
Threshold Load Balancing With Weighted Tasks

Petra Berenbrinka, Tom Friedetzkyb, Frederik Mallmann-Trenna,c, Sepehr
Meshkinfamfardb, Chris Wastellb

aSchool of Computing Science, Simon Fraser University, Burnaby, Canada
bSchool of Engineering and Computing Sciences, Durham University, Durham, UK

cDépartement Informatique, École normale supérieure, PSL Research University, Paris,
France

Abstract

We study threshold-based load balancing protocols for weighted tasks. We are
given an arbitrary graph G with n nodes (resources, bins) and m ≥ n tasks
(balls). Initially the tasks are distributed arbitrarily over the n nodes. The
resources have a threshold and we are interested in the balancing time, i.e.,
the time it takes until the load of all resources is below or at the threshold.
We distinguish between resource-based and user-based protocols. In the case
of resource-based protocols resources with a load larger than the threshold are
allowed to send tasks to neighbouring resources. In the case of user-based pro-
tocols the tasks make the migration decisions and we restrict ourselves to the
complete graph in the model. Any task allocated to a resource with a load
above the threshold decides whether to migrate to a neighboring resource inde-
pendently of the other tasks.

For resource-controlled protocols we present results for arbitrary graphs. For
the user-controlled migration we consider complete graphs and derive bounds
for both above-average and tight thresholds.

Keywords: Threshold Load balancing, Random walks, Mixing time of random
walks, Weighted Tasks
2010 MSC: 68M10, 68M12, 68M14, 68W10, 68W20

1. Introduction

We study threshold-based balls-into-bins schemes that can be used to balance
load in distributed systems. The balls usually model tasks or data and the
bins model the resources used to process the tasks or to store the data. The
performance of a distributed system often depends on the maximum load of
any of the machines. The higher the maximum load, the longer the execution

Email addresses: petra@sfu.ca (Petra Berenbrink), tom.friedetzky@dur.ac.uk (Tom
Friedetzky), fmallman@sfu.ca (Frederik Mallmann-Trenn),
sepehr.meshkinfamfard@dur.ac.uk (Sepehr Meshkinfamfard),
christopher.wastell@dur.ac.uk (Chris Wastell)

Preprint submitted to Elsevier October 23, 2017

time of the entire system. Hence, good load balancing schemes are crucial for
efficient computations on distributed systems.

Most balls-into-bins games studied theoretically so far assume that the balls
are of equal size. The size of a ball usually measures the computational require-
ments of the task it models, or the size of the data. However, this assumption is
unrealistic in many cases. In this paper we study load balancing schemes with
weighted balls which are, for example, able to model tasks with different service
times.

We are given an arbitrary graph G with n nodes representing the resources
(machines) and m ≥ n weighted tasks (balls) with a total weight of W . Initially
the tasks are distributed arbitrarily over the n nodes. Similar to Ackermann et
al. [1] and Hoefer and Sauerwald [2], we assume every resource has a threshold
which is the maximum load the resource can accept. The threshold is the same
for all resources (models with non-uniform thresholds are certainly conceivable,
but are not focus of this paper). We distinguish between a tight threshold of
W/n+wmax, and above-average thresholds of (1+ε) ·W/n+wmax, where wmax
is the maximum weight of any task and ε is an arbitrary positive constant. Note
that the thresholds must be chosen appropriately, i.e., they must be at least the
average load. We assume that the average load can either be derived quickly
by, for example, using a diffusion load balancing process1, or the threshold are
provided externally. In this paper we are interested in the balancing time, i.e.,
the time it takes until the load of all resources is below or at the threshold.

We distinguish between resource-based protocols where the resources with
a load above the threshold (called overloaded resources) are allowed to send
tasks to a neighboring resource, and user-based protocols where each task on
an overloaded resource decides autonomously whether or not to migrate to a
neighboring resource.

For resource-based protocols we consider arbitrary graphs. Our results are
expressed in terms of the mixing time (for above-average thresholds) and hitting
time (for tight thresholds) of random walks on the underlying graph. Subse-
quently we will show that these bounds are tight. For user-based protocols we
consider complete graphs only. In all cases our bounds (for the weighted case)
match the bounds of Ackermann et al. [1] and Hoefer and Sauerwald [2]. All
protocols we consider are decentralized and do not require a global view of the
system.

2. Contributions

We follow the work of Ackermann et al. [1] and Hoefer and Sauerwald [2]. We
study threshold-based balls-into-bins protocols, but in contrast to these papers
we assume that the balls (tasks) have arbitrary weights.

1Each resource keeps a value representing the current estimated average load and this
value is initialized with the initial load of the resource. The resources then simulate continuous
diffusion load balancing (always using their current estimate) for mixing time number of steps,
at which point their estimates will be concentrated around the average load.

2

Resource-Controlled Protocols. For arbitrary graphs G and assuming above-
average thresholds, in Theorem 3 we prove a balancing time of O (τ(G) · logm)
w.h.p., where τ(G) is the mixing time of a random walk on G. Note that this
bound does not depend on the weights of the tasks. In Hoefer and Sauerwald [2]
the authors show a bound of O (H(G) · logn+ τ(G) · logm) on the expected
balancing time, where H(G) is the hitting time of a random walk on G (see
Section 4). Note that our bounds for weighted tasks match their bound for
uniform tasks and are even stronger in the sense that we do not have the hitting
time in our bound. The reader may refer to Table 2 to find a comparison of
hitting times and mixing times of several common graphs. From Theorem 3.7
of Hoefer and Sauerwald [2] it follows that our bound is tight.

