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Abstract

A supplier manages an urgent order with uncertain progress for
which her client has set a deadline for its completion. The supplier
observes in real time the order progress and chooses dynamically the
effort level, such as manpower level, to expedite the order. Her prob-
lem is to identify expediting policies to minimise her expected cost,
given by two costs in trade-off with each other: an effort level cost
and a one-time penalty cost for late completion of the order. We for-
mulate this problem using a discrete stochastic dynamic programming
framework and obtain an optimal expediting policy for it.

By conducting a worst-case analysis, we show that decreasing the
level of flexibility, interpreted as the supplier’s ability to update effort
levels more often, may lead to a large increase in the costs of managing
the order. We refine the problem formulation by modelling the case
in which the supplier takes into account the negative effects of late
order completion on her client using a penalty cost charged every
period the order is delayed. We find an optimal policy for this case,
by solving two dynamic programming problems sequentially. For both
problems, we show that in presence of certain assumptions, there is
an optimal expediting policy for which effort levels are non-increasing
in the order progress. Finally, using a simulation study based on a car
seat assembly case, we compare the performance of the two policies.
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1 Introduction

Suppliers often receive urgent orders which are critical for their business. For
example, automotive manufacturers, faced with sudden surges in consumer
demand, may in turn place urgent orders of components to their suppliers
(Reed and Simon, 2010). Similarly, aerospace manufacturers may anticipate
the delivery of planes in an effort to please airline companies, relying on their
suppliers to urgently deliver the components for production (Wilhelm, 2016).
Both these examples show that suppliers, by managing urgent orders effec-
tively, can positively influence future business relations with their clients.
Suppliers face the problem of meeting deadlines for orders whose progress
is uncertain, because of disruptions and productivity problems. To manage
such orders effectively, suppliers can monitor them and dynamically choose
whether to allocate extra resources to accelerate their progress. Auto-id tech-
nologies can facilitate this procedure, known as dynamic expediting (Selko,
2008). In practice, dynamic expediting decisions are often dealt without cod-
ified rules because the time pressure leads to unstructured decision-making
processes.

Managing urgent orders effectively is critical to suppliers’ business. We
argue that suppliers can achieve effective urgent-order management by mak-
ing dynamic expediting decisions in a structured manner. For this reason, we
aim at providing guidance on how to manage urgent orders using dynamic
expediting. In this article we consider orders arising from urgent requests
made by clients, as in Chevalier et al. (2015). However, some of the guid-
ance we provide could also be useful when scheduling problems or production
uncertainties trigger regular orders to become urgent.

We study the novel problem of devising dynamic expediting policies for
an urgent order. Dynamic expediting has been mostly analysed by studies
investigating inventory policies in multi-stage supply chains. Our approach
differs from these studies in two main aspects. First, these studies consider
expediting as an action to safeguard companies from demand variability, but
generally not from lead-time variability, as we do in here. Second, these stud-
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ies do not take into account deadlines for order deliveries, an element which
we consider in our study. In Section 2 we present previous contributions that
are relevant for this study.

In our problem a supplier processes an urgent order, such as an indi-
visible lot of components. This lot is indivisible by nature or because of a
managerial choice; for example the supplier keeps all components together
to facilitate their tracing. The supplier already made lot-sizing and reorder
decisions and only chooses order expediting policies. The order progress is
not constant, but random, because of disruptions, efficiency, and yield prob-
lems. The supplier, with the support of tracking technologies, monitors the
order progress periodically. Based on this information, she decides the effort
to invest in the order. A personal communication between the authors and
the general manager of sales and marketing for Sanden International Europe
highlights that suppliers in the automotive industry commonly employ this
practice to manage urgent orders (Coulson, 2016).

More effort invested corresponds to higher costs and, in expectation, to
higher order progress accomplished. For chiefly manual tasks, we find reason-
able to assume that the supplier can change dynamically the effort invested
in the order. The supplier can increase the effort level by diverting personnel
working on other orders. Therefore, the supplier can estimate the effort cost
as the opportunity cost of these workers, implicitly assessing the effect of
expediting on other orders. We assume that the supplier manages the urgent
order with priority over all other orders because it is business-critical. For
this reason, we argue that the supplier makes expediting decisions on the
urgent order independently from the progress of other orders. Therefore, we
do not explicitly model the effect of expediting decisions on the other orders.
Finally, if the urgent order has not finished by a deadline agreed with a client,
the supplier faces an actual or estimated penalty cost. Our problem descrip-
tion is general and has applications in various contexts. We illustrate how to
operationalise it for two cases rather different from each other: the assem-
bly of car seats and the production of heavy machinery. Car seat assembly
takes place on mostly manual production lines. In this context, the order is
a lot of product and its progress could be measured by the number of units
assembled from that lot. When calculating the order progress, we could ig-
nore the work-in-progress, which is negligible because of the short processing
times. Operators scan completed products using auto-id technologies, au-
tomatically updating the count of units assembled. The car seat assembler
could increase the effort level by assigning more than one assembly line to the
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production of the order. In this context, the effort level could be the number
of lines assigned to the production of the lot. For heavy machinery assembly,
the order could be a single machine. Assuming that the production process
could be divided in tasks with equal work content, the order progress could
be measured by the number of tasks completed. Operators scan the machine
with auto-id technologies each time a task is completed, updating the count
of the tasks performed. In this context, the effort level could be the number
of operators assigned to perform a task.

In Section 3, we formally formulate this problem. Clients often do not
specify penalty costs for urgent orders. For this reason, in Section 5 we refine
the problem formulation by modelling the case in which the supplier takes
into account in her penalty function the negative effects of late order comple-
tion on her client. We solve both problems and investigate how the sequence
of effort levels changes in the order progress, proving some interesting mono-
tonicity results for the optimal policies. In this study, we assume that the
supplier tracks the order progress and updates the effort level at each time
period. However, for some activities and tasks, especially if these are par-
tially automated, it may not be possible for the suppliers to be so flexible in
changing the effort levels. Cognisant of this limitation of our study, in Sec-
tion 4 we discuss the value of flexibility, which we define as the organisation’s
ability to change effort levels more often. In Section 6, we introduce a sim-
ulation study based on a car seat assembly case. In this study, we compare
the performance of the policy obtained in Section 3 against the one of the
policy obtained in Section 5. In Section 7 we include the concluding remarks.
All the proofs of the results are in the Appendix.

