the passive receive stations can
employ adaptive beamforming to separate the received signals into two channels, one required for
target surveillance and the other for receiving the reference UMTS signals through the direct path.
Adaptive beamforming is a widely utilized technique in radar and wireless communication systems,
which is able to reject interferences from other angles. In addition, successive interference cancellation
(SIC) is used to remove a stronger reference UMTS signal from the observed signal in order to obtain
interference-free target return. As such, the UMTS signals from different transmit stations can be
estimated and separated at the receive stations (for example different frequency spectra) [31]. The

center of the i-th transmit station is located at
−→
pt

i = [xt
i , yt

i ] , i = 1, · · · , Nt, while the center of the j-th

receive station is located at
−→
pr

j = [xr
j , yr

j ], j = 1, · · · , Nr. The target position and velocity are supposed
to be deterministic unknown and denoted by −→p = [x, y] and −→v = [vx, vy]. The unknown target state
vector that collects the parameters to be estimated can be defined as follows:

Φ = [x, y, vx, vy]
T , (1)
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Let τΦ
ij represent the bistatic time delay corresponding to the path between the i-th transmit

station, moving target, and the j-th receive station, which is a function of the unknown target position
−→p = [x, y]:

τΦ
ij =

√
(x− xt

i )
2 + (y− yt

i)
2 +

√
(x− xr

j )
2 + (y− yr

j )
2

c

=

∥∥∥−→p −−→pt
i

∥∥∥+ ∥∥∥−→p −−→pr
j

∥∥∥
cv

, (2)

where cv is the speed of light,
∥∥∥−→p −−→pt

i

∥∥∥ denotes the distance from the i-th transmit station to the

target and
∥∥∥−→p −−→pr

j

∥∥∥ denotes the distance from the target to the j-th receive station, respectively.
In this paper, the receive stations are placed on moving platforms. The jth receive station is moving
with velocity

−→
vr

j = [vr
x,j, vr

y,j]. With the aforementioned positions/velocities of the target and receive
stations, the Doppler shift of the moving target corresponding to the ij-th path is the time rate of
change of the total ij-th path length:

f Φ
Dij

=
1
λ

∂
∥∥∥−→p −−→pt

i

∥∥∥
∂t

+
∂
∥∥∥−→p −−→pr

j

∥∥∥
∂t


=

1
λ

vx

 x− xt
i∥∥∥−→p −−→pt
i

∥∥∥ +
x− xr

j∥∥∥−→p −−→pr
j

∥∥∥

+

1
λ

vy

 y− yt
i∥∥∥−→p −−→pt
i

∥∥∥ +
y− yr

j∥∥∥−→p −−→pr
j

∥∥∥



+
1
λ

vr
x,j

x− xr
j∥∥∥−→p −−→pr
j

∥∥∥ + vr
y,j

y− yr
j∥∥∥−→p −−→pr
j

∥∥∥
 , (3)

where λ denotes the carrier wavelength,
∂

∥∥∥∥−→p −−→pt
i

∥∥∥∥
∂t and

∂
∥∥∥−→p −−→pr

j

∥∥∥
∂t are the relative velocities for the i-th

transmit station and the j-th receive station, respectively. One can notice from Equation (2) that the
Doppler shift f Φ

Dij
is a function of the unknown target position −→p = [x, y] and velocity −→v = [vx, vy].

The lowpass equivalent waveform transmitted from the i-th UMTS-based transmit station is√
E

Nt Lt
ui(t), where E denotes the total transmitted energy. The baseband signal corresponding to the

i-th transmit station ui(t) is normalized
∫ +∞
−∞ |ui(t)|2dt = 1, which is defined as follows:

ui(t) =
1√
N

N−1

∑
n=0

cingi(t− nT), (4)

where N is the total number of symbols, cin is the i-th transmitted quadrature phase shift keying
(QPSK) symbol, and T is the symbol time. The symbols are modulated with delayed root-raised-cosine
(RRC) pulse gi(t) = hi(t− D

2 ), where the definitions of the delay D and hi(t) can be found in [32].

Assumption 1. Suppose that the transmitted signals are approximately orthogonal

∫ +∞

−∞
ui(t)u∗i′ (t)dt ≈

{
1, if i = i

′

0, if i 6= i
′ (5)

and maintain approximate orthogonal for time delays τΦ
ij , τΦ

i′ j′
and Doppler shifts f Φ

Dij
, f Φ

D
i′ j′

of interest
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∫ +∞

−∞
ui(t− τΦ

ij )u
∗
i′
(t− τΦ

i′ j′
)e

j2π( f Φ
Dij
− f Φ

D
i′ j′

)t
dt ≈

{
1, if i = i

′
, j = j

′

0, if i 6= i
′
, j 6= j

′ (6)

such that the signals from different transmit stations can be separated at each receive station [10].