Graph Mixing Time Hitting Time
Complete Graph O(1) O(n)
Reg. Expander O(logn) O(n)
Erdős-Rényi Graph O(logn) O(n)
Hypercube O(logn log logn) O(n)
Grid O(n) O(n logn)

Table 1: Summary of mixing and hitting times for common graphs. All results come from
Aldous and Fill [3]. We assume that that the regular expander has degree at least 3 and that
that Erdős-Rényi Graph G(n, p) fulfils p > (1 + ε) log n/n.

For tight thresholds we show (Theorem 7) a bound of O (H(G) · logm) on the
expected balancing time. This bound matches the bound presented in Hoefer
and Sauerwald [2]. Again, the bound is independent of the weight of the tasks.
In Observation 8 we show that this bound is tight.

User-Controlled Protocols. We consider complete graphs for above-average and
tight thresholds. For the former we derive a bound of O (wmax/wmin · logm) on
the expected balancing time (Theorem 11) where wmax and wmin denote the
maximum and minimum weight of any task respectively. Moreover, for tight
thresholds we derive (Lemma 12) a bound of O

(
wmax

w
min
· logm

n2

)
.

Both bounds match the bounds of Ackermann et al. [1] for uniform weights.
However for weighted balls our bounds include the additional factor of wmax/wmin.

In Section 7, we briefly discuss experimental results highlighting cases where
the theoretically derived bounds for user-controlled migration are tight and
where not.

3. Related Work

There are many results for balls-into-bins games for uniform balls. Here we
concentrate on protocols for weighted balls and on local protocols that use a
threshold to allocate the balls.

3

3.1. Threshold-based protocols
In Adler et al. [4] the authors consider parallel threshold-based protocols.

They investigate the trade-off between the number of rounds of communication
between the resources and the final load. Specifically, for a given number of
rounds of communication r, they prove a lower bound on the maximum load of
Ω(r
√

logn log logn) for n unit-sized balls and n resources.
The papers of Ackermann et al. [1] and Hoefer and Sauerwald [2] are the most

closely related to our work. However in both cases the authors consider only
uniform balls. In Ackermann et al. [1] the authors show results for threshold-
based balancing protocols for user-controlled migration on complete graphs. For
above-average thresholds they show a bound on the balancing time of O(logm),
and O(n2 · logm) for tight thresholds. They assume that the tasks know the the
load and the threshold of their current resource. The results of Ackermann et
al. [1] were generalized to arbitrary graphs by Hoefer and Sauerwald [2]. For the
resource-controlled protocols the authors provide a bound of O (H(G) · logm)
on the balancing time, where H(G) is the hitting time of a random walk on G.
They also show an improved bound of O (H(G) · logn+ τ(G) · logm) for above-
average thresholds, where τ(G) is the mixing time of a random walk on G. For
the user-controlled protocol they provide a bound of O

(
n5 · H(G) · logm

)
to

reach a balanced state.
In Berenbrink et al. [5] the authors consider a sequential balls-into-bins pro-

cess that randomly allocates m uniform balls into n bins using thresholds. They
analyze two allocation schemes that achieve a close to optimal maximum load
of dm/ne+ 1 and require only O(m) random choices.

3.2. Weighted balls
Berenbrink et al. [6] were among the first to consider the problem of al-

locating weighted balls in parallel. Their key result is a generalization of
the upper bound presented by Stemann [7] to weighted balls. They present
a protocol that achieves a maximum load of γ · (m/n · wavg + wmax) using
O (log logn/(log γ · ((m/n) ·∆ + 1)) communication rounds, where wavg and
wmax denote the average and maximum weight respectively and ∆ = wavg/wmax.

In Berenbrink et al. [8] the authors investigate generic multiple-choice balls-
into-bins protocols with weighted balls, showing some surprisingly counter-
intuitive properties. Talwar and Wieder [9] investigate a sequential balls-into-
bins process where m weighted balls are allocated into n bins. The process
allocates every ball into the least loaded of two randomly chosen bins. The case
where each of the m balls has unit weight has been studied by Berenbrink et
al. [10]. The authors show that the difference between the maximum load and
the average load does not increase with m. Talwar and Wieder [9] show that
as long as the weight distribution has finite second moment and satisfies a mild
technical condition, the gap between the load of the heaviest bin and the average
load is independent of the number balls thrown. Peres et al. [11] consider the
so-called (1 + β)-process where each ball goes to a random bin with probability
β and to the least-loaded of two randomly chosen bins with a probability of

4

(1 − β). The authors show that for the (1 + β)-process the gap between the
minimum and average load is at most Θ(logn/β), independent of m. They also
show that the gap remains Θ(logn/β) in the weighted case for a large class of
weight distributions.

Berenbrink et al. [12] consider balls-into-bins games in a user-controlled set-
ting. In the beginning the balls are arbitrarily distributed over the bins. The
protocol works in parallel rounds. In every round each user (ball) randomly
selects another bin and moves to the chosen bin if the load is smaller than the
load of its current bin. In particular, they provide an upper bound on the bal-
ancing time of log logm + poly(n), where poly(n) = O(nc) for some constant
c. Berenbrink et al. [13] generalize these results to weighted balls. They show
that their protocol yields an expected balancing time of O(nmw3

maxε
−2) for

ε ∈ (0, 1). Finally, Adolphs and Berenbrink [14] generalize the latter result to
weighted balls and non-uniform resources.

4. Model

Let [m] = {1, 2, . . . ,m} be the set of tasks and let [n] = {1, 2, . . . , n} be the
set of resources2,m ≥ n. The resources are connected by an arbitrary undirected
graph G = (V,E). Let di be the degree of node i and d the maximum degree.
Tasks on a resource r can move to a neighboring resource r′ if (r, r′) ∈ E.