2 Relevant work

This research contributes to the literature on expediting decisions and espe-
cially to those studies analysing how expediting could mitigate operational
risks arising from lead-time variability. We review previous research on ex-
pediting in make-to stock and make-to-order systems. Then, we discuss how
our model relates to previous studies.

In make-to-stock systems, the use of expediting upgrades units in tran-
sit to faster delivery modes, triggering urgent deliveries. The majority of
make-to-stock literature on urgent deliveries focuses on emergency orders,
additional orders usually placed later than regular orders to avoid inven-
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tory shortages. Most of these studies analyze the use of express orders in
response to demand variability, with fewer contributions investigating their
use in response to lead-time variability, such as the study of Kouvelis and Li
(2008). They assume that real-time order progress information is available
to decision maker, a setting similar to the one we study.

In the literature on expediting in make-to-stock systems, we note that
some of these studies consider expediting as a modelling assumption to allow
all orders to be delivered on time, as in Huggins and Olsen (2003). These
contributions are not closely related to our research. Instead, we review
those studies explicitly determining expediting policies based on the current
information on the supply chain, including inventory levels, demand or supply
conditions. These studies determine expediting policies in single-stage, two-
stage and multi-stage supply chains.

Bookbinder and Çakanyildirim (1999), Gallego et al. (2007) and Chiang
(2010) analyse expediting decisions in single-stage make-to-stock systems op-
erating according to an order-quantity/reorder point-type policy. Bookbinder
and Çakanyildirim (1999) obtain optimal conditions for a system with con-
stant demand and stochastic lead times, made endogenous by considering
expediting factors. Gallego et al. (2007), for a system facing random de-
mand, prove that, at optimality, inventory managers should expedite orders
according to a threshold policy, assuming that the time between order re-
ception and customer demand can be modelled using an Erlang distribution.
Chiang (2010) also identifies an optimal threshold policy for a system in
which allocating part of an outstanding order to a faster, non-zero lead-time
expediting option is allowed. Fu et al. (2013) consider a news-vendor problem
with many expediting options.

Minner et al. (2003) provide approximate solutions for a two-stage inven-
tory system with one central depot and many retailers facing Mixed-Erlang
demand. The depot could expedite outstanding orders in case it has insuf-
ficient stocks to satisfy retailers. However, the expediting outcome is not
known in advance and is modeled after a stochastic process taking into ac-
count the number of orders expedited and the age of the orders.

Studies on expediting decisions in multi-stage supply chains introduce
the idea of dynamic management of orders, in which order progess is checked
at each time period and each stage and expediting decisions are made ac-
cordingly. Lawson and Porteus (2000) analyse a periodic-review multi-stage
make-to-stock system facing random demand. They assume regular lead
times between adjoining stages to be one week and expediting to be instant.
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They make decisions from the most upstream stage to the one closest to
consumer demand, allowing units to be shipped instantly many stages down-
stream in the supply chain. They assume expediting costs to be linear in
the number of stages across which units are shipped. They show top-down
base stock inventory policies to be optimal. In such policies, decisions of a
particular stage are constrained by the decisions made in the stages farther
up in the supply chain. Muharremoglu and Tsitsiklis (2003) and Kim et al.
(2007) extend Lawson and Porteus model and find optimal base-stock inven-
tory policies. Muharremoglu and Tsitsiklis (2003) allow expediting cost to
be super-modular in the number of stages across which units are shipped.
Kim et al. (2007) consider regular lead times stochastic but not independent
across stages. In their model, at each time, they choose a single progres-
sion pattern at random for all orders in the supply chain. They assume
expediting to be instant. Berling and Mart́ınez-de Albeńız (2011) study ex-
pediting decisions in a continuous-time, continuous-stage multi-stage supply
chain facing random demand. They model expediting choices as a continu-
ous variable, the speed at which each unit is shipped down the supply chain.
They show that the optimal speed of a given unit accelerates upstream and
slows downstream in the supply chain.

In summary, only studies on expediting in multi-stage supply chains rep-
resent the process of dynamically managing lead-time of outstanding orders.
They consider a single expediting option, except for Berling and Mart́ınez-de
Albeńız (2011). These studies do not take into account deadlines for order
deliveries. They assume expediting costs as linear or super-modular in the
number of stages. They consider regular lead-times as deterministic, except
for Kim et al. (2007), and expedited lead-times as instantaneous, except for
Berling and Mart́ınez-de Albeńız (2011).

Studies analysing make-to-order systems consider expediting a faster but
more expensive choice to regular processing options. These studies mostly use
expediting as a modelling assumption necessary to allow all the orders to be
delivered on time; they are not usually concerned with identifying policies for
the dynamic lead-time management of orders. Nevertheless, these studies are
more intricate in other dimensions than the contributions on inventory man-
agement, for example taking into account the process of setting deadlines for
order deliveries. Plambeck and Ward (2008) and Çelik and Maglaras (2008)
model queueing systems in presence of lead-time quotations and expediting.
For an assemble-to-order system, Plambeck and Ward (2008) study how to
set nominal component production rates, quote prices and maximum lead-
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times for products, and then, dynamically sequence orders for assembly and
expedite components. Their proposed policy maximises the infinite-horizon
expected discounted profit when the system processes a high volume of cus-
tomers and expediting costs are large. Çelik and Maglaras (2008) consider
a profit-maximising make-to-order manufacturer offering many products to
a market of price- and delay-sensitive users. The manufacturer jointly uses
dynamic pricing and lead-time quotation controls to manage demand in com-
bination with sequencing and expediting. Arslan et al. (2001) focus more into
depth on identifying expediting policies for make-to-order systems. They con-
sider deterministic non-zero expediting order processing times and stochastic
regular order processing times. They show that, for many continuous and
discrete-time queues, the optimal policy takes the form of a (s, S) policy,
where the system manager should expedite s units when the number of units
backlogged reaches S.

Compared with studies on expediting in make-to-stock systems, we as-
sume that orders have already been placed and we focus on the real-time
management of remaining make-to-order activities of a single urgent order.
Therefore, we assume constant demand and stochastic lead times, a setting
similar to the one analysed for emergency orders by Kouvelis and Li (2008).
This setting allows us to relax restrictive assumptions on costs, expediting
options and lead times assumed by previous studies analysing expediting in
make-to-stock systems. We consider many expediting options, whose out-
come is random, and allow for general forms of expediting and penalty costs.
Moreover, we focus on the case of lead-time management of an order in pres-
ence of a deadline. Studies on expediting in make-to-stock systems do not
consider deadlines for orders, which are taken into account in studies on
expediting in make-to-order systems. However, these studies do not study
expediting as dynamic management of order lead times, as we do in here.