Assumption 2. The transmit and receive stations are sufficiently separated so that each transmit-to-receive
path provides an independent aspect angle for the target, such that each of them has its own reflection coefficient.

Under these assumptions, the signal received at the k-th antenna element of the j-th receive station
is given by:

rjk(t) =

√
E

NtLt

Nt

∑
i=1

ξijGui(t− τΦ
ij )e

j2π f Φ
Dij

t
ej2π(k−1)sinφr

j dr/λ
+ wjk(t), (7)

where ξij = ξijR + jξijI denotes the complex reflection coefficient corresponding to the ij-th path,
which is unknown parameter. Define a target reflection vector that collects reflection coefficients for all
paths as:

ξ = [ξ11, ξ21, · · · , ξNt1, ξ21, · · · , ξNt Nr ]
T , (8)

and it is assumed that the reflection coefficient corresponding to the ij-th path ξij is a complex Gaussian
distributed variable with zero mean and covariance σ2

ξ , i.e., ξij ∼ CN (0, σ2
ξ ). G denotes the antenna

gain of the transmit station, φr
j = arctan[(yr

j − y)/(xr
j − x)], dr denotes the element spacing of receive

station. The term wjk(t) represents noise at the k-th antenna element of the j-th receive station, which is
supposed to be independent and identically-distributed zero-mean complex Gaussian with variance
σ2

w, i.e., wjk ∼ CN (0, σ2
w). The Lr observations of the j-th receive station can be expressed as [17]:

rj(t) = [rj1(t), · · · , rjk(t), · · · , rjLr (t)]
T . (9)

The observations from all Mr receive stations can be written as follows:

r(t) = [rT
1 (t), · · · , rT

j (t), · · · , rT
Mr

(t)]T , (10)

which collects the observed signals from the entire set of the receiving antenna elements.

Remark 1. To provide an accurate estimation of the moving target, the installation of radar nodes in a multistatic
radar system require that the transmit and receive stations demand time synchronization to perform correct
target parameter estimation. Herein, it is assumed that the time synchronization of the multistatic radar is
achieved by global positioning system (GPS), which can provide precise time stamps (up to nanoseconds) at both
transmit and receive stations.

3. Maximum Likelihood Estimation

Under Assumptions 1 and 2, and suppose that the noise and the target reflection coefficients are
mutually independent, the joint probability density function (PDF) of the received signals r(t) for a
given transmitted symbol vector c can be expressed as:

p(r(t)|Φ, ξ, c) ∝ exp

{
− 1

σ2
w

∑Nr
j=1 ∑Lr

k=1

∫ +∞
−∞

∣∣∣∣rjk(t)−
√

E
Nt Lt

∑Nt
i=1 ξijGui(t− τΦ

ij )e
j2π f Φ

Dij
t
ej2π(k−1)sinφr

j dr/λ
∣∣∣∣2 dt

}
. (11)

where c represents a vector that collects any random parameters needed to describe the UMTS-based
waveform. Furthermore, taking logarithm of the pdf in Equation (11), we can obtain the log-likelihood
function as follows:
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L(r(t)|Φ, ξ, c) = lnp(r(t)|Φ, ξ, c)

= − 1
σ2

w
∑Nr

j=1 ∑Lr
k=1

∫ +∞
−∞

∣∣∣∣rjk(t)−
√

E
Nt Lt

∑Nt
i=1 ξijGui(t− τΦ

ij )e
j2π f Φ

Dij
t
ej2π(k−1)sinφr

j dr/λ
∣∣∣∣2 dt + C,

(12)

where C is not dependent on the target state vector Φ and reflection vector ξ.
Since the target reflection vector ξ is unknown, the log-likelihood function lnp(r(t)|Φ, c) can be

obtained by MLE. To be specific, the complex reflection coefficient of the ij-th transmit-to-receive path
maximizes L(r(t)|Φ, ξ, c) in Equation (12), i.e.,

∂

∂ξijR
L(r(t)|Φ, ξ, c)

∣∣∣∣∣
ξijR=ξ̂ijR

= 0,

∂

∂ξijI
L(r(t)|Φ, ξ, c)

∣∣∣∣∣
ξijI=ξ̂ijI

= 0.