Each task i ∈ [m] has an associated weight wi ∈ R. Let wmax be the
maximum weight and let W =

∑m
i=1 wi be the total weight of all tasks. We

assume that wmin ≥ 1. If this is not the case, then one can easily scale all
parameters, such that wmin = 1.

For t ≥ 0 let
x(t) = (x1(t), x2(t), . . . , xn(t))

denote the load vector at the beginning of step t (before the task removal) where
xr(t) is the load of resource r. Then

X(t) = (X1(t), X2(t), . . . , Xn(t))

denotes the state of the system at the beginning of step t, where Xr(t) is the
random variable that denotes the load of resource r. We use br(t) to denote the
(actual) number of tasks (balls) on machine r at time t. Our protocols will use
a threshold

Tr = (1 + ε) ·W/n+ wmax

with ε ≥ 0.

4.1. Random walks
For an undirected, connected graph G let Pi,j be the probability that the

random walk moves from node i to node j. We consider standard random walks

2Throughout the paper we assume that n is bounded below by a large enough constant

5

for non-regular graphs with transition matrix P, where Pi,j = 1/d for i 6= j
and (i, j) ∈ E and Pi,i = (d − di)/d, where d is the maximum degree of the
graph. Let Pt be the t-th power of P. Then Pt

i,j is the probability that a
random walk starting from node i is located at node j after exactly t steps. The
stationary distribution of the random walk on G is called π(G) and it is the
uniform distribution for this random walk.

In [15] the authors give a bound on themixing time τ(G) of the random walk,
which is defined as the expected time it takes for the random walk (defined
above) on G to approach its the stationary distribution. A statement of the
result can be found in Lemma 2. By Lemma 2, we can assume that τ(G) =
4 logn/µ, where µ is the spectral gap of P . With λ1 ≥ λ2 ≥ . . . ≥ λn the n
eigenvalues of P we have

µ := 1− max
2≤i≤n

{|λi|}.

The hitting time Hu,v(G) of a random walk is defined as the expected time for
a random walk to reach node v ∈ V when starting from node u ∈ V . The
maximum hitting time is

H(G) := max
u,v∈V

Hu,v(G).

We assume thus that all nodes know the maximum degree d or have a bound
on it. The results in this paper hold for all random walks where the stationary
distribution equals the uniform distribution. Note that the concrete random
walk used will affect the spectral gap.

5. Resource-Controlled Migration

In this section, we consider a protocol in which each overloaded resource
determines whether or not tasks should migrate (Algorithm 5.1). Tasks which
are currently assigned to resource r can only move to neighboring resources of r
(see the algorithm below). The protocol is distributed and every node requires
only knowledge of its own load and the global threshold. The algorithm in
Figure 5.1 shows one step of our protocol.

We assume that every resource stores all its tasks in a stack data structure.
If several balls arrive at the same resource in one time step the new balls are
added in an arbitrary order. The height hir(t) of task i on resource r at time t is
the sum of the weights of all tasks in the data structure that are positioned below
i. We say task i is cutting the threshold Tr if hir(t) < Tr and hir(t) + wi > Tr.

Each task on resource r ∈ [n] can either be completely above, completely
below, or cutting the threshold. Let Iar (t) and Ibr(t) be the sets of tasks on
resource r that are completely above and completely below the threshold at
the beginning of step t respectively. Icr(t) denotes the task on resource r which
cutting the threshold at the beginning of step t.

We say that a task is accepted by a resource if the height of the task plus its
weight is less than or equal to the threshold. Note that once a task is accepted by

6

Algorithm 5.1 Resource Controlled
for all resources r in parallel do

if xr(t) > Tr then
Remove each task i ∈ Iar (t)∪Icr(t) and reallocate the task to a neighboring
resource that is chosen according to transition matrix P.

Assign new heights to all migrated balls

a resource, it will never leave that resource again. We call these tasks inactive,
and the tasks that are not accepted by a resource are called active.

5.1. Above-Average Thresholds
In this section, we assume thresholds are larger by some constant factor than

the average load W/n. i.e., Tr = (1 + ε) ·W/n+wmax. The next lemma will be
used in the proof of this section’s main result. It estimates the probability that
a randomly chosen resource has a load below or equal to the threshold. The
result is quite easy to see and it allows us in Section 6 to simplify the potential
analysis of [1].

Lemma 1. Assume that r is a resource chosen uniformly at random in step t,
then

P [Xr(t) ≤ Tr − wmax] ≥ ε/(1 + ε).

Proof. From a simple pigeonhole argument it follows that at any point in time
(meaning also at the end of a step) there is a fraction of ε/(1+ε) resources that
can accept an additional task of any weight (not larger than wmax). Assume
this is not the case. (Recall that Tr = (1 + ε) ·W/n + wmax.) Then there are
at least

(1− ε/(1 + ε)) · n+ 1

many resources with a weight of at least (1 + ε) ·W/n. Then

((1− ε/(1 + ε)) · n+ 1)(1 + ε) ·W/n > W,

which is a contradiction.

The following result holds for arbitrary graphs. It is stated in terms of the
performance a random walk on G. Let τ(G) denote the mixing time of the
underlying Markov chain. For complete graphs the result shows a balancing
time of O(logm). We use the next lemma, shown in [2], to prove the main
result of this section, Theorem 3.