3 Formulating and solving the dynamic ex-

pediting problem

A supplier aims at minimising the expected cost of managing an urgent
order. She is required to complete S tasks before the deadline D. Each task
has the same work content. After tracking the order progress at each time
t = 0, 1, . . . , D − 1, she decides dynamically whether to expedite it.
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We provide a stochastic finite horizon discrete dynamic programming
formulation for the problem. The state of the system xt is the order progress,
that is, the number of tasks completed at time t. In the initial state, denoted
with 0, the supplier has not made any progress on the order yet. In the final
state, denoted with S, the supplier has completed all the work on the order.
We denote with S = {0, 1, . . . , S} the set of states. The supplier observes
the progress xt at time t and decides the effort level k to employ from t to
t + 1. The effort level could be the number of workers assigned to perform
a task. The supplier chooses the effort level from the set of available levels
K = {1, . . . , K}. If k = 0 the supplier does not deploy any resources. For
each state 0 ≤ xt < S and time instant 0 ≤ t ≤ D − 1 the set of feasible
effort levels is E(xt) = K, while E(S) = {0}. We note that it is possible to
extend this formulation by having a different set of feasible effort levels for
each order progress.

At each time t = 0, 1, . . . , D − 1, the supplier pays an effort cost ck,
increasing in the effort levels k ∈ K. Only after the deadline, if the supplier
has not finished working on the order, she further bears an actual or estimated
penalty cost, given by the function U(xD). The penalty cost function could
include two elements: a fixed cost Uf and a variable cost, a linear or non-
linear function of a unit cost Uv and the state of the system at the deadline xD.
A possible formulation of the penalty cost function is U(S) = 0 and U(xD) =
Uf + Uv(S − xD) for xD < S in which the unit cost Uv is multiplied by the
uncompleted tasks at the deadline. In Section 5 we extend our formulation
by refining the estimation of the penalty cost function for a supplier taking
into account the effects of late order completion on her client.

The discrete random variable wk is the order progress in the time period
when the supplier employs a positive effort level k. The uncertain order
progress is caused by disruptions and productivity problems in the supply
process. wk has expected value E(wk) and is defined as follows: Pr{wk =
0} > 0 and for d = 0, 1, . . ., 0 ≤ Pr{wk = d} < 1 and

∑
d Pr{wk = d} = 1.

The faster the effort level employed, the greater should be the order progress
toward its delivery. Formally, if wk′ and wk′′ are two discrete random variables
with k′ < k′′, we assume that wk′′ first-order stochastically dominates wk′ ,
that is

∑τ
d=0 Pr{wk′ = d} ≥ ∑τ

d=0 Pr{wk′′ = d} for any τ = 0, 1, . . .. If
wk′′ first-order stochastically dominates wk′ , then E(wk′′) ≥ E(wk′) (Ross,
1996, 405–406). The transition probabilities from the state i ∈ S to the state
j ∈ S when the supplier uses the effort level k are Pi,j(k) = 0 when j < i;
Pi,j(k) = Pr{wk = j − i} when j ≥ i, j 6= S and Pi,S(k) = 1−∑S−1

j=i Pi,j(k).
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We note that PS,S(k) = 1.
At each time t, based on the order progress Xt, the supplier chooses an

effort level Kt ∈ E(Xt). At time t + 1, based on the realization Wkt of
the random variable wk at time t, the supplier observes the updated order
progress Xt+1, given by the transition equation Xt+1 = min{Xt +Wkt, S}.

We denote as π = {µ0, µ1, . . . , µD−1} a time-dependent policy for the
problem in which µt is a function assigning an effort level to each state xt.
If the initial state is 0, the expected cost Jπ(0) over the finite-time horizon
corresponding to the policy π is as follows:

Jπ(0) = E{
D−1∑
t=0

cµt(Xt) + U(XD)}. (1)

The expected optimal cost for the problem is Jπ∗(0), with π∗ the policy
minimising (1).

We solve the problem using the finite-horizon dynamic programming al-
gorithm based on Bertsekas (2005, 23) and described as follows.

1. J∗D(xD) = U(xD) xD = 0, 1, . . . , S

2. Proceed backward in time by calculating the optimal cost-to-go J∗t (xt)
for t = D − 1, D − 2, . . . , 0 from the system of equations as follows:

J∗t (xt) = min
k∈K

ck +
S−1∑

xt+1=xt

Pxt,xt+1(k)J∗t+1(xt+1)

 xt = 0, 1, . . . , S.

(2)

The optimal policy π∗ determines the optimal effort level for each time
t and state i, denoted with k∗t (i). We investigate how the optimal effort
levels change in the state. Intuitively, for a given time period, the optimal
effort levels should be non-increasing in the order progress. If a supplier
follows this intuition, she employs faster effort levels earlier in the supply
process, followed by slower effort levels when the order is near completion.
This strategy not only safeguards the supplier from the risk for the supply
process ‘to get stuck’ in its earlier stages but also avoids assigning fast effort
levels when approaching the terminal state because these effort levels will be
underutilised. We formalise this intuition in Theorem 1, in which we use ρ
to denote a given value of the state j.
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Theorem 1. If
∑∞
j=ρ Pi,j(k) is a sub-additive function on S×K for all ρ ∈ S

and U(xD) is a non-increasing function in xD, then there is an optimal policy
such that k∗t (i) is non-increasing in i for t = 1, . . . , D − 1.

We note that Theorem 1 requires an additional assumption on the random
variable modelling the order progress. Example 1 in the Appendix shows that
if

∑∞
j=ρ Pi,j(k) is not a sub-additive function on S×K for all ρ ∈ S, Theorem

1 does not always hold.
Next, we investigate how the optimal effort levels change as t increases.

Intuitively, for a given state, the optimal effort levels should be non-decreasing
in time. This intuition means that if the supplier does not make any progress
on the order in the current time period, she employs an effort level in the
next time period greater or equal than the one in the current time period.
However, Example 2 in the Appendix shows that this property does not al-
ways hold. Instead, we show in Theorem 2 that, for a large enough penalty
function, J∗t (s) is non-decreasing in time for any state s ∈ S. This property
means that if the supplier does not make any progress on the order in the
current time period, she bears an optimal cost in the next time period greater
or equal than the one in the current time period.

Theorem 2. If, J∗D−1(s) ≤ U(s) for all states s ∈ S, then J∗t (s) ≤ J∗t+1(s)
for any state s ∈ S and any time t = 1, . . . , D − 1.