(13)

Then, the maximum likelihood (ML) estimates of ξ̂ijR and ξ̂ijI can be obtained as:

ξ̂ijR =

<
{

∑Lr
k=1

∫ +∞
−∞ rjk(t)u∗i (t− τΦ

ij )e
−j2π f Φ

Dij
t
e−j2π(k−1)sinφr

j dr/λdt
}

√
E

Nt Lt
LrG

,

ξ̂ijI =

=
{

∑Lr
k=1

∫ +∞
−∞ rjk(t)u∗i (t− τΦ

ij )e
−j2π f Φ

Dij
t
e−j2π(k−1)sinφr

j dr/λdt
}

√
E

Nt Lt
LrG

,

(14)

Thus, the estimated target reflection coefficient corresponding to the ij-th path can be expressed as:

ξ̂ij = ξ̂ijR + jξ̂ijI

=
∑Lr

k=1

∫ +∞
−∞ rjk(t)u∗i (t− τΦ

ij )e
−j2π f Φ

Dij
t
e−j2π(k−1)sinφr

j dr/λdt√
E

Nt Lt
LrG

(15)

Substituting ξ̂ij back into Equation (12) instead of the corresponding variables, the concentrated
log-likelihood function lnp(r(t)|Φ, c) can be written as:

L(r(t)|Φ, c) = lnp(r(t)|Φ, c)

= − 1
σ2

w

Nr

∑
j=1

Lr

∑
k=1

∫ +∞

−∞

∣∣∣rjk(t)
∣∣∣2 dt

+
1

Lrσ2
w

Nt

∑
i=1

Nr

∑
j=1

∣∣∣∣∣ Lr

∑
k=1

∫ +∞

−∞
rjk(t)u∗i (t− τΦ

ij )e
−j2π f Φ

Dij
t
e−j2π(k−1)sinφr

j dr/λdt

∣∣∣∣∣
2

, (16)

From a practical stand point, it is assumed that the vector c is perfectly known or estimated
after a previous estimation step [37]. Subsequently, neglecting the constant term of the second line
in Equation (16), the estimate of the unknown target state vector Φ can be found as the minimizer of
the function

Φ̂ML = arg max
Φ

L(r(t)|Φ, c)

= arg max
Φ

1
Lrσ2

w

Nt

∑
i=1

Nr

∑
j=1

∣∣∣∣∣ Lr

∑
k=1

∫ +∞

−∞
rjk(t)u∗i (t− τΦ

ij )e
−j2π f Φ

Dij
t
e−j2π(k−1)sinφr

j dr/λdt

∣∣∣∣∣
2

, (17)
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where Φ̂ML represents the MLE of the unknown parameter vector Φ.

Remark 2. It is worth pointing out that a four-dimensional search over the space consisting of the possible values
of (x, y, vx, vy) is required for obtaining the ML estimate of Φ numerically. Additionally, as the numbers of Nt,
Nr, and Lr go up, the system complexity and computational load will be increased significantly. There are some
suboptimal methods which can achieve low complexity [38,39]. In [38], a reduced complexity optimal algorithm
is presented, which employs two dimensional fast Fourier transform to jointly estimate the target position and
Doppler shift. It is also shown that the MSE of the estimators achieves the CRLB. In [39], the first-order Keystone
transform and the Lv’s transform are utilized to estimate the multiple targets’ motion parameters, which is fast
and can obtain the accurate parameter estimation without knowing the number of targets and their motion
information. Future work will develop some other suboptimal approaches to reduce complexity.

4. Derivation of Modified Cramér-Rao Lower Bound

In this section, we will derive the MCRLB for jointly estimating the target position (x, y) and
velocity (vx, vy) for a multistatic radar system with Nt UMTS-based transmit station of Lt antenna
elements and Nr receive stations of Lr antenna elements. Generally speaking, the CRLB is a good
prediction of the variance of the estimation error due to the fact that the CRLB is close to the MSE
of the MLE when SNR is large or the number of taken data samples is large. However, since the
transmitted data symbols cin are non-deterministic, calculating the classical CRLB is not feasible in
our work, which represent nuisance parameters in the estimation process. In this case, MCRLB can
provide a good benchmark when computing the classical CRLB is not feasible. In the classical CRLB,
the joint probability density function of the received signal and the parameter vector is used, while in
MCRLB the expectation is taken on the conditioned probability density function of the received
signal conditioned on the transmitted symbols [34]. The expressions of MCRLB can be employed as
a good alternative method by averaging the conventional FIM conditioned on a given sequence of
the transmitted symbols with respect to the stochastic data symbols, which show a looser bound than
the classical CRLB in realistic scenarios. The first step in deriving MCRLB is to compute the modified
FIM (MFIM), which is a 4× 4 matrix obtained from the second-order derivatives of the concentrated
log-likelihood function:

J(Φ|c) = Er(t)|Φ,c{5ΦL(r(t)|Φ, c)[5ΦL(r(t)|Φ, c)]T}

= −Er(t)|Φ,c{5Φ[5ΦL(r(t)|Φ, c)]T}, (18)

We can observe from Equation (16) that L(r(t)|Φ, c) is a function of τΦ
ij and f Φ

Dij
, thus we define

an intermediate parameter vector:

Ψ =
[
τΦ

11, τΦ
12, · · · , τΦ

Nt Nr
, f Φ

D11
, f Φ

D12
, · · · , f Φ

DNt Nr

]T
, (19)

which collects the unknown time delays and Doppler shifts. According to the chain rule, the MFIM
can be computed by:

J(Φ|c) = (5ΦΨT)J(Ψ|c)(5ΦΨT)T , (20)

where J(Ψ|c) = −Er(t)|Ψ,c{5ΨL(r(t)|Ψ, c)[5ΨL(r(t)|Ψ, c)]T}.
First, we compute5ΦΨT . Recalling Equation (1) and (19) ,5ΦΨT can be obtained as:

5Φ ΨT =

[
Ω1 Ω2

0 Ω4

]
, (21)
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where

Ω1 =

 ∂τΦ
11

∂x
∂τΦ

12
∂x · · ·

∂τΦ
Nt Nr
∂x

∂τΦ
11

∂y
∂τΦ

12
∂y · · ·

∂τΦ
Nt Nr
∂y

 , (22)

Ω2 =

 ∂ f Φ
D11

∂x
∂ f Φ

D12
∂x · · ·

∂ f Φ
DNt Nr
∂x

∂ f Φ
D11
∂y

∂ f Φ
D12
∂y · · ·

∂ f Φ
DNt Nr
∂y

 , (23)

Ω4 =

 ∂ f Φ
D11

∂vx

∂ f Φ
D12

∂vx
· · ·

∂ f Φ
DNt Nr
∂vx

∂ f Φ
D11

∂vy

∂ f Φ
D12

∂vy
· · ·

∂ f Φ
DNt Nr
∂vy

 , (24)

and 0 is a 2× NtNr zero matrix. The entries of Ω1, Ω2, and Ω4 are provided in Appendix A.
Then, we derive J(Ψ|c), which is a 2NtNr × 2NtNr matrix and can be rewritten as a block matrix:

J(Ψ|c) =
[

J(Ψ|c)UL J(Ψ|c)UR

J(Ψ|c)LL J(Ψ|c)LR

]
, (25)

The detailed derivations of J(Ψ|c)UL, J(Ψ|c)UR, J(Ψ|c)LL, and J(Ψ|c)LR are shown in Appendix B.
After lengthy algebraic calculations, the final expression for total MFIM across all the

transmit-to-receive paths can be written as follows:

J(Φ|c) =
Nt

∑
i=1

Nr

∑
j=1

8π2LrEG2|ξij|2

NrLtσ2
w

Jij(Φ|c), (26)

The expressions for the elements of the bistatic MFIM Jij(Φ|c) corresponding to the ij-th
transmit-to-receive path are presented in Appendix C. The MCRLB for the unknown target state
vector Φ is defined as an inverse of the MFIM:

CRLB(Φ|c) = J−1(Φ|c). (27)

One can observe from Equation (26) that the MCRLB CRLB(Φ|c) is a summation of NtNr

terms, such that each transmit-to-receive path contributes information about the target’s parameters
of interest [8]. The joint MCRLBs for the estimates of the unknown target position and velocity
components can be determined by the diagonal elements of the inverse of the MFIM evaluated at the
true parameter value: 

var(x̂) ≥ [J−1(Φ|c)]1,1,

var(ŷ) ≥ [J−1(Φ|c)]2,2,

var(v̂x) ≥ [J−1(Φ|c)]3,3,

var(v̂y) ≥ [J−1(Φ|c)]4,4.