Lemma 2 ([2, Lemma 2.1.]). Let G be an arbitrary graph. Let P be the
transition matrix of a random walk on G with stationary distribution π. Let
t ≥ 4 logn/µ, where µ is the spectral gap of P. Then Pt

i,j = πi ± n−3.

Theorem 3. Let Tr = (1 + ε) ·W/n+ wmax. Let G is an arbitrary undirected
graph and let τ(G) be the mixing time of the random walk on G with uniform

7

stationary distribution. Let c be an arbitrary positive constant. Then, with a
probability at least 1− n−c all tasks are allocated after

2(c+ 1) · τ(G) · logm/ log
(

2(1 + ε)
2 + ε

)
time steps.

Proof. Following our algorithm we can assume that every active task performs
a random walk with transition matrix P, until it reaches a resource that has a
load that is small enough to accept the task. If a task is accepted by a resource,
the task becomes inactive. All other tasks are active. We now divide time into
phases of length 2τ(G) each, where τ(G) is the mixing time of the random walk
on G.

We fix a phase j and consider the tasks in increasing order 1, 2, . . . ,m. Con-
sider the i-th task. If i is still active at the end of the (j − 1)-st phase. Let
ri,j be the resource that it visits in the last step of phase j. From Lemma 2 it
follows that for every 1 ≤ k ≤ n,

P [ri,j = k] = n−1 ± n−3.

From Lemma 1 it follows that the probability that task i is successful in the
last step in phase j is at least

εn

1 + ε
·
(

1
n
− 1
n3

)
≥ ε

2(1 + ε) .

The crucial property is that this does not depend on whether the tasks 1, 2, . . . , i−
1 were successful in phase j: By Lemma 1 a resource—chosen uniformly at
random—accepts i with probability at least εn

1+ε even if all other tasks are al-
ready inactive.

Now assume that after ` phases, with ` ≥ (c + 1) · logm/ log(2(1 + ε)/(2 +
ε)),there exists a task i that is still active. A necessary condition for the task to
still be active is that it was not accepted by any resource in any of the last steps
of the ` phases. The probability that the task was not accepted by a resource
in any of the last steps of each of the ` rounds is at most(

1− ε

2(1 + ε)

)`
≤
(

1
m

)c+1
.

The result follows by the union bound.

5.2. Tight Threshold
The next theorem shows results for a tighter threshold

Tr = W/n+ 2wmax.

Our result bounds the balancing time in terms of the hitting time H(G).

8

We call an assignment of the weighted tasks to the resources proper if no
resource has a weight of more than W/n + wmax. Note that it is trivial to
calculate a proper assignment in a centralized manner. The simple first fit rule
will work.

To analyze the protocol we will use a potential function that counts the
weights of the tasks that are partially or completely above the threshold. At
any t ≥ 0 the potential Φ is defined as

Φ(X(t)) =
∑

i∈Ia(t)∪Ic(t)

wi, (1)

where Ia(t) (Ic(t)) is the set of all the tasks that are above (partially above)
the threshold. For any t > 0 the potential change between subsequent states
X(t) and X(t+ 1) is defined as

∆Φ(t+ 1) = Φ(X(t))− Φ(X(t+ 1)). (2)

The next observation shows that the potential function is non-increasing.

Observation 4. For any t > 0 we have

∆Φ(t+ 1) ≥ 0.

Proof. Based on the definition, at any time t > 0, any task i can either be in
Ic(t) ∪ Ia(t) or Ib(t). For ease of presentation we assume that the protocol
considers the tasks sequentially in an arbitrary order. In the following, we call
a step where one of the tasks is considered a sub-step. Assume that task i is one
of the tasks that is moved to a neighboring resource in sub-step t′. Note that
task i can be moved to another resource if and only if i ∈ Ic(t) ∪ Ia(t) at the
beginning of step t. At the beginning of step t+1, either i ∈ Ic(t+1)∪Ia(t+1)
or i ∈ Ib(t+1). In the former case the potential remains unchanged, in the latter
case ∆Φ(t + 1) = wi. Also, note that due to our stack ordering the potential
does not change due to a task that did not move to another resource in sub-step
t′.

The next lemma estimates the one-step potential decrease.

Lemma 5. Assume Tr = W/n+ 2wmax.

E [∆Φ(t+ 2H(G)) | X(t) = x(t)] ≥ Φ(X(t))
4 .

Proof. We consider a phase of length 2H(G), where H(G) is the maximum
hitting time. At the beginning of each phase each active task is assigned (using
a proper assignment) to a resource, called the target resource, such that the
maximum load assigned to any resource is at most W/n + wmax. Then for
every active task we place a token on its current resource and let the tokens
perform a random walk of length H(G). If a token lands during the phase

9

on the target resource of the corresponding task then the task is marked blue,
otherwise the task is marked red. Let B and R be the set of blue and red tasks
respectively. Also let W (B) and W (R) be the total weight of the blue and red
tasks respectively. Note that

Φ(X(t)) = W (B) +W (R)

since Φ(X(t)) is the weight of the active tasks at the beginning of time step t.
Let At be an assignment at time t of tasks to targets (resources) such that

the maximum load of any resource is at most W/n+wmax. We define ∆Φ′(t+
2H(G)) to be the potential drop as a result of the blue tasks’ allocation in At
in 2H(G) time, i.e., the potential drop due to tasks which ‘hit’ their target.

In symbols, ∆Φ′(t+ 2H(G)) = Wt(B)−Wt+2H(G)(B), where Wt′(B) is the
total weight of the blue tasks at time t′.