From (2) J∗D−1(s) can be written as: mink∈K
[
ck +

∑S−1
xD=s Ps,xD(k)U(xD)

]
.

We choose the penalty function U(xD) to be non-increasing in xD. This im-
plies that

∑S−1
xD=s Ps,xD(k)U(xD) ≤ U(s) for any effort level k ∈ K. Therefore,

the condition in Theorem 2 is met if the effort costs ck are sufficiently low
relative to the penalty costs. For some activities and tasks, changing effort
levels may require a certain setup time. We highlight that it is possible to
extend the formulation of the problem discussed in this Section to the case
with setup times by using time lags Bertsekas (2005, 35–36). In the next
Section we discuss a related problem, with the aim of assessing the value of
the supplier ability to change effort levels more often.

4 Assessing the value of flexibility

In Section 3 we assumed that the supplier tracks the order progress at each
time period t = 0, 1, . . . D − 1 and modifies the effort level accordingly, by
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applying an optimal policy. However, for some activities and tasks, especially
if these are partially automated, the supplier may not be able to change the
effort level at each time period. This lack of flexibility leads to increase in
the costs of managing the order. In this Section we aim at assessing the cost
increase from the case in which the supplier can change the effort level at
each time period (Case 1) against the case in which the supplier can change
the effort level every η ≥ 2 time periods (Case 2). We do so by conducting
a worst-case analysis.

We denote with k∗t (xt) the optimal effort level for each state xt ∈ S
at each time period t ∈ T . For each trajectory τ = {dτ0, dτ1, . . . , ...dτD}, in
which dτt is the realisation of the order progress at time t, the terminal state
xD is equal to min{∑t∈T d

τ
t , S}. Let T ′ = {0, 1, . . . , D − 1} and T ′′ the

subset of T ′ containing the time periods multiple of η. The cost in Case 1
is z1τ =

∑
t∈T ′ ck∗t (xt) + UD(xD) and the cost z2τ in Case 2 is not greater than

η
∑
t∈T ′′ ck∗t (xt) +UD(xD), that is, the cost of the feasible solution obtained by

applying the effort level k∗t (xt) at time periods t, t+1, . . . , t+η−1 for each t ∈
T ′′. We denote with T the set of trajectories used to evaluate the application
of the optimal effort levels in Case 1 and in Case 2. The corresponding costs
in Case 1 and Case 2 are J1

T (0) = 1
|T |

∑
τ∈T z

1
τ and J2

T (0) = 1
|T |

∑
τ∈T z

2
τ ,

respectively. For |T | → ∞, these costs tend to the corresponding expected
costs. Theorem 3 shows the worst-case performance of J2

T (0) against J1
T (0).

Theorem 3. For each set of trajectories T , J2
T (0) is at most η times J1

T (0)
and the bound is tight for η = 2.

Theorem 3 shows that decreasing the level of flexibility potentially leads
to a large increase in the costs of managing the order.

5 Modelling the negative effects on clients

Contracts between suppliers and clients usually establish agreed monetary
penalties for the late completion of regular orders. However, monetary penal-
ties are far less common for urgent orders because they arise from short-notice
client requests. In absence of monetary penalties for urgent orders, suppliers,
when deciding how to allocate resources to expedite order progress, could
take into account how late order completions disrupt their clients. In the
cases from automotive and aerospace industries described in Section 1, ur-
gent orders include components necessary for the assembly of products sold

11



by the clients, such as cars and planes. For each time period the urgent
order of components has not finished, the client cannot start product assem-
bly and bears estimated or actual losses. Often these are potential revenues
from product sales, which would have taken place if urgent orders had been
delivered by the supplier and product assembly had been completed by the
client.

In this Section, we provide an advanced formulation of the dynamic expe-
diting problem in which the supplier takes into account her client’s estimated
or actual losses in presence of late order completion. Moreover, the policy
obtained using this formulation identifies which efforts the supplier should
use after the deadline. The policy obtained using the formulation in Section
3 does not provide such information.

We still consider the case of a supplier tracking the progress of an urgent
order at time t and deciding dynamically the effort level to allocate to the or-
der. The supplier aims at minimising the sum of effort level costs and penalty
costs that she has to bear if she has not finished all tasks S, necessary to com-
plete the order, before a deadline D. In Section 3 we formulated a problem
in which a supplier dynamically allocates resources to order processing and
faces a penalty cost U(xD) if the order has not finished by a deadline D. In
here, we extend our model by explicitly considering how the supplier should
allocate resources to accelerate the order progress also after the deadline D.
In this latter formulation, the supplier faces penalty costs for each time unit
the order has not finished. We formulate this problem using two integrated
stochastic discrete dynamic programming models. Before time D we adapt
the finite-horizon model described in Section 3. From time D the system is
stationary, that is, time-independent, because the penalty cost is no longer a
function of the deadline D. For this reason after D we can model the system
using an infinite-horizon model. The infinite-horizon problem ends when all
tasks are completed, corresponding to the state S. The presence of this cost-
free termination state makes our problem a stochastic shortest path problem
(Bertsekas, 2005, 403).

We provide the stochastic discrete dynamic programming formulation of
the infinite-horizon problem. The state of the system is the order progress
x, which is independent of time because the system is stationary. The state
space is SxD = {x ∈ S : x ≥ xD} with the state at the deadline xD being the
initial state of the infinite-horizon model. The supplier observes the progress
x at time t and decides the effort level k to employ between t and t+ 1 from
the set of available levels K = {0, 1, . . . , K} with k = 0 corresponding to no
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resources deployed. For each state 0 ≤ x < S the set of feasible effort levels
is E(x) = K, while E(S) = 0. At each time t, the supplier pays an effort cost
ck, increasing in the effort level k ∈ K. Every time period the supply process
has not finished, the supplier bears a fixed penalty cost u. The penalty per
unit of time of delay u could be used to compensate the loss of production at
the client’s site. The definitions of the discrete random variables, transition
equations and transitions probabilities are identical to those in Section 3.
The immediate cost g(i, k, j) of the infinite-horizon model for the transition
from the state i ∈ SxD to the state j ∈ SxD when using the effort level k is
defined as follows. If i 6= S and j 6= S, then g(i, k, j) = ck + u. If i 6= S and
j = S, then g(i, k, S) = ck. If i = S, then k = 0, j = S and g(S, 0, S) = 0.
The expected cost per stage is ḡ(i, k) =

∑
j∈SxD

Pi,j(k)g(i, k, j), for i 6= S
and 0 otherwise. If µ is a function assigning an effort level to each state x,
the constant sequence µ, µ, . . . , µ is a stationary (time-independent) policy
for the problem. We denote this policy with µ. For an order starting with
progress xD at the deadline D, we denote with Yµ(xD) its expected cost over
the infinite-time horizon corresponding to the policy µ.