(28)

where var(ϑ̂) denotes the variance of any unbiased estimation ϑ̂ of the unknown parameter θ. Since the
closed-form expression of J−1(Φ|c) can be easily derived employing the chain rule, the MCRLB can be
computed for any nonsingular MFIM. It should be noted that the computational complexity of the
MCRLB computation will be increased as we increase the numbers of transmit and receive stations,
while the size of J(Φ|c) does not change with Nt and Nr [10]. In Section 4, examples are dedicated to
calculate the joint MCRLB for a UMTS-based passive multistatic radar system with antenna arrays as
well as reveal the effects of several factors on the MCRLB.

Remark 3. Without loss of generality, we focus on a single-target case in this paper. However, the results can be
extended to the multiple-target scenario, in which the number of unknown parameters in the target state vector is
increased by a factor equal to the number of targets, that is, Φ = [x1, y1, v1

x, v1
y, · · · , xQ, yQ, vQ

x , vQ
y ]

T , where Q
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denotes the total number of targets. The intermediate target parameter vector in Equation (19) can be rewritten

as Ψ =
[
τΦ

11,1, · · · , τΦ
Nt Nr ,1, · · · , τΦ

11,Q, · · · , τΦ
Nt Nr ,Q, f Φ

D11,1, · · · , f Φ
DNt Nr ,1, · · · , f Φ

D11,Q, · · · , f Φ
DNt Nr ,Q

]T
. Then,

5ΦΨT becomes a 4Q × 2QNtNr matrix, and J(Ψ|c) is a 2QNtNr × 2QNtNr matrix. Thus, the final
closed-form expressions for MCRLB will be a 4Q× 4Q matrix. It is indicated in [13] that the interactions
between different targets can be ignored when the distances between the targets are large enough. Therefore, each
target can be treated separately as it is treated in the problem of single-target parameter estimation.

5. Numerical Simulations and Performance Analysis

In this section, numerical examples are provided to compute the MCRLB for a UMTS-based
passive multistatic radar system with antenna arrays, which demonstrate the use of the derived
MCRLB to bound the performance of joint target position and velocity estimation.

5.1. Numerical Setup

For numerical simulations, we assume a multistatic radar system with five UMTS-based transmit
station and an equal number of receive stations, i.e., Nt = 5 and Nr = 5. The Cartesian coordinates of
the positions of transmit stations (in m) are given in Table 1. The positions and moving parameters of
the receive stations are provided in Table 2. Consider a target moving with velocity [100, 80]m/s is
located at [5000, 7000]m. For a brief discussion, we consider a scenario in a 2D geometry as visualized
in Figure 1. In order to compare different radar systems based on the same amount of transmitted
energy and signal bandwidth, it is assumed that all UMTS-based transmit stations considered in this
section have single element transmitting arrays, i.e., Lt = 1. For the simulation parameters, we choose
T = 0.26µs, N = 1024, α = 0.22, and the center frequency fc = 2100 MHz as in [31,32].

−1000 0 1000 2000 3000 4000 5000 6000
−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

X position[m]

Y
 p

os
iti

on
[m

]

 

 

UMTS transmit station
Receive station
Target

(100, 80) m/s

Figure 1. Simulated multistatic 2D scenario with locations of transmit stations, receive stations
and target.
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Table 1. Positions of the Transmit Stations.

Transmit Station Index Positions [m]

Transmit Station 1 [2000, 2000]
Transmit Station 2 [2000, 2250]
Transmit Station 3 [3500, 2000]
Transmit Station 4 [3500, 2250]
Transmit Station 5 [3500, 2500]

Table 2. Positions and Moving Parameters of the Receive Stations.

Transmitter Index Positions [m] Velocities [m/s]

Receive Station 1 [1000, 5000] [50, 30]
Receive Station 2 [0, 0] [80, 80]
Receive Station 3 [4000, 0] [20, 90]
Receive Station 4 [0, 3000] [100, 50]
Receive Station 5 [2000, 7000] [70, 0]

5.2. Simulation Results

As aforementioned, the reflection coefficient corresponding to the ij-th path ξij is modelled as
a zero-mean complex Gaussian random variable with variance σ2

ξ , i.e., ξij ∼ CN (0, σ2
ξ ). Define the

SNR as:

SNR = 10lg

(
EG2σ2

ξ

NtLtσ2
w

)
. (29)

In Figure 2, the noncoherent square roots of MCRLB (RMCRLBs) are plotted against SNR for
x-position and y-position dimensions. Similarly, we plot the velocity RMCRLBs for varying SNR in
Figure 3. One can see that the RMCRLBs for both target position and velocity estimates decrease with
an increase of SNR. It is obvious from Figures 2 and 3 that as the value of Lr goes up, the estimation
errors are decreased significantly for Cartesian components of target position and velocity, which
demonstrates that grouping the receiving elements into properly sized arrays can reduce MSE [8].