We know that the expected time for a random walk on graph G to hit the
target resource is the maximum hitting time H(G). By Markov’s inequality,
P [X > a] ≤ E[X]

a , where X is a positive random variable and a > 0. We obtain
that the probability for a random walk to hit its target resource after 2H(G)
time steps is at least 1/2. Therefore we have

E [∆Φ′(t+ 2H(G))] ≥ Φ(X(t))/2.

Now we inspect the original process where every active task goes on a random
walk until it is accepted by a resource that has sufficient space to accept it.
Assume the following holds.

E [Φ(X(t))− Φ(X(t+ 2H(G)))] ≥ E
[

∆Φ′(t+ 2H(G))
2

]
(3)

Then we have

E [∆Φ(t+ 2H(G))] = E [Φ(X(t))− Φ(X(t+ 2H(G)))] ≥ E
[

∆Φ′(t+ 2H(G))
2

]
≥ Φ(X(t))

4 ,

which finishes the proof. Thus, in the remainder we show (3). Without loss
of generality, we can assume that each task, as long as it is not accepted by
any resource, pursues its corresponding token. If it is accepted by one of the
resources it is marked as inactive and its random walk terminates. We divide all
the resources into two different sets. The resources that are not able to accept
all the incoming tasks throughout a phase, 2H(G) time steps, are labelled as
full. Note that the load of a full resource has to be larger than W/n+wmax by
the end of a phase. A resource that is not categorized as full is called good. A
good resource is able to accept all the incoming tasks within a phase without
crossing the W/n+ wmax line.

Moreover, we categorize all blue and red tasks into three different sets. The

10

set of blue tasks that are accepted by a good resource during a phase is denoted
by Bg. Similarly, Rg are the red tasks that are accepted by a good resource.
It follows that Rg and Bg are tasks which have not taken the position of any
other task at its target resource. The tasks Bf (Rf) are blue (red) tasks that
are accepted by a full resource in a phase. Lastly, the blue and red tasks that
remain active and are not accepted by any resource at the end of a phase are
denoted by Bn and Rn respectively. Therefore we have

∆Φ′(X(t+ 2H(G))) = W (B) = W (Bg) +W (Bf) +W (Bn)

and

Φ(X(t))− Φ(X(t+ 2H(G))) = W (Bg) +W (Bf) +W (Rg) +W (Rf).

Firstly, we show that W (Bf) + W (Rf) ≥ W (Bn) and then we prove our
claim, i.e.

∆Φ(t+H(G)) ≥ 1
2∆Φ′(t+H(G)).

In order to show that W (Bf) +W (Rf) ≥W (Bn), let `b be the total weight
of the tasks that are accepted by resource b at the beginning of the phase. Then
it follows that

W (Bn) ≤
∑

b∈Full

W

n
+ wmax − `b. (4)

The inequality in (4) is valid because
∑
b∈Full W/n+wmax− `b is an upper

bound for the total weight of the blue tasks that are able to be assigned to a full
resource during a phase (since it counts all full resources). By definition, the
tasks in the set Bn reach their target resource but are not accepted. It follows
that the target resource of these tasks are full resources since they were unable
to accept all tasks during the phase. For a resource to not accept all tasks it
must have load greater than W/n + wmax. It follows that each task in Bn is
on a resource that has accepted tasks with weight at least W/n + wmax − `b
otherwise the task would have been accepted.

Also we have

W (Rf) +W (Bf) ≥
∑

b∈Full

W

n
+ wmax − `b. (5)

The tasks in the sets Rf and Bf are accepted during the phase and are on
a full resource. Based on the definition of a full resource, which is a resource
with a load larger than W/n+wmax (since the resource did not accept all tasks
during the phase), (5) holds. Note that Tr = W/n+ 2wmax.

Now we show that

∆Φ(t+H(G)) ≥ 1
2∆Φ′(t+H(G)).

11

Clearly W (Bg) ≥ 0 and W (Rf) ≥ 0, and therefore W (Bg) + W (Rf) ≥ 0.
Adding W (Rf) on both sides gives

W (Bg) + 2W (Rf) ≥W (Rf).

Adding a W (Bf) on both sides gives

W (Bg) + 2W (Rf) +W (Bf) ≥W (Rf) +W (Bf)

Since W (Bf) +W (Rf) ≥W (Bn) we have

W (Bg) + 2W (Rf) +W (Bf) ≥W (Bn).

Dividing both sides by 2 gives

W (Bg)/2 +W (Rf) +W (Bf)/2 ≥W (Bn)/2.

Adding W (Bg)/2 +W (Bf)/2 on both sides gives

W (Bg) +W (Rf) +W (Bf) ≥W (Bg)/2 +W (Bf)/2 +W (Bn)/2

= 1
2(W (Bg) +W (Bf) +W (Bn)).

The LHS is just ∆Φ(t+H(G))−W (Rg), and the RHS is 1
2 ∆Φ′(t+H(G)),

so we obtain

∆Φ(t+H(G))−W (Rg) ≥
1
2∆Φ′(t+H(G)),

and as W (Rg) ≥ 0 the claim of ∆Φ(t+H(G)) ≥ 1
2 ∆Φ′(t+H(G)) follows. This

concludes the proof of this lemma.

Now we use the above lemma and the following Drift Theorem to prove the
main result of this section.

Theorem 6 (Theorem 2. [16]). Let S ⊆ R be a finite set of positive numbers
with minimum smin. Let {V (t)}t∈N be a sequence of random variables over
S ∪ {0}. Let T be the random variable that denotes the first point in time t ∈ N
for which V (t) = 0. Suppose that there exists a constant δ > 0 such that

E [V (t)− V (t+ 1) | V (t) = s] ≥ δs (6)

holds for all s ∈ S with P [V (t) = s] > 0. Then for all s0 ∈ S with P [V (0) = s0] >
0,

E [T | V (0) = s0] ≤ 1 + ln(s0/smin)
δ

. (7)

Intuitively, Theorem 6 gives an upper bound on the expected run-time of a
sequence of random variables, defined on a finite set, with a bounded decline in
expectation.