We obtain Yµ(xD) by taking the limit as the number of periods T goes to
infinity.

Yµ(xD) = lim
T→∞

E{
T−1∑
t=D

ḡ(Xt, µ(Xt))|XD = xD}. (3)

We denote as Y ∗∞(xD) the expected optimal cost. If xD = S, then Y ∗∞(xD) =
0. If xD < S, then Y ∗∞(xD) = Yµ∗(xD) with µ∗ being the stationary policy
minimising (3).

The discrete dynamic programming formulation of the finite-horizon prob-
lem is the finite-horizon model described in Section 3 in which the penalty
cost is the optimal cost-to-go of the infinite-horizon model, that is U(xD) =
Y ∗∞(xD).

We solve the infinite-horizon problem using the value iteration algorithm
based on Bertsekas (2005, 413–414) and described as follows:

1. Set b := 0 and Yb(i) to a random value, i = 1, 2, . . . , S − 1.

2. Compute Yb+1(i) = mink∈K
[
ḡ(i, k) +

∑S−1
j=i Pi,j(k)Yb(j)

]
for i = 0, 1, . . . , S − 1. Let k∗b+1(i) be the corresponding effort level.

3. If Yb+1(i) = Yb(i), ∀i = 0, 1, . . . , S − 1, set µ∗(i) := k∗b+1(i), for i =
0, 1, . . . , S − 1. Otherwise, go to step 2.

13



We solve the finite-horizon problem using the dynamic programming al-
gorithm described in Section 3.

For the infinite-horizon problem we obtain a stronger version of Theorem
1.

Theorem 4. There is an optimal policy for the infinite-horizon model such
that, for each state i′ ∈ S and i ∈ S with xD ≤ i′ < i < S, k∗i′ ≥ k∗i .

Theorem 4 states that, after the deadline D, the supplier could expedite
the order optimally by using effort levels non-increasing in the order progress.

We note that the assumption of U(XD) being non-increasing in xD in
Theorem 1 is always true when U(xD) = Y ∗∞(xD) because of the definition
of the cost-to-go Y ∗∞(xD).

6 Simulation study

In Sections 3 and 5 we showed how to derive optimal policies to expedite
an urgent order with uncertain progress by solving a dynamic programming
problem. In Section 3 we obtained an optimal expediting policy for a finite-
horizon model that ends at the deadline. We refer to this optimal policy
as ‘base-case policy’. In Section 5 we obtained an optimal expediting policy
solving in sequence an infinite-horizon model and a finite-horizon model. This
infinite-horizon model starts at the deadline and ends when the supplier has
finished working on the order. We refer to this optimal policy as ‘advanced
policy’.

In this Section, we provide a simulation study based on a car seat assembly
case. We use this study to compare the performance of the base-case policy
against the one of the advanced policy.

Car seat assembly takes place on mostly manual assembly lines. Each
assembly line usually includes 15 to 20 stations. Operators assemble one seat
at a time. A typical assembly process is described as follows. First, operators
assemble the upper cushioning, the headrest, the seat warmer system, the
airbags and the metal spring framework. Then, operators assemble the lower
cushioning, the height-adjustment mechanisms, the electrical connectors and
the reclining springs. Finally, operators perform functional tests and iron
the seats. Tsou and Chen (2005) provided a detailed description of the car
assembly process.
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We consider the case in which a plant manager has received an urgent
order of 3 300 seats by an important client and has agreed to have it com-
pleted in 40 hours. In this context, the final state S is 3 300 and the deadline
D is 40 hours. The plant includes five lines. In this context, the effort level
k is the number of lines employed by the plant manager. The plant manager
monitors the order progress every hour and decides how many lines to allo-
cate to the order. The hourly order progress depends on the number of lines
employed and follows a discrete uniform probability distribution. For one,
two, three, four and five lines employed the support of the probability dis-
tributions of car seats per hour are as follows: [64, 94], [130, 190], [195, 285],
[255, 385], and [320, 480], respectively. We note that the corresponding dis-
crete random variables satisfy the requirements detailed in Section 3. If the
plant manager employs an assembly line for the production of an urgent or-
der, the production of regular orders is delayed. This negative effect is more
than linear in the number of lines used because using more lines could cause
much longer delays to the production of regular orders. For example, when
the plant manager employs all five lines to assemble the urgent orders, the
production of regular orders has to be completely stopped. In this context,
the negative effect is the effort cost ck. For one, two, three, four and five
lines employed the hourly effort costs are 60, 140, 240, 360, and 500 euros,
respectively. Finally, if the plant manager does not complete the production
of seats by the deadline, her client will not be able to start the car production
process. The plant manager has estimated that this delay can cost her client
euro 175/hour, which is the unit penalty cost u.

To assess the increase in cost ensuing from using the base-case policy
instead of the advanced policy, we used a simulation that we implemented
in C++. For this case, applying the advanced policy leads to an average
cost over 1 000 replications of 2 583.6 euros. The base-case policy requires the
definition of the penalty function U(xD). Let d̄k be the expected progress
associated to the effort level k. Assuming that the probability of choosing
each effort level is the same and taking expectation over the effort levels, a
good approximation for Y ∗∞(xD) is U(xD) = E[(ck + u)(S − xD)/d̄k]. Using
this newly defined penalty function, we apply the base-case policy to our
case and obtain an average cost over 1 000 replications of 2 590.1 euros. This
approximation for our penalty function implicitly assumes that after the
deadline the supplier employs each effort level k with the same probability
until the order has finished. For each effort level k, in expectation, the time
it takes for the order to be completed could be approximated by (S−xD)/d̄k.
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D ck u
Average cost Cost increase Interval
(advanced) (base case) (cost increase)

[hours] [euro] [euro\hour] [euro] [euro] [euro]
20 Low 175 2 950.2 14.4 [11.0, 17.7]
20 Low 1 225 2 957.0 30.5 [27.3, 33.8]
20 High 175 4 424.8 17.8 [13.0, 22.6]
20 High 1 225 4 436.4 38.5 [32.8, 44.3]
40 Low 175 2 583.6 6.5 [4.3, 8.8]
40 Low 1 225 2 584.4 12.3 [10.0, 14.6]
40 High 175 3 874.2 7.7 [4.2, 11.2]
40 High 1 225 3 877.7 15.4 [12.1, 18.7]

Table 1: Simulation comparison with the order progress following a discrete
uniform distribution and confidence intervals at the 90% level of significance.