Now, to investigate the dependence of the RMCRLB values on the geometry between the target
and the passive multistatic radar system, we illustrate the RMCRLBs for both target position and
velocity in different position when SNR = 0dB and Lr = 1000 in Figures 4 and 5 . From these figures,
we see that the RMCRLBs on the Cartesian coordinates of target position and velocity are different
when the target is located at different positions. That is to say, as the relative geometry between the
target and the multistatic radar system changes by changing the target position, the RMCRLB values
are changed, which is due to the fact that the geometry between the target and the multistatic radar
system impacts the derivatives of the delay-Doppler terms with respect to the Cartesian coordinates
remarkably [16,34]. This will open up a new dimension for passive multistatic radar systems by aiding
the optimal placement of receive stations to improve the target parameter estimation accuracy.
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Figure 2. RMCRLB versus SNR in target position dimensions with different Lr: (a) x-position;
(b) y-position.
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Figure 3. RMCRLB versus SNR in target velocity dimensions with different Lr: (a) x-velocity;
(b) y-velocity.
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Figure 4. RMCRLB for target position dimensions in different position when SNR = 0 dB and Lr = 1000:
(a) x-position; (b) y-position.
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Figure 5. RMCRLB for target velocity dimensions in different position when SNR = 0 dB and Lr = 1000:
(a) x-velocity; (b) y-velocity.

In Figures 6 and 7, the RMCRLBs for both target position and velocity estimates are plotted as a
function of SNR when N = 1024× 512. It can be seen that the RMCRLBs are decreased with an increase
in the total number of symbols N. For instance, in Figure 2, at an SNR of 15 dB, the RMCRLBs for the
x and y positions are 0.1984 m and 0.1452 m when Lr = 100, respectively. In Figure 3, the RMCRLBs
for the x and y velocities are 2.703 m/s and 1.227 m/s when SNR = 15 dB and Lr = 100, respectively.
Compared the results in Figure 6, we can clearly observe that the RMCRLB at SNR = 15 dB for x is
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0.1017 m and that for y is 0.07344 m. These numbers are different from the earlier case and the same
holds true for the velocity RMCRLBs in Figure 7.

In addition, increasing the symbol time of the signals, T in Equation (4) also provides benefits as
one can expect. Figures 8 and 9 show the RMCRLBs for both target position and velocity against SNR
when N = 1024× 512 and T = 10µs. In Figure 8, the RMCRLB value becomes 0.007099 m for x and
0.004863m for y when SNR = 15 dB and Lr = 100. Also, from Figure 9, vx and vy have much lower
error values than those in Figure 7 . These results indicate that a waveform with a larger data set will
achieve better estimation performance, which in turn will increase the data processing requirement.
Therefore, we can conclude that the MCRLB is a function of SNR, the number of receiving antenna
elements, the transmitted waveform parameters, as well as the relative geometry between the target
and the passive multistatic radar configuration.
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Figure 6. RMCRLB versus SNR in the target position dimensions with different Lr when
N = 1024× 512: (a) x-position; (b) y-position.
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Figure 7. RMCRLB versus SNR in the target velocity dimensions with different Lr when
N = 1024 × 512: (a) x-velocity; (b) y-velocity.
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Figure 8. RMCRLB versus SNR in the target position dimensions with different Lr when
N = 1024× 512 and T = 10µs: (a) x-position; (b) y-position.
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Figure 9. RMCRLB versus SNR in the target velocity dimensions with different Lr when N = 1024× 512
and T = 10µs: (a) x-velocity; (b) y-velocity.

6. Conclusions

This paper investigates the performance of joint target position and velocity estimation employing
a passive UMTS-based multistatic radar system with antenna arrays. A received signal model is
developed for a multistatic radar configuration with Nt transmit station of Lt antenna elements and
Nr receive stations of Lr antenna elements. The ML estimate and the MCRLB are calculated under
the signal model assumptions. The derived closed-form expressions for MCRLB can be utilized to
bound the target parameter estimation performance for different scenarios including a variety of radar
system architectures. To provide insight, the further theoretical and numerical results are presented to
demonstrate that the MCRLB not only depends on the geometry between the target and the passive
multistaitc radar configuration but also depends on the SNR value and the transmitted UMTS signal
parameters such as the number of symbols and symbol time. It is also shown that the joint target
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estimation performance of the passive multistatic radar system can be remarkably enhanced with the
increase of the number of receiving elements in each receive station.