12

Theorem 7. Assume Tr = W/n+ 2wmax. Let H(G) be the hitting time of the
random walk on G with uniform stationary distribution. Let T be the first time
it takes at which all tasks are allocated. Then

E [T] = O (H(G) · ln(W)) .

Proof. Since the maximum potential is bounded by W from above, this follows
from the potential drop of Lemma 6 together with the Drift Theorem provided
in Theorem 6 with parameters δ = 1/4, s0 ≤ W , smin = wmin = 1 and by
considering intervals of length 2H(G).

The next observation shows that the bound of Theorem 7 is tight for uniform
tasks. For weighted tasks the bound is not tight because the total weight W is
super-polynomial in m.

Observation 8. There is a class of graphs such that the resource-based protocol
converges to a balanced state in an expected number of steps of Ω (H(G) · logm)
for tight thresholds.

Proof. The proof follows the same line of argument as the proof of Theorem 3.7
in [2]. Instead of two cliques glued together with k edges we use the following
graph G. Let G consist of a clique K of n−1 nodes and one single node u. This
single node is connected to exactly k nodes of the clique for some k < n. The
hitting time of this graph is Θ(n2/k). Initially, we distribute the tasks on nodes
of K in such a way that all nodes in K have a load of W/n. The remaining
tasks are distributed on an arbitrary node of K. By using the same arguments
as in [2], the required time becomes

Ω (H(G) · log(m/n)) = Ω (H(G) · log(m)) .

6. User-Controlled Migration

In this section, we consider the user-controlled protocol for complete graphs.
Before defining the protocol, which generalizes the protocol of [1] to the case of
weighted tasks, we first present some necessary definitions.

We assume that the resources store the tasks in a stack data structure.
Recall, the height hir(t) of task i in resource r is the sum of the weights of
all tasks that are positioned below i. We say task i is cutting the threshold if
hir(t) < Tr and hir(t) +wi > Tr. Then the potential of an overloaded resource r
is called φr(t) and counts the weight of the task which is cutting the threshold
(if there is any) plus the weights of the tasks which are above the threshold.
The potential of a non-overloaded resource is zero. The potential Φ(t) at step t
is defined as

Φ(t) =
n∑
i=1

φi(t).

13

Let xr(t) be the load (total weight of the tasks in r) of resource r ∈ [n] at
time step t. Also let br(t) be the number of the tasks in r at time step t. The
user-controlled protocol works as follows. Tasks leave an overloaded resource
with a probability of α ·

⌈
φr

wmax

⌉
· 1
br

and move to a randomly chosen resource.
Therefore, we assume that tasks know α, φr, wmax (or an estimate), and br.

Algorithm 6.1 User-Controlled
for all All users do in parallel do
Let r(i) denote the resource i is currently allocated to.
if xr(i) > Tr then
With probability α ·

⌈
φr

wmax

⌉
· 1
br

migrate to resource chosen uniformly at
random.

6.1. Above-Average Thresholds
To analyze the potential change we consider tasks leaving one after the other

starting with all tasks leaving Resource 1, then Resource 2, and so on. For every
resource we consider the tasks in the order of increasing heights. If it is clear
from the context and the time step t is fixed, we will just write φr, br, and xr.

The potential Φ(t+ 1)

• decreases by wi for every task i which was above the threshold (hr(t)+wi >
Tr) and migrates to a resource r′ such that hr′(t+ 1) + wi ≤ Tr

• does not change for every task i which was above the threshold (hr(t) +
wi > Tr) and migrates to a resource r′ such that hr′(t+ 1) + wi > Tr

• increases by wi for every task i which was below the threshold (hr(t)+wi ≤
Tr) and migrates to a resource r′ such that hr′(t+ 1) + wi > Tr.

For ease of presentation, the potential change caused by task i leaving r is
accounted for at resource r as opposed to at the resource r′. First observe the
following.

Observation 9. Let t be an arbitrary time step and φr(t) > 0. Then the number
of tasks required to leave r such that xr(t+ 1) < Tr is at least

ψr = dφr/wmaxe.

We now calculate the one-step potential change. First we assume wmin =
wmax = 1, then the potential change can be estimated in the following way.

E [∆φr|i tasks leave] ≥
{

ε
1+ε · i if i ≤ ψr tasks leave
ψr − i if i > ψr tasks leave.

In the first case fewer than ψr tasks leave, meaning that the potential de-
creases. Note that it does not matter if tasks above the threshold or below the

14

threshold leave since wmax = wmin, but also since i ≤ ψr which is a key insight
for the case where wmax 6= wmin. The second case is pessimistic and assumes
(i) that the ψr tasks leaving from above the threshold move to an overloaded
resource, and (ii) that an additional (i−ψr) tasks leave from below the threshold
and move to a resource with a load ≥ Tr such that they are above the threshold.

From Lemma 1 it follows that there is a fraction of ε/(1 + ε) · n resources
which can accept additional tasks and which are still not overloaded at the end
of a round. Hence, the probability that a leaving task decreases the potential Φ
is at least ε/(1 + ε).