To obtain the expected penalty for each effort level k we multiply this time
interval by the cost that the supplier bears at each period after the deadline
before the order has finished, which is ck + u.

To explore the sensitivity of the cost-increase to variation in the param-
eters, we conduct various simulation experiments. In our experiments the
hourly order progress for each number of lines employed can follow a dis-
crete uniform distribution or a Poisson distribution with the same mean.
The deadline D can be 20 or 40 hours. The effort costs for one, two, three,
four, and five lines employed can take low or high values. Low effort costs
are 60, 140, 240, 360, and 500 euros, respectively. High effort costs are 90,
210, 360, 540, and 750 euros, respectively. The penalty costs can be 175
or 1 225 euros per hour. For each experiment and for each policy we con-
ducted 1 000 replications. We used the common random number technique
in the replications across the two policies. For each experiment we computed
the difference between the costs accomplished using the base-case policy and
those accomplished using the advanced policy. For this random variable we
computed a paired–t confidence interval at the 90% of significance (Law,
2007, 552–554). We show the results for the order progress following discrete
uniform and Poisson distributions in Tables 1 and 2, respectively.

Experiments employing the advanced policy lead to less frequent changes
in the effort levels than those employing the base-case policy. If the order
progress follows a discrete uniform distribution, experiments employing the
advanced policy and the base-case policy lead to average changes in the effort
levels of 2.5 and 4.0, respectively. If the order progress follows a Poisson
distribution, experiments employing the advanced policy and the base-case
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D ck u
Average cost Cost increase Interval
(advanced) (base case) (cost increase)

[hours] [euro] [euro\hour] [euro] [euro] [euro]
20 Low 175 2 936.2 15.8 [13.3, 18.3]
20 Low 1 225 2 948.6 24.5 [19.3, 29.7]
20 High 175 4 401.3 21.1 [17.4, 24.8]
20 High 1 225 4 416.2 36.3 [31.0, 41.6]
40 Low 175 2 565.2 3.4 [1.6, 5.3]
40 Low 1 225 2 565.5 11.2 [9.5, 13.0]
40 High 175 3 848.2 2.5 [-0.1, 5.2]
40 High 1 225 3 847.4 16.7 [14.2, 19.2]

Table 2: Simulation comparison with the order progress following a Poisson
distribution and confidence intervals at the 90% level of significance.

policy lead to average changes in the effort levels of 2.0 and 3.25, respectively.
On average, 37% of the changes in the effort levels take place early in the
simulation, that is, before D/2.

The base-case policy is worse than the advanced policy in every exper-
iment. However, using the base-case policy instead of the advanced policy
leads to small cost-to-go increases overall. This good results are also due to
the initial simulation experiments we run to identify values for the base-case
policy penalty function leading to a good approximation of the advanced
policy penalty function. Experiments with the order progress following a
Poisson distribution lead to larger average cost increases than those with the
order progress following a discrete uniform distribution. The advanced pol-
icy works better than the base-case policy when the system is ‘under-stress’,
that is, for shorter deadlines. Larger effort costs and penalty costs lead to
larger average cost increases. As we consider comparable increases of effort
and penalty costs, we note that the variability in penalty cost has a larger
effect on the cost-to-go than the variability in the effort cost when the value
of the penalty cost is small. The advanced policy leads to less frequent ef-
fort changes compared to the base-case policy. For this reason, the assembly
plant manager could implement the advanced policy more easily than the
base-case policy.

In summary, if the assembly plant manager calibrates the penalty function
of the base-case policy using the penalty function of the advanced policy, she
could use the ‘base-case policy’ with only small increases in the costs-to-go.
However, the base-case policy does not provide information on which effort to
use after the deadline. If the plant manager wants to know this information,
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she has to use the advanced policy.

7 Conclusions

Urgent orders are critical to clients. Therefore, suppliers managing these or-
ders effectively can relevantly improve their customer relations. Using track-
ing technologies suppliers can monitor orders in real time, allowing them
to identify in a timely manner delays and disruptions that could affect the
order progress as in Mogre et al. (2014). Suppliers can use this real-time
information to dynamically choose whether to allocate extra resources, such
as manpower, to expedite orders with the aim of meeting tight deadlines set
by clients.

In here, we studied the case of a supplier managing an urgent order with
uncertain progress for which her client set a deadline for its completion. Her
problem is to identify effort levels minimising her cost, given by two costs in
trade-off with each other: an effort level cost, such as the cost of manpower,
and a penalty cost charged for late order completion.

In Section 3, we formulated this problem using discrete stochastic dy-
namic programming and solved it by adapting the finite-horizon dynamic
programming algorithm. In Theorem 2, we showed that, for a large enough
penalty cost function, the optimal cost-to-go is non-decreasing in time. This
property means that no order progress in the current time period leads the
supplier to face an optimal cost-to-go in the next time period at least as large
as the one in the current time period. In Theorem 1, we showed that, given
certain assumptions on the order progress, there is an optimal policy such
that effort levels are non-increasing in the order progress. Theorem 1 implies
that a supplier employing an optimal policy is likely to use faster and more
expensive effort levels earlier in the supply process, followed by slower and
cheaper effort levels when the order is near completion.

Clients often do not specify penalty costs for urgent orders. For this rea-
son, in Section 5 we extended the formulation of our problem to the case
in which the supplier estimates her own penalty cost function by assessing
the negative effects of a late order completion on her client. We found the
optimal solution for this case by sequentially solving two dynamic program-
ming problems, a finite-horizon problem modelling the order progress before
the deadline, and an infinite-horizon problem modelling the order progress
after the deadline. We solved the infinite-horizon problem using the value
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iteration algorithm. For the infinite-horizon problem we obtained a stronger
version of Theorem 1. Theorem 4 states that after the deadline is elapsed,
the supplier could manage the order using an optimal policy in which the ef-
fort levels are non-increasing in the order progress. Berling and Mart́ınez-de
Albeńız (2011) proved a similar monotonicity result for expediting policies
in a sequential supply chain. They showed that the optimal speed of a given
order should accelerate upstream and slow downstream.