In future work, we will use this framework to study the target estimation performance of other
illuminators of opportunity in addition to UMTS signals. Further, we will extend this research to
the multiple-target case by appending the parameters corresponding to multiple targets into the
unknown target state vector. Also, we will develop mathematical relations to obtain the optimal
placement of receive stations for improving the estimation performance with arbitrary waveforms and
multiple targets.
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Appendix A. The Entries of Ω1, Ω2, and Ω4

The entries of Ω1, Ω2, and Ω4 are calculated as follows:

∂τΦ
ij

∂x
≡ 1

cv

 x− xt
i∥∥∥−→p −−→pt
i

∥∥∥ +
x− xr

j∥∥∥−→p −−→pr
j

∥∥∥
 , (A1)

∂τΦ
ij

∂y
≡ 1

cv

 y− yt
i∥∥∥−→p −−→pt
i

∥∥∥ +
y− yr

j∥∥∥−→p −−→pr
j

∥∥∥
 , (A2)

∂ f Φ
Dij

∂x
≡ 1

λ

vx

 (y− yt
i)

2∥∥∥−→p −−→pt
i

∥∥∥3 +
(y− yr

j )
2∥∥∥−→p −−→pr

j

∥∥∥3

+ vy

− (x− xt
i )(y− yr

j )∥∥∥−→p −−→pt
i

∥∥∥3 −
(x− xr

j )(y− yr
j )∥∥∥−→p −−→pr

j

∥∥∥3


+

vr
x,j

(y− yr
j )

2

‖−→p −
−→
pr

j ‖3
− vr

y,j

(x− xr
j )(y− yr

j )

‖−→p −
−→
pr

j ‖3

 , (A3)

∂ f Φ
Dij

∂y
≡ 1

λ

vx
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 , (A4)

∂τΦ
ij

∂vx
≡ 0, (A5)
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∂τΦ
ij

∂vy
≡ 0, (A6)

∂ f Φ
Dij

∂vx
≡ 1

λ

 x− xt
i∥∥∥−→p −−→pt
i

∥∥∥ +
x− xr

j∥∥∥−→p −−→pr
j

∥∥∥
 , (A7)

∂ f Φ
Dij

∂vy
≡ 1

λ

 y− yt
i∥∥∥−→p −−→pt
i

∥∥∥ +
y− yr

j∥∥∥−→p −−→pr
j

∥∥∥
 . (A8)

Appendix B. The Detailed Derivations of J(Ψ|c)UL, J(Ψ|c)UR, J(Ψ|c)LL, and J(Ψ|c)LR

With the derivations in [17,31], we can obtain:

J(Ψ|c)UL = diag
{
−Er(t)|Ψ,c

[
∂2L(r(t)|Φ,c)

∂(τΦ
11)

2 , ∂2L(r(t)|Φ,c)
∂(τΦ

12)
2 , · · · , ∂2L(r(t)|Φ,c)

∂(τΦ
Nt Nr )

2

]}
= 8π2diag

(
LrEG2|ξ11|2

Nt Ltσ
2
w

, LrEG2|ξ12|2
Nt Ltσ

2
w

, · · · ,
LrEG2|ξNt Nr |2

Nt Ltσ
2
w

)
� {INr ⊗ diag(ε1, ε2, · · · , εNt)} , (A9)

where INr denotes an Nr × Nr identity matrix. The term εi is given by:

εi ≡ E
{∫ +∞

−∞
f 2 |Ui( f )|2 d f −

∣∣∣∣∫ +∞

−∞
f |Ui( f )|2 d f

∣∣∣∣2
}

=
1

12T2

(
1 + 3α2 − 24

α2

π2

)
. (A10)

Similarly, we have

J(Ψ|c)UR = J(Ψ|c)LL = diag

{
−Er(t)|Ψ,c

[
∂2L(r(t)|Φ,c)