In the weighted setting, the potential decreases if i ≤ ψr tasks leave and land
on an underloaded resource. Since every task leaves with the same probability
we can assume that the expected size of a leaving task is xr/br. If i > ψr
tasks leave resource r, then we forget about the tasks that move from above
the threshold again and assume a potential increase by at most (i−ψr) · xr/br.
Hence, in the weighted setting we have the following bounds on the potential
change.

E [∆φr|i tasks leave] ≥
{

ε
1+ε · i ·

xr

br
if i ≤ ψr tasks leave

(ψr − i)xr

br
if i > ψr tasks leave.

We note that for the first case, due to the definition of ψr, the potential decreases
in expectation by xr

br
for every leaving task even if the height of this task is below

the threshold.
In the next lemma we use this observation to calculate the one-step potential

drop.

Lemma 10. Let α = ε
120(1+ε) . Assume Tr = (1+ε)·W/n+wmax and Φ(X(t)) >

0. We have

E [∆Φ(t+ 1) | X(t) = x(t)] ≥ 1
2 ·

ε

1 + ε
· Φ(X(t)).

Proof. Let pr(i) denote the probability that exactly i tasks leave resource r. We
emphasize that all tasks on a given resource have the same probability to leave.
For 1 ≤ j ≤ br we define a Bernoulli random variable Yr(j) which is 1 if task j
on resource r leaves and 0 otherwise.

E [∆φr(t+ 1) | X(t) = x(t)] =
br∑
i=0

E [∆φr|i tasks leave] · pr(i)

≥
ψr∑
i=1

ε

1 + ε
· i · xr

br
· pr(i)−

br∑
i=ψr+1

i · xr
br
· pr(i)

≥ xr
br

br∑
i=1

ε

1 + ε
· i · pr(i)− 2xr

br

br∑
i=ψr+1

i · pr(i)

15

= xr
br

ε

1 + ε
· E

 br∑
i=j

Yr(j)

− 2 · xr
br

br∑
i=ψr+1

i · pr(i),

where for the last step we used the fact that all tasks move with the same
probability. Since

E [Yr(j)] = α ·
⌈

φr
wmax

⌉
· 1
br
,

we get E
[∑br

i=j Yr(j)
]

= α ·
⌈

φr

wmax

⌉
. We now bound

∑br

i=ψr+1 i · pr(i). We first
observe that the term is maximized for small values of φr. Since ψr ≥ 1 we
derive

br∑
i=ψr+1

i · pr(i) =
br∑

i=ψr+1
i

(
br
i

)(
α

⌈
φr

wmax

⌉
· 1
br

)i
·
(

1− α
⌈

φr
wmax

⌉
· 1
br

)br−i

≤
br∑

i=ψr+1
i

(
br
i

)(
α

⌈
φr

wmax

⌉
· 1
br

)i

≤
br∑

i=ψr+1
i

(
α
e · br
i
·
⌈

φr
wmax

⌉
· 1
br

)i

≤
br∑

i=ψr+1
i

α e · br⌈
φr

wmax

⌉⌈ φr
wmax

⌉
· 1
br

i

≤
∞∑
i=2

i(eα)i ≤
∞∑
i=2

(e2α)i ≤ (e2α)2

1− e2α
≤ 2(e2α)2 ≤ 30α2,

where the second-last inequality follows from the geometric series using that
e2α < 1. For α = 1

120(1+ε) we have

E [∆φr(t+ 1) | X(t) = x(t)] ≥ 1
(1 + ε)

⌈
φr

wmax

⌉
· α · xr

br
− 60α2 · xr

br

≥ α · 1
2(1 + ε) ·

xr
br
· (φr)
wmax

≥ α · 1
2(1 + ε) ·

wmin
wmax

· φr.

Summing over all resources r with φr > 0 yields

E [∆Φ(t+ 1) | X(t) = x(t)] ≥ α · ε

2(1 + ε) ·
wmin
wmax

· Φ(X(t)).

We can now use the lemma above to show the following result for complete

16

graphs.

Theorem 11. Consider the complete graph. Assume Tr = (1+ε) ·W/n+wmax
and α = ε

120·(1+ε) . Let T be the time it takes until all tasks are allocated. Then

E [T] = 2 · 1 + ε

α · ε
· wmax
wmin

· logm.

Proof. The result is following from Lemma 10 together with Theorem 6 (Drift
Theorem).

6.2. Tight Threshold
In this section we show results for tight thresholds on complete graphs.

Theorem 12. Consider the complete graph. Assume Tr = W/n + wmax and
α ≤ 1

120n . Let T be the time it takes until all tasks are allocated. Then

E [T] = 2 · n
α
· wmax
wmin

· logm.

Proof. It is easy to see that at any point in time there is at least one resource
which can accept an additional task of any weight at most wmax. Therefore, by
replacing ε/(1 + ε) with 1/n and setting α� 1

n in the proof of Theorem 11 the
result follows.

7. Simulations

In this section, we show some simulation results for the user-controlled pro-
tocol and complete graphs. Note that our bounds for the resource-controlled
protocols are tight. In our simulations we assume wmin = 1, ε = 0.2, and α = 1.
We also assume that all tasks are initially held by the same resource. We chose
wmin = 1 since one can always rescale all weights. Furthermore, the choice
α = 1 (recall that α is factor decreasing the probability that an unsatisfied user
moves to another resource) shows that the factor α = ε

120(1+ε) we require in the
analysis is quite conservative. Each data point is obtained by averaging over
1000 trials. We’re interested in the balancing time as a function of the input
parameters, such as total ask weight W and wmax.

In Figure 1 we have two different task sizes, 1 or 50. The x-axis shows the
total task weight W . Let k denote the number of tasks with weight wmax = 50
and m(W,k) = W − k · wmax is the number of tasks with weight wmin = 1.