In Section 6 we introduced a simulation study based on a car seat as-
sembly case. This study showed that the performance of the policy obtained
in Section 3, called ‘base-case’ policy is similar to the one of the policy ob-
tained in Section 5, called ‘advanced’ policy, if the manager of the car seat
assembly plant uses as penalty function a good approximation of the penalty
cost function of the advanced policy. Nevertheless, the advanced policy, by
leading to fewer changes in the effort levels compared to the base-case policy,
could be easier to implement in practice.

In this study, we assumed that the supplier tracks the order progress and
updates the effort level at each time period. However, for some activities
and tasks, especially if these are partially automated, it may not be possible
for the supplier to be so flexible in updating effort levels. To address this
limitation of our study, in Section 4 we discussed the value of flexibility, which
is the suppliers ability to update effort levels more often. By conducting a
worst-case case analysis, in Theorem 3 we showed that decreasing the level
of flexibility may lead to a large increase in the costs of managing the order.

Future work could extend our modelling framework to the dynamic man-
agement of expediting in projects, a setting similar to the one studied by
Bregman (2009). This future study would face the complication that activi-
ties in projects are not only sequential, but arranged in networks.
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Çelik, S., Maglaras, C., 2008. Dynamic pricing and lead-time quotation for a
multiclass make-to-order queue. Management Science 54 (6), 1132–1146.

Chevalier, P., Lamas, A., Lu, L., Milnar, T., 2015. Revenue management for
operations with urgent orders. European Journal of Operational Research
240 (2), 476–487.

Chiang, C., 2010. An order expediting policy for continuous review systems
with manufacturing lead-time. European Journal of Operational Research
203 (2), 526–531.

Coulson, A., 2016. Discussion on dynamic expediting of urgent orders. [email]
(Personal communication, 1 December 2016).

Fu, K., Xu, J., Miao, Z., 2013. Newsvendor with multiple options of expe-
diting. European Journal of Operational Research 226 (1), 94–99.

Gallego, G., Jin, Y., Muriel, A., Zhang, G., Yildiz, V., 2007. Optimal order-
ing policies with convertible lead times. European Journal of Operational
Research 176 (2), 892–910.

Huggins, E., Olsen, T., 2003. Supply chain management with guaranteed
delivery. Management Science 49 (9), 1154–1167.

20



Kim, C., Klabjan, D., Simchi-Levi, D., 2007. Optimal expediting policies
for an inventory system with stochastic lead time under radio frequency
identification. Working paper, MIT.

Kouvelis, P., Li, J., 2008. Flexible backup supply and the management of
lead-time uncertainty. Production and Operations Management 17 (2),
184–199.

Law, A., 2007. Simulation modeling & analysis, 4th Edition. New York, NY,
USA: McGraw-Hill.

Lawson, D., Porteus, E., 2000. Multistage inventory management with expe-
diting. Operations Research 48 (6), 878–893.

Minner, S., Diks, E., De kok, A., 2003. A two-echelon inventory system with
supply lead time flexibility. IIE Transactions 35 (2), 117–129.

Mogre, R., Wong, C., Lalwani, C., 2014. Mitigating supply and production
uncertainties with dynamic scheduling using real-time transport informa-
tion. International Journal of Production Research 52 (17), 5223–5235.

Muharremoglu, A., Tsitsiklis, J., 2003. Dynamic leadtime management in
supply chains. Working paper, MIT.

Plambeck, E., Ward, A., 2008. Optimal control of a high-volume assemble-to-
order system with maximum leadtime quotation and expediting. Queueing
Systems 60 (1-2), 1–69.

Puterman, M., 2005. Markov decision processes. Discrete stochastic dynamic
programming, 2nd Edition. New York, NY, USA: John Wiley & Sons.

Reed, J., Simon, B., 2010. Global car sectors rebound runs out of gas. Finan-
cial Times, [online]. Available at: http://www.ft.com/cms/s/0/d9dba6d0-
885f-11df-aade-00144feabdc0.html[Accessed 22 April 2016].

Ross, S., 1996. Stochastic processes, 2nd Edition. New York, NY, USA: John
Wiley & Sons.

Selko, A., 2008. Rfid used to expedite production of vehicles for
u.s. defense department. Industry Week, [online]. Available at:

21



http://www.industryweek.com/planning-amp-forecasting/rfid-used-
expedite-production-vehicles-us-defense-department[Accessed 22 April
2016].

Tsou, J.-C., Chen, J.-M., 2005. Case study: quality improvement model in a
car seat assembly line. Production Planning & Control 16 (7), 681–690.

Wilhelm, S., 2016. Boeing could accelerate 777x delivery to please
emirates. Puget Sound Business Journal, [online]. Available at:
http://www.bizjournals.com/seattle/news/2016/03/11/boeing-could-
accelerate-777x-delivery-to-please.html[Accessed 22 April 2016].

22



Appendix

Proof of Theorem 1. We prove the result by using the sufficient condition
provided in Puterman (2005, 107–108). In particular, the five conditions
required in Theorem 4.7.4 are satisfied as:

1. ck is constant in i for all k, so it is non-increasing in i for all k.

2.
∑∞
j=ρ Pi,j(k) =

∑∞
j=ρ Pr{wk = j − i} =

∑∞
d=ρ−i Pr{wk = d} is non-

decreasing in i for all ρ and k.

3. ck is a sub-additive function on K (any function with one variable is
both a super-additive and a sub-additive function by definition).

4.
∑∞
j=i+ρ Pi,j(k) is a sub-additive function on S × K for all ρ ∈ S by

assumption.

5. U(xD) is a non-increasing function in xD by assumption.

Example 1. This example shows that, if
∑∞
j=ρ Pi,j(k) is not a sub-additive

function on S × K for all ρ ∈ S, the property of Theorem 1 does not always
hold. Let S = 5 and K = 2, with c1 = 10 and c2 = 50, t = D − 1,
Y ∗D(0) = 200, Y ∗D(1) = 160, Y ∗D(2) = 130, Y ∗D(3) = 80, Y ∗D(4) = 10 and
Y ∗D(5) = 0. Suppose that Pr{w1 = 1} = 1, while Pr{w2 = 2} = 1. Set
s− = 0, s+ = 2, k− = 1, k+ = 2 and ρ = 4. Since

∞∑
j=ρ

[Ps−,j(k
−)+Ps+,j(k

+)] =
∞∑
d=4

Pr{w1 = d}+
∞∑
d=2

Pr{w2 = d} = 0+1 > 0+0 =

=
∞∑
d=4

Pr{w2 = d}+
∞∑
d=2

Pr{w1 = d} =
∞∑
j=ρ

[Ps−,j(k
+) + Ps+,j(k

−)],

then
∑∞
j=ρ Pi,j(k) is not a sub-additive function on S × K for all ρ ∈ S.