∂τΦ
11 f Φ

D11

, ∂2L(r(t)|Φ,c)
∂τΦ

12 f Φ
D12

, · · · , ∂2L(r(t)|Φ,c)
∂τΦ

Nt Nr f Φ
DNt Nr

]}
= 8π2diag

(
LrEG2|ξ11|2

Nt Ltσ
2
w

, LrEG2|ξ12|2
Nt Ltσ

2
w

, · · · ,
LrEG2|ξNt Nr |2

Nt Ltσ
2
w

)
� diag(γ11, γ12, · · · , γNt Nr ),

(A11)

where

γij ≡ E
{

1
2π=

[∫ +∞
−∞ tu∗i (t− τΦ

ij )
∂ui(t−τΦ

ij )

∂τΦ
ij

dt
]
−
∫ +∞
−∞ f |Ui( f )|2d f

∫ +∞
−∞ t

∣∣∣ui(t− τΦ
ij )
∣∣∣2 dt

}
= 0, (A12)

and

J(Ψ|c)LR = diag

{
−Er(t)|Ψ,c

[
∂2L(r(t)|Φ,c)

∂( f Φ
D11

)2 , ∂2L(r(t)|Φ,c)
∂( f Φ

D12
)2 , · · · , ∂2L(r(t)|Φ,c)

∂( f Φ
DNt Nr

)2

]}
= 8π2diag

(
LrEG2|ξ11|2

Nt Ltσ
2
w

, LrEG2|ξ12|2
Nt Ltσ

2
w

, · · · ,
LrEG2|ξNt Nr |2

Nt Ltσ
2
w

)
� diag(η11, η12, · · · , ηNt Nr ),

(A13)

where

ηij ≡ E
{∫ +∞
−∞ t2

∣∣∣ui(t− τΦ
ij )
∣∣∣2 d f −

∣∣∣∣∫ +∞
−∞ t

∣∣∣ui(t− τΦ
ij )
∣∣∣2 dt

∣∣∣∣2
}

= T2

4

(
1

4α + N2−1
3

)
. (A14)

From Equations (A10), (A12), and (A14), we can notice that the terms εi, γij, and ηij are dependent
on the characteristics of the UMTS waveforms.
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Appendix C. The Elements of FIM Jij(Φ|c)

The elements of the symmetric FIM Jij(Φ|c) corresponding to the ij-th transmit-to-receive path
are given by:

J11
ij (Φ|c) =

1
12T2

(
1 + 3α2 − 24

α2

π2

)(∂τΦ
ij

∂x

)2

+
T2

4

(
1

4α
+

N2 − 1
3

)∂ f Φ
Dij

∂x

2

, (A15)

J12
ij (Φ|c) = J21

ij (Φ|c) =
1

12T2

(
1 + 3α2 − 24

α2

π2

)(∂τΦ
ij

∂x

)(
∂τΦ

ij

∂y

)

+
T2

4

(
1

4α
+

N2 − 1
3

)∂ f Φ
Dij

∂x

∂ f Φ
Dij

∂y

 , (A16)

J13
ij (Φ|c) = J31

ij (Φ|c) =
T2

4

(
1

4α
+

N2 − 1
3

)∂ f Φ
Dij

∂x

∂ f Φ
Dij

∂vx

 , (A17)

J14
ij (Φ|c) = J41

ij (Φ|c) =
T2

4

(
1

4α
+

N2 − 1
3

)∂ f Φ
Dij

∂x

∂ f Φ
Dij

∂vy

 , (A18)

J22
ij (Φ|c) =

1
12T2

(
1 + 3α2 − 24

α2

π2

)(∂τΦ
ij

∂y

)2

+
T2

4

(
1

4α
+

N2 − 1
3

)∂ f Φ
Dij

∂y

2

, (A19)

J23
ij (Φ|c) = J32

ij (Φ|c) =
1

12T2

(
1 + 3α2 − 24

α2

π2

)∂ f Φ
Dij

∂y

∂ f Φ
Dij

∂vx

 , (A20)

J24
ij (Φ|c) = J42

ij (Φ|c) =
1

12T2

(
1 + 3α2 − 24

α2

π2

)∂ f Φ
Dij

∂y

∂ f Φ
Dij

∂vy

 , (A21)

J33
ij (Φ|c) =

T2

4

(
1

4α
+

N2 − 1
3

)∂ f Φ
Dij

∂vx

2

, (A22)

J34
ij (Φ|c) = J43

ij (Φ|c) =
T2

4

(
1

4α
+

N2 − 1
3

)∂ f Φ
Dij

∂vx

∂ f Φ
Dij

∂vy

 , (A23)
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J44
ij (Φ|c) =

T2

4

(
1

4α
+

N2 − 1
3

)∂ f Φ
Dij

∂vy

2

. (A24)
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