The simulation shows that the balancing time is proportional to the loga-
rithm of m(W,k) + k. Hence, the results seems to be more or less independent
of the number of big tasks.

Given the outcome of the first simulation, we now consider in Figure 2 the
case where there is only one task with weight wmax. On the x-axis we have
the number of tasks and on the y-axis the balancing time, normalized by logm.
We show results for different sizes of maximum ball weights. This simulation

17

2000 3000 4000 5000 6000 7000 8000 9000 10000
W

0

50

100

150

200

250

300
b
a
la

n
ci

n
g
 t

im
e
 (

ro
u
n
d
s)

k=1

k=5

k=10

k=20

k=50

Figure 1: Balancing time in terms of k, where k denotes the number of tasks with weight
wmax = 50 and n = 1000.

suggests that the upper bound of Theorem 11 is tight up to a constant factor;
the balancing time of the simulation is logarithmic in m and almost linear in
wmax/wmin.

0 1000 2000 3000 4000 5000
number of tasks

0

10

20

30

40

50

60

70

80

b
a
la

n
ci

n
g
 t

im
e
 (

ro
u
n
d
s)

 /
 l
o
g
(m

)

w_max=1

w_max=2

w_max=4

w_max=8

w_max=16

w_max=32

w_max=64

w_max=128

w_max=256

Figure 2: Normalized balancing time in terms of wmax with n = 1000.

18

Our simulations show that a small value of α is not necessary. We are
leaving it as an open question whether the theoretical bound can also be shown
for α = 1.

8. Conclusion

We considered threshold-based load balancing protocols for weighted tasks.
In the case of resource-based allocation we obtained tight bounds in the sense
that there are families of graphs matching our bounds. In the case of user-based
allocation we provided only upper-bounds for the complete graphs. It would be
interesting to consider lower bounds in this setting. It might be interesting to
study mixed protocols, which are both resource-based and user-based, as well
as non-uniform thresholds.

9. Acknowledgements

We thank the anonymous reviewers for their careful reading of our manuscript
and their many insightful comments and suggestions.

[1] H. Ackermann, S. Fischer, M. Hoefer, M. Schöngens, Distributed algo-
rithms for QoS load balancing, Distributed Computing 23 (5-6) (2011)
321–330.

[2] M. Hoefer, T. Sauerwald, Brief announcement: Threshold load balancing
in networks, in: 32nd Symposium on Principles of Distributed Comput-
ing PODC, ACM, Montreal, Canada, 2013, pp. 54–56, the full version is
available at https://arxiv.org/abs/1306.1402.

[3] D. Aldous, J. A. Fill, Reversible Markov Chains
and Random Walks on Graphs, unpublished.
http://www.stat.berkeley.edu/ aldous/RWG/book.html (2002).

[4] M. Adler, S. Chakrabarti, M. Mitzenmacher, L. Rasmussen, Parallel ran-
domized load balancing, Random Struct. Algorithms 13 (2) (1998) 159–188.

[5] P. Berenbrink, K. Khodamoradi, T. Sauerwald, A. Stauffer, Balls-into-bins
with nearly optimal load distribution, in: Proceedings of the 25th ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA, 2013,
pp. 326–335.

[6] P. Berenbrink, F. Meyer auf der Heide, K. Schröder, Allocating weighted
jobs in parallel, in: Proceedings of the 9th ACM Symposium on Parallel
Algorithms and Architectures, SPAA, ACM, 1997, pp. 302–310.

[7] V. Stemann, Parallel balanced allocations, in: Proceedings. of the 8th ACM
Symposium on Parallel Algorithms and Architectures, SPAA, ACM, New
York, NY, USA, 1996, pp. 261–269.

19

[8] P. Berenbrink, T. Friedetzky, Z. Hu, R. Martin, On weighted balls- into-
bins games, Theoretical Computer Science 409 (3) (2008) 511–520.

[9] K. Talwar, U. Wieder, Balanced allocations: the weighted case, in: Pro-
ceedings of the 39th Annual ACM Symposium on Theory of Computing,
2007, pp. 256–265.

[10] P. Berenbrink, A. Czumaj, A. Steger, B. Vöcking, Balanced allocations:
The heavily loaded case, SIAM J. Comput. 35 (6) (2006) 1350–1385.

[11] Y. Peres, K. Talwar, U. Wieder, The (1 + beta)-choice process and weighted
balls-into-bins, in: Proceedings of the Twenty-First ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA, 2010, pp. 1613–1619.

[12] P. Berenbrink, T. Friedetzky, L. Goldberg, P. Goldberg, Z. Hu, R. Martin,
Distributed selfish load balancing, SIAM J. Comput. 37 (4) (2007) 1163–
1181.

[13] P. Berenbrink, T. Friedetzky, I. Hajirasouliha, Z. Hu, Convergence to equi-
libria in distributed, selfish realelocation processes with weighted tasks,
Algorithmica 62 (3-4) (2012) 767–786.

[14] C. Adolphs, P. Berenbrink, Distributed selfish load balancing with weights
and speeds, in: ACM Symposium on Principles of Distributed Computing
PODC, 2012, pp. 135–144.

[15] D. Levin, Y. Peres, E. Wilmer, Markov chains and mixing times, American
Mathematical Society, 2006.

[16] B. Doerr, S. Pohl, Run-time analysis of the (1+1) evolutionary algorithm
optimizing linear functions over a finite alphabet, in: Genetic and Evolu-
tionary Computation Conference, GECCO, 2012, pp. 1317–1324.

20