The optimal effort level at state 0 is k∗D−1(0) = 1, as Y ∗D−1(0) = min{c1 +
Y ∗D(1), c2 + Y ∗D(2)} = min{170, 180} = 170. Instead, the optimal effort level
at state 1 is k∗D−1(1) = 2, as Y ∗D−1(1) = min{c1 + Y ∗D(2), c2 + Y ∗D(3)} =
min{140, 130} = 130.
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Example 2. This example shows that k∗t (s) can be greater than k∗t+1(s). Let
S = 5 and K = 2, with c1 = 26 and c2 = 50, J∗D(0) = 5, J∗D(1) = 4, J∗D(2) =
3, J∗D(3) = 2, J∗D(4) = 1 and J∗D(5) = 0. Suppose that Pr{w1 = 1} = 1, while
Pr{w2 = 2} = 1. Let us focus on state s = 3. At time t = D−1, k∗D−1(3) = 1,
as J∗D−1(3) = min{c1 + J∗D(4), c2 + J∗D(5)} = min{27, 50} = 27. Moreover,
k∗D−1(4) = 1 as J∗D−1(4) = min{c1 + J∗D(5), c2 + J∗D(5)} = min{26, 50} = 26.
At time t = D − 2, k∗D−2(3) = 2 as J∗D−2(3) = min{c1 + J∗D−1(4), c2 +
J∗D−1(5)} = min{52, 50} = 50.

Proof of Theorem 2. We obtain the proof by backward induction. The state-
ment is true for t = D − 1 by assumption. Let us assume that it is true at
time t+1, that is Y ∗t+1(s) ≤ Y ∗t+2(s). Then, Y ∗t (s) = mink[ck+

∑S−s
d=0 Pr{wk =

d}Y ∗t+1(s+ d)] ≤ mink[ck +
∑S−s
d=0 Pr{wk = d}Y ∗t+2(s+ d)] = Y ∗t+1(s).

Proof of Theorem 3. For each trajectory τ ∈ T , z1τ =
∑
t∈T ′ ck∗t (xt)+UD(xD) ≥∑

t∈T ′′ ck∗t (xt)+UD(xD). Moreover, z2τ ≤ η
∑
t∈T ′′ ck∗t (xt)+UD(xD) ≤ η

∑
t∈T ′ ck∗t (xt)+

UD(xD) ≤ ηz1τ . Hence,

J2
T (0) =

1

|T |
∑
τ∈T

z2τ ≤
1

|T |
∑
τ∈T

ηz1τ = ηJ1
T (0).

The following instance allows us to prove that the bound is tight for
η = 2. Let S = 4, D = 2 and K = 2, with c1 = ε << 1 and c2 = 2,
UD(0) = 6, UD(1) = 4, UD(2) = 2, UD(3) = ε and UD(4) = 0. Suppose that
Pr{w1 = 1} = 1, while Pr{w2 = 3} = 1. Let T be composed of just one
trajectory τ with dτ0 = 3 and dτ1 = 3.

First, we compute the optimal policy at time t = 1.

x1\k 1 2 J∗1 (x1) k∗t (x1)
0 c1 + UD(1) = 4 + ε c2 + UD(3) = 2 + ε 2 + ε 2
1 c1 + UD(2) = 2 + ε c2 + UD(4) = 2 2 2
2 c1 + UD(3) = 2ε c2 + UD(4) = 2 2ε 1
3 c1 + UD(4) = ε c2 + UD(4) = 2 ε 1

Then, we compute the optimal policy at time t = 0.

x0\k 1 2 J∗0 (x1) k∗t (x1)
0 c1 + J∗1 (1) = 2 + ε c2 + J∗1 (3) = 2 + ε 2 + ε 1/2

Consider now the trajectory τ . In Case 1, J1
T (0) = 2 + ε. In Case 2, if we

apply k∗t (x1) = k∗t (x2) = 2, then J2
T (0) = 4. Therefore, 2J1

T (0) = 2(2 + ε)→
4 = J2

T (0) for ε→ 0.
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Proof of Theorem 4. Consider any trajectory from XD to S such that the
states i′ and i, with XD ≤ i′ < i < S, are visited. Suppose that the
corresponding optimal effort levels k∗i′ and k∗i are such that k∗i′ < k∗i . We
prove that this policy, referred to as µ1, is dominated by the one, referred to
as µ2, in which the effort level k∗i is applied at state i′ and k∗i′ is applied at state
i. The part of the total expected cost concerning the states i′ and i is Cµ1 =
ck∗

i′
+u

∑S−1
j=i′ Pi′,j(k

∗
i′)+ck∗i +u

∑S−1
j=i Pi,j(k

∗
i ) in the first policy, while it is Cµ2 =

ck∗i + u
∑S−1
j=i′ Pi′,j(k

∗
i ) + ck∗

i′
+ u

∑S−1
j=i Pi,j(k

∗
i′) in the second. Since Pi′,j(k) =

Pr{Wk = j − i′} for any k and
∑τ
d=0 Pr{Wk′ = d} ≥ ∑τ

d=0 Pr{Wk′′ = d} for
any k′ < k′′ and for any τ = 0, 1, . . ., then

∑S−1
j=i′ Pi′,j(k

∗
i′) −

∑S−1
j=i Pi,j(k

∗
i′) =∑S−i′−1

d=0 Pr{Wk∗
i′

= d}+
∑S−i′−2
d=0 Pr{Wk∗

i′
= d}+ . . .+

∑S−i
d=0 Pr{Wk∗

i′
= d} ≥∑S−i′−1

d=0 Pr{Wk∗i
= d}+

∑S−i′−2
d=0 Pr{Wk∗i

= d}+ . . .+
∑S−i
d=0 Pr{Wk∗i

= d} =∑S−1
j=i′ Pi′,j(k

∗
i )−

∑S−1
j=i Pi,j(k

∗
i ). Therefore, if the strict inequality holds, then

Jµ1(0) > Jµ2(0) and therefore µ1 cannot be optimal. Otherwise, if equality
holds, both µ1 and µ2 are optimal policies. Therefore, there exists an optimal
policy such that k∗i′ ≥ k∗i .
